xref: /linux/arch/powerpc/kernel/setup_64.c (revision a44e4f3ab16bc808590763a543a93b6fbf3abcc4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Common boot and setup code.
5  *
6  * Copyright (C) 2001 PPC64 Team, IBM Corp
7  */
8 
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33 
34 #include <asm/debugfs.h>
35 #include <asm/io.h>
36 #include <asm/kdump.h>
37 #include <asm/prom.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/smp.h>
41 #include <asm/elf.h>
42 #include <asm/machdep.h>
43 #include <asm/paca.h>
44 #include <asm/time.h>
45 #include <asm/cputable.h>
46 #include <asm/dt_cpu_ftrs.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/rtas.h>
52 #include <asm/iommu.h>
53 #include <asm/serial.h>
54 #include <asm/cache.h>
55 #include <asm/page.h>
56 #include <asm/mmu.h>
57 #include <asm/firmware.h>
58 #include <asm/xmon.h>
59 #include <asm/udbg.h>
60 #include <asm/kexec.h>
61 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/opal.h>
64 #include <asm/cputhreads.h>
65 #include <asm/hw_irq.h>
66 #include <asm/feature-fixups.h>
67 #include <asm/kup.h>
68 
69 #include "setup.h"
70 
71 #ifdef DEBUG
72 #define DBG(fmt...) udbg_printf(fmt)
73 #else
74 #define DBG(fmt...)
75 #endif
76 
77 int spinning_secondaries;
78 u64 ppc64_pft_size;
79 
80 struct ppc64_caches ppc64_caches = {
81 	.l1d = {
82 		.block_size = 0x40,
83 		.log_block_size = 6,
84 	},
85 	.l1i = {
86 		.block_size = 0x40,
87 		.log_block_size = 6
88 	},
89 };
90 EXPORT_SYMBOL_GPL(ppc64_caches);
91 
92 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
93 void __init setup_tlb_core_data(void)
94 {
95 	int cpu;
96 
97 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
98 
99 	for_each_possible_cpu(cpu) {
100 		int first = cpu_first_thread_sibling(cpu);
101 
102 		/*
103 		 * If we boot via kdump on a non-primary thread,
104 		 * make sure we point at the thread that actually
105 		 * set up this TLB.
106 		 */
107 		if (cpu_first_thread_sibling(boot_cpuid) == first)
108 			first = boot_cpuid;
109 
110 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
111 
112 		/*
113 		 * If we have threads, we need either tlbsrx.
114 		 * or e6500 tablewalk mode, or else TLB handlers
115 		 * will be racy and could produce duplicate entries.
116 		 * Should we panic instead?
117 		 */
118 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
119 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
120 			  book3e_htw_mode != PPC_HTW_E6500,
121 			  "%s: unsupported MMU configuration\n", __func__);
122 	}
123 }
124 #endif
125 
126 #ifdef CONFIG_SMP
127 
128 static char *smt_enabled_cmdline;
129 
130 /* Look for ibm,smt-enabled OF option */
131 void __init check_smt_enabled(void)
132 {
133 	struct device_node *dn;
134 	const char *smt_option;
135 
136 	/* Default to enabling all threads */
137 	smt_enabled_at_boot = threads_per_core;
138 
139 	/* Allow the command line to overrule the OF option */
140 	if (smt_enabled_cmdline) {
141 		if (!strcmp(smt_enabled_cmdline, "on"))
142 			smt_enabled_at_boot = threads_per_core;
143 		else if (!strcmp(smt_enabled_cmdline, "off"))
144 			smt_enabled_at_boot = 0;
145 		else {
146 			int smt;
147 			int rc;
148 
149 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
150 			if (!rc)
151 				smt_enabled_at_boot =
152 					min(threads_per_core, smt);
153 		}
154 	} else {
155 		dn = of_find_node_by_path("/options");
156 		if (dn) {
157 			smt_option = of_get_property(dn, "ibm,smt-enabled",
158 						     NULL);
159 
160 			if (smt_option) {
161 				if (!strcmp(smt_option, "on"))
162 					smt_enabled_at_boot = threads_per_core;
163 				else if (!strcmp(smt_option, "off"))
164 					smt_enabled_at_boot = 0;
165 			}
166 
167 			of_node_put(dn);
168 		}
169 	}
170 }
171 
172 /* Look for smt-enabled= cmdline option */
173 static int __init early_smt_enabled(char *p)
174 {
175 	smt_enabled_cmdline = p;
176 	return 0;
177 }
178 early_param("smt-enabled", early_smt_enabled);
179 
180 #endif /* CONFIG_SMP */
181 
182 /** Fix up paca fields required for the boot cpu */
183 static void __init fixup_boot_paca(void)
184 {
185 	/* The boot cpu is started */
186 	get_paca()->cpu_start = 1;
187 	/* Allow percpu accesses to work until we setup percpu data */
188 	get_paca()->data_offset = 0;
189 	/* Mark interrupts disabled in PACA */
190 	irq_soft_mask_set(IRQS_DISABLED);
191 }
192 
193 static void __init configure_exceptions(void)
194 {
195 	/*
196 	 * Setup the trampolines from the lowmem exception vectors
197 	 * to the kdump kernel when not using a relocatable kernel.
198 	 */
199 	setup_kdump_trampoline();
200 
201 	/* Under a PAPR hypervisor, we need hypercalls */
202 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
203 		/* Enable AIL if possible */
204 		pseries_enable_reloc_on_exc();
205 
206 		/*
207 		 * Tell the hypervisor that we want our exceptions to
208 		 * be taken in little endian mode.
209 		 *
210 		 * We don't call this for big endian as our calling convention
211 		 * makes us always enter in BE, and the call may fail under
212 		 * some circumstances with kdump.
213 		 */
214 #ifdef __LITTLE_ENDIAN__
215 		pseries_little_endian_exceptions();
216 #endif
217 	} else {
218 		/* Set endian mode using OPAL */
219 		if (firmware_has_feature(FW_FEATURE_OPAL))
220 			opal_configure_cores();
221 
222 		/* AIL on native is done in cpu_ready_for_interrupts() */
223 	}
224 }
225 
226 static void cpu_ready_for_interrupts(void)
227 {
228 	/*
229 	 * Enable AIL if supported, and we are in hypervisor mode. This
230 	 * is called once for every processor.
231 	 *
232 	 * If we are not in hypervisor mode the job is done once for
233 	 * the whole partition in configure_exceptions().
234 	 */
235 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
236 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
237 		unsigned long lpcr = mfspr(SPRN_LPCR);
238 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
239 	}
240 
241 	/*
242 	 * Set HFSCR:TM based on CPU features:
243 	 * In the special case of TM no suspend (P9N DD2.1), Linux is
244 	 * told TM is off via the dt-ftrs but told to (partially) use
245 	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
246 	 * will be off from dt-ftrs but we need to turn it on for the
247 	 * no suspend case.
248 	 */
249 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
250 		if (cpu_has_feature(CPU_FTR_TM_COMP))
251 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
252 		else
253 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
254 	}
255 
256 	/* Set IR and DR in PACA MSR */
257 	get_paca()->kernel_msr = MSR_KERNEL;
258 }
259 
260 unsigned long spr_default_dscr = 0;
261 
262 void __init record_spr_defaults(void)
263 {
264 	if (early_cpu_has_feature(CPU_FTR_DSCR))
265 		spr_default_dscr = mfspr(SPRN_DSCR);
266 }
267 
268 /*
269  * Early initialization entry point. This is called by head.S
270  * with MMU translation disabled. We rely on the "feature" of
271  * the CPU that ignores the top 2 bits of the address in real
272  * mode so we can access kernel globals normally provided we
273  * only toy with things in the RMO region. From here, we do
274  * some early parsing of the device-tree to setup out MEMBLOCK
275  * data structures, and allocate & initialize the hash table
276  * and segment tables so we can start running with translation
277  * enabled.
278  *
279  * It is this function which will call the probe() callback of
280  * the various platform types and copy the matching one to the
281  * global ppc_md structure. Your platform can eventually do
282  * some very early initializations from the probe() routine, but
283  * this is not recommended, be very careful as, for example, the
284  * device-tree is not accessible via normal means at this point.
285  */
286 
287 void __init early_setup(unsigned long dt_ptr)
288 {
289 	static __initdata struct paca_struct boot_paca;
290 
291 	/* -------- printk is _NOT_ safe to use here ! ------- */
292 
293 	/* Try new device tree based feature discovery ... */
294 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
295 		/* Otherwise use the old style CPU table */
296 		identify_cpu(0, mfspr(SPRN_PVR));
297 
298 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
299 	initialise_paca(&boot_paca, 0);
300 	setup_paca(&boot_paca);
301 	fixup_boot_paca();
302 
303 	/* -------- printk is now safe to use ------- */
304 
305 	/* Enable early debugging if any specified (see udbg.h) */
306 	udbg_early_init();
307 
308  	DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr);
309 
310 	/*
311 	 * Do early initialization using the flattened device
312 	 * tree, such as retrieving the physical memory map or
313 	 * calculating/retrieving the hash table size.
314 	 */
315 	early_init_devtree(__va(dt_ptr));
316 
317 	/* Now we know the logical id of our boot cpu, setup the paca. */
318 	if (boot_cpuid != 0) {
319 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
320 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
321 	}
322 	setup_paca(paca_ptrs[boot_cpuid]);
323 	fixup_boot_paca();
324 
325 	/*
326 	 * Configure exception handlers. This include setting up trampolines
327 	 * if needed, setting exception endian mode, etc...
328 	 */
329 	configure_exceptions();
330 
331 	/*
332 	 * Configure Kernel Userspace Protection. This needs to happen before
333 	 * feature fixups for platforms that implement this using features.
334 	 */
335 	setup_kup();
336 
337 	/* Apply all the dynamic patching */
338 	apply_feature_fixups();
339 	setup_feature_keys();
340 
341 	/* Initialize the hash table or TLB handling */
342 	early_init_mmu();
343 
344 	/*
345 	 * After firmware and early platform setup code has set things up,
346 	 * we note the SPR values for configurable control/performance
347 	 * registers, and use those as initial defaults.
348 	 */
349 	record_spr_defaults();
350 
351 	/*
352 	 * At this point, we can let interrupts switch to virtual mode
353 	 * (the MMU has been setup), so adjust the MSR in the PACA to
354 	 * have IR and DR set and enable AIL if it exists
355 	 */
356 	cpu_ready_for_interrupts();
357 
358 	/*
359 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
360 	 * will only actually get enabled on the boot cpu much later once
361 	 * ftrace itself has been initialized.
362 	 */
363 	this_cpu_enable_ftrace();
364 
365 	DBG(" <- early_setup()\n");
366 
367 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
368 	/*
369 	 * This needs to be done *last* (after the above DBG() even)
370 	 *
371 	 * Right after we return from this function, we turn on the MMU
372 	 * which means the real-mode access trick that btext does will
373 	 * no longer work, it needs to switch to using a real MMU
374 	 * mapping. This call will ensure that it does
375 	 */
376 	btext_map();
377 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
378 }
379 
380 #ifdef CONFIG_SMP
381 void early_setup_secondary(void)
382 {
383 	/* Mark interrupts disabled in PACA */
384 	irq_soft_mask_set(IRQS_DISABLED);
385 
386 	/* Initialize the hash table or TLB handling */
387 	early_init_mmu_secondary();
388 
389 	/* Perform any KUP setup that is per-cpu */
390 	setup_kup();
391 
392 	/*
393 	 * At this point, we can let interrupts switch to virtual mode
394 	 * (the MMU has been setup), so adjust the MSR in the PACA to
395 	 * have IR and DR set.
396 	 */
397 	cpu_ready_for_interrupts();
398 }
399 
400 #endif /* CONFIG_SMP */
401 
402 void panic_smp_self_stop(void)
403 {
404 	hard_irq_disable();
405 	spin_begin();
406 	while (1)
407 		spin_cpu_relax();
408 }
409 
410 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
411 static bool use_spinloop(void)
412 {
413 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
414 		/*
415 		 * See comments in head_64.S -- not all platforms insert
416 		 * secondaries at __secondary_hold and wait at the spin
417 		 * loop.
418 		 */
419 		if (firmware_has_feature(FW_FEATURE_OPAL))
420 			return false;
421 		return true;
422 	}
423 
424 	/*
425 	 * When book3e boots from kexec, the ePAPR spin table does
426 	 * not get used.
427 	 */
428 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
429 }
430 
431 void smp_release_cpus(void)
432 {
433 	unsigned long *ptr;
434 	int i;
435 
436 	if (!use_spinloop())
437 		return;
438 
439 	DBG(" -> smp_release_cpus()\n");
440 
441 	/* All secondary cpus are spinning on a common spinloop, release them
442 	 * all now so they can start to spin on their individual paca
443 	 * spinloops. For non SMP kernels, the secondary cpus never get out
444 	 * of the common spinloop.
445 	 */
446 
447 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
448 			- PHYSICAL_START);
449 	*ptr = ppc_function_entry(generic_secondary_smp_init);
450 
451 	/* And wait a bit for them to catch up */
452 	for (i = 0; i < 100000; i++) {
453 		mb();
454 		HMT_low();
455 		if (spinning_secondaries == 0)
456 			break;
457 		udelay(1);
458 	}
459 	DBG("spinning_secondaries = %d\n", spinning_secondaries);
460 
461 	DBG(" <- smp_release_cpus()\n");
462 }
463 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
464 
465 /*
466  * Initialize some remaining members of the ppc64_caches and systemcfg
467  * structures
468  * (at least until we get rid of them completely). This is mostly some
469  * cache informations about the CPU that will be used by cache flush
470  * routines and/or provided to userland
471  */
472 
473 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
474 			    u32 bsize, u32 sets)
475 {
476 	info->size = size;
477 	info->sets = sets;
478 	info->line_size = lsize;
479 	info->block_size = bsize;
480 	info->log_block_size = __ilog2(bsize);
481 	if (bsize)
482 		info->blocks_per_page = PAGE_SIZE / bsize;
483 	else
484 		info->blocks_per_page = 0;
485 
486 	if (sets == 0)
487 		info->assoc = 0xffff;
488 	else
489 		info->assoc = size / (sets * lsize);
490 }
491 
492 static bool __init parse_cache_info(struct device_node *np,
493 				    bool icache,
494 				    struct ppc_cache_info *info)
495 {
496 	static const char *ipropnames[] __initdata = {
497 		"i-cache-size",
498 		"i-cache-sets",
499 		"i-cache-block-size",
500 		"i-cache-line-size",
501 	};
502 	static const char *dpropnames[] __initdata = {
503 		"d-cache-size",
504 		"d-cache-sets",
505 		"d-cache-block-size",
506 		"d-cache-line-size",
507 	};
508 	const char **propnames = icache ? ipropnames : dpropnames;
509 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
510 	u32 size, lsize, bsize, sets;
511 	bool success = true;
512 
513 	size = 0;
514 	sets = -1u;
515 	lsize = bsize = cur_cpu_spec->dcache_bsize;
516 	sizep = of_get_property(np, propnames[0], NULL);
517 	if (sizep != NULL)
518 		size = be32_to_cpu(*sizep);
519 	setsp = of_get_property(np, propnames[1], NULL);
520 	if (setsp != NULL)
521 		sets = be32_to_cpu(*setsp);
522 	bsizep = of_get_property(np, propnames[2], NULL);
523 	lsizep = of_get_property(np, propnames[3], NULL);
524 	if (bsizep == NULL)
525 		bsizep = lsizep;
526 	if (lsizep != NULL)
527 		lsize = be32_to_cpu(*lsizep);
528 	if (bsizep != NULL)
529 		bsize = be32_to_cpu(*bsizep);
530 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
531 		success = false;
532 
533 	/*
534 	 * OF is weird .. it represents fully associative caches
535 	 * as "1 way" which doesn't make much sense and doesn't
536 	 * leave room for direct mapped. We'll assume that 0
537 	 * in OF means direct mapped for that reason.
538 	 */
539 	if (sets == 1)
540 		sets = 0;
541 	else if (sets == 0)
542 		sets = 1;
543 
544 	init_cache_info(info, size, lsize, bsize, sets);
545 
546 	return success;
547 }
548 
549 void __init initialize_cache_info(void)
550 {
551 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
552 	u32 pvr;
553 
554 	DBG(" -> initialize_cache_info()\n");
555 
556 	/*
557 	 * All shipping POWER8 machines have a firmware bug that
558 	 * puts incorrect information in the device-tree. This will
559 	 * be (hopefully) fixed for future chips but for now hard
560 	 * code the values if we are running on one of these
561 	 */
562 	pvr = PVR_VER(mfspr(SPRN_PVR));
563 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
564 	    pvr == PVR_POWER8NVL) {
565 						/* size    lsize   blk  sets */
566 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
567 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
568 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
569 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
570 	} else
571 		cpu = of_find_node_by_type(NULL, "cpu");
572 
573 	/*
574 	 * We're assuming *all* of the CPUs have the same
575 	 * d-cache and i-cache sizes... -Peter
576 	 */
577 	if (cpu) {
578 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
579 			DBG("Argh, can't find dcache properties !\n");
580 
581 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
582 			DBG("Argh, can't find icache properties !\n");
583 
584 		/*
585 		 * Try to find the L2 and L3 if any. Assume they are
586 		 * unified and use the D-side properties.
587 		 */
588 		l2 = of_find_next_cache_node(cpu);
589 		of_node_put(cpu);
590 		if (l2) {
591 			parse_cache_info(l2, false, &ppc64_caches.l2);
592 			l3 = of_find_next_cache_node(l2);
593 			of_node_put(l2);
594 		}
595 		if (l3) {
596 			parse_cache_info(l3, false, &ppc64_caches.l3);
597 			of_node_put(l3);
598 		}
599 	}
600 
601 	/* For use by binfmt_elf */
602 	dcache_bsize = ppc64_caches.l1d.block_size;
603 	icache_bsize = ppc64_caches.l1i.block_size;
604 
605 	cur_cpu_spec->dcache_bsize = dcache_bsize;
606 	cur_cpu_spec->icache_bsize = icache_bsize;
607 
608 	DBG(" <- initialize_cache_info()\n");
609 }
610 
611 /*
612  * This returns the limit below which memory accesses to the linear
613  * mapping are guarnateed not to cause an architectural exception (e.g.,
614  * TLB or SLB miss fault).
615  *
616  * This is used to allocate PACAs and various interrupt stacks that
617  * that are accessed early in interrupt handlers that must not cause
618  * re-entrant interrupts.
619  */
620 __init u64 ppc64_bolted_size(void)
621 {
622 #ifdef CONFIG_PPC_BOOK3E
623 	/* Freescale BookE bolts the entire linear mapping */
624 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
625 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
626 		return linear_map_top;
627 	/* Other BookE, we assume the first GB is bolted */
628 	return 1ul << 30;
629 #else
630 	/* BookS radix, does not take faults on linear mapping */
631 	if (early_radix_enabled())
632 		return ULONG_MAX;
633 
634 	/* BookS hash, the first segment is bolted */
635 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
636 		return 1UL << SID_SHIFT_1T;
637 	return 1UL << SID_SHIFT;
638 #endif
639 }
640 
641 static void *__init alloc_stack(unsigned long limit, int cpu)
642 {
643 	void *ptr;
644 
645 	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
646 
647 	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_SIZE,
648 				     MEMBLOCK_LOW_LIMIT, limit,
649 				     early_cpu_to_node(cpu));
650 	if (!ptr)
651 		panic("cannot allocate stacks");
652 
653 	return ptr;
654 }
655 
656 void __init irqstack_early_init(void)
657 {
658 	u64 limit = ppc64_bolted_size();
659 	unsigned int i;
660 
661 	/*
662 	 * Interrupt stacks must be in the first segment since we
663 	 * cannot afford to take SLB misses on them. They are not
664 	 * accessed in realmode.
665 	 */
666 	for_each_possible_cpu(i) {
667 		softirq_ctx[i] = alloc_stack(limit, i);
668 		hardirq_ctx[i] = alloc_stack(limit, i);
669 	}
670 }
671 
672 #ifdef CONFIG_PPC_BOOK3E
673 void __init exc_lvl_early_init(void)
674 {
675 	unsigned int i;
676 
677 	for_each_possible_cpu(i) {
678 		void *sp;
679 
680 		sp = alloc_stack(ULONG_MAX, i);
681 		critirq_ctx[i] = sp;
682 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
683 
684 		sp = alloc_stack(ULONG_MAX, i);
685 		dbgirq_ctx[i] = sp;
686 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
687 
688 		sp = alloc_stack(ULONG_MAX, i);
689 		mcheckirq_ctx[i] = sp;
690 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
691 	}
692 
693 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
694 		patch_exception(0x040, exc_debug_debug_book3e);
695 }
696 #endif
697 
698 /*
699  * Stack space used when we detect a bad kernel stack pointer, and
700  * early in SMP boots before relocation is enabled. Exclusive emergency
701  * stack for machine checks.
702  */
703 void __init emergency_stack_init(void)
704 {
705 	u64 limit;
706 	unsigned int i;
707 
708 	/*
709 	 * Emergency stacks must be under 256MB, we cannot afford to take
710 	 * SLB misses on them. The ABI also requires them to be 128-byte
711 	 * aligned.
712 	 *
713 	 * Since we use these as temporary stacks during secondary CPU
714 	 * bringup, machine check, system reset, and HMI, we need to get
715 	 * at them in real mode. This means they must also be within the RMO
716 	 * region.
717 	 *
718 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
719 	 * initialized in kernel/irq.c. These are initialized here in order
720 	 * to have emergency stacks available as early as possible.
721 	 */
722 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
723 
724 	for_each_possible_cpu(i) {
725 		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
726 
727 #ifdef CONFIG_PPC_BOOK3S_64
728 		/* emergency stack for NMI exception handling. */
729 		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
730 
731 		/* emergency stack for machine check exception handling. */
732 		paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
733 #endif
734 	}
735 }
736 
737 #ifdef CONFIG_SMP
738 #define PCPU_DYN_SIZE		()
739 
740 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
741 {
742 	return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
743 				      MEMBLOCK_ALLOC_ACCESSIBLE,
744 				      early_cpu_to_node(cpu));
745 
746 }
747 
748 static void __init pcpu_fc_free(void *ptr, size_t size)
749 {
750 	memblock_free(__pa(ptr), size);
751 }
752 
753 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
754 {
755 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
756 		return LOCAL_DISTANCE;
757 	else
758 		return REMOTE_DISTANCE;
759 }
760 
761 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
762 EXPORT_SYMBOL(__per_cpu_offset);
763 
764 void __init setup_per_cpu_areas(void)
765 {
766 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
767 	size_t atom_size;
768 	unsigned long delta;
769 	unsigned int cpu;
770 	int rc;
771 
772 	/*
773 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
774 	 * to group units.  For larger mappings, use 1M atom which
775 	 * should be large enough to contain a number of units.
776 	 */
777 	if (mmu_linear_psize == MMU_PAGE_4K)
778 		atom_size = PAGE_SIZE;
779 	else
780 		atom_size = 1 << 20;
781 
782 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
783 				    pcpu_fc_alloc, pcpu_fc_free);
784 	if (rc < 0)
785 		panic("cannot initialize percpu area (err=%d)", rc);
786 
787 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
788 	for_each_possible_cpu(cpu) {
789                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
790 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
791 	}
792 }
793 #endif
794 
795 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
796 unsigned long memory_block_size_bytes(void)
797 {
798 	if (ppc_md.memory_block_size)
799 		return ppc_md.memory_block_size();
800 
801 	return MIN_MEMORY_BLOCK_SIZE;
802 }
803 #endif
804 
805 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
806 struct ppc_pci_io ppc_pci_io;
807 EXPORT_SYMBOL(ppc_pci_io);
808 #endif
809 
810 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
811 u64 hw_nmi_get_sample_period(int watchdog_thresh)
812 {
813 	return ppc_proc_freq * watchdog_thresh;
814 }
815 #endif
816 
817 /*
818  * The perf based hardlockup detector breaks PMU event based branches, so
819  * disable it by default. Book3S has a soft-nmi hardlockup detector based
820  * on the decrementer interrupt, so it does not suffer from this problem.
821  *
822  * It is likely to get false positives in VM guests, so disable it there
823  * by default too.
824  */
825 static int __init disable_hardlockup_detector(void)
826 {
827 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
828 	hardlockup_detector_disable();
829 #else
830 	if (firmware_has_feature(FW_FEATURE_LPAR))
831 		hardlockup_detector_disable();
832 #endif
833 
834 	return 0;
835 }
836 early_initcall(disable_hardlockup_detector);
837 
838 #ifdef CONFIG_PPC_BOOK3S_64
839 static enum l1d_flush_type enabled_flush_types;
840 static void *l1d_flush_fallback_area;
841 static bool no_rfi_flush;
842 bool rfi_flush;
843 
844 static int __init handle_no_rfi_flush(char *p)
845 {
846 	pr_info("rfi-flush: disabled on command line.");
847 	no_rfi_flush = true;
848 	return 0;
849 }
850 early_param("no_rfi_flush", handle_no_rfi_flush);
851 
852 /*
853  * The RFI flush is not KPTI, but because users will see doco that says to use
854  * nopti we hijack that option here to also disable the RFI flush.
855  */
856 static int __init handle_no_pti(char *p)
857 {
858 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
859 	handle_no_rfi_flush(NULL);
860 	return 0;
861 }
862 early_param("nopti", handle_no_pti);
863 
864 static void do_nothing(void *unused)
865 {
866 	/*
867 	 * We don't need to do the flush explicitly, just enter+exit kernel is
868 	 * sufficient, the RFI exit handlers will do the right thing.
869 	 */
870 }
871 
872 void rfi_flush_enable(bool enable)
873 {
874 	if (enable) {
875 		do_rfi_flush_fixups(enabled_flush_types);
876 		on_each_cpu(do_nothing, NULL, 1);
877 	} else
878 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
879 
880 	rfi_flush = enable;
881 }
882 
883 static void __ref init_fallback_flush(void)
884 {
885 	u64 l1d_size, limit;
886 	int cpu;
887 
888 	/* Only allocate the fallback flush area once (at boot time). */
889 	if (l1d_flush_fallback_area)
890 		return;
891 
892 	l1d_size = ppc64_caches.l1d.size;
893 
894 	/*
895 	 * If there is no d-cache-size property in the device tree, l1d_size
896 	 * could be zero. That leads to the loop in the asm wrapping around to
897 	 * 2^64-1, and then walking off the end of the fallback area and
898 	 * eventually causing a page fault which is fatal. Just default to
899 	 * something vaguely sane.
900 	 */
901 	if (!l1d_size)
902 		l1d_size = (64 * 1024);
903 
904 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
905 
906 	/*
907 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
908 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
909 	 * reliably avoid the prefetcher.
910 	 */
911 	l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
912 						l1d_size, MEMBLOCK_LOW_LIMIT,
913 						limit, NUMA_NO_NODE);
914 	if (!l1d_flush_fallback_area)
915 		panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
916 		      __func__, l1d_size * 2, l1d_size, &limit);
917 
918 
919 	for_each_possible_cpu(cpu) {
920 		struct paca_struct *paca = paca_ptrs[cpu];
921 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
922 		paca->l1d_flush_size = l1d_size;
923 	}
924 }
925 
926 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
927 {
928 	if (types & L1D_FLUSH_FALLBACK) {
929 		pr_info("rfi-flush: fallback displacement flush available\n");
930 		init_fallback_flush();
931 	}
932 
933 	if (types & L1D_FLUSH_ORI)
934 		pr_info("rfi-flush: ori type flush available\n");
935 
936 	if (types & L1D_FLUSH_MTTRIG)
937 		pr_info("rfi-flush: mttrig type flush available\n");
938 
939 	enabled_flush_types = types;
940 
941 	if (!no_rfi_flush && !cpu_mitigations_off())
942 		rfi_flush_enable(enable);
943 }
944 
945 #ifdef CONFIG_DEBUG_FS
946 static int rfi_flush_set(void *data, u64 val)
947 {
948 	bool enable;
949 
950 	if (val == 1)
951 		enable = true;
952 	else if (val == 0)
953 		enable = false;
954 	else
955 		return -EINVAL;
956 
957 	/* Only do anything if we're changing state */
958 	if (enable != rfi_flush)
959 		rfi_flush_enable(enable);
960 
961 	return 0;
962 }
963 
964 static int rfi_flush_get(void *data, u64 *val)
965 {
966 	*val = rfi_flush ? 1 : 0;
967 	return 0;
968 }
969 
970 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
971 
972 static __init int rfi_flush_debugfs_init(void)
973 {
974 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
975 	return 0;
976 }
977 device_initcall(rfi_flush_debugfs_init);
978 #endif
979 #endif /* CONFIG_PPC_BOOK3S_64 */
980