1 /* 2 * 3 * Common boot and setup code. 4 * 5 * Copyright (C) 2001 PPC64 Team, IBM Corp 6 * 7 * This program is free software; you can redistribute it and/or 8 * modify it under the terms of the GNU General Public License 9 * as published by the Free Software Foundation; either version 10 * 2 of the License, or (at your option) any later version. 11 */ 12 13 #undef DEBUG 14 15 #include <linux/export.h> 16 #include <linux/string.h> 17 #include <linux/sched.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/reboot.h> 21 #include <linux/delay.h> 22 #include <linux/initrd.h> 23 #include <linux/seq_file.h> 24 #include <linux/ioport.h> 25 #include <linux/console.h> 26 #include <linux/utsname.h> 27 #include <linux/tty.h> 28 #include <linux/root_dev.h> 29 #include <linux/notifier.h> 30 #include <linux/cpu.h> 31 #include <linux/unistd.h> 32 #include <linux/serial.h> 33 #include <linux/serial_8250.h> 34 #include <linux/bootmem.h> 35 #include <linux/pci.h> 36 #include <linux/lockdep.h> 37 #include <linux/memblock.h> 38 #include <linux/hugetlb.h> 39 40 #include <asm/io.h> 41 #include <asm/kdump.h> 42 #include <asm/prom.h> 43 #include <asm/processor.h> 44 #include <asm/pgtable.h> 45 #include <asm/smp.h> 46 #include <asm/elf.h> 47 #include <asm/machdep.h> 48 #include <asm/paca.h> 49 #include <asm/time.h> 50 #include <asm/cputable.h> 51 #include <asm/sections.h> 52 #include <asm/btext.h> 53 #include <asm/nvram.h> 54 #include <asm/setup.h> 55 #include <asm/rtas.h> 56 #include <asm/iommu.h> 57 #include <asm/serial.h> 58 #include <asm/cache.h> 59 #include <asm/page.h> 60 #include <asm/mmu.h> 61 #include <asm/firmware.h> 62 #include <asm/xmon.h> 63 #include <asm/udbg.h> 64 #include <asm/kexec.h> 65 #include <asm/mmu_context.h> 66 #include <asm/code-patching.h> 67 #include <asm/kvm_ppc.h> 68 #include <asm/hugetlb.h> 69 70 #include "setup.h" 71 72 #ifdef DEBUG 73 #define DBG(fmt...) udbg_printf(fmt) 74 #else 75 #define DBG(fmt...) 76 #endif 77 78 int boot_cpuid = 0; 79 int __initdata spinning_secondaries; 80 u64 ppc64_pft_size; 81 82 /* Pick defaults since we might want to patch instructions 83 * before we've read this from the device tree. 84 */ 85 struct ppc64_caches ppc64_caches = { 86 .dline_size = 0x40, 87 .log_dline_size = 6, 88 .iline_size = 0x40, 89 .log_iline_size = 6 90 }; 91 EXPORT_SYMBOL_GPL(ppc64_caches); 92 93 /* 94 * These are used in binfmt_elf.c to put aux entries on the stack 95 * for each elf executable being started. 96 */ 97 int dcache_bsize; 98 int icache_bsize; 99 int ucache_bsize; 100 101 #ifdef CONFIG_SMP 102 103 static char *smt_enabled_cmdline; 104 105 /* Look for ibm,smt-enabled OF option */ 106 static void check_smt_enabled(void) 107 { 108 struct device_node *dn; 109 const char *smt_option; 110 111 /* Default to enabling all threads */ 112 smt_enabled_at_boot = threads_per_core; 113 114 /* Allow the command line to overrule the OF option */ 115 if (smt_enabled_cmdline) { 116 if (!strcmp(smt_enabled_cmdline, "on")) 117 smt_enabled_at_boot = threads_per_core; 118 else if (!strcmp(smt_enabled_cmdline, "off")) 119 smt_enabled_at_boot = 0; 120 else { 121 long smt; 122 int rc; 123 124 rc = strict_strtol(smt_enabled_cmdline, 10, &smt); 125 if (!rc) 126 smt_enabled_at_boot = 127 min(threads_per_core, (int)smt); 128 } 129 } else { 130 dn = of_find_node_by_path("/options"); 131 if (dn) { 132 smt_option = of_get_property(dn, "ibm,smt-enabled", 133 NULL); 134 135 if (smt_option) { 136 if (!strcmp(smt_option, "on")) 137 smt_enabled_at_boot = threads_per_core; 138 else if (!strcmp(smt_option, "off")) 139 smt_enabled_at_boot = 0; 140 } 141 142 of_node_put(dn); 143 } 144 } 145 } 146 147 /* Look for smt-enabled= cmdline option */ 148 static int __init early_smt_enabled(char *p) 149 { 150 smt_enabled_cmdline = p; 151 return 0; 152 } 153 early_param("smt-enabled", early_smt_enabled); 154 155 #else 156 #define check_smt_enabled() 157 #endif /* CONFIG_SMP */ 158 159 /* 160 * Early initialization entry point. This is called by head.S 161 * with MMU translation disabled. We rely on the "feature" of 162 * the CPU that ignores the top 2 bits of the address in real 163 * mode so we can access kernel globals normally provided we 164 * only toy with things in the RMO region. From here, we do 165 * some early parsing of the device-tree to setup out MEMBLOCK 166 * data structures, and allocate & initialize the hash table 167 * and segment tables so we can start running with translation 168 * enabled. 169 * 170 * It is this function which will call the probe() callback of 171 * the various platform types and copy the matching one to the 172 * global ppc_md structure. Your platform can eventually do 173 * some very early initializations from the probe() routine, but 174 * this is not recommended, be very careful as, for example, the 175 * device-tree is not accessible via normal means at this point. 176 */ 177 178 void __init early_setup(unsigned long dt_ptr) 179 { 180 /* -------- printk is _NOT_ safe to use here ! ------- */ 181 182 /* Identify CPU type */ 183 identify_cpu(0, mfspr(SPRN_PVR)); 184 185 /* Assume we're on cpu 0 for now. Don't write to the paca yet! */ 186 initialise_paca(&boot_paca, 0); 187 setup_paca(&boot_paca); 188 189 /* Initialize lockdep early or else spinlocks will blow */ 190 lockdep_init(); 191 192 /* -------- printk is now safe to use ------- */ 193 194 /* Enable early debugging if any specified (see udbg.h) */ 195 udbg_early_init(); 196 197 DBG(" -> early_setup(), dt_ptr: 0x%lx\n", dt_ptr); 198 199 /* 200 * Do early initialization using the flattened device 201 * tree, such as retrieving the physical memory map or 202 * calculating/retrieving the hash table size. 203 */ 204 early_init_devtree(__va(dt_ptr)); 205 206 /* Now we know the logical id of our boot cpu, setup the paca. */ 207 setup_paca(&paca[boot_cpuid]); 208 209 /* Fix up paca fields required for the boot cpu */ 210 get_paca()->cpu_start = 1; 211 /* Allow percpu accesses to "work" until we setup percpu data */ 212 get_paca()->data_offset = 0; 213 214 /* Probe the machine type */ 215 probe_machine(); 216 217 setup_kdump_trampoline(); 218 219 DBG("Found, Initializing memory management...\n"); 220 221 /* Initialize the hash table or TLB handling */ 222 early_init_mmu(); 223 224 /* 225 * Reserve any gigantic pages requested on the command line. 226 * memblock needs to have been initialized by the time this is 227 * called since this will reserve memory. 228 */ 229 reserve_hugetlb_gpages(); 230 231 DBG(" <- early_setup()\n"); 232 } 233 234 #ifdef CONFIG_SMP 235 void early_setup_secondary(void) 236 { 237 /* Mark interrupts enabled in PACA */ 238 get_paca()->soft_enabled = 0; 239 240 /* Initialize the hash table or TLB handling */ 241 early_init_mmu_secondary(); 242 } 243 244 #endif /* CONFIG_SMP */ 245 246 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC) 247 void smp_release_cpus(void) 248 { 249 unsigned long *ptr; 250 int i; 251 252 DBG(" -> smp_release_cpus()\n"); 253 254 /* All secondary cpus are spinning on a common spinloop, release them 255 * all now so they can start to spin on their individual paca 256 * spinloops. For non SMP kernels, the secondary cpus never get out 257 * of the common spinloop. 258 */ 259 260 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop 261 - PHYSICAL_START); 262 *ptr = __pa(generic_secondary_smp_init); 263 264 /* And wait a bit for them to catch up */ 265 for (i = 0; i < 100000; i++) { 266 mb(); 267 HMT_low(); 268 if (spinning_secondaries == 0) 269 break; 270 udelay(1); 271 } 272 DBG("spinning_secondaries = %d\n", spinning_secondaries); 273 274 DBG(" <- smp_release_cpus()\n"); 275 } 276 #endif /* CONFIG_SMP || CONFIG_KEXEC */ 277 278 /* 279 * Initialize some remaining members of the ppc64_caches and systemcfg 280 * structures 281 * (at least until we get rid of them completely). This is mostly some 282 * cache informations about the CPU that will be used by cache flush 283 * routines and/or provided to userland 284 */ 285 static void __init initialize_cache_info(void) 286 { 287 struct device_node *np; 288 unsigned long num_cpus = 0; 289 290 DBG(" -> initialize_cache_info()\n"); 291 292 for_each_node_by_type(np, "cpu") { 293 num_cpus += 1; 294 295 /* 296 * We're assuming *all* of the CPUs have the same 297 * d-cache and i-cache sizes... -Peter 298 */ 299 if (num_cpus == 1) { 300 const u32 *sizep, *lsizep; 301 u32 size, lsize; 302 303 size = 0; 304 lsize = cur_cpu_spec->dcache_bsize; 305 sizep = of_get_property(np, "d-cache-size", NULL); 306 if (sizep != NULL) 307 size = *sizep; 308 lsizep = of_get_property(np, "d-cache-block-size", 309 NULL); 310 /* fallback if block size missing */ 311 if (lsizep == NULL) 312 lsizep = of_get_property(np, 313 "d-cache-line-size", 314 NULL); 315 if (lsizep != NULL) 316 lsize = *lsizep; 317 if (sizep == 0 || lsizep == 0) 318 DBG("Argh, can't find dcache properties ! " 319 "sizep: %p, lsizep: %p\n", sizep, lsizep); 320 321 ppc64_caches.dsize = size; 322 ppc64_caches.dline_size = lsize; 323 ppc64_caches.log_dline_size = __ilog2(lsize); 324 ppc64_caches.dlines_per_page = PAGE_SIZE / lsize; 325 326 size = 0; 327 lsize = cur_cpu_spec->icache_bsize; 328 sizep = of_get_property(np, "i-cache-size", NULL); 329 if (sizep != NULL) 330 size = *sizep; 331 lsizep = of_get_property(np, "i-cache-block-size", 332 NULL); 333 if (lsizep == NULL) 334 lsizep = of_get_property(np, 335 "i-cache-line-size", 336 NULL); 337 if (lsizep != NULL) 338 lsize = *lsizep; 339 if (sizep == 0 || lsizep == 0) 340 DBG("Argh, can't find icache properties ! " 341 "sizep: %p, lsizep: %p\n", sizep, lsizep); 342 343 ppc64_caches.isize = size; 344 ppc64_caches.iline_size = lsize; 345 ppc64_caches.log_iline_size = __ilog2(lsize); 346 ppc64_caches.ilines_per_page = PAGE_SIZE / lsize; 347 } 348 } 349 350 DBG(" <- initialize_cache_info()\n"); 351 } 352 353 354 /* 355 * Do some initial setup of the system. The parameters are those which 356 * were passed in from the bootloader. 357 */ 358 void __init setup_system(void) 359 { 360 DBG(" -> setup_system()\n"); 361 362 /* Apply the CPUs-specific and firmware specific fixups to kernel 363 * text (nop out sections not relevant to this CPU or this firmware) 364 */ 365 do_feature_fixups(cur_cpu_spec->cpu_features, 366 &__start___ftr_fixup, &__stop___ftr_fixup); 367 do_feature_fixups(cur_cpu_spec->mmu_features, 368 &__start___mmu_ftr_fixup, &__stop___mmu_ftr_fixup); 369 do_feature_fixups(powerpc_firmware_features, 370 &__start___fw_ftr_fixup, &__stop___fw_ftr_fixup); 371 do_lwsync_fixups(cur_cpu_spec->cpu_features, 372 &__start___lwsync_fixup, &__stop___lwsync_fixup); 373 do_final_fixups(); 374 375 /* 376 * Unflatten the device-tree passed by prom_init or kexec 377 */ 378 unflatten_device_tree(); 379 380 /* 381 * Fill the ppc64_caches & systemcfg structures with informations 382 * retrieved from the device-tree. 383 */ 384 initialize_cache_info(); 385 386 #ifdef CONFIG_PPC_RTAS 387 /* 388 * Initialize RTAS if available 389 */ 390 rtas_initialize(); 391 #endif /* CONFIG_PPC_RTAS */ 392 393 /* 394 * Check if we have an initrd provided via the device-tree 395 */ 396 check_for_initrd(); 397 398 /* 399 * Do some platform specific early initializations, that includes 400 * setting up the hash table pointers. It also sets up some interrupt-mapping 401 * related options that will be used by finish_device_tree() 402 */ 403 if (ppc_md.init_early) 404 ppc_md.init_early(); 405 406 /* 407 * We can discover serial ports now since the above did setup the 408 * hash table management for us, thus ioremap works. We do that early 409 * so that further code can be debugged 410 */ 411 find_legacy_serial_ports(); 412 413 /* 414 * Register early console 415 */ 416 register_early_udbg_console(); 417 418 /* 419 * Initialize xmon 420 */ 421 xmon_setup(); 422 423 smp_setup_cpu_maps(); 424 check_smt_enabled(); 425 426 #ifdef CONFIG_SMP 427 /* Release secondary cpus out of their spinloops at 0x60 now that 428 * we can map physical -> logical CPU ids 429 */ 430 smp_release_cpus(); 431 #endif 432 433 printk("Starting Linux PPC64 %s\n", init_utsname()->version); 434 435 printk("-----------------------------------------------------\n"); 436 printk("ppc64_pft_size = 0x%llx\n", ppc64_pft_size); 437 printk("physicalMemorySize = 0x%llx\n", memblock_phys_mem_size()); 438 if (ppc64_caches.dline_size != 0x80) 439 printk("ppc64_caches.dcache_line_size = 0x%x\n", 440 ppc64_caches.dline_size); 441 if (ppc64_caches.iline_size != 0x80) 442 printk("ppc64_caches.icache_line_size = 0x%x\n", 443 ppc64_caches.iline_size); 444 #ifdef CONFIG_PPC_STD_MMU_64 445 if (htab_address) 446 printk("htab_address = 0x%p\n", htab_address); 447 printk("htab_hash_mask = 0x%lx\n", htab_hash_mask); 448 #endif /* CONFIG_PPC_STD_MMU_64 */ 449 if (PHYSICAL_START > 0) 450 printk("physical_start = 0x%llx\n", 451 (unsigned long long)PHYSICAL_START); 452 printk("-----------------------------------------------------\n"); 453 454 DBG(" <- setup_system()\n"); 455 } 456 457 /* This returns the limit below which memory accesses to the linear 458 * mapping are guarnateed not to cause a TLB or SLB miss. This is 459 * used to allocate interrupt or emergency stacks for which our 460 * exception entry path doesn't deal with being interrupted. 461 */ 462 static u64 safe_stack_limit(void) 463 { 464 #ifdef CONFIG_PPC_BOOK3E 465 /* Freescale BookE bolts the entire linear mapping */ 466 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) 467 return linear_map_top; 468 /* Other BookE, we assume the first GB is bolted */ 469 return 1ul << 30; 470 #else 471 /* BookS, the first segment is bolted */ 472 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 473 return 1UL << SID_SHIFT_1T; 474 return 1UL << SID_SHIFT; 475 #endif 476 } 477 478 static void __init irqstack_early_init(void) 479 { 480 u64 limit = safe_stack_limit(); 481 unsigned int i; 482 483 /* 484 * Interrupt stacks must be in the first segment since we 485 * cannot afford to take SLB misses on them. 486 */ 487 for_each_possible_cpu(i) { 488 softirq_ctx[i] = (struct thread_info *) 489 __va(memblock_alloc_base(THREAD_SIZE, 490 THREAD_SIZE, limit)); 491 hardirq_ctx[i] = (struct thread_info *) 492 __va(memblock_alloc_base(THREAD_SIZE, 493 THREAD_SIZE, limit)); 494 } 495 } 496 497 #ifdef CONFIG_PPC_BOOK3E 498 static void __init exc_lvl_early_init(void) 499 { 500 extern unsigned int interrupt_base_book3e; 501 extern unsigned int exc_debug_debug_book3e; 502 503 unsigned int i; 504 505 for_each_possible_cpu(i) { 506 critirq_ctx[i] = (struct thread_info *) 507 __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE)); 508 dbgirq_ctx[i] = (struct thread_info *) 509 __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE)); 510 mcheckirq_ctx[i] = (struct thread_info *) 511 __va(memblock_alloc(THREAD_SIZE, THREAD_SIZE)); 512 } 513 514 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC)) 515 patch_branch(&interrupt_base_book3e + (0x040 / 4) + 1, 516 (unsigned long)&exc_debug_debug_book3e, 0); 517 } 518 #else 519 #define exc_lvl_early_init() 520 #endif 521 522 /* 523 * Stack space used when we detect a bad kernel stack pointer, and 524 * early in SMP boots before relocation is enabled. 525 */ 526 static void __init emergency_stack_init(void) 527 { 528 u64 limit; 529 unsigned int i; 530 531 /* 532 * Emergency stacks must be under 256MB, we cannot afford to take 533 * SLB misses on them. The ABI also requires them to be 128-byte 534 * aligned. 535 * 536 * Since we use these as temporary stacks during secondary CPU 537 * bringup, we need to get at them in real mode. This means they 538 * must also be within the RMO region. 539 */ 540 limit = min(safe_stack_limit(), ppc64_rma_size); 541 542 for_each_possible_cpu(i) { 543 unsigned long sp; 544 sp = memblock_alloc_base(THREAD_SIZE, THREAD_SIZE, limit); 545 sp += THREAD_SIZE; 546 paca[i].emergency_sp = __va(sp); 547 } 548 } 549 550 /* 551 * Called into from start_kernel this initializes bootmem, which is used 552 * to manage page allocation until mem_init is called. 553 */ 554 void __init setup_arch(char **cmdline_p) 555 { 556 ppc64_boot_msg(0x12, "Setup Arch"); 557 558 *cmdline_p = cmd_line; 559 560 /* 561 * Set cache line size based on type of cpu as a default. 562 * Systems with OF can look in the properties on the cpu node(s) 563 * for a possibly more accurate value. 564 */ 565 dcache_bsize = ppc64_caches.dline_size; 566 icache_bsize = ppc64_caches.iline_size; 567 568 /* reboot on panic */ 569 panic_timeout = 180; 570 571 if (ppc_md.panic) 572 setup_panic(); 573 574 init_mm.start_code = (unsigned long)_stext; 575 init_mm.end_code = (unsigned long) _etext; 576 init_mm.end_data = (unsigned long) _edata; 577 init_mm.brk = klimit; 578 579 irqstack_early_init(); 580 exc_lvl_early_init(); 581 emergency_stack_init(); 582 583 #ifdef CONFIG_PPC_STD_MMU_64 584 stabs_alloc(); 585 #endif 586 /* set up the bootmem stuff with available memory */ 587 do_init_bootmem(); 588 sparse_init(); 589 590 #ifdef CONFIG_DUMMY_CONSOLE 591 conswitchp = &dummy_con; 592 #endif 593 594 if (ppc_md.setup_arch) 595 ppc_md.setup_arch(); 596 597 paging_init(); 598 599 /* Initialize the MMU context management stuff */ 600 mmu_context_init(); 601 602 kvm_linear_init(); 603 604 /* Interrupt code needs to be 64K-aligned */ 605 if ((unsigned long)_stext & 0xffff) 606 panic("Kernelbase not 64K-aligned (0x%lx)!\n", 607 (unsigned long)_stext); 608 609 ppc64_boot_msg(0x15, "Setup Done"); 610 } 611 612 613 /* ToDo: do something useful if ppc_md is not yet setup. */ 614 #define PPC64_LINUX_FUNCTION 0x0f000000 615 #define PPC64_IPL_MESSAGE 0xc0000000 616 #define PPC64_TERM_MESSAGE 0xb0000000 617 618 static void ppc64_do_msg(unsigned int src, const char *msg) 619 { 620 if (ppc_md.progress) { 621 char buf[128]; 622 623 sprintf(buf, "%08X\n", src); 624 ppc_md.progress(buf, 0); 625 snprintf(buf, 128, "%s", msg); 626 ppc_md.progress(buf, 0); 627 } 628 } 629 630 /* Print a boot progress message. */ 631 void ppc64_boot_msg(unsigned int src, const char *msg) 632 { 633 ppc64_do_msg(PPC64_LINUX_FUNCTION|PPC64_IPL_MESSAGE|src, msg); 634 printk("[boot]%04x %s\n", src, msg); 635 } 636 637 #ifdef CONFIG_SMP 638 #define PCPU_DYN_SIZE () 639 640 static void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align) 641 { 642 return __alloc_bootmem_node(NODE_DATA(cpu_to_node(cpu)), size, align, 643 __pa(MAX_DMA_ADDRESS)); 644 } 645 646 static void __init pcpu_fc_free(void *ptr, size_t size) 647 { 648 free_bootmem(__pa(ptr), size); 649 } 650 651 static int pcpu_cpu_distance(unsigned int from, unsigned int to) 652 { 653 if (cpu_to_node(from) == cpu_to_node(to)) 654 return LOCAL_DISTANCE; 655 else 656 return REMOTE_DISTANCE; 657 } 658 659 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 660 EXPORT_SYMBOL(__per_cpu_offset); 661 662 void __init setup_per_cpu_areas(void) 663 { 664 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE; 665 size_t atom_size; 666 unsigned long delta; 667 unsigned int cpu; 668 int rc; 669 670 /* 671 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need 672 * to group units. For larger mappings, use 1M atom which 673 * should be large enough to contain a number of units. 674 */ 675 if (mmu_linear_psize == MMU_PAGE_4K) 676 atom_size = PAGE_SIZE; 677 else 678 atom_size = 1 << 20; 679 680 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance, 681 pcpu_fc_alloc, pcpu_fc_free); 682 if (rc < 0) 683 panic("cannot initialize percpu area (err=%d)", rc); 684 685 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 686 for_each_possible_cpu(cpu) { 687 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 688 paca[cpu].data_offset = __per_cpu_offset[cpu]; 689 } 690 } 691 #endif 692 693 694 #ifdef CONFIG_PPC_INDIRECT_IO 695 struct ppc_pci_io ppc_pci_io; 696 EXPORT_SYMBOL(ppc_pci_io); 697 #endif /* CONFIG_PPC_INDIRECT_IO */ 698 699