1 /* 2 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Communication to userspace based on kernel/printk.c 10 */ 11 12 #include <linux/types.h> 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/kernel.h> 16 #include <linux/poll.h> 17 #include <linux/proc_fs.h> 18 #include <linux/init.h> 19 #include <linux/vmalloc.h> 20 #include <linux/spinlock.h> 21 #include <linux/cpu.h> 22 #include <linux/workqueue.h> 23 #include <linux/slab.h> 24 #include <linux/topology.h> 25 26 #include <linux/uaccess.h> 27 #include <asm/io.h> 28 #include <asm/rtas.h> 29 #include <asm/prom.h> 30 #include <asm/nvram.h> 31 #include <linux/atomic.h> 32 #include <asm/machdep.h> 33 #include <asm/topology.h> 34 35 36 static DEFINE_SPINLOCK(rtasd_log_lock); 37 38 static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait); 39 40 static char *rtas_log_buf; 41 static unsigned long rtas_log_start; 42 static unsigned long rtas_log_size; 43 44 static int surveillance_timeout = -1; 45 46 static unsigned int rtas_error_log_max; 47 static unsigned int rtas_error_log_buffer_max; 48 49 /* RTAS service tokens */ 50 static unsigned int event_scan; 51 static unsigned int rtas_event_scan_rate; 52 53 static bool full_rtas_msgs; 54 55 /* Stop logging to nvram after first fatal error */ 56 static int logging_enabled; /* Until we initialize everything, 57 * make sure we don't try logging 58 * anything */ 59 static int error_log_cnt; 60 61 /* 62 * Since we use 32 bit RTAS, the physical address of this must be below 63 * 4G or else bad things happen. Allocate this in the kernel data and 64 * make it big enough. 65 */ 66 static unsigned char logdata[RTAS_ERROR_LOG_MAX]; 67 68 static char *rtas_type[] = { 69 "Unknown", "Retry", "TCE Error", "Internal Device Failure", 70 "Timeout", "Data Parity", "Address Parity", "Cache Parity", 71 "Address Invalid", "ECC Uncorrected", "ECC Corrupted", 72 }; 73 74 static char *rtas_event_type(int type) 75 { 76 if ((type > 0) && (type < 11)) 77 return rtas_type[type]; 78 79 switch (type) { 80 case RTAS_TYPE_EPOW: 81 return "EPOW"; 82 case RTAS_TYPE_PLATFORM: 83 return "Platform Error"; 84 case RTAS_TYPE_IO: 85 return "I/O Event"; 86 case RTAS_TYPE_INFO: 87 return "Platform Information Event"; 88 case RTAS_TYPE_DEALLOC: 89 return "Resource Deallocation Event"; 90 case RTAS_TYPE_DUMP: 91 return "Dump Notification Event"; 92 case RTAS_TYPE_PRRN: 93 return "Platform Resource Reassignment Event"; 94 } 95 96 return rtas_type[0]; 97 } 98 99 /* To see this info, grep RTAS /var/log/messages and each entry 100 * will be collected together with obvious begin/end. 101 * There will be a unique identifier on the begin and end lines. 102 * This will persist across reboots. 103 * 104 * format of error logs returned from RTAS: 105 * bytes (size) : contents 106 * -------------------------------------------------------- 107 * 0-7 (8) : rtas_error_log 108 * 8-47 (40) : extended info 109 * 48-51 (4) : vendor id 110 * 52-1023 (vendor specific) : location code and debug data 111 */ 112 static void printk_log_rtas(char *buf, int len) 113 { 114 115 int i,j,n = 0; 116 int perline = 16; 117 char buffer[64]; 118 char * str = "RTAS event"; 119 120 if (full_rtas_msgs) { 121 printk(RTAS_DEBUG "%d -------- %s begin --------\n", 122 error_log_cnt, str); 123 124 /* 125 * Print perline bytes on each line, each line will start 126 * with RTAS and a changing number, so syslogd will 127 * print lines that are otherwise the same. Separate every 128 * 4 bytes with a space. 129 */ 130 for (i = 0; i < len; i++) { 131 j = i % perline; 132 if (j == 0) { 133 memset(buffer, 0, sizeof(buffer)); 134 n = sprintf(buffer, "RTAS %d:", i/perline); 135 } 136 137 if ((i % 4) == 0) 138 n += sprintf(buffer+n, " "); 139 140 n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]); 141 142 if (j == (perline-1)) 143 printk(KERN_DEBUG "%s\n", buffer); 144 } 145 if ((i % perline) != 0) 146 printk(KERN_DEBUG "%s\n", buffer); 147 148 printk(RTAS_DEBUG "%d -------- %s end ----------\n", 149 error_log_cnt, str); 150 } else { 151 struct rtas_error_log *errlog = (struct rtas_error_log *)buf; 152 153 printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n", 154 error_log_cnt, rtas_event_type(rtas_error_type(errlog)), 155 rtas_error_severity(errlog)); 156 } 157 } 158 159 static int log_rtas_len(char * buf) 160 { 161 int len; 162 struct rtas_error_log *err; 163 uint32_t extended_log_length; 164 165 /* rtas fixed header */ 166 len = 8; 167 err = (struct rtas_error_log *)buf; 168 extended_log_length = rtas_error_extended_log_length(err); 169 if (rtas_error_extended(err) && extended_log_length) { 170 171 /* extended header */ 172 len += extended_log_length; 173 } 174 175 if (rtas_error_log_max == 0) 176 rtas_error_log_max = rtas_get_error_log_max(); 177 178 if (len > rtas_error_log_max) 179 len = rtas_error_log_max; 180 181 return len; 182 } 183 184 /* 185 * First write to nvram, if fatal error, that is the only 186 * place we log the info. The error will be picked up 187 * on the next reboot by rtasd. If not fatal, run the 188 * method for the type of error. Currently, only RTAS 189 * errors have methods implemented, but in the future 190 * there might be a need to store data in nvram before a 191 * call to panic(). 192 * 193 * XXX We write to nvram periodically, to indicate error has 194 * been written and sync'd, but there is a possibility 195 * that if we don't shutdown correctly, a duplicate error 196 * record will be created on next reboot. 197 */ 198 void pSeries_log_error(char *buf, unsigned int err_type, int fatal) 199 { 200 unsigned long offset; 201 unsigned long s; 202 int len = 0; 203 204 pr_debug("rtasd: logging event\n"); 205 if (buf == NULL) 206 return; 207 208 spin_lock_irqsave(&rtasd_log_lock, s); 209 210 /* get length and increase count */ 211 switch (err_type & ERR_TYPE_MASK) { 212 case ERR_TYPE_RTAS_LOG: 213 len = log_rtas_len(buf); 214 if (!(err_type & ERR_FLAG_BOOT)) 215 error_log_cnt++; 216 break; 217 case ERR_TYPE_KERNEL_PANIC: 218 default: 219 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 220 spin_unlock_irqrestore(&rtasd_log_lock, s); 221 return; 222 } 223 224 #ifdef CONFIG_PPC64 225 /* Write error to NVRAM */ 226 if (logging_enabled && !(err_type & ERR_FLAG_BOOT)) 227 nvram_write_error_log(buf, len, err_type, error_log_cnt); 228 #endif /* CONFIG_PPC64 */ 229 230 /* 231 * rtas errors can occur during boot, and we do want to capture 232 * those somewhere, even if nvram isn't ready (why not?), and even 233 * if rtasd isn't ready. Put them into the boot log, at least. 234 */ 235 if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG) 236 printk_log_rtas(buf, len); 237 238 /* Check to see if we need to or have stopped logging */ 239 if (fatal || !logging_enabled) { 240 logging_enabled = 0; 241 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 242 spin_unlock_irqrestore(&rtasd_log_lock, s); 243 return; 244 } 245 246 /* call type specific method for error */ 247 switch (err_type & ERR_TYPE_MASK) { 248 case ERR_TYPE_RTAS_LOG: 249 offset = rtas_error_log_buffer_max * 250 ((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK); 251 252 /* First copy over sequence number */ 253 memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int)); 254 255 /* Second copy over error log data */ 256 offset += sizeof(int); 257 memcpy(&rtas_log_buf[offset], buf, len); 258 259 if (rtas_log_size < LOG_NUMBER) 260 rtas_log_size += 1; 261 else 262 rtas_log_start += 1; 263 264 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 265 spin_unlock_irqrestore(&rtasd_log_lock, s); 266 wake_up_interruptible(&rtas_log_wait); 267 break; 268 case ERR_TYPE_KERNEL_PANIC: 269 default: 270 WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */ 271 spin_unlock_irqrestore(&rtasd_log_lock, s); 272 return; 273 } 274 } 275 276 #ifdef CONFIG_PPC_PSERIES 277 static s32 prrn_update_scope; 278 279 static void prrn_work_fn(struct work_struct *work) 280 { 281 /* 282 * For PRRN, we must pass the negative of the scope value in 283 * the RTAS event. 284 */ 285 pseries_devicetree_update(-prrn_update_scope); 286 numa_update_cpu_topology(false); 287 } 288 289 static DECLARE_WORK(prrn_work, prrn_work_fn); 290 291 static void prrn_schedule_update(u32 scope) 292 { 293 flush_work(&prrn_work); 294 prrn_update_scope = scope; 295 schedule_work(&prrn_work); 296 } 297 298 static void handle_rtas_event(const struct rtas_error_log *log) 299 { 300 if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled()) 301 return; 302 303 /* For PRRN Events the extended log length is used to denote 304 * the scope for calling rtas update-nodes. 305 */ 306 prrn_schedule_update(rtas_error_extended_log_length(log)); 307 } 308 309 #else 310 311 static void handle_rtas_event(const struct rtas_error_log *log) 312 { 313 return; 314 } 315 316 #endif 317 318 static int rtas_log_open(struct inode * inode, struct file * file) 319 { 320 return 0; 321 } 322 323 static int rtas_log_release(struct inode * inode, struct file * file) 324 { 325 return 0; 326 } 327 328 /* This will check if all events are logged, if they are then, we 329 * know that we can safely clear the events in NVRAM. 330 * Next we'll sit and wait for something else to log. 331 */ 332 static ssize_t rtas_log_read(struct file * file, char __user * buf, 333 size_t count, loff_t *ppos) 334 { 335 int error; 336 char *tmp; 337 unsigned long s; 338 unsigned long offset; 339 340 if (!buf || count < rtas_error_log_buffer_max) 341 return -EINVAL; 342 343 count = rtas_error_log_buffer_max; 344 345 if (!access_ok(VERIFY_WRITE, buf, count)) 346 return -EFAULT; 347 348 tmp = kmalloc(count, GFP_KERNEL); 349 if (!tmp) 350 return -ENOMEM; 351 352 spin_lock_irqsave(&rtasd_log_lock, s); 353 354 /* if it's 0, then we know we got the last one (the one in NVRAM) */ 355 while (rtas_log_size == 0) { 356 if (file->f_flags & O_NONBLOCK) { 357 spin_unlock_irqrestore(&rtasd_log_lock, s); 358 error = -EAGAIN; 359 goto out; 360 } 361 362 if (!logging_enabled) { 363 spin_unlock_irqrestore(&rtasd_log_lock, s); 364 error = -ENODATA; 365 goto out; 366 } 367 #ifdef CONFIG_PPC64 368 nvram_clear_error_log(); 369 #endif /* CONFIG_PPC64 */ 370 371 spin_unlock_irqrestore(&rtasd_log_lock, s); 372 error = wait_event_interruptible(rtas_log_wait, rtas_log_size); 373 if (error) 374 goto out; 375 spin_lock_irqsave(&rtasd_log_lock, s); 376 } 377 378 offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK); 379 memcpy(tmp, &rtas_log_buf[offset], count); 380 381 rtas_log_start += 1; 382 rtas_log_size -= 1; 383 spin_unlock_irqrestore(&rtasd_log_lock, s); 384 385 error = copy_to_user(buf, tmp, count) ? -EFAULT : count; 386 out: 387 kfree(tmp); 388 return error; 389 } 390 391 static __poll_t rtas_log_poll(struct file *file, poll_table * wait) 392 { 393 poll_wait(file, &rtas_log_wait, wait); 394 if (rtas_log_size) 395 return EPOLLIN | EPOLLRDNORM; 396 return 0; 397 } 398 399 static const struct file_operations proc_rtas_log_operations = { 400 .read = rtas_log_read, 401 .poll = rtas_log_poll, 402 .open = rtas_log_open, 403 .release = rtas_log_release, 404 .llseek = noop_llseek, 405 }; 406 407 static int enable_surveillance(int timeout) 408 { 409 int error; 410 411 error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout); 412 413 if (error == 0) 414 return 0; 415 416 if (error == -EINVAL) { 417 printk(KERN_DEBUG "rtasd: surveillance not supported\n"); 418 return 0; 419 } 420 421 printk(KERN_ERR "rtasd: could not update surveillance\n"); 422 return -1; 423 } 424 425 static void do_event_scan(void) 426 { 427 int error; 428 do { 429 memset(logdata, 0, rtas_error_log_max); 430 error = rtas_call(event_scan, 4, 1, NULL, 431 RTAS_EVENT_SCAN_ALL_EVENTS, 0, 432 __pa(logdata), rtas_error_log_max); 433 if (error == -1) { 434 printk(KERN_ERR "event-scan failed\n"); 435 break; 436 } 437 438 if (error == 0) { 439 if (rtas_error_type((struct rtas_error_log *)logdata) != 440 RTAS_TYPE_PRRN) 441 pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG, 442 0); 443 handle_rtas_event((struct rtas_error_log *)logdata); 444 } 445 446 } while(error == 0); 447 } 448 449 static void rtas_event_scan(struct work_struct *w); 450 static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan); 451 452 /* 453 * Delay should be at least one second since some machines have problems if 454 * we call event-scan too quickly. 455 */ 456 static unsigned long event_scan_delay = 1*HZ; 457 static int first_pass = 1; 458 459 static void rtas_event_scan(struct work_struct *w) 460 { 461 unsigned int cpu; 462 463 do_event_scan(); 464 465 get_online_cpus(); 466 467 /* raw_ OK because just using CPU as starting point. */ 468 cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); 469 if (cpu >= nr_cpu_ids) { 470 cpu = cpumask_first(cpu_online_mask); 471 472 if (first_pass) { 473 first_pass = 0; 474 event_scan_delay = 30*HZ/rtas_event_scan_rate; 475 476 if (surveillance_timeout != -1) { 477 pr_debug("rtasd: enabling surveillance\n"); 478 enable_surveillance(surveillance_timeout); 479 pr_debug("rtasd: surveillance enabled\n"); 480 } 481 } 482 } 483 484 schedule_delayed_work_on(cpu, &event_scan_work, 485 __round_jiffies_relative(event_scan_delay, cpu)); 486 487 put_online_cpus(); 488 } 489 490 #ifdef CONFIG_PPC64 491 static void retrieve_nvram_error_log(void) 492 { 493 unsigned int err_type ; 494 int rc ; 495 496 /* See if we have any error stored in NVRAM */ 497 memset(logdata, 0, rtas_error_log_max); 498 rc = nvram_read_error_log(logdata, rtas_error_log_max, 499 &err_type, &error_log_cnt); 500 /* We can use rtas_log_buf now */ 501 logging_enabled = 1; 502 if (!rc) { 503 if (err_type != ERR_FLAG_ALREADY_LOGGED) { 504 pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0); 505 } 506 } 507 } 508 #else /* CONFIG_PPC64 */ 509 static void retrieve_nvram_error_log(void) 510 { 511 } 512 #endif /* CONFIG_PPC64 */ 513 514 static void start_event_scan(void) 515 { 516 printk(KERN_DEBUG "RTAS daemon started\n"); 517 pr_debug("rtasd: will sleep for %d milliseconds\n", 518 (30000 / rtas_event_scan_rate)); 519 520 /* Retrieve errors from nvram if any */ 521 retrieve_nvram_error_log(); 522 523 schedule_delayed_work_on(cpumask_first(cpu_online_mask), 524 &event_scan_work, event_scan_delay); 525 } 526 527 /* Cancel the rtas event scan work */ 528 void rtas_cancel_event_scan(void) 529 { 530 cancel_delayed_work_sync(&event_scan_work); 531 } 532 EXPORT_SYMBOL_GPL(rtas_cancel_event_scan); 533 534 static int __init rtas_event_scan_init(void) 535 { 536 if (!machine_is(pseries) && !machine_is(chrp)) 537 return 0; 538 539 /* No RTAS */ 540 event_scan = rtas_token("event-scan"); 541 if (event_scan == RTAS_UNKNOWN_SERVICE) { 542 printk(KERN_INFO "rtasd: No event-scan on system\n"); 543 return -ENODEV; 544 } 545 546 rtas_event_scan_rate = rtas_token("rtas-event-scan-rate"); 547 if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) { 548 printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n"); 549 return -ENODEV; 550 } 551 552 if (!rtas_event_scan_rate) { 553 /* Broken firmware: take a rate of zero to mean don't scan */ 554 printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n"); 555 return 0; 556 } 557 558 /* Make room for the sequence number */ 559 rtas_error_log_max = rtas_get_error_log_max(); 560 rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int); 561 562 rtas_log_buf = vmalloc(array_size(LOG_NUMBER, 563 rtas_error_log_buffer_max)); 564 if (!rtas_log_buf) { 565 printk(KERN_ERR "rtasd: no memory\n"); 566 return -ENOMEM; 567 } 568 569 start_event_scan(); 570 571 return 0; 572 } 573 arch_initcall(rtas_event_scan_init); 574 575 static int __init rtas_init(void) 576 { 577 struct proc_dir_entry *entry; 578 579 if (!machine_is(pseries) && !machine_is(chrp)) 580 return 0; 581 582 if (!rtas_log_buf) 583 return -ENODEV; 584 585 entry = proc_create("powerpc/rtas/error_log", 0400, NULL, 586 &proc_rtas_log_operations); 587 if (!entry) 588 printk(KERN_ERR "Failed to create error_log proc entry\n"); 589 590 return 0; 591 } 592 __initcall(rtas_init); 593 594 static int __init surveillance_setup(char *str) 595 { 596 int i; 597 598 /* We only do surveillance on pseries */ 599 if (!machine_is(pseries)) 600 return 0; 601 602 if (get_option(&str,&i)) { 603 if (i >= 0 && i <= 255) 604 surveillance_timeout = i; 605 } 606 607 return 1; 608 } 609 __setup("surveillance=", surveillance_setup); 610 611 static int __init rtasmsgs_setup(char *str) 612 { 613 return (kstrtobool(str, &full_rtas_msgs) == 0); 614 } 615 __setup("rtasmsgs=", rtasmsgs_setup); 616