xref: /linux/arch/powerpc/kernel/setup-common.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Common boot and setup code for both 32-bit and 64-bit.
4  * Extracted from arch/powerpc/kernel/setup_64.c.
5  *
6  * Copyright (C) 2001 PPC64 Team, IBM Corp
7  */
8 
9 #undef DEBUG
10 
11 #include <linux/export.h>
12 #include <linux/panic_notifier.h>
13 #include <linux/string.h>
14 #include <linux/sched.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/reboot.h>
18 #include <linux/delay.h>
19 #include <linux/initrd.h>
20 #include <linux/platform_device.h>
21 #include <linux/printk.h>
22 #include <linux/seq_file.h>
23 #include <linux/ioport.h>
24 #include <linux/console.h>
25 #include <linux/root_dev.h>
26 #include <linux/cpu.h>
27 #include <linux/unistd.h>
28 #include <linux/seq_buf.h>
29 #include <linux/serial.h>
30 #include <linux/serial_8250.h>
31 #include <linux/percpu.h>
32 #include <linux/memblock.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/of_irq.h>
36 #include <linux/hugetlb.h>
37 #include <linux/pgtable.h>
38 #include <asm/io.h>
39 #include <asm/paca.h>
40 #include <asm/processor.h>
41 #include <asm/vdso_datapage.h>
42 #include <asm/smp.h>
43 #include <asm/elf.h>
44 #include <asm/machdep.h>
45 #include <asm/time.h>
46 #include <asm/cputable.h>
47 #include <asm/sections.h>
48 #include <asm/firmware.h>
49 #include <asm/btext.h>
50 #include <asm/nvram.h>
51 #include <asm/setup.h>
52 #include <asm/rtas.h>
53 #include <asm/iommu.h>
54 #include <asm/serial.h>
55 #include <asm/cache.h>
56 #include <asm/page.h>
57 #include <asm/mmu.h>
58 #include <asm/xmon.h>
59 #include <asm/cputhreads.h>
60 #include <mm/mmu_decl.h>
61 #include <asm/archrandom.h>
62 #include <asm/fadump.h>
63 #include <asm/udbg.h>
64 #include <asm/hugetlb.h>
65 #include <asm/livepatch.h>
66 #include <asm/mmu_context.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/kasan.h>
69 #include <asm/mce.h>
70 
71 #include "setup.h"
72 
73 #ifdef DEBUG
74 #define DBG(fmt...) udbg_printf(fmt)
75 #else
76 #define DBG(fmt...)
77 #endif
78 
79 /* The main machine-dep calls structure
80  */
81 struct machdep_calls ppc_md;
82 EXPORT_SYMBOL(ppc_md);
83 struct machdep_calls *machine_id;
84 EXPORT_SYMBOL(machine_id);
85 
86 int boot_cpuid = -1;
87 EXPORT_SYMBOL_GPL(boot_cpuid);
88 int __initdata boot_core_hwid = -1;
89 
90 #ifdef CONFIG_PPC64
91 int boot_cpu_hwid = -1;
92 #endif
93 
94 /*
95  * These are used in binfmt_elf.c to put aux entries on the stack
96  * for each elf executable being started.
97  */
98 int dcache_bsize;
99 int icache_bsize;
100 
101 /* Variables required to store legacy IO irq routing */
102 int of_i8042_kbd_irq;
103 EXPORT_SYMBOL_GPL(of_i8042_kbd_irq);
104 int of_i8042_aux_irq;
105 EXPORT_SYMBOL_GPL(of_i8042_aux_irq);
106 
107 #ifdef __DO_IRQ_CANON
108 /* XXX should go elsewhere eventually */
109 int ppc_do_canonicalize_irqs;
110 EXPORT_SYMBOL(ppc_do_canonicalize_irqs);
111 #endif
112 
113 #ifdef CONFIG_CRASH_DUMP
114 /* This keeps a track of which one is the crashing cpu. */
115 int crashing_cpu = -1;
116 #endif
117 
118 /* also used by kexec */
119 void machine_shutdown(void)
120 {
121 	/*
122 	 * if fadump is active, cleanup the fadump registration before we
123 	 * shutdown.
124 	 */
125 	fadump_cleanup();
126 
127 	if (ppc_md.machine_shutdown)
128 		ppc_md.machine_shutdown();
129 }
130 
131 static void machine_hang(void)
132 {
133 	pr_emerg("System Halted, OK to turn off power\n");
134 	local_irq_disable();
135 	while (1)
136 		;
137 }
138 
139 void machine_restart(char *cmd)
140 {
141 	machine_shutdown();
142 	if (ppc_md.restart)
143 		ppc_md.restart(cmd);
144 
145 	smp_send_stop();
146 
147 	do_kernel_restart(cmd);
148 	mdelay(1000);
149 
150 	machine_hang();
151 }
152 
153 void machine_power_off(void)
154 {
155 	machine_shutdown();
156 	do_kernel_power_off();
157 	smp_send_stop();
158 	machine_hang();
159 }
160 /* Used by the G5 thermal driver */
161 EXPORT_SYMBOL_GPL(machine_power_off);
162 
163 void (*pm_power_off)(void);
164 EXPORT_SYMBOL_GPL(pm_power_off);
165 
166 size_t __must_check arch_get_random_seed_longs(unsigned long *v, size_t max_longs)
167 {
168 	if (max_longs && ppc_md.get_random_seed && ppc_md.get_random_seed(v))
169 		return 1;
170 	return 0;
171 }
172 EXPORT_SYMBOL(arch_get_random_seed_longs);
173 
174 void machine_halt(void)
175 {
176 	machine_shutdown();
177 	if (ppc_md.halt)
178 		ppc_md.halt();
179 
180 	smp_send_stop();
181 	machine_hang();
182 }
183 
184 #ifdef CONFIG_SMP
185 DEFINE_PER_CPU(unsigned int, cpu_pvr);
186 #endif
187 
188 static void show_cpuinfo_summary(struct seq_file *m)
189 {
190 	struct device_node *root;
191 	const char *model = NULL;
192 	unsigned long bogosum = 0;
193 	int i;
194 
195 	if (IS_ENABLED(CONFIG_SMP) && IS_ENABLED(CONFIG_PPC32)) {
196 		for_each_online_cpu(i)
197 			bogosum += loops_per_jiffy;
198 		seq_printf(m, "total bogomips\t: %lu.%02lu\n",
199 			   bogosum / (500000 / HZ), bogosum / (5000 / HZ) % 100);
200 	}
201 	seq_printf(m, "timebase\t: %lu\n", ppc_tb_freq);
202 	if (ppc_md.name)
203 		seq_printf(m, "platform\t: %s\n", ppc_md.name);
204 	root = of_find_node_by_path("/");
205 	if (root)
206 		model = of_get_property(root, "model", NULL);
207 	if (model)
208 		seq_printf(m, "model\t\t: %s\n", model);
209 	of_node_put(root);
210 
211 	if (ppc_md.show_cpuinfo != NULL)
212 		ppc_md.show_cpuinfo(m);
213 
214 	/* Display the amount of memory */
215 	if (IS_ENABLED(CONFIG_PPC32))
216 		seq_printf(m, "Memory\t\t: %d MB\n",
217 			   (unsigned int)(total_memory / (1024 * 1024)));
218 }
219 
220 static int show_cpuinfo(struct seq_file *m, void *v)
221 {
222 	unsigned long cpu_id = (unsigned long)v - 1;
223 	unsigned int pvr;
224 	unsigned long proc_freq;
225 	unsigned short maj;
226 	unsigned short min;
227 
228 #ifdef CONFIG_SMP
229 	pvr = per_cpu(cpu_pvr, cpu_id);
230 #else
231 	pvr = mfspr(SPRN_PVR);
232 #endif
233 	maj = (pvr >> 8) & 0xFF;
234 	min = pvr & 0xFF;
235 
236 	seq_printf(m, "processor\t: %lu\ncpu\t\t: ", cpu_id);
237 
238 	if (cur_cpu_spec->pvr_mask && cur_cpu_spec->cpu_name)
239 		seq_puts(m, cur_cpu_spec->cpu_name);
240 	else
241 		seq_printf(m, "unknown (%08x)", pvr);
242 
243 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
244 		seq_puts(m, ", altivec supported");
245 
246 	seq_putc(m, '\n');
247 
248 #ifdef CONFIG_TAU
249 	if (cpu_has_feature(CPU_FTR_TAU)) {
250 		if (IS_ENABLED(CONFIG_TAU_AVERAGE)) {
251 			/* more straightforward, but potentially misleading */
252 			seq_printf(m,  "temperature \t: %u C (uncalibrated)\n",
253 				   cpu_temp(cpu_id));
254 		} else {
255 			/* show the actual temp sensor range */
256 			u32 temp;
257 			temp = cpu_temp_both(cpu_id);
258 			seq_printf(m, "temperature \t: %u-%u C (uncalibrated)\n",
259 				   temp & 0xff, temp >> 16);
260 		}
261 	}
262 #endif /* CONFIG_TAU */
263 
264 	/*
265 	 * Platforms that have variable clock rates, should implement
266 	 * the method ppc_md.get_proc_freq() that reports the clock
267 	 * rate of a given cpu. The rest can use ppc_proc_freq to
268 	 * report the clock rate that is same across all cpus.
269 	 */
270 	if (ppc_md.get_proc_freq)
271 		proc_freq = ppc_md.get_proc_freq(cpu_id);
272 	else
273 		proc_freq = ppc_proc_freq;
274 
275 	if (proc_freq)
276 		seq_printf(m, "clock\t\t: %lu.%06luMHz\n",
277 			   proc_freq / 1000000, proc_freq % 1000000);
278 
279 	/* If we are a Freescale core do a simple check so
280 	 * we don't have to keep adding cases in the future */
281 	if (PVR_VER(pvr) & 0x8000) {
282 		switch (PVR_VER(pvr)) {
283 		case 0x8000:	/* 7441/7450/7451, Voyager */
284 		case 0x8001:	/* 7445/7455, Apollo 6 */
285 		case 0x8002:	/* 7447/7457, Apollo 7 */
286 		case 0x8003:	/* 7447A, Apollo 7 PM */
287 		case 0x8004:	/* 7448, Apollo 8 */
288 		case 0x800c:	/* 7410, Nitro */
289 			maj = ((pvr >> 8) & 0xF);
290 			min = PVR_MIN(pvr);
291 			break;
292 		default:	/* e500/book-e */
293 			maj = PVR_MAJ(pvr);
294 			min = PVR_MIN(pvr);
295 			break;
296 		}
297 	} else {
298 		switch (PVR_VER(pvr)) {
299 			case 0x1008:	/* 740P/750P ?? */
300 				maj = ((pvr >> 8) & 0xFF) - 1;
301 				min = pvr & 0xFF;
302 				break;
303 			case 0x004e: /* POWER9 bits 12-15 give chip type */
304 			case 0x0080: /* POWER10 bit 12 gives SMT8/4 */
305 				maj = (pvr >> 8) & 0x0F;
306 				min = pvr & 0xFF;
307 				break;
308 			default:
309 				maj = (pvr >> 8) & 0xFF;
310 				min = pvr & 0xFF;
311 				break;
312 		}
313 	}
314 
315 	seq_printf(m, "revision\t: %hd.%hd (pvr %04x %04x)\n",
316 		   maj, min, PVR_VER(pvr), PVR_REV(pvr));
317 
318 	if (IS_ENABLED(CONFIG_PPC32))
319 		seq_printf(m, "bogomips\t: %lu.%02lu\n", loops_per_jiffy / (500000 / HZ),
320 			   (loops_per_jiffy / (5000 / HZ)) % 100);
321 
322 	seq_putc(m, '\n');
323 
324 	/* If this is the last cpu, print the summary */
325 	if (cpumask_next(cpu_id, cpu_online_mask) >= nr_cpu_ids)
326 		show_cpuinfo_summary(m);
327 
328 	return 0;
329 }
330 
331 static void *c_start(struct seq_file *m, loff_t *pos)
332 {
333 	if (*pos == 0)	/* just in case, cpu 0 is not the first */
334 		*pos = cpumask_first(cpu_online_mask);
335 	else
336 		*pos = cpumask_next(*pos - 1, cpu_online_mask);
337 	if ((*pos) < nr_cpu_ids)
338 		return (void *)(unsigned long)(*pos + 1);
339 	return NULL;
340 }
341 
342 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
343 {
344 	(*pos)++;
345 	return c_start(m, pos);
346 }
347 
348 static void c_stop(struct seq_file *m, void *v)
349 {
350 }
351 
352 const struct seq_operations cpuinfo_op = {
353 	.start	= c_start,
354 	.next	= c_next,
355 	.stop	= c_stop,
356 	.show	= show_cpuinfo,
357 };
358 
359 void __init check_for_initrd(void)
360 {
361 #ifdef CONFIG_BLK_DEV_INITRD
362 	DBG(" -> check_for_initrd()  initrd_start=0x%lx  initrd_end=0x%lx\n",
363 	    initrd_start, initrd_end);
364 
365 	/* If we were passed an initrd, set the ROOT_DEV properly if the values
366 	 * look sensible. If not, clear initrd reference.
367 	 */
368 	if (is_kernel_addr(initrd_start) && is_kernel_addr(initrd_end) &&
369 	    initrd_end > initrd_start)
370 		ROOT_DEV = Root_RAM0;
371 	else
372 		initrd_start = initrd_end = 0;
373 
374 	if (initrd_start)
375 		pr_info("Found initrd at 0x%lx:0x%lx\n", initrd_start, initrd_end);
376 
377 	DBG(" <- check_for_initrd()\n");
378 #endif /* CONFIG_BLK_DEV_INITRD */
379 }
380 
381 #ifdef CONFIG_SMP
382 
383 int threads_per_core, threads_per_subcore, threads_shift __read_mostly;
384 cpumask_t threads_core_mask __read_mostly;
385 EXPORT_SYMBOL_GPL(threads_per_core);
386 EXPORT_SYMBOL_GPL(threads_per_subcore);
387 EXPORT_SYMBOL_GPL(threads_shift);
388 EXPORT_SYMBOL_GPL(threads_core_mask);
389 
390 static void __init cpu_init_thread_core_maps(int tpc)
391 {
392 	int i;
393 
394 	threads_per_core = tpc;
395 	threads_per_subcore = tpc;
396 	cpumask_clear(&threads_core_mask);
397 
398 	/* This implementation only supports power of 2 number of threads
399 	 * for simplicity and performance
400 	 */
401 	threads_shift = ilog2(tpc);
402 	BUG_ON(tpc != (1 << threads_shift));
403 
404 	for (i = 0; i < tpc; i++)
405 		cpumask_set_cpu(i, &threads_core_mask);
406 
407 	printk(KERN_INFO "CPU maps initialized for %d thread%s per core\n",
408 	       tpc, str_plural(tpc));
409 	printk(KERN_DEBUG " (thread shift is %d)\n", threads_shift);
410 }
411 
412 
413 u32 *cpu_to_phys_id = NULL;
414 
415 static int assign_threads(unsigned int cpu, unsigned int nthreads, bool present,
416 			  const __be32 *hw_ids)
417 {
418 	for (int i = 0; i < nthreads && cpu < nr_cpu_ids; i++) {
419 		__be32 hwid;
420 
421 		hwid = be32_to_cpu(hw_ids[i]);
422 
423 		DBG("    thread %d -> cpu %d (hard id %d)\n", i, cpu, hwid);
424 
425 		set_cpu_present(cpu, present);
426 		set_cpu_possible(cpu, true);
427 		cpu_to_phys_id[cpu] = hwid;
428 		cpu++;
429 	}
430 
431 	return cpu;
432 }
433 
434 /**
435  * setup_cpu_maps - initialize the following cpu maps:
436  *                  cpu_possible_mask
437  *                  cpu_present_mask
438  *
439  * Having the possible map set up early allows us to restrict allocations
440  * of things like irqstacks to nr_cpu_ids rather than NR_CPUS.
441  *
442  * We do not initialize the online map here; cpus set their own bits in
443  * cpu_online_mask as they come up.
444  *
445  * This function is valid only for Open Firmware systems.  finish_device_tree
446  * must be called before using this.
447  *
448  * While we're here, we may as well set the "physical" cpu ids in the paca.
449  *
450  * NOTE: This must match the parsing done in early_init_dt_scan_cpus.
451  */
452 void __init smp_setup_cpu_maps(void)
453 {
454 	struct device_node *dn;
455 	int cpu = 0;
456 	int nthreads = 1;
457 
458 	DBG("smp_setup_cpu_maps()\n");
459 
460 	cpu_to_phys_id = memblock_alloc(nr_cpu_ids * sizeof(u32),
461 					__alignof__(u32));
462 	if (!cpu_to_phys_id)
463 		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
464 		      __func__, nr_cpu_ids * sizeof(u32), __alignof__(u32));
465 
466 	for_each_node_by_type(dn, "cpu") {
467 		const __be32 *intserv;
468 		__be32 cpu_be;
469 		int len;
470 
471 		DBG("  * %pOF...\n", dn);
472 
473 		intserv = of_get_property(dn, "ibm,ppc-interrupt-server#s",
474 				&len);
475 		if (intserv) {
476 			DBG("    ibm,ppc-interrupt-server#s -> %lu threads\n",
477 			    (len / sizeof(int)));
478 		} else {
479 			DBG("    no ibm,ppc-interrupt-server#s -> 1 thread\n");
480 			intserv = of_get_property(dn, "reg", &len);
481 			if (!intserv) {
482 				cpu_be = cpu_to_be32(cpu);
483 				/* XXX: what is this? uninitialized?? */
484 				intserv = &cpu_be;	/* assume logical == phys */
485 				len = 4;
486 			}
487 		}
488 
489 		nthreads = len / sizeof(int);
490 
491 		bool avail = of_device_is_available(dn);
492 		if (!avail)
493 			avail = !of_property_match_string(dn,
494 					"enable-method", "spin-table");
495 
496 		if (boot_core_hwid >= 0) {
497 			if (cpu == 0) {
498 				pr_info("Skipping CPU node %pOF to allow for boot core.\n", dn);
499 				cpu = nthreads;
500 				continue;
501 			}
502 
503 			if (be32_to_cpu(intserv[0]) == boot_core_hwid) {
504 				pr_info("Renumbered boot core %pOF to logical 0\n", dn);
505 				assign_threads(0, nthreads, avail, intserv);
506 				of_node_put(dn);
507 				break;
508 			}
509 		} else if (cpu >= nr_cpu_ids) {
510 			of_node_put(dn);
511 			break;
512 		}
513 
514 		if (cpu < nr_cpu_ids)
515 			cpu = assign_threads(cpu, nthreads, avail, intserv);
516 	}
517 
518 	/* If no SMT supported, nthreads is forced to 1 */
519 	if (!cpu_has_feature(CPU_FTR_SMT)) {
520 		DBG("  SMT disabled ! nthreads forced to 1\n");
521 		nthreads = 1;
522 	}
523 
524 #ifdef CONFIG_PPC64
525 	/*
526 	 * On pSeries LPAR, we need to know how many cpus
527 	 * could possibly be added to this partition.
528 	 */
529 	if (firmware_has_feature(FW_FEATURE_LPAR) &&
530 	    (dn = of_find_node_by_path("/rtas"))) {
531 		int num_addr_cell, num_size_cell, maxcpus;
532 		const __be32 *ireg;
533 
534 		num_addr_cell = of_n_addr_cells(dn);
535 		num_size_cell = of_n_size_cells(dn);
536 
537 		ireg = of_get_property(dn, "ibm,lrdr-capacity", NULL);
538 
539 		if (!ireg)
540 			goto out;
541 
542 		maxcpus = be32_to_cpup(ireg + num_addr_cell + num_size_cell);
543 
544 		/* Double maxcpus for processors which have SMT capability */
545 		if (cpu_has_feature(CPU_FTR_SMT))
546 			maxcpus *= nthreads;
547 
548 		if (maxcpus > nr_cpu_ids) {
549 			printk(KERN_WARNING
550 			       "Partition configured for %d cpus, "
551 			       "operating system maximum is %u.\n",
552 			       maxcpus, nr_cpu_ids);
553 			maxcpus = nr_cpu_ids;
554 		} else
555 			printk(KERN_INFO "Partition configured for %d cpus.\n",
556 			       maxcpus);
557 
558 		for (cpu = 0; cpu < maxcpus; cpu++)
559 			set_cpu_possible(cpu, true);
560 	out:
561 		of_node_put(dn);
562 	}
563 	vdso_data->processorCount = num_present_cpus();
564 #endif /* CONFIG_PPC64 */
565 
566         /* Initialize CPU <=> thread mapping/
567 	 *
568 	 * WARNING: We assume that the number of threads is the same for
569 	 * every CPU in the system. If that is not the case, then some code
570 	 * here will have to be reworked
571 	 */
572 	cpu_init_thread_core_maps(nthreads);
573 
574 	/* Now that possible cpus are set, set nr_cpu_ids for later use */
575 	setup_nr_cpu_ids();
576 
577 	free_unused_pacas();
578 }
579 #endif /* CONFIG_SMP */
580 
581 #ifdef CONFIG_PCSPKR_PLATFORM
582 static __init int add_pcspkr(void)
583 {
584 	struct device_node *np;
585 	struct platform_device *pd;
586 	int ret;
587 
588 	np = of_find_compatible_node(NULL, NULL, "pnpPNP,100");
589 	of_node_put(np);
590 	if (!np)
591 		return -ENODEV;
592 
593 	pd = platform_device_alloc("pcspkr", -1);
594 	if (!pd)
595 		return -ENOMEM;
596 
597 	ret = platform_device_add(pd);
598 	if (ret)
599 		platform_device_put(pd);
600 
601 	return ret;
602 }
603 device_initcall(add_pcspkr);
604 #endif	/* CONFIG_PCSPKR_PLATFORM */
605 
606 static char ppc_hw_desc_buf[128] __initdata;
607 
608 struct seq_buf ppc_hw_desc __initdata = {
609 	.buffer = ppc_hw_desc_buf,
610 	.size = sizeof(ppc_hw_desc_buf),
611 	.len = 0,
612 };
613 
614 static __init void probe_machine(void)
615 {
616 	extern struct machdep_calls __machine_desc_start;
617 	extern struct machdep_calls __machine_desc_end;
618 	unsigned int i;
619 
620 	/*
621 	 * Iterate all ppc_md structures until we find the proper
622 	 * one for the current machine type
623 	 */
624 	DBG("Probing machine type ...\n");
625 
626 	/*
627 	 * Check ppc_md is empty, if not we have a bug, ie, we setup an
628 	 * entry before probe_machine() which will be overwritten
629 	 */
630 	for (i = 0; i < (sizeof(ppc_md) / sizeof(void *)); i++) {
631 		if (((void **)&ppc_md)[i]) {
632 			printk(KERN_ERR "Entry %d in ppc_md non empty before"
633 			       " machine probe !\n", i);
634 		}
635 	}
636 
637 	for (machine_id = &__machine_desc_start;
638 	     machine_id < &__machine_desc_end;
639 	     machine_id++) {
640 		DBG("  %s ...\n", machine_id->name);
641 		if (machine_id->compatible && !of_machine_is_compatible(machine_id->compatible))
642 			continue;
643 		if (machine_id->compatibles && !of_machine_compatible_match(machine_id->compatibles))
644 			continue;
645 		memcpy(&ppc_md, machine_id, sizeof(struct machdep_calls));
646 		if (ppc_md.probe && !ppc_md.probe())
647 			continue;
648 		DBG("   %s match !\n", machine_id->name);
649 		break;
650 	}
651 	/* What can we do if we didn't find ? */
652 	if (machine_id >= &__machine_desc_end) {
653 		pr_err("No suitable machine description found !\n");
654 		for (;;);
655 	}
656 
657 	// Append the machine name to other info we've gathered
658 	seq_buf_puts(&ppc_hw_desc, ppc_md.name);
659 
660 	// Set the generic hardware description shown in oopses
661 	dump_stack_set_arch_desc(ppc_hw_desc.buffer);
662 
663 	pr_info("Hardware name: %s\n", ppc_hw_desc.buffer);
664 }
665 
666 /* Match a class of boards, not a specific device configuration. */
667 int check_legacy_ioport(unsigned long base_port)
668 {
669 	struct device_node *parent, *np = NULL;
670 	int ret = -ENODEV;
671 
672 	switch(base_port) {
673 	case I8042_DATA_REG:
674 		if (!(np = of_find_compatible_node(NULL, NULL, "pnpPNP,303")))
675 			np = of_find_compatible_node(NULL, NULL, "pnpPNP,f03");
676 		if (np) {
677 			parent = of_get_parent(np);
678 
679 			of_i8042_kbd_irq = irq_of_parse_and_map(parent, 0);
680 			if (!of_i8042_kbd_irq)
681 				of_i8042_kbd_irq = 1;
682 
683 			of_i8042_aux_irq = irq_of_parse_and_map(parent, 1);
684 			if (!of_i8042_aux_irq)
685 				of_i8042_aux_irq = 12;
686 
687 			of_node_put(np);
688 			np = parent;
689 			break;
690 		}
691 		np = of_find_node_by_type(NULL, "8042");
692 		/* Pegasos has no device_type on its 8042 node, look for the
693 		 * name instead */
694 		if (!np)
695 			np = of_find_node_by_name(NULL, "8042");
696 		if (np) {
697 			of_i8042_kbd_irq = 1;
698 			of_i8042_aux_irq = 12;
699 		}
700 		break;
701 	case FDC_BASE: /* FDC1 */
702 		np = of_find_node_by_type(NULL, "fdc");
703 		break;
704 	default:
705 		/* ipmi is supposed to fail here */
706 		break;
707 	}
708 	if (!np)
709 		return ret;
710 	parent = of_get_parent(np);
711 	if (parent) {
712 		if (of_node_is_type(parent, "isa"))
713 			ret = 0;
714 		of_node_put(parent);
715 	}
716 	of_node_put(np);
717 	return ret;
718 }
719 EXPORT_SYMBOL(check_legacy_ioport);
720 
721 /*
722  * Panic notifiers setup
723  *
724  * We have 3 notifiers for powerpc, each one from a different "nature":
725  *
726  * - ppc_panic_fadump_handler() is a hypervisor notifier, which hard-disables
727  *   IRQs and deal with the Firmware-Assisted dump, when it is configured;
728  *   should run early in the panic path.
729  *
730  * - dump_kernel_offset() is an informative notifier, just showing the KASLR
731  *   offset if we have RANDOMIZE_BASE set.
732  *
733  * - ppc_panic_platform_handler() is a low-level handler that's registered
734  *   only if the platform wishes to perform final actions in the panic path,
735  *   hence it should run late and might not even return. Currently, only
736  *   pseries and ps3 platforms register callbacks.
737  */
738 static int ppc_panic_fadump_handler(struct notifier_block *this,
739 				    unsigned long event, void *ptr)
740 {
741 	/*
742 	 * panic does a local_irq_disable, but we really
743 	 * want interrupts to be hard disabled.
744 	 */
745 	hard_irq_disable();
746 
747 	/*
748 	 * If firmware-assisted dump has been registered then trigger
749 	 * its callback and let the firmware handles everything else.
750 	 */
751 	crash_fadump(NULL, ptr);
752 
753 	return NOTIFY_DONE;
754 }
755 
756 static int dump_kernel_offset(struct notifier_block *self, unsigned long v,
757 			      void *p)
758 {
759 	pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
760 		 kaslr_offset(), KERNELBASE);
761 
762 	return NOTIFY_DONE;
763 }
764 
765 static int ppc_panic_platform_handler(struct notifier_block *this,
766 				      unsigned long event, void *ptr)
767 {
768 	/*
769 	 * This handler is only registered if we have a panic callback
770 	 * on ppc_md, hence NULL check is not needed.
771 	 * Also, it may not return, so it runs really late on panic path.
772 	 */
773 	ppc_md.panic(ptr);
774 
775 	return NOTIFY_DONE;
776 }
777 
778 static struct notifier_block ppc_fadump_block = {
779 	.notifier_call = ppc_panic_fadump_handler,
780 	.priority = INT_MAX, /* run early, to notify the firmware ASAP */
781 };
782 
783 static struct notifier_block kernel_offset_notifier = {
784 	.notifier_call = dump_kernel_offset,
785 };
786 
787 static struct notifier_block ppc_panic_block = {
788 	.notifier_call = ppc_panic_platform_handler,
789 	.priority = INT_MIN, /* may not return; must be done last */
790 };
791 
792 void __init setup_panic(void)
793 {
794 	/* Hard-disables IRQs + deal with FW-assisted dump (fadump) */
795 	atomic_notifier_chain_register(&panic_notifier_list,
796 				       &ppc_fadump_block);
797 
798 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && kaslr_offset() > 0)
799 		atomic_notifier_chain_register(&panic_notifier_list,
800 					       &kernel_offset_notifier);
801 
802 	/* Low-level platform-specific routines that should run on panic */
803 	if (ppc_md.panic)
804 		atomic_notifier_chain_register(&panic_notifier_list,
805 					       &ppc_panic_block);
806 }
807 
808 #ifdef CONFIG_CHECK_CACHE_COHERENCY
809 /*
810  * For platforms that have configurable cache-coherency.  This function
811  * checks that the cache coherency setting of the kernel matches the setting
812  * left by the firmware, as indicated in the device tree.  Since a mismatch
813  * will eventually result in DMA failures, we print * and error and call
814  * BUG() in that case.
815  */
816 
817 #define KERNEL_COHERENCY	(!IS_ENABLED(CONFIG_NOT_COHERENT_CACHE))
818 
819 static int __init check_cache_coherency(void)
820 {
821 	struct device_node *np;
822 	const void *prop;
823 	bool devtree_coherency;
824 
825 	np = of_find_node_by_path("/");
826 	prop = of_get_property(np, "coherency-off", NULL);
827 	of_node_put(np);
828 
829 	devtree_coherency = prop ? false : true;
830 
831 	if (devtree_coherency != KERNEL_COHERENCY) {
832 		printk(KERN_ERR
833 			"kernel coherency:%s != device tree_coherency:%s\n",
834 			KERNEL_COHERENCY ? "on" : "off",
835 			devtree_coherency ? "on" : "off");
836 		BUG();
837 	}
838 
839 	return 0;
840 }
841 
842 late_initcall(check_cache_coherency);
843 #endif /* CONFIG_CHECK_CACHE_COHERENCY */
844 
845 void ppc_printk_progress(char *s, unsigned short hex)
846 {
847 	pr_info("%s\n", s);
848 }
849 
850 static __init void print_system_info(void)
851 {
852 	pr_info("-----------------------------------------------------\n");
853 	pr_info("phys_mem_size     = 0x%llx\n",
854 		(unsigned long long)memblock_phys_mem_size());
855 
856 	pr_info("dcache_bsize      = 0x%x\n", dcache_bsize);
857 	pr_info("icache_bsize      = 0x%x\n", icache_bsize);
858 
859 	pr_info("cpu_features      = 0x%016lx\n", cur_cpu_spec->cpu_features);
860 	pr_info("  possible        = 0x%016lx\n",
861 		(unsigned long)CPU_FTRS_POSSIBLE);
862 	pr_info("  always          = 0x%016lx\n",
863 		(unsigned long)CPU_FTRS_ALWAYS);
864 	pr_info("cpu_user_features = 0x%08x 0x%08x\n",
865 		cur_cpu_spec->cpu_user_features,
866 		cur_cpu_spec->cpu_user_features2);
867 	pr_info("mmu_features      = 0x%08x\n", cur_cpu_spec->mmu_features);
868 #ifdef CONFIG_PPC64
869 	pr_info("firmware_features = 0x%016lx\n", powerpc_firmware_features);
870 #ifdef CONFIG_PPC_BOOK3S
871 	pr_info("vmalloc start     = 0x%lx\n", KERN_VIRT_START);
872 	pr_info("IO start          = 0x%lx\n", KERN_IO_START);
873 	pr_info("vmemmap start     = 0x%lx\n", (unsigned long)vmemmap);
874 #endif
875 #endif
876 
877 	if (!early_radix_enabled())
878 		print_system_hash_info();
879 
880 	if (PHYSICAL_START > 0)
881 		pr_info("physical_start    = 0x%llx\n",
882 		       (unsigned long long)PHYSICAL_START);
883 	pr_info("-----------------------------------------------------\n");
884 }
885 
886 #ifdef CONFIG_SMP
887 static void __init smp_setup_pacas(void)
888 {
889 	int cpu;
890 
891 	for_each_possible_cpu(cpu) {
892 		if (cpu == smp_processor_id())
893 			continue;
894 		allocate_paca(cpu);
895 		set_hard_smp_processor_id(cpu, cpu_to_phys_id[cpu]);
896 	}
897 
898 	memblock_free(cpu_to_phys_id, nr_cpu_ids * sizeof(u32));
899 	cpu_to_phys_id = NULL;
900 }
901 #endif
902 
903 /*
904  * Called into from start_kernel this initializes memblock, which is used
905  * to manage page allocation until mem_init is called.
906  */
907 void __init setup_arch(char **cmdline_p)
908 {
909 	kasan_init();
910 
911 	*cmdline_p = boot_command_line;
912 
913 	/* Set a half-reasonable default so udelay does something sensible */
914 	loops_per_jiffy = 500000000 / HZ;
915 
916 	/* Unflatten the device-tree passed by prom_init or kexec */
917 	unflatten_device_tree();
918 
919 	/*
920 	 * Initialize cache line/block info from device-tree (on ppc64) or
921 	 * just cputable (on ppc32).
922 	 */
923 	initialize_cache_info();
924 
925 	/* Initialize RTAS if available. */
926 	rtas_initialize();
927 
928 	/* Check if we have an initrd provided via the device-tree. */
929 	check_for_initrd();
930 
931 	/* Probe the machine type, establish ppc_md. */
932 	probe_machine();
933 
934 	/* Setup panic notifier if requested by the platform. */
935 	setup_panic();
936 
937 	/*
938 	 * Configure ppc_md.power_save (ppc32 only, 64-bit machines do
939 	 * it from their respective probe() function.
940 	 */
941 	setup_power_save();
942 
943 	/* Discover standard serial ports. */
944 	find_legacy_serial_ports();
945 
946 	/* Register early console with the printk subsystem. */
947 	register_early_udbg_console();
948 
949 	/* Setup the various CPU maps based on the device-tree. */
950 	smp_setup_cpu_maps();
951 
952 	/* Initialize xmon. */
953 	xmon_setup();
954 
955 	/* Check the SMT related command line arguments (ppc64). */
956 	check_smt_enabled();
957 
958 	/* Parse memory topology */
959 	mem_topology_setup();
960 	/* Set max_mapnr before paging_init() */
961 	set_max_mapnr(max_pfn);
962 	high_memory = (void *)__va(max_low_pfn * PAGE_SIZE);
963 
964 	/*
965 	 * Release secondary cpus out of their spinloops at 0x60 now that
966 	 * we can map physical -> logical CPU ids.
967 	 *
968 	 * Freescale Book3e parts spin in a loop provided by firmware,
969 	 * so smp_release_cpus() does nothing for them.
970 	 */
971 #ifdef CONFIG_SMP
972 	smp_setup_pacas();
973 
974 	/* On BookE, setup per-core TLB data structures. */
975 	setup_tlb_core_data();
976 #endif
977 
978 	/* Print various info about the machine that has been gathered so far. */
979 	print_system_info();
980 
981 	klp_init_thread_info(&init_task);
982 
983 	setup_initial_init_mm(_stext, _etext, _edata, _end);
984 	/* sched_init() does the mmgrab(&init_mm) for the primary CPU */
985 	VM_WARN_ON(cpumask_test_cpu(smp_processor_id(), mm_cpumask(&init_mm)));
986 	cpumask_set_cpu(smp_processor_id(), mm_cpumask(&init_mm));
987 	inc_mm_active_cpus(&init_mm);
988 	mm_iommu_init(&init_mm);
989 
990 	irqstack_early_init();
991 	exc_lvl_early_init();
992 	emergency_stack_init();
993 
994 	mce_init();
995 	smp_release_cpus();
996 
997 	initmem_init();
998 
999 	/*
1000 	 * Reserve large chunks of memory for use by CMA for KVM and hugetlb. These must
1001 	 * be called after initmem_init(), so that pageblock_order is initialised.
1002 	 */
1003 	kvm_cma_reserve();
1004 	gigantic_hugetlb_cma_reserve();
1005 
1006 	early_memtest(min_low_pfn << PAGE_SHIFT, max_low_pfn << PAGE_SHIFT);
1007 
1008 	if (ppc_md.setup_arch)
1009 		ppc_md.setup_arch();
1010 
1011 	setup_barrier_nospec();
1012 	setup_spectre_v2();
1013 
1014 	paging_init();
1015 
1016 	/* Initialize the MMU context management stuff. */
1017 	mmu_context_init();
1018 
1019 	/* Interrupt code needs to be 64K-aligned. */
1020 	if (IS_ENABLED(CONFIG_PPC64) && (unsigned long)_stext & 0xffff)
1021 		panic("Kernelbase not 64K-aligned (0x%lx)!\n",
1022 		      (unsigned long)_stext);
1023 }
1024