xref: /linux/arch/powerpc/kernel/setup-common.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common boot and setup code for both 32-bit and 64-bit.
4  * Extracted from arch/powerpc/kernel/setup_64.c.
5  *
6  * Copyright (C) 2001 PPC64 Team, IBM Corp
7  */
8 
9 #undef DEBUG
10 
11 #include <linux/export.h>
12 #include <linux/panic_notifier.h>
13 #include <linux/string.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/reboot.h>
18 #include <linux/delay.h>
19 #include <linux/initrd.h>
20 #include <linux/platform_device.h>
21 #include <linux/printk.h>
22 #include <linux/seq_file.h>
23 #include <linux/ioport.h>
24 #include <linux/console.h>
25 #include <linux/root_dev.h>
26 #include <linux/cpu.h>
27 #include <linux/unistd.h>
28 #include <linux/seq_buf.h>
29 #include <linux/serial.h>
30 #include <linux/serial_8250.h>
31 #include <linux/percpu.h>
32 #include <linux/memblock.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/of_irq.h>
36 #include <linux/hugetlb.h>
37 #include <linux/pgtable.h>
38 #include <asm/io.h>
39 #include <asm/paca.h>
40 #include <asm/processor.h>
41 #include <asm/vdso_datapage.h>
42 #include <asm/smp.h>
43 #include <asm/elf.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/cputable.h>
47 #include <asm/sections.h>
48 #include <asm/firmware.h>
49 #include <asm/btext.h>
50 #include <asm/nvram.h>
51 #include <asm/setup.h>
52 #include <asm/rtas.h>
53 #include <asm/iommu.h>
54 #include <asm/serial.h>
55 #include <asm/cache.h>
56 #include <asm/page.h>
57 #include <asm/mmu.h>
58 #include <asm/xmon.h>
59 #include <asm/cputhreads.h>
60 #include <mm/mmu_decl.h>
61 #include <asm/archrandom.h>
62 #include <asm/fadump.h>
63 #include <asm/udbg.h>
64 #include <asm/hugetlb.h>
65 #include <asm/livepatch.h>
66 #include <asm/mmu_context.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/kasan.h>
69 #include <asm/mce.h>
70 #include <asm/systemcfg.h>
71 
72 #include "setup.h"
73 
74 #ifdef DEBUG
75 #define DBG(fmt...) udbg_printf(fmt)
76 #else
77 #define DBG(fmt...)
78 #endif
79 
80 /* The main machine-dep calls structure
81  */
82 struct machdep_calls ppc_md;
83 EXPORT_SYMBOL(ppc_md);
84 struct machdep_calls *machine_id;
85 EXPORT_SYMBOL(machine_id);
86 
87 int boot_cpuid = -1;
88 EXPORT_SYMBOL_GPL(boot_cpuid);
89 int __initdata boot_core_hwid = -1;
90 
91 #ifdef CONFIG_PPC64
92 int boot_cpu_hwid = -1;
93 #endif
94 
95 /*
96  * These are used in binfmt_elf.c to put aux entries on the stack
97  * for each elf executable being started.
98  */
99 int dcache_bsize;
100 int icache_bsize;
101 
102 /* Variables required to store legacy IO irq routing */
103 int of_i8042_kbd_irq;
104 EXPORT_SYMBOL_GPL(of_i8042_kbd_irq);
105 int of_i8042_aux_irq;
106 EXPORT_SYMBOL_GPL(of_i8042_aux_irq);
107 
108 #ifdef __DO_IRQ_CANON
109 /* XXX should go elsewhere eventually */
110 int ppc_do_canonicalize_irqs;
111 EXPORT_SYMBOL(ppc_do_canonicalize_irqs);
112 #endif
113 
114 #ifdef CONFIG_CRASH_DUMP
115 /* This keeps a track of which one is the crashing cpu. */
116 int crashing_cpu = -1;
117 #endif
118 
119 /* also used by kexec */
120 void machine_shutdown(void)
121 {
122 	/*
123 	 * if fadump is active, cleanup the fadump registration before we
124 	 * shutdown.
125 	 */
126 	fadump_cleanup();
127 
128 	if (ppc_md.machine_shutdown)
129 		ppc_md.machine_shutdown();
130 }
131 
132 static void machine_hang(void)
133 {
134 	pr_emerg("System Halted, OK to turn off power\n");
135 	local_irq_disable();
136 	while (1)
137 		;
138 }
139 
140 void machine_restart(char *cmd)
141 {
142 	machine_shutdown();
143 	if (ppc_md.restart)
144 		ppc_md.restart(cmd);
145 
146 	smp_send_stop();
147 
148 	do_kernel_restart(cmd);
149 	mdelay(1000);
150 
151 	machine_hang();
152 }
153 
154 void machine_power_off(void)
155 {
156 	machine_shutdown();
157 	do_kernel_power_off();
158 	smp_send_stop();
159 	machine_hang();
160 }
161 /* Used by the G5 thermal driver */
162 EXPORT_SYMBOL_GPL(machine_power_off);
163 
164 void (*pm_power_off)(void);
165 EXPORT_SYMBOL_GPL(pm_power_off);
166 
167 size_t __must_check arch_get_random_seed_longs(unsigned long *v, size_t max_longs)
168 {
169 	if (max_longs && ppc_md.get_random_seed && ppc_md.get_random_seed(v))
170 		return 1;
171 	return 0;
172 }
173 EXPORT_SYMBOL(arch_get_random_seed_longs);
174 
175 void machine_halt(void)
176 {
177 	machine_shutdown();
178 	if (ppc_md.halt)
179 		ppc_md.halt();
180 
181 	smp_send_stop();
182 	machine_hang();
183 }
184 
185 #ifdef CONFIG_SMP
186 DEFINE_PER_CPU(unsigned int, cpu_pvr);
187 #endif
188 
189 static void show_cpuinfo_summary(struct seq_file *m)
190 {
191 	struct device_node *root;
192 	const char *model = NULL;
193 	unsigned long bogosum = 0;
194 	int i;
195 
196 	if (IS_ENABLED(CONFIG_SMP) && IS_ENABLED(CONFIG_PPC32)) {
197 		for_each_online_cpu(i)
198 			bogosum += loops_per_jiffy;
199 		seq_printf(m, "total bogomips\t: %lu.%02lu\n",
200 			   bogosum / (500000 / HZ), bogosum / (5000 / HZ) % 100);
201 	}
202 	seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq);
203 	if (ppc_md.name)
204 		seq_printf(m, "platform\t: %s\n", ppc_md.name);
205 	root = of_find_node_by_path("/");
206 	if (root)
207 		model = of_get_property(root, "model", NULL);
208 	if (model)
209 		seq_printf(m, "model\t\t: %s\n", model);
210 	of_node_put(root);
211 
212 	if (ppc_md.show_cpuinfo != NULL)
213 		ppc_md.show_cpuinfo(m);
214 
215 	/* Display the amount of memory */
216 	if (IS_ENABLED(CONFIG_PPC32))
217 		seq_printf(m, "Memory\t\t: %d MB\n",
218 			   (unsigned int)(total_memory / (1024 * 1024)));
219 }
220 
221 static int show_cpuinfo(struct seq_file *m, void *v)
222 {
223 	unsigned long cpu_id = (unsigned long)v - 1;
224 	unsigned int pvr;
225 	unsigned long proc_freq;
226 	unsigned short maj;
227 	unsigned short min;
228 
229 #ifdef CONFIG_SMP
230 	pvr = per_cpu(cpu_pvr, cpu_id);
231 #else
232 	pvr = mfspr(SPRN_PVR);
233 #endif
234 	maj = (pvr >> 8) & 0xFF;
235 	min = pvr & 0xFF;
236 
237 	seq_printf(m, "processor\t: %lu\ncpu\t\t: ", cpu_id);
238 
239 	if (cur_cpu_spec->pvr_mask && cur_cpu_spec->cpu_name)
240 		seq_puts(m, cur_cpu_spec->cpu_name);
241 	else
242 		seq_printf(m, "unknown (%08x)", pvr);
243 
244 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
245 		seq_puts(m, ", altivec supported");
246 
247 	seq_putc(m, '\n');
248 
249 #ifdef CONFIG_TAU
250 	if (cpu_has_feature(CPU_FTR_TAU)) {
251 		if (IS_ENABLED(CONFIG_TAU_AVERAGE)) {
252 			/* more straightforward, but potentially misleading */
253 			seq_printf(m,  "temperature \t: %u C (uncalibrated)\n",
254 				   cpu_temp(cpu_id));
255 		} else {
256 			/* show the actual temp sensor range */
257 			u32 temp;
258 			temp = cpu_temp_both(cpu_id);
259 			seq_printf(m, "temperature \t: %u-%u C (uncalibrated)\n",
260 				   temp & 0xff, temp >> 16);
261 		}
262 	}
263 #endif /* CONFIG_TAU */
264 
265 	/*
266 	 * Platforms that have variable clock rates, should implement
267 	 * the method ppc_md.get_proc_freq() that reports the clock
268 	 * rate of a given cpu. The rest can use ppc_proc_freq to
269 	 * report the clock rate that is same across all cpus.
270 	 */
271 	if (ppc_md.get_proc_freq)
272 		proc_freq = ppc_md.get_proc_freq(cpu_id);
273 	else
274 		proc_freq = ppc_proc_freq;
275 
276 	if (proc_freq)
277 		seq_printf(m, "clock\t\t: %lu.%06luMHz\n",
278 			   proc_freq / 1000000, proc_freq % 1000000);
279 
280 	/* If we are a Freescale core do a simple check so
281 	 * we don't have to keep adding cases in the future */
282 	if (PVR_VER(pvr) & 0x8000) {
283 		switch (PVR_VER(pvr)) {
284 		case 0x8000:	/* 7441/7450/7451, Voyager */
285 		case 0x8001:	/* 7445/7455, Apollo 6 */
286 		case 0x8002:	/* 7447/7457, Apollo 7 */
287 		case 0x8003:	/* 7447A, Apollo 7 PM */
288 		case 0x8004:	/* 7448, Apollo 8 */
289 		case 0x800c:	/* 7410, Nitro */
290 			maj = ((pvr >> 8) & 0xF);
291 			min = PVR_MIN(pvr);
292 			break;
293 		default:	/* e500/book-e */
294 			maj = PVR_MAJ(pvr);
295 			min = PVR_MIN(pvr);
296 			break;
297 		}
298 	} else {
299 		switch (PVR_VER(pvr)) {
300 			case 0x1008:	/* 740P/750P ?? */
301 				maj = ((pvr >> 8) & 0xFF) - 1;
302 				min = pvr & 0xFF;
303 				break;
304 			case 0x004e: /* POWER9 bits 12-15 give chip type */
305 			case 0x0080: /* POWER10 bit 12 gives SMT8/4 */
306 				maj = (pvr >> 8) & 0x0F;
307 				min = pvr & 0xFF;
308 				break;
309 			default:
310 				maj = (pvr >> 8) & 0xFF;
311 				min = pvr & 0xFF;
312 				break;
313 		}
314 	}
315 
316 	seq_printf(m, "revision\t: %hd.%hd (pvr %04x %04x)\n",
317 		   maj, min, PVR_VER(pvr), PVR_REV(pvr));
318 
319 	if (IS_ENABLED(CONFIG_PPC32))
320 		seq_printf(m, "bogomips\t: %lu.%02lu\n", loops_per_jiffy / (500000 / HZ),
321 			   (loops_per_jiffy / (5000 / HZ)) % 100);
322 
323 	seq_putc(m, '\n');
324 
325 	/* If this is the last cpu, print the summary */
326 	if (cpumask_next(cpu_id, cpu_online_mask) >= nr_cpu_ids)
327 		show_cpuinfo_summary(m);
328 
329 	return 0;
330 }
331 
332 static void *c_start(struct seq_file *m, loff_t *pos)
333 {
334 	if (*pos == 0)	/* just in case, cpu 0 is not the first */
335 		*pos = cpumask_first(cpu_online_mask);
336 	else
337 		*pos = cpumask_next(*pos - 1, cpu_online_mask);
338 	if ((*pos) < nr_cpu_ids)
339 		return (void *)(unsigned long)(*pos + 1);
340 	return NULL;
341 }
342 
343 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
344 {
345 	(*pos)++;
346 	return c_start(m, pos);
347 }
348 
349 static void c_stop(struct seq_file *m, void *v)
350 {
351 }
352 
353 const struct seq_operations cpuinfo_op = {
354 	.start	= c_start,
355 	.next	= c_next,
356 	.stop	= c_stop,
357 	.show	= show_cpuinfo,
358 };
359 
360 void __init check_for_initrd(void)
361 {
362 #ifdef CONFIG_BLK_DEV_INITRD
363 	DBG(" -> check_for_initrd()  initrd_start=0x%lx  initrd_end=0x%lx\n",
364 	    initrd_start, initrd_end);
365 
366 	/* If we were passed an initrd, set the ROOT_DEV properly if the values
367 	 * look sensible. If not, clear initrd reference.
368 	 */
369 	if (is_kernel_addr(initrd_start) && is_kernel_addr(initrd_end) &&
370 	    initrd_end > initrd_start)
371 		ROOT_DEV = Root_RAM0;
372 	else
373 		initrd_start = initrd_end = 0;
374 
375 	if (initrd_start)
376 		pr_info("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end);
377 
378 	DBG(" <- check_for_initrd()\n");
379 #endif /* CONFIG_BLK_DEV_INITRD */
380 }
381 
382 #ifdef CONFIG_SMP
383 
384 int threads_per_core, threads_per_subcore, threads_shift __read_mostly;
385 cpumask_t threads_core_mask __read_mostly;
386 EXPORT_SYMBOL_GPL(threads_per_core);
387 EXPORT_SYMBOL_GPL(threads_per_subcore);
388 EXPORT_SYMBOL_GPL(threads_shift);
389 EXPORT_SYMBOL_GPL(threads_core_mask);
390 
391 static void __init cpu_init_thread_core_maps(int tpc)
392 {
393 	int i;
394 
395 	threads_per_core = tpc;
396 	threads_per_subcore = tpc;
397 	cpumask_clear(&threads_core_mask);
398 
399 	/* This implementation only supports power of 2 number of threads
400 	 * for simplicity and performance
401 	 */
402 	threads_shift = ilog2(tpc);
403 	BUG_ON(tpc != (1 << threads_shift));
404 
405 	for (i = 0; i < tpc; i++)
406 		cpumask_set_cpu(i, &threads_core_mask);
407 
408 	printk(KERN_INFO "CPU maps initialized for %d thread%s per core\n",
409 	       tpc, str_plural(tpc));
410 	printk(KERN_DEBUG " (thread shift is %d)\n", threads_shift);
411 }
412 
413 
414 u32 *cpu_to_phys_id = NULL;
415 
416 static int assign_threads(unsigned int cpu, unsigned int nthreads, bool present,
417 			  const __be32 *hw_ids)
418 {
419 	for (int i = 0; i < nthreads && cpu < nr_cpu_ids; i++) {
420 		__be32 hwid;
421 
422 		hwid = be32_to_cpu(hw_ids[i]);
423 
424 		DBG("    thread %d -> cpu %d (hard id %d)\n", i, cpu, hwid);
425 
426 		set_cpu_present(cpu, present);
427 		set_cpu_possible(cpu, true);
428 		cpu_to_phys_id[cpu] = hwid;
429 		cpu++;
430 	}
431 
432 	return cpu;
433 }
434 
435 /**
436  * setup_cpu_maps - initialize the following cpu maps:
437  *                  cpu_possible_mask
438  *                  cpu_present_mask
439  *
440  * Having the possible map set up early allows us to restrict allocations
441  * of things like irqstacks to nr_cpu_ids rather than NR_CPUS.
442  *
443  * We do not initialize the online map here; cpus set their own bits in
444  * cpu_online_mask as they come up.
445  *
446  * This function is valid only for Open Firmware systems.  finish_device_tree
447  * must be called before using this.
448  *
449  * While we're here, we may as well set the "physical" cpu ids in the paca.
450  *
451  * NOTE: This must match the parsing done in early_init_dt_scan_cpus.
452  */
453 void __init smp_setup_cpu_maps(void)
454 {
455 	struct device_node *dn;
456 	int cpu = 0;
457 	int nthreads = 1;
458 
459 	DBG("smp_setup_cpu_maps()\n");
460 
461 	cpu_to_phys_id = memblock_alloc(nr_cpu_ids * sizeof(u32),
462 					__alignof__(u32));
463 	if (!cpu_to_phys_id)
464 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
465 		      __func__, nr_cpu_ids * sizeof(u32), __alignof__(u32));
466 
467 	for_each_node_by_type(dn, "cpu") {
468 		const __be32 *intserv;
469 		__be32 cpu_be;
470 		int len;
471 
472 		DBG("  * %pOF...\n", dn);
473 
474 		intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s",
475 				&len);
476 		if (intserv) {
477 			DBG("    ibm,ppc-interrupt-server#s -> %lu threads\n",
478 			    (len / sizeof(int)));
479 		} else {
480 			DBG("    no ibm,ppc-interrupt-server#s -> 1 thread\n");
481 			intserv = of_get_property(dn, "reg", &len);
482 			if (!intserv) {
483 				cpu_be = cpu_to_be32(cpu);
484 				/* XXX: what is this? uninitialized?? */
485 				intserv = &cpu_be;	/* assume logical == phys */
486 				len = 4;
487 			}
488 		}
489 
490 		nthreads = len / sizeof(int);
491 
492 		bool avail = of_device_is_available(dn);
493 		if (!avail)
494 			avail = !of_property_match_string(dn,
495 					"enable-method", "spin-table");
496 
497 		if (boot_core_hwid >= 0) {
498 			if (cpu == 0) {
499 				pr_info("Skipping CPU node %pOF to allow for boot core.\n", dn);
500 				cpu = nthreads;
501 				continue;
502 			}
503 
504 			if (be32_to_cpu(intserv[0]) == boot_core_hwid) {
505 				pr_info("Renumbered boot core %pOF to logical 0\n", dn);
506 				assign_threads(0, nthreads, avail, intserv);
507 				of_node_put(dn);
508 				break;
509 			}
510 		} else if (cpu >= nr_cpu_ids) {
511 			of_node_put(dn);
512 			break;
513 		}
514 
515 		if (cpu < nr_cpu_ids)
516 			cpu = assign_threads(cpu, nthreads, avail, intserv);
517 	}
518 
519 	/* If no SMT supported, nthreads is forced to 1 */
520 	if (!cpu_has_feature(CPU_FTR_SMT)) {
521 		DBG("  SMT disabled ! nthreads forced to 1\n");
522 		nthreads = 1;
523 	}
524 
525 #ifdef CONFIG_PPC64
526 	/*
527 	 * On pSeries LPAR, we need to know how many cpus
528 	 * could possibly be added to this partition.
529 	 */
530 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
531 	    (dn = of_find_node_by_path("/rtas"))) {
532 		int num_addr_cell, num_size_cell, maxcpus;
533 		const __be32 *ireg;
534 
535 		num_addr_cell = of_n_addr_cells(dn);
536 		num_size_cell = of_n_size_cells(dn);
537 
538 		ireg = of_get_property(dn, "ibm,lrdr-capacity", NULL);
539 
540 		if (!ireg)
541 			goto out;
542 
543 		maxcpus = be32_to_cpup(ireg + num_addr_cell + num_size_cell);
544 
545 		/* Double maxcpus for processors which have SMT capability */
546 		if (cpu_has_feature(CPU_FTR_SMT))
547 			maxcpus *= nthreads;
548 
549 		if (maxcpus > nr_cpu_ids) {
550 			printk(KERN_WARNING
551 			       "Partition configured for %d cpus, "
552 			       "operating system maximum is %u.\n",
553 			       maxcpus, nr_cpu_ids);
554 			maxcpus = nr_cpu_ids;
555 		} else
556 			printk(KERN_INFO "Partition configured for %d cpus.\n",
557 			       maxcpus);
558 
559 		for (cpu = 0; cpu < maxcpus; cpu++)
560 			set_cpu_possible(cpu, true);
561 	out:
562 		of_node_put(dn);
563 	}
564 #endif
565 #ifdef CONFIG_PPC64_PROC_SYSTEMCFG
566 	systemcfg->processorCount = num_present_cpus();
567 #endif /* CONFIG_PPC64 */
568 
569         /* Initialize CPU <=> thread mapping/
570 	 *
571 	 * WARNING: We assume that the number of threads is the same for
572 	 * every CPU in the system. If that is not the case, then some code
573 	 * here will have to be reworked
574 	 */
575 	cpu_init_thread_core_maps(nthreads);
576 
577 	/* Now that possible cpus are set, set nr_cpu_ids for later use */
578 	setup_nr_cpu_ids();
579 
580 	free_unused_pacas();
581 }
582 #endif /* CONFIG_SMP */
583 
584 #ifdef CONFIG_PCSPKR_PLATFORM
585 static __init int add_pcspkr(void)
586 {
587 	struct device_node *np;
588 	struct platform_device *pd;
589 	int ret;
590 
591 	np = of_find_compatible_node(NULL, NULL, "pnpPNP,100");
592 	of_node_put(np);
593 	if (!np)
594 		return -ENODEV;
595 
596 	pd = platform_device_alloc("pcspkr", -1);
597 	if (!pd)
598 		return -ENOMEM;
599 
600 	ret = platform_device_add(pd);
601 	if (ret)
602 		platform_device_put(pd);
603 
604 	return ret;
605 }
606 device_initcall(add_pcspkr);
607 #endif	/* CONFIG_PCSPKR_PLATFORM */
608 
609 static char ppc_hw_desc_buf[128] __initdata;
610 
611 struct seq_buf ppc_hw_desc __initdata = {
612 	.buffer = ppc_hw_desc_buf,
613 	.size = sizeof(ppc_hw_desc_buf),
614 	.len = 0,
615 };
616 
617 static __init void probe_machine(void)
618 {
619 	extern struct machdep_calls __machine_desc_start;
620 	extern struct machdep_calls __machine_desc_end;
621 	unsigned int i;
622 
623 	/*
624 	 * Iterate all ppc_md structures until we find the proper
625 	 * one for the current machine type
626 	 */
627 	DBG("Probing machine type ...\n");
628 
629 	/*
630 	 * Check ppc_md is empty, if not we have a bug, ie, we setup an
631 	 * entry before probe_machine() which will be overwritten
632 	 */
633 	for (i = 0; i < (sizeof(ppc_md) / sizeof(void *)); i++) {
634 		if (((void **)&ppc_md)[i]) {
635 			printk(KERN_ERR "Entry %d in ppc_md non empty before"
636 			       " machine probe !\n", i);
637 		}
638 	}
639 
640 	for (machine_id = &__machine_desc_start;
641 	     machine_id < &__machine_desc_end;
642 	     machine_id++) {
643 		DBG("  %s ...\n", machine_id->name);
644 		if (machine_id->compatible && !of_machine_is_compatible(machine_id->compatible))
645 			continue;
646 		if (machine_id->compatibles && !of_machine_compatible_match(machine_id->compatibles))
647 			continue;
648 		memcpy(&ppc_md, machine_id, sizeof(struct machdep_calls));
649 		if (ppc_md.probe && !ppc_md.probe())
650 			continue;
651 		DBG("   %s match !\n", machine_id->name);
652 		break;
653 	}
654 	/* What can we do if we didn't find ? */
655 	if (machine_id >= &__machine_desc_end) {
656 		pr_err("No suitable machine description found !\n");
657 		for (;;);
658 	}
659 
660 	// Append the machine name to other info we've gathered
661 	seq_buf_puts(&ppc_hw_desc, ppc_md.name);
662 
663 	// Set the generic hardware description shown in oopses
664 	dump_stack_set_arch_desc(ppc_hw_desc.buffer);
665 
666 	pr_info("Hardware name: %s\n", ppc_hw_desc.buffer);
667 }
668 
669 /* Match a class of boards, not a specific device configuration. */
670 int check_legacy_ioport(unsigned long base_port)
671 {
672 	struct device_node *parent, *np = NULL;
673 	int ret = -ENODEV;
674 
675 	switch(base_port) {
676 	case I8042_DATA_REG:
677 		if (!(np = of_find_compatible_node(NULL, NULL, "pnpPNP,303")))
678 			np = of_find_compatible_node(NULL, NULL, "pnpPNP,f03");
679 		if (np) {
680 			parent = of_get_parent(np);
681 
682 			of_i8042_kbd_irq = irq_of_parse_and_map(parent, 0);
683 			if (!of_i8042_kbd_irq)
684 				of_i8042_kbd_irq = 1;
685 
686 			of_i8042_aux_irq = irq_of_parse_and_map(parent, 1);
687 			if (!of_i8042_aux_irq)
688 				of_i8042_aux_irq = 12;
689 
690 			of_node_put(np);
691 			np = parent;
692 			break;
693 		}
694 		np = of_find_node_by_type(NULL, "8042");
695 		/* Pegasos has no device_type on its 8042 node, look for the
696 		 * name instead */
697 		if (!np)
698 			np = of_find_node_by_name(NULL, "8042");
699 		if (np) {
700 			of_i8042_kbd_irq = 1;
701 			of_i8042_aux_irq = 12;
702 		}
703 		break;
704 	case FDC_BASE: /* FDC1 */
705 		np = of_find_node_by_type(NULL, "fdc");
706 		break;
707 	default:
708 		/* ipmi is supposed to fail here */
709 		break;
710 	}
711 	if (!np)
712 		return ret;
713 	parent = of_get_parent(np);
714 	if (parent) {
715 		if (of_node_is_type(parent, "isa"))
716 			ret = 0;
717 		of_node_put(parent);
718 	}
719 	of_node_put(np);
720 	return ret;
721 }
722 EXPORT_SYMBOL(check_legacy_ioport);
723 
724 /*
725  * Panic notifiers setup
726  *
727  * We have 3 notifiers for powerpc, each one from a different "nature":
728  *
729  * - ppc_panic_fadump_handler() is a hypervisor notifier, which hard-disables
730  *   IRQs and deal with the Firmware-Assisted dump, when it is configured;
731  *   should run early in the panic path.
732  *
733  * - dump_kernel_offset() is an informative notifier, just showing the KASLR
734  *   offset if we have RANDOMIZE_BASE set.
735  *
736  * - ppc_panic_platform_handler() is a low-level handler that's registered
737  *   only if the platform wishes to perform final actions in the panic path,
738  *   hence it should run late and might not even return. Currently, only
739  *   pseries and ps3 platforms register callbacks.
740  */
741 static int ppc_panic_fadump_handler(struct notifier_block *this,
742 				    unsigned long event, void *ptr)
743 {
744 	/*
745 	 * panic does a local_irq_disable, but we really
746 	 * want interrupts to be hard disabled.
747 	 */
748 	hard_irq_disable();
749 
750 	/*
751 	 * If firmware-assisted dump has been registered then trigger
752 	 * its callback and let the firmware handles everything else.
753 	 */
754 	crash_fadump(NULL, ptr);
755 
756 	return NOTIFY_DONE;
757 }
758 
759 static int dump_kernel_offset(struct notifier_block *self, unsigned long v,
760 			      void *p)
761 {
762 	pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
763 		 kaslr_offset(), KERNELBASE);
764 
765 	return NOTIFY_DONE;
766 }
767 
768 static int ppc_panic_platform_handler(struct notifier_block *this,
769 				      unsigned long event, void *ptr)
770 {
771 	/*
772 	 * This handler is only registered if we have a panic callback
773 	 * on ppc_md, hence NULL check is not needed.
774 	 * Also, it may not return, so it runs really late on panic path.
775 	 */
776 	ppc_md.panic(ptr);
777 
778 	return NOTIFY_DONE;
779 }
780 
781 static struct notifier_block ppc_fadump_block = {
782 	.notifier_call = ppc_panic_fadump_handler,
783 	.priority = INT_MAX, /* run early, to notify the firmware ASAP */
784 };
785 
786 static struct notifier_block kernel_offset_notifier = {
787 	.notifier_call = dump_kernel_offset,
788 };
789 
790 static struct notifier_block ppc_panic_block = {
791 	.notifier_call = ppc_panic_platform_handler,
792 	.priority = INT_MIN, /* may not return; must be done last */
793 };
794 
795 void __init setup_panic(void)
796 {
797 	/* Hard-disables IRQs + deal with FW-assisted dump (fadump) */
798 	atomic_notifier_chain_register(&panic_notifier_list,
799 				       &ppc_fadump_block);
800 
801 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0)
802 		atomic_notifier_chain_register(&panic_notifier_list,
803 					       &kernel_offset_notifier);
804 
805 	/* Low-level platform-specific routines that should run on panic */
806 	if (ppc_md.panic)
807 		atomic_notifier_chain_register(&panic_notifier_list,
808 					       &ppc_panic_block);
809 }
810 
811 #ifdef CONFIG_CHECK_CACHE_COHERENCY
812 /*
813  * For platforms that have configurable cache-coherency.  This function
814  * checks that the cache coherency setting of the kernel matches the setting
815  * left by the firmware, as indicated in the device tree.  Since a mismatch
816  * will eventually result in DMA failures, we print * and error and call
817  * BUG() in that case.
818  */
819 
820 #define KERNEL_COHERENCY	(!IS_ENABLED(CONFIG_NOT_COHERENT_CACHE))
821 
822 static int __init check_cache_coherency(void)
823 {
824 	struct device_node *np;
825 	const void *prop;
826 	bool devtree_coherency;
827 
828 	np = of_find_node_by_path("/");
829 	prop = of_get_property(np, "coherency-off", NULL);
830 	of_node_put(np);
831 
832 	devtree_coherency = prop ? false : true;
833 
834 	if (devtree_coherency != KERNEL_COHERENCY) {
835 		printk(KERN_ERR
836 			"kernel coherency:%s != device tree_coherency:%s\n",
837 			KERNEL_COHERENCY ? "on" : "off",
838 			devtree_coherency ? "on" : "off");
839 		BUG();
840 	}
841 
842 	return 0;
843 }
844 
845 late_initcall(check_cache_coherency);
846 #endif /* CONFIG_CHECK_CACHE_COHERENCY */
847 
848 void ppc_printk_progress(char *s, unsigned short hex)
849 {
850 	pr_info("%s\n", s);
851 }
852 
853 static __init void print_system_info(void)
854 {
855 	pr_info("-----------------------------------------------------\n");
856 	pr_info("phys_mem_size     = 0x%llx\n",
857 		(unsigned long long)memblock_phys_mem_size());
858 
859 	pr_info("dcache_bsize      = 0x%x\n", dcache_bsize);
860 	pr_info("icache_bsize      = 0x%x\n", icache_bsize);
861 
862 	pr_info("cpu_features      = 0x%016lx\n", cur_cpu_spec->cpu_features);
863 	pr_info("  possible        = 0x%016lx\n",
864 		(unsigned long)CPU_FTRS_POSSIBLE);
865 	pr_info("  always          = 0x%016lx\n",
866 		(unsigned long)CPU_FTRS_ALWAYS);
867 	pr_info("cpu_user_features = 0x%08x 0x%08x\n",
868 		cur_cpu_spec->cpu_user_features,
869 		cur_cpu_spec->cpu_user_features2);
870 	pr_info("mmu_features      = 0x%08x\n", cur_cpu_spec->mmu_features);
871 #ifdef CONFIG_PPC64
872 	pr_info("firmware_features = 0x%016lx\n", powerpc_firmware_features);
873 #ifdef CONFIG_PPC_BOOK3S
874 	pr_info("vmalloc start     = 0x%lx\n", KERN_VIRT_START);
875 	pr_info("IO start          = 0x%lx\n", KERN_IO_START);
876 	pr_info("vmemmap start     = 0x%lx\n", (unsigned long)vmemmap);
877 #endif
878 #endif
879 
880 	if (!early_radix_enabled())
881 		print_system_hash_info();
882 
883 	if (PHYSICAL_START > 0)
884 		pr_info("physical_start    = 0x%llx\n",
885 		       (unsigned long long)PHYSICAL_START);
886 	pr_info("-----------------------------------------------------\n");
887 }
888 
889 #ifdef CONFIG_SMP
890 static void __init smp_setup_pacas(void)
891 {
892 	int cpu;
893 
894 	for_each_possible_cpu(cpu) {
895 		if (cpu == smp_processor_id())
896 			continue;
897 		allocate_paca(cpu);
898 		set_hard_smp_processor_id(cpu, cpu_to_phys_id[cpu]);
899 	}
900 
901 	memblock_free(cpu_to_phys_id, nr_cpu_ids * sizeof(u32));
902 	cpu_to_phys_id = NULL;
903 }
904 #endif
905 
906 /*
907  * Called into from start_kernel this initializes memblock, which is used
908  * to manage page allocation until mem_init is called.
909  */
910 void __init setup_arch(char **cmdline_p)
911 {
912 	kasan_init();
913 
914 	*cmdline_p = boot_command_line;
915 
916 	/* Set a half-reasonable default so udelay does something sensible */
917 	loops_per_jiffy = 500000000 / HZ;
918 
919 	/* Unflatten the device-tree passed by prom_init or kexec */
920 	unflatten_device_tree();
921 
922 	/*
923 	 * Initialize cache line/block info from device-tree (on ppc64) or
924 	 * just cputable (on ppc32).
925 	 */
926 	initialize_cache_info();
927 
928 	/* Initialize RTAS if available. */
929 	rtas_initialize();
930 
931 	/* Check if we have an initrd provided via the device-tree. */
932 	check_for_initrd();
933 
934 	/* Probe the machine type, establish ppc_md. */
935 	probe_machine();
936 
937 	/* Setup panic notifier if requested by the platform. */
938 	setup_panic();
939 
940 	/*
941 	 * Configure ppc_md.power_save (ppc32 only, 64-bit machines do
942 	 * it from their respective probe() function.
943 	 */
944 	setup_power_save();
945 
946 	/* Discover standard serial ports. */
947 	find_legacy_serial_ports();
948 
949 	/* Register early console with the printk subsystem. */
950 	register_early_udbg_console();
951 
952 	/* Setup the various CPU maps based on the device-tree. */
953 	smp_setup_cpu_maps();
954 
955 	/* Initialize xmon. */
956 	xmon_setup();
957 
958 	/* Check the SMT related command line arguments (ppc64). */
959 	check_smt_enabled();
960 
961 	/* Parse memory topology */
962 	mem_topology_setup();
963 	/* Set max_mapnr before paging_init() */
964 	set_max_mapnr(max_pfn);
965 	high_memory = (void *)__va(max_low_pfn * PAGE_SIZE);
966 
967 	/*
968 	 * Release secondary cpus out of their spinloops at 0x60 now that
969 	 * we can map physical -> logical CPU ids.
970 	 *
971 	 * Freescale Book3e parts spin in a loop provided by firmware,
972 	 * so smp_release_cpus() does nothing for them.
973 	 */
974 #ifdef CONFIG_SMP
975 	smp_setup_pacas();
976 
977 	/* On BookE, setup per-core TLB data structures. */
978 	setup_tlb_core_data();
979 #endif
980 
981 	/* Print various info about the machine that has been gathered so far. */
982 	print_system_info();
983 
984 	klp_init_thread_info(&init_task);
985 
986 	setup_initial_init_mm(_stext, _etext, _edata, _end);
987 	/* sched_init() does the mmgrab(&init_mm) for the primary CPU */
988 	VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
989 	cpumask_set_cpu(smp_processor_id(), mm_cpumask(&init_mm));
990 	inc_mm_active_cpus(&init_mm);
991 	mm_iommu_init(&init_mm);
992 
993 	irqstack_early_init();
994 	exc_lvl_early_init();
995 	emergency_stack_init();
996 
997 	mce_init();
998 	smp_release_cpus();
999 
1000 	initmem_init();
1001 
1002 	/*
1003 	 * Reserve large chunks of memory for use by CMA for fadump, KVM and
1004 	 * hugetlb. These must be called after initmem_init(), so that
1005 	 * pageblock_order is initialised.
1006 	 */
1007 	fadump_cma_init();
1008 	kvm_cma_reserve();
1009 	gigantic_hugetlb_cma_reserve();
1010 
1011 	early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1012 
1013 	if (ppc_md.setup_arch)
1014 		ppc_md.setup_arch();
1015 
1016 	setup_barrier_nospec();
1017 	setup_spectre_v2();
1018 
1019 	paging_init();
1020 
1021 	/* Initialize the MMU context management stuff. */
1022 	mmu_context_init();
1023 
1024 	/* Interrupt code needs to be 64K-aligned. */
1025 	if (IS_ENABLED(CONFIG_PPC64) && (unsigned long)_stext & 0xffff)
1026 		panic("Kernelbase not 64K-aligned (0x%lx)!\n",
1027 		      (unsigned long)_stext);
1028 }
1029