xref: /linux/arch/powerpc/kernel/setup_64.c (revision 69393cb03ccdf29f3b452d3482ef918469d1c098)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Common boot and setup code.
5  *
6  * Copyright (C) 2001 PPC64 Team, IBM Corp
7  */
8 
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33 
34 #include <asm/debugfs.h>
35 #include <asm/io.h>
36 #include <asm/kdump.h>
37 #include <asm/prom.h>
38 #include <asm/processor.h>
39 #include <asm/pgtable.h>
40 #include <asm/smp.h>
41 #include <asm/elf.h>
42 #include <asm/machdep.h>
43 #include <asm/paca.h>
44 #include <asm/time.h>
45 #include <asm/cputable.h>
46 #include <asm/dt_cpu_ftrs.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/rtas.h>
52 #include <asm/iommu.h>
53 #include <asm/serial.h>
54 #include <asm/cache.h>
55 #include <asm/page.h>
56 #include <asm/mmu.h>
57 #include <asm/firmware.h>
58 #include <asm/xmon.h>
59 #include <asm/udbg.h>
60 #include <asm/kexec.h>
61 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/opal.h>
64 #include <asm/cputhreads.h>
65 #include <asm/hw_irq.h>
66 #include <asm/feature-fixups.h>
67 #include <asm/kup.h>
68 
69 #include "setup.h"
70 
71 int spinning_secondaries;
72 u64 ppc64_pft_size;
73 
74 struct ppc64_caches ppc64_caches = {
75 	.l1d = {
76 		.block_size = 0x40,
77 		.log_block_size = 6,
78 	},
79 	.l1i = {
80 		.block_size = 0x40,
81 		.log_block_size = 6
82 	},
83 };
84 EXPORT_SYMBOL_GPL(ppc64_caches);
85 
86 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
87 void __init setup_tlb_core_data(void)
88 {
89 	int cpu;
90 
91 	BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
92 
93 	for_each_possible_cpu(cpu) {
94 		int first = cpu_first_thread_sibling(cpu);
95 
96 		/*
97 		 * If we boot via kdump on a non-primary thread,
98 		 * make sure we point at the thread that actually
99 		 * set up this TLB.
100 		 */
101 		if (cpu_first_thread_sibling(boot_cpuid) == first)
102 			first = boot_cpuid;
103 
104 		paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
105 
106 		/*
107 		 * If we have threads, we need either tlbsrx.
108 		 * or e6500 tablewalk mode, or else TLB handlers
109 		 * will be racy and could produce duplicate entries.
110 		 * Should we panic instead?
111 		 */
112 		WARN_ONCE(smt_enabled_at_boot >= 2 &&
113 			  !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
114 			  book3e_htw_mode != PPC_HTW_E6500,
115 			  "%s: unsupported MMU configuration\n", __func__);
116 	}
117 }
118 #endif
119 
120 #ifdef CONFIG_SMP
121 
122 static char *smt_enabled_cmdline;
123 
124 /* Look for ibm,smt-enabled OF option */
125 void __init check_smt_enabled(void)
126 {
127 	struct device_node *dn;
128 	const char *smt_option;
129 
130 	/* Default to enabling all threads */
131 	smt_enabled_at_boot = threads_per_core;
132 
133 	/* Allow the command line to overrule the OF option */
134 	if (smt_enabled_cmdline) {
135 		if (!strcmp(smt_enabled_cmdline, "on"))
136 			smt_enabled_at_boot = threads_per_core;
137 		else if (!strcmp(smt_enabled_cmdline, "off"))
138 			smt_enabled_at_boot = 0;
139 		else {
140 			int smt;
141 			int rc;
142 
143 			rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
144 			if (!rc)
145 				smt_enabled_at_boot =
146 					min(threads_per_core, smt);
147 		}
148 	} else {
149 		dn = of_find_node_by_path("/options");
150 		if (dn) {
151 			smt_option = of_get_property(dn, "ibm,smt-enabled",
152 						     NULL);
153 
154 			if (smt_option) {
155 				if (!strcmp(smt_option, "on"))
156 					smt_enabled_at_boot = threads_per_core;
157 				else if (!strcmp(smt_option, "off"))
158 					smt_enabled_at_boot = 0;
159 			}
160 
161 			of_node_put(dn);
162 		}
163 	}
164 }
165 
166 /* Look for smt-enabled= cmdline option */
167 static int __init early_smt_enabled(char *p)
168 {
169 	smt_enabled_cmdline = p;
170 	return 0;
171 }
172 early_param("smt-enabled", early_smt_enabled);
173 
174 #endif /* CONFIG_SMP */
175 
176 /** Fix up paca fields required for the boot cpu */
177 static void __init fixup_boot_paca(void)
178 {
179 	/* The boot cpu is started */
180 	get_paca()->cpu_start = 1;
181 	/* Allow percpu accesses to work until we setup percpu data */
182 	get_paca()->data_offset = 0;
183 	/* Mark interrupts disabled in PACA */
184 	irq_soft_mask_set(IRQS_DISABLED);
185 }
186 
187 static void __init configure_exceptions(void)
188 {
189 	/*
190 	 * Setup the trampolines from the lowmem exception vectors
191 	 * to the kdump kernel when not using a relocatable kernel.
192 	 */
193 	setup_kdump_trampoline();
194 
195 	/* Under a PAPR hypervisor, we need hypercalls */
196 	if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
197 		/* Enable AIL if possible */
198 		pseries_enable_reloc_on_exc();
199 
200 		/*
201 		 * Tell the hypervisor that we want our exceptions to
202 		 * be taken in little endian mode.
203 		 *
204 		 * We don't call this for big endian as our calling convention
205 		 * makes us always enter in BE, and the call may fail under
206 		 * some circumstances with kdump.
207 		 */
208 #ifdef __LITTLE_ENDIAN__
209 		pseries_little_endian_exceptions();
210 #endif
211 	} else {
212 		/* Set endian mode using OPAL */
213 		if (firmware_has_feature(FW_FEATURE_OPAL))
214 			opal_configure_cores();
215 
216 		/* AIL on native is done in cpu_ready_for_interrupts() */
217 	}
218 }
219 
220 static void cpu_ready_for_interrupts(void)
221 {
222 	/*
223 	 * Enable AIL if supported, and we are in hypervisor mode. This
224 	 * is called once for every processor.
225 	 *
226 	 * If we are not in hypervisor mode the job is done once for
227 	 * the whole partition in configure_exceptions().
228 	 */
229 	if (cpu_has_feature(CPU_FTR_HVMODE) &&
230 	    cpu_has_feature(CPU_FTR_ARCH_207S)) {
231 		unsigned long lpcr = mfspr(SPRN_LPCR);
232 		mtspr(SPRN_LPCR, lpcr | LPCR_AIL_3);
233 	}
234 
235 	/*
236 	 * Set HFSCR:TM based on CPU features:
237 	 * In the special case of TM no suspend (P9N DD2.1), Linux is
238 	 * told TM is off via the dt-ftrs but told to (partially) use
239 	 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
240 	 * will be off from dt-ftrs but we need to turn it on for the
241 	 * no suspend case.
242 	 */
243 	if (cpu_has_feature(CPU_FTR_HVMODE)) {
244 		if (cpu_has_feature(CPU_FTR_TM_COMP))
245 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
246 		else
247 			mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
248 	}
249 
250 	/* Set IR and DR in PACA MSR */
251 	get_paca()->kernel_msr = MSR_KERNEL;
252 }
253 
254 unsigned long spr_default_dscr = 0;
255 
256 void __init record_spr_defaults(void)
257 {
258 	if (early_cpu_has_feature(CPU_FTR_DSCR))
259 		spr_default_dscr = mfspr(SPRN_DSCR);
260 }
261 
262 /*
263  * Early initialization entry point. This is called by head.S
264  * with MMU translation disabled. We rely on the "feature" of
265  * the CPU that ignores the top 2 bits of the address in real
266  * mode so we can access kernel globals normally provided we
267  * only toy with things in the RMO region. From here, we do
268  * some early parsing of the device-tree to setup out MEMBLOCK
269  * data structures, and allocate & initialize the hash table
270  * and segment tables so we can start running with translation
271  * enabled.
272  *
273  * It is this function which will call the probe() callback of
274  * the various platform types and copy the matching one to the
275  * global ppc_md structure. Your platform can eventually do
276  * some very early initializations from the probe() routine, but
277  * this is not recommended, be very careful as, for example, the
278  * device-tree is not accessible via normal means at this point.
279  */
280 
281 void __init early_setup(unsigned long dt_ptr)
282 {
283 	static __initdata struct paca_struct boot_paca;
284 
285 	/* -------- printk is _NOT_ safe to use here ! ------- */
286 
287 	/* Try new device tree based feature discovery ... */
288 	if (!dt_cpu_ftrs_init(__va(dt_ptr)))
289 		/* Otherwise use the old style CPU table */
290 		identify_cpu(0, mfspr(SPRN_PVR));
291 
292 	/* Assume we're on cpu 0 for now. Don't write to the paca yet! */
293 	initialise_paca(&boot_paca, 0);
294 	setup_paca(&boot_paca);
295 	fixup_boot_paca();
296 
297 	/* -------- printk is now safe to use ------- */
298 
299 	/* Enable early debugging if any specified (see udbg.h) */
300 	udbg_early_init();
301 
302 	udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
303 
304 	/*
305 	 * Do early initialization using the flattened device
306 	 * tree, such as retrieving the physical memory map or
307 	 * calculating/retrieving the hash table size.
308 	 */
309 	early_init_devtree(__va(dt_ptr));
310 
311 	/* Now we know the logical id of our boot cpu, setup the paca. */
312 	if (boot_cpuid != 0) {
313 		/* Poison paca_ptrs[0] again if it's not the boot cpu */
314 		memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
315 	}
316 	setup_paca(paca_ptrs[boot_cpuid]);
317 	fixup_boot_paca();
318 
319 	/*
320 	 * Configure exception handlers. This include setting up trampolines
321 	 * if needed, setting exception endian mode, etc...
322 	 */
323 	configure_exceptions();
324 
325 	/*
326 	 * Configure Kernel Userspace Protection. This needs to happen before
327 	 * feature fixups for platforms that implement this using features.
328 	 */
329 	setup_kup();
330 
331 	/* Apply all the dynamic patching */
332 	apply_feature_fixups();
333 	setup_feature_keys();
334 
335 	/* Initialize the hash table or TLB handling */
336 	early_init_mmu();
337 
338 	/*
339 	 * After firmware and early platform setup code has set things up,
340 	 * we note the SPR values for configurable control/performance
341 	 * registers, and use those as initial defaults.
342 	 */
343 	record_spr_defaults();
344 
345 	/*
346 	 * At this point, we can let interrupts switch to virtual mode
347 	 * (the MMU has been setup), so adjust the MSR in the PACA to
348 	 * have IR and DR set and enable AIL if it exists
349 	 */
350 	cpu_ready_for_interrupts();
351 
352 	/*
353 	 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
354 	 * will only actually get enabled on the boot cpu much later once
355 	 * ftrace itself has been initialized.
356 	 */
357 	this_cpu_enable_ftrace();
358 
359 	udbg_printf(" <- %s()\n", __func__);
360 
361 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
362 	/*
363 	 * This needs to be done *last* (after the above udbg_printf() even)
364 	 *
365 	 * Right after we return from this function, we turn on the MMU
366 	 * which means the real-mode access trick that btext does will
367 	 * no longer work, it needs to switch to using a real MMU
368 	 * mapping. This call will ensure that it does
369 	 */
370 	btext_map();
371 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
372 }
373 
374 #ifdef CONFIG_SMP
375 void early_setup_secondary(void)
376 {
377 	/* Mark interrupts disabled in PACA */
378 	irq_soft_mask_set(IRQS_DISABLED);
379 
380 	/* Initialize the hash table or TLB handling */
381 	early_init_mmu_secondary();
382 
383 	/* Perform any KUP setup that is per-cpu */
384 	setup_kup();
385 
386 	/*
387 	 * At this point, we can let interrupts switch to virtual mode
388 	 * (the MMU has been setup), so adjust the MSR in the PACA to
389 	 * have IR and DR set.
390 	 */
391 	cpu_ready_for_interrupts();
392 }
393 
394 #endif /* CONFIG_SMP */
395 
396 void panic_smp_self_stop(void)
397 {
398 	hard_irq_disable();
399 	spin_begin();
400 	while (1)
401 		spin_cpu_relax();
402 }
403 
404 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
405 static bool use_spinloop(void)
406 {
407 	if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
408 		/*
409 		 * See comments in head_64.S -- not all platforms insert
410 		 * secondaries at __secondary_hold and wait at the spin
411 		 * loop.
412 		 */
413 		if (firmware_has_feature(FW_FEATURE_OPAL))
414 			return false;
415 		return true;
416 	}
417 
418 	/*
419 	 * When book3e boots from kexec, the ePAPR spin table does
420 	 * not get used.
421 	 */
422 	return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
423 }
424 
425 void smp_release_cpus(void)
426 {
427 	unsigned long *ptr;
428 	int i;
429 
430 	if (!use_spinloop())
431 		return;
432 
433 	/* All secondary cpus are spinning on a common spinloop, release them
434 	 * all now so they can start to spin on their individual paca
435 	 * spinloops. For non SMP kernels, the secondary cpus never get out
436 	 * of the common spinloop.
437 	 */
438 
439 	ptr  = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
440 			- PHYSICAL_START);
441 	*ptr = ppc_function_entry(generic_secondary_smp_init);
442 
443 	/* And wait a bit for them to catch up */
444 	for (i = 0; i < 100000; i++) {
445 		mb();
446 		HMT_low();
447 		if (spinning_secondaries == 0)
448 			break;
449 		udelay(1);
450 	}
451 	pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
452 }
453 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
454 
455 /*
456  * Initialize some remaining members of the ppc64_caches and systemcfg
457  * structures
458  * (at least until we get rid of them completely). This is mostly some
459  * cache informations about the CPU that will be used by cache flush
460  * routines and/or provided to userland
461  */
462 
463 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
464 			    u32 bsize, u32 sets)
465 {
466 	info->size = size;
467 	info->sets = sets;
468 	info->line_size = lsize;
469 	info->block_size = bsize;
470 	info->log_block_size = __ilog2(bsize);
471 	if (bsize)
472 		info->blocks_per_page = PAGE_SIZE / bsize;
473 	else
474 		info->blocks_per_page = 0;
475 
476 	if (sets == 0)
477 		info->assoc = 0xffff;
478 	else
479 		info->assoc = size / (sets * lsize);
480 }
481 
482 static bool __init parse_cache_info(struct device_node *np,
483 				    bool icache,
484 				    struct ppc_cache_info *info)
485 {
486 	static const char *ipropnames[] __initdata = {
487 		"i-cache-size",
488 		"i-cache-sets",
489 		"i-cache-block-size",
490 		"i-cache-line-size",
491 	};
492 	static const char *dpropnames[] __initdata = {
493 		"d-cache-size",
494 		"d-cache-sets",
495 		"d-cache-block-size",
496 		"d-cache-line-size",
497 	};
498 	const char **propnames = icache ? ipropnames : dpropnames;
499 	const __be32 *sizep, *lsizep, *bsizep, *setsp;
500 	u32 size, lsize, bsize, sets;
501 	bool success = true;
502 
503 	size = 0;
504 	sets = -1u;
505 	lsize = bsize = cur_cpu_spec->dcache_bsize;
506 	sizep = of_get_property(np, propnames[0], NULL);
507 	if (sizep != NULL)
508 		size = be32_to_cpu(*sizep);
509 	setsp = of_get_property(np, propnames[1], NULL);
510 	if (setsp != NULL)
511 		sets = be32_to_cpu(*setsp);
512 	bsizep = of_get_property(np, propnames[2], NULL);
513 	lsizep = of_get_property(np, propnames[3], NULL);
514 	if (bsizep == NULL)
515 		bsizep = lsizep;
516 	if (lsizep != NULL)
517 		lsize = be32_to_cpu(*lsizep);
518 	if (bsizep != NULL)
519 		bsize = be32_to_cpu(*bsizep);
520 	if (sizep == NULL || bsizep == NULL || lsizep == NULL)
521 		success = false;
522 
523 	/*
524 	 * OF is weird .. it represents fully associative caches
525 	 * as "1 way" which doesn't make much sense and doesn't
526 	 * leave room for direct mapped. We'll assume that 0
527 	 * in OF means direct mapped for that reason.
528 	 */
529 	if (sets == 1)
530 		sets = 0;
531 	else if (sets == 0)
532 		sets = 1;
533 
534 	init_cache_info(info, size, lsize, bsize, sets);
535 
536 	return success;
537 }
538 
539 void __init initialize_cache_info(void)
540 {
541 	struct device_node *cpu = NULL, *l2, *l3 = NULL;
542 	u32 pvr;
543 
544 	/*
545 	 * All shipping POWER8 machines have a firmware bug that
546 	 * puts incorrect information in the device-tree. This will
547 	 * be (hopefully) fixed for future chips but for now hard
548 	 * code the values if we are running on one of these
549 	 */
550 	pvr = PVR_VER(mfspr(SPRN_PVR));
551 	if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
552 	    pvr == PVR_POWER8NVL) {
553 						/* size    lsize   blk  sets */
554 		init_cache_info(&ppc64_caches.l1i, 0x8000,   128,  128, 32);
555 		init_cache_info(&ppc64_caches.l1d, 0x10000,  128,  128, 64);
556 		init_cache_info(&ppc64_caches.l2,  0x80000,  128,  0,   512);
557 		init_cache_info(&ppc64_caches.l3,  0x800000, 128,  0,   8192);
558 	} else
559 		cpu = of_find_node_by_type(NULL, "cpu");
560 
561 	/*
562 	 * We're assuming *all* of the CPUs have the same
563 	 * d-cache and i-cache sizes... -Peter
564 	 */
565 	if (cpu) {
566 		if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
567 			pr_warn("Argh, can't find dcache properties !\n");
568 
569 		if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
570 			pr_warn("Argh, can't find icache properties !\n");
571 
572 		/*
573 		 * Try to find the L2 and L3 if any. Assume they are
574 		 * unified and use the D-side properties.
575 		 */
576 		l2 = of_find_next_cache_node(cpu);
577 		of_node_put(cpu);
578 		if (l2) {
579 			parse_cache_info(l2, false, &ppc64_caches.l2);
580 			l3 = of_find_next_cache_node(l2);
581 			of_node_put(l2);
582 		}
583 		if (l3) {
584 			parse_cache_info(l3, false, &ppc64_caches.l3);
585 			of_node_put(l3);
586 		}
587 	}
588 
589 	/* For use by binfmt_elf */
590 	dcache_bsize = ppc64_caches.l1d.block_size;
591 	icache_bsize = ppc64_caches.l1i.block_size;
592 
593 	cur_cpu_spec->dcache_bsize = dcache_bsize;
594 	cur_cpu_spec->icache_bsize = icache_bsize;
595 }
596 
597 /*
598  * This returns the limit below which memory accesses to the linear
599  * mapping are guarnateed not to cause an architectural exception (e.g.,
600  * TLB or SLB miss fault).
601  *
602  * This is used to allocate PACAs and various interrupt stacks that
603  * that are accessed early in interrupt handlers that must not cause
604  * re-entrant interrupts.
605  */
606 __init u64 ppc64_bolted_size(void)
607 {
608 #ifdef CONFIG_PPC_BOOK3E
609 	/* Freescale BookE bolts the entire linear mapping */
610 	/* XXX: BookE ppc64_rma_limit setup seems to disagree? */
611 	if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
612 		return linear_map_top;
613 	/* Other BookE, we assume the first GB is bolted */
614 	return 1ul << 30;
615 #else
616 	/* BookS radix, does not take faults on linear mapping */
617 	if (early_radix_enabled())
618 		return ULONG_MAX;
619 
620 	/* BookS hash, the first segment is bolted */
621 	if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
622 		return 1UL << SID_SHIFT_1T;
623 	return 1UL << SID_SHIFT;
624 #endif
625 }
626 
627 static void *__init alloc_stack(unsigned long limit, int cpu)
628 {
629 	void *ptr;
630 
631 	BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
632 
633 	ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_SIZE,
634 				     MEMBLOCK_LOW_LIMIT, limit,
635 				     early_cpu_to_node(cpu));
636 	if (!ptr)
637 		panic("cannot allocate stacks");
638 
639 	return ptr;
640 }
641 
642 void __init irqstack_early_init(void)
643 {
644 	u64 limit = ppc64_bolted_size();
645 	unsigned int i;
646 
647 	/*
648 	 * Interrupt stacks must be in the first segment since we
649 	 * cannot afford to take SLB misses on them. They are not
650 	 * accessed in realmode.
651 	 */
652 	for_each_possible_cpu(i) {
653 		softirq_ctx[i] = alloc_stack(limit, i);
654 		hardirq_ctx[i] = alloc_stack(limit, i);
655 	}
656 }
657 
658 #ifdef CONFIG_PPC_BOOK3E
659 void __init exc_lvl_early_init(void)
660 {
661 	unsigned int i;
662 
663 	for_each_possible_cpu(i) {
664 		void *sp;
665 
666 		sp = alloc_stack(ULONG_MAX, i);
667 		critirq_ctx[i] = sp;
668 		paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
669 
670 		sp = alloc_stack(ULONG_MAX, i);
671 		dbgirq_ctx[i] = sp;
672 		paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
673 
674 		sp = alloc_stack(ULONG_MAX, i);
675 		mcheckirq_ctx[i] = sp;
676 		paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
677 	}
678 
679 	if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
680 		patch_exception(0x040, exc_debug_debug_book3e);
681 }
682 #endif
683 
684 /*
685  * Stack space used when we detect a bad kernel stack pointer, and
686  * early in SMP boots before relocation is enabled. Exclusive emergency
687  * stack for machine checks.
688  */
689 void __init emergency_stack_init(void)
690 {
691 	u64 limit;
692 	unsigned int i;
693 
694 	/*
695 	 * Emergency stacks must be under 256MB, we cannot afford to take
696 	 * SLB misses on them. The ABI also requires them to be 128-byte
697 	 * aligned.
698 	 *
699 	 * Since we use these as temporary stacks during secondary CPU
700 	 * bringup, machine check, system reset, and HMI, we need to get
701 	 * at them in real mode. This means they must also be within the RMO
702 	 * region.
703 	 *
704 	 * The IRQ stacks allocated elsewhere in this file are zeroed and
705 	 * initialized in kernel/irq.c. These are initialized here in order
706 	 * to have emergency stacks available as early as possible.
707 	 */
708 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
709 
710 	for_each_possible_cpu(i) {
711 		paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
712 
713 #ifdef CONFIG_PPC_BOOK3S_64
714 		/* emergency stack for NMI exception handling. */
715 		paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
716 
717 		/* emergency stack for machine check exception handling. */
718 		paca_ptrs[i]->mc_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
719 #endif
720 	}
721 }
722 
723 #ifdef CONFIG_SMP
724 #define PCPU_DYN_SIZE		()
725 
726 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align)
727 {
728 	return memblock_alloc_try_nid(size, align, __pa(MAX_DMA_ADDRESS),
729 				      MEMBLOCK_ALLOC_ACCESSIBLE,
730 				      early_cpu_to_node(cpu));
731 
732 }
733 
734 static void __init pcpu_fc_free(void *ptr, size_t size)
735 {
736 	memblock_free(__pa(ptr), size);
737 }
738 
739 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
740 {
741 	if (early_cpu_to_node(from) == early_cpu_to_node(to))
742 		return LOCAL_DISTANCE;
743 	else
744 		return REMOTE_DISTANCE;
745 }
746 
747 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
748 EXPORT_SYMBOL(__per_cpu_offset);
749 
750 void __init setup_per_cpu_areas(void)
751 {
752 	const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
753 	size_t atom_size;
754 	unsigned long delta;
755 	unsigned int cpu;
756 	int rc;
757 
758 	/*
759 	 * Linear mapping is one of 4K, 1M and 16M.  For 4K, no need
760 	 * to group units.  For larger mappings, use 1M atom which
761 	 * should be large enough to contain a number of units.
762 	 */
763 	if (mmu_linear_psize == MMU_PAGE_4K)
764 		atom_size = PAGE_SIZE;
765 	else
766 		atom_size = 1 << 20;
767 
768 	rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
769 				    pcpu_fc_alloc, pcpu_fc_free);
770 	if (rc < 0)
771 		panic("cannot initialize percpu area (err=%d)", rc);
772 
773 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
774 	for_each_possible_cpu(cpu) {
775                 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
776 		paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
777 	}
778 }
779 #endif
780 
781 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
782 unsigned long memory_block_size_bytes(void)
783 {
784 	if (ppc_md.memory_block_size)
785 		return ppc_md.memory_block_size();
786 
787 	return MIN_MEMORY_BLOCK_SIZE;
788 }
789 #endif
790 
791 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
792 struct ppc_pci_io ppc_pci_io;
793 EXPORT_SYMBOL(ppc_pci_io);
794 #endif
795 
796 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
797 u64 hw_nmi_get_sample_period(int watchdog_thresh)
798 {
799 	return ppc_proc_freq * watchdog_thresh;
800 }
801 #endif
802 
803 /*
804  * The perf based hardlockup detector breaks PMU event based branches, so
805  * disable it by default. Book3S has a soft-nmi hardlockup detector based
806  * on the decrementer interrupt, so it does not suffer from this problem.
807  *
808  * It is likely to get false positives in VM guests, so disable it there
809  * by default too.
810  */
811 static int __init disable_hardlockup_detector(void)
812 {
813 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
814 	hardlockup_detector_disable();
815 #else
816 	if (firmware_has_feature(FW_FEATURE_LPAR))
817 		hardlockup_detector_disable();
818 #endif
819 
820 	return 0;
821 }
822 early_initcall(disable_hardlockup_detector);
823 
824 #ifdef CONFIG_PPC_BOOK3S_64
825 static enum l1d_flush_type enabled_flush_types;
826 static void *l1d_flush_fallback_area;
827 static bool no_rfi_flush;
828 bool rfi_flush;
829 
830 static int __init handle_no_rfi_flush(char *p)
831 {
832 	pr_info("rfi-flush: disabled on command line.");
833 	no_rfi_flush = true;
834 	return 0;
835 }
836 early_param("no_rfi_flush", handle_no_rfi_flush);
837 
838 /*
839  * The RFI flush is not KPTI, but because users will see doco that says to use
840  * nopti we hijack that option here to also disable the RFI flush.
841  */
842 static int __init handle_no_pti(char *p)
843 {
844 	pr_info("rfi-flush: disabling due to 'nopti' on command line.\n");
845 	handle_no_rfi_flush(NULL);
846 	return 0;
847 }
848 early_param("nopti", handle_no_pti);
849 
850 static void do_nothing(void *unused)
851 {
852 	/*
853 	 * We don't need to do the flush explicitly, just enter+exit kernel is
854 	 * sufficient, the RFI exit handlers will do the right thing.
855 	 */
856 }
857 
858 void rfi_flush_enable(bool enable)
859 {
860 	if (enable) {
861 		do_rfi_flush_fixups(enabled_flush_types);
862 		on_each_cpu(do_nothing, NULL, 1);
863 	} else
864 		do_rfi_flush_fixups(L1D_FLUSH_NONE);
865 
866 	rfi_flush = enable;
867 }
868 
869 static void __ref init_fallback_flush(void)
870 {
871 	u64 l1d_size, limit;
872 	int cpu;
873 
874 	/* Only allocate the fallback flush area once (at boot time). */
875 	if (l1d_flush_fallback_area)
876 		return;
877 
878 	l1d_size = ppc64_caches.l1d.size;
879 
880 	/*
881 	 * If there is no d-cache-size property in the device tree, l1d_size
882 	 * could be zero. That leads to the loop in the asm wrapping around to
883 	 * 2^64-1, and then walking off the end of the fallback area and
884 	 * eventually causing a page fault which is fatal. Just default to
885 	 * something vaguely sane.
886 	 */
887 	if (!l1d_size)
888 		l1d_size = (64 * 1024);
889 
890 	limit = min(ppc64_bolted_size(), ppc64_rma_size);
891 
892 	/*
893 	 * Align to L1d size, and size it at 2x L1d size, to catch possible
894 	 * hardware prefetch runoff. We don't have a recipe for load patterns to
895 	 * reliably avoid the prefetcher.
896 	 */
897 	l1d_flush_fallback_area = memblock_alloc_try_nid(l1d_size * 2,
898 						l1d_size, MEMBLOCK_LOW_LIMIT,
899 						limit, NUMA_NO_NODE);
900 	if (!l1d_flush_fallback_area)
901 		panic("%s: Failed to allocate %llu bytes align=0x%llx max_addr=%pa\n",
902 		      __func__, l1d_size * 2, l1d_size, &limit);
903 
904 
905 	for_each_possible_cpu(cpu) {
906 		struct paca_struct *paca = paca_ptrs[cpu];
907 		paca->rfi_flush_fallback_area = l1d_flush_fallback_area;
908 		paca->l1d_flush_size = l1d_size;
909 	}
910 }
911 
912 void setup_rfi_flush(enum l1d_flush_type types, bool enable)
913 {
914 	if (types & L1D_FLUSH_FALLBACK) {
915 		pr_info("rfi-flush: fallback displacement flush available\n");
916 		init_fallback_flush();
917 	}
918 
919 	if (types & L1D_FLUSH_ORI)
920 		pr_info("rfi-flush: ori type flush available\n");
921 
922 	if (types & L1D_FLUSH_MTTRIG)
923 		pr_info("rfi-flush: mttrig type flush available\n");
924 
925 	enabled_flush_types = types;
926 
927 	if (!no_rfi_flush && !cpu_mitigations_off())
928 		rfi_flush_enable(enable);
929 }
930 
931 #ifdef CONFIG_DEBUG_FS
932 static int rfi_flush_set(void *data, u64 val)
933 {
934 	bool enable;
935 
936 	if (val == 1)
937 		enable = true;
938 	else if (val == 0)
939 		enable = false;
940 	else
941 		return -EINVAL;
942 
943 	/* Only do anything if we're changing state */
944 	if (enable != rfi_flush)
945 		rfi_flush_enable(enable);
946 
947 	return 0;
948 }
949 
950 static int rfi_flush_get(void *data, u64 *val)
951 {
952 	*val = rfi_flush ? 1 : 0;
953 	return 0;
954 }
955 
956 DEFINE_SIMPLE_ATTRIBUTE(fops_rfi_flush, rfi_flush_get, rfi_flush_set, "%llu\n");
957 
958 static __init int rfi_flush_debugfs_init(void)
959 {
960 	debugfs_create_file("rfi_flush", 0600, powerpc_debugfs_root, NULL, &fops_rfi_flush);
961 	return 0;
962 }
963 device_initcall(rfi_flush_debugfs_init);
964 #endif
965 #endif /* CONFIG_PPC_BOOK3S_64 */
966