xref: /linux/arch/powerpc/kernel/rtasd.c (revision 9a379e77033f02c4a071891afdf0f0a01eff8ccb)
1 /*
2  * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  *
9  * Communication to userspace based on kernel/printk.c
10  */
11 
12 #include <linux/types.h>
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/init.h>
19 #include <linux/vmalloc.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpu.h>
22 #include <linux/workqueue.h>
23 #include <linux/slab.h>
24 #include <linux/topology.h>
25 
26 #include <linux/uaccess.h>
27 #include <asm/io.h>
28 #include <asm/rtas.h>
29 #include <asm/prom.h>
30 #include <asm/nvram.h>
31 #include <linux/atomic.h>
32 #include <asm/machdep.h>
33 #include <asm/topology.h>
34 
35 
36 static DEFINE_SPINLOCK(rtasd_log_lock);
37 
38 static DECLARE_WAIT_QUEUE_HEAD(rtas_log_wait);
39 
40 static char *rtas_log_buf;
41 static unsigned long rtas_log_start;
42 static unsigned long rtas_log_size;
43 
44 static int surveillance_timeout = -1;
45 
46 static unsigned int rtas_error_log_max;
47 static unsigned int rtas_error_log_buffer_max;
48 
49 /* RTAS service tokens */
50 static unsigned int event_scan;
51 static unsigned int rtas_event_scan_rate;
52 
53 static bool full_rtas_msgs;
54 
55 /* Stop logging to nvram after first fatal error */
56 static int logging_enabled; /* Until we initialize everything,
57                              * make sure we don't try logging
58                              * anything */
59 static int error_log_cnt;
60 
61 /*
62  * Since we use 32 bit RTAS, the physical address of this must be below
63  * 4G or else bad things happen. Allocate this in the kernel data and
64  * make it big enough.
65  */
66 static unsigned char logdata[RTAS_ERROR_LOG_MAX];
67 
68 static char *rtas_type[] = {
69 	"Unknown", "Retry", "TCE Error", "Internal Device Failure",
70 	"Timeout", "Data Parity", "Address Parity", "Cache Parity",
71 	"Address Invalid", "ECC Uncorrected", "ECC Corrupted",
72 };
73 
74 static char *rtas_event_type(int type)
75 {
76 	if ((type > 0) && (type < 11))
77 		return rtas_type[type];
78 
79 	switch (type) {
80 		case RTAS_TYPE_EPOW:
81 			return "EPOW";
82 		case RTAS_TYPE_PLATFORM:
83 			return "Platform Error";
84 		case RTAS_TYPE_IO:
85 			return "I/O Event";
86 		case RTAS_TYPE_INFO:
87 			return "Platform Information Event";
88 		case RTAS_TYPE_DEALLOC:
89 			return "Resource Deallocation Event";
90 		case RTAS_TYPE_DUMP:
91 			return "Dump Notification Event";
92 		case RTAS_TYPE_PRRN:
93 			return "Platform Resource Reassignment Event";
94 	}
95 
96 	return rtas_type[0];
97 }
98 
99 /* To see this info, grep RTAS /var/log/messages and each entry
100  * will be collected together with obvious begin/end.
101  * There will be a unique identifier on the begin and end lines.
102  * This will persist across reboots.
103  *
104  * format of error logs returned from RTAS:
105  * bytes	(size)	: contents
106  * --------------------------------------------------------
107  * 0-7		(8)	: rtas_error_log
108  * 8-47		(40)	: extended info
109  * 48-51	(4)	: vendor id
110  * 52-1023 (vendor specific) : location code and debug data
111  */
112 static void printk_log_rtas(char *buf, int len)
113 {
114 
115 	int i,j,n = 0;
116 	int perline = 16;
117 	char buffer[64];
118 	char * str = "RTAS event";
119 
120 	if (full_rtas_msgs) {
121 		printk(RTAS_DEBUG "%d -------- %s begin --------\n",
122 		       error_log_cnt, str);
123 
124 		/*
125 		 * Print perline bytes on each line, each line will start
126 		 * with RTAS and a changing number, so syslogd will
127 		 * print lines that are otherwise the same.  Separate every
128 		 * 4 bytes with a space.
129 		 */
130 		for (i = 0; i < len; i++) {
131 			j = i % perline;
132 			if (j == 0) {
133 				memset(buffer, 0, sizeof(buffer));
134 				n = sprintf(buffer, "RTAS %d:", i/perline);
135 			}
136 
137 			if ((i % 4) == 0)
138 				n += sprintf(buffer+n, " ");
139 
140 			n += sprintf(buffer+n, "%02x", (unsigned char)buf[i]);
141 
142 			if (j == (perline-1))
143 				printk(KERN_DEBUG "%s\n", buffer);
144 		}
145 		if ((i % perline) != 0)
146 			printk(KERN_DEBUG "%s\n", buffer);
147 
148 		printk(RTAS_DEBUG "%d -------- %s end ----------\n",
149 		       error_log_cnt, str);
150 	} else {
151 		struct rtas_error_log *errlog = (struct rtas_error_log *)buf;
152 
153 		printk(RTAS_DEBUG "event: %d, Type: %s, Severity: %d\n",
154 		       error_log_cnt, rtas_event_type(rtas_error_type(errlog)),
155 		       rtas_error_severity(errlog));
156 	}
157 }
158 
159 static int log_rtas_len(char * buf)
160 {
161 	int len;
162 	struct rtas_error_log *err;
163 	uint32_t extended_log_length;
164 
165 	/* rtas fixed header */
166 	len = 8;
167 	err = (struct rtas_error_log *)buf;
168 	extended_log_length = rtas_error_extended_log_length(err);
169 	if (rtas_error_extended(err) && extended_log_length) {
170 
171 		/* extended header */
172 		len += extended_log_length;
173 	}
174 
175 	if (rtas_error_log_max == 0)
176 		rtas_error_log_max = rtas_get_error_log_max();
177 
178 	if (len > rtas_error_log_max)
179 		len = rtas_error_log_max;
180 
181 	return len;
182 }
183 
184 /*
185  * First write to nvram, if fatal error, that is the only
186  * place we log the info.  The error will be picked up
187  * on the next reboot by rtasd.  If not fatal, run the
188  * method for the type of error.  Currently, only RTAS
189  * errors have methods implemented, but in the future
190  * there might be a need to store data in nvram before a
191  * call to panic().
192  *
193  * XXX We write to nvram periodically, to indicate error has
194  * been written and sync'd, but there is a possibility
195  * that if we don't shutdown correctly, a duplicate error
196  * record will be created on next reboot.
197  */
198 void pSeries_log_error(char *buf, unsigned int err_type, int fatal)
199 {
200 	unsigned long offset;
201 	unsigned long s;
202 	int len = 0;
203 
204 	pr_debug("rtasd: logging event\n");
205 	if (buf == NULL)
206 		return;
207 
208 	spin_lock_irqsave(&rtasd_log_lock, s);
209 
210 	/* get length and increase count */
211 	switch (err_type & ERR_TYPE_MASK) {
212 	case ERR_TYPE_RTAS_LOG:
213 		len = log_rtas_len(buf);
214 		if (!(err_type & ERR_FLAG_BOOT))
215 			error_log_cnt++;
216 		break;
217 	case ERR_TYPE_KERNEL_PANIC:
218 	default:
219 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
220 		spin_unlock_irqrestore(&rtasd_log_lock, s);
221 		return;
222 	}
223 
224 #ifdef CONFIG_PPC64
225 	/* Write error to NVRAM */
226 	if (logging_enabled && !(err_type & ERR_FLAG_BOOT))
227 		nvram_write_error_log(buf, len, err_type, error_log_cnt);
228 #endif /* CONFIG_PPC64 */
229 
230 	/*
231 	 * rtas errors can occur during boot, and we do want to capture
232 	 * those somewhere, even if nvram isn't ready (why not?), and even
233 	 * if rtasd isn't ready. Put them into the boot log, at least.
234 	 */
235 	if ((err_type & ERR_TYPE_MASK) == ERR_TYPE_RTAS_LOG)
236 		printk_log_rtas(buf, len);
237 
238 	/* Check to see if we need to or have stopped logging */
239 	if (fatal || !logging_enabled) {
240 		logging_enabled = 0;
241 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
242 		spin_unlock_irqrestore(&rtasd_log_lock, s);
243 		return;
244 	}
245 
246 	/* call type specific method for error */
247 	switch (err_type & ERR_TYPE_MASK) {
248 	case ERR_TYPE_RTAS_LOG:
249 		offset = rtas_error_log_buffer_max *
250 			((rtas_log_start+rtas_log_size) & LOG_NUMBER_MASK);
251 
252 		/* First copy over sequence number */
253 		memcpy(&rtas_log_buf[offset], (void *) &error_log_cnt, sizeof(int));
254 
255 		/* Second copy over error log data */
256 		offset += sizeof(int);
257 		memcpy(&rtas_log_buf[offset], buf, len);
258 
259 		if (rtas_log_size < LOG_NUMBER)
260 			rtas_log_size += 1;
261 		else
262 			rtas_log_start += 1;
263 
264 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
265 		spin_unlock_irqrestore(&rtasd_log_lock, s);
266 		wake_up_interruptible(&rtas_log_wait);
267 		break;
268 	case ERR_TYPE_KERNEL_PANIC:
269 	default:
270 		WARN_ON_ONCE(!irqs_disabled()); /* @@@ DEBUG @@@ */
271 		spin_unlock_irqrestore(&rtasd_log_lock, s);
272 		return;
273 	}
274 }
275 
276 #ifdef CONFIG_PPC_PSERIES
277 static s32 prrn_update_scope;
278 
279 static void prrn_work_fn(struct work_struct *work)
280 {
281 	/*
282 	 * For PRRN, we must pass the negative of the scope value in
283 	 * the RTAS event.
284 	 */
285 	pseries_devicetree_update(-prrn_update_scope);
286 	numa_update_cpu_topology(false);
287 }
288 
289 static DECLARE_WORK(prrn_work, prrn_work_fn);
290 
291 static void prrn_schedule_update(u32 scope)
292 {
293 	flush_work(&prrn_work);
294 	prrn_update_scope = scope;
295 	schedule_work(&prrn_work);
296 }
297 
298 static void handle_rtas_event(const struct rtas_error_log *log)
299 {
300 	if (rtas_error_type(log) != RTAS_TYPE_PRRN || !prrn_is_enabled())
301 		return;
302 
303 	/* For PRRN Events the extended log length is used to denote
304 	 * the scope for calling rtas update-nodes.
305 	 */
306 	prrn_schedule_update(rtas_error_extended_log_length(log));
307 }
308 
309 #else
310 
311 static void handle_rtas_event(const struct rtas_error_log *log)
312 {
313 	return;
314 }
315 
316 #endif
317 
318 static int rtas_log_open(struct inode * inode, struct file * file)
319 {
320 	return 0;
321 }
322 
323 static int rtas_log_release(struct inode * inode, struct file * file)
324 {
325 	return 0;
326 }
327 
328 /* This will check if all events are logged, if they are then, we
329  * know that we can safely clear the events in NVRAM.
330  * Next we'll sit and wait for something else to log.
331  */
332 static ssize_t rtas_log_read(struct file * file, char __user * buf,
333 			 size_t count, loff_t *ppos)
334 {
335 	int error;
336 	char *tmp;
337 	unsigned long s;
338 	unsigned long offset;
339 
340 	if (!buf || count < rtas_error_log_buffer_max)
341 		return -EINVAL;
342 
343 	count = rtas_error_log_buffer_max;
344 
345 	if (!access_ok(VERIFY_WRITE, buf, count))
346 		return -EFAULT;
347 
348 	tmp = kmalloc(count, GFP_KERNEL);
349 	if (!tmp)
350 		return -ENOMEM;
351 
352 	spin_lock_irqsave(&rtasd_log_lock, s);
353 
354 	/* if it's 0, then we know we got the last one (the one in NVRAM) */
355 	while (rtas_log_size == 0) {
356 		if (file->f_flags & O_NONBLOCK) {
357 			spin_unlock_irqrestore(&rtasd_log_lock, s);
358 			error = -EAGAIN;
359 			goto out;
360 		}
361 
362 		if (!logging_enabled) {
363 			spin_unlock_irqrestore(&rtasd_log_lock, s);
364 			error = -ENODATA;
365 			goto out;
366 		}
367 #ifdef CONFIG_PPC64
368 		nvram_clear_error_log();
369 #endif /* CONFIG_PPC64 */
370 
371 		spin_unlock_irqrestore(&rtasd_log_lock, s);
372 		error = wait_event_interruptible(rtas_log_wait, rtas_log_size);
373 		if (error)
374 			goto out;
375 		spin_lock_irqsave(&rtasd_log_lock, s);
376 	}
377 
378 	offset = rtas_error_log_buffer_max * (rtas_log_start & LOG_NUMBER_MASK);
379 	memcpy(tmp, &rtas_log_buf[offset], count);
380 
381 	rtas_log_start += 1;
382 	rtas_log_size -= 1;
383 	spin_unlock_irqrestore(&rtasd_log_lock, s);
384 
385 	error = copy_to_user(buf, tmp, count) ? -EFAULT : count;
386 out:
387 	kfree(tmp);
388 	return error;
389 }
390 
391 static __poll_t rtas_log_poll(struct file *file, poll_table * wait)
392 {
393 	poll_wait(file, &rtas_log_wait, wait);
394 	if (rtas_log_size)
395 		return EPOLLIN | EPOLLRDNORM;
396 	return 0;
397 }
398 
399 static const struct file_operations proc_rtas_log_operations = {
400 	.read =		rtas_log_read,
401 	.poll =		rtas_log_poll,
402 	.open =		rtas_log_open,
403 	.release =	rtas_log_release,
404 	.llseek =	noop_llseek,
405 };
406 
407 static int enable_surveillance(int timeout)
408 {
409 	int error;
410 
411 	error = rtas_set_indicator(SURVEILLANCE_TOKEN, 0, timeout);
412 
413 	if (error == 0)
414 		return 0;
415 
416 	if (error == -EINVAL) {
417 		printk(KERN_DEBUG "rtasd: surveillance not supported\n");
418 		return 0;
419 	}
420 
421 	printk(KERN_ERR "rtasd: could not update surveillance\n");
422 	return -1;
423 }
424 
425 static void do_event_scan(void)
426 {
427 	int error;
428 	do {
429 		memset(logdata, 0, rtas_error_log_max);
430 		error = rtas_call(event_scan, 4, 1, NULL,
431 				  RTAS_EVENT_SCAN_ALL_EVENTS, 0,
432 				  __pa(logdata), rtas_error_log_max);
433 		if (error == -1) {
434 			printk(KERN_ERR "event-scan failed\n");
435 			break;
436 		}
437 
438 		if (error == 0) {
439 			if (rtas_error_type((struct rtas_error_log *)logdata) !=
440 			    RTAS_TYPE_PRRN)
441 				pSeries_log_error(logdata, ERR_TYPE_RTAS_LOG,
442 						  0);
443 			handle_rtas_event((struct rtas_error_log *)logdata);
444 		}
445 
446 	} while(error == 0);
447 }
448 
449 static void rtas_event_scan(struct work_struct *w);
450 static DECLARE_DELAYED_WORK(event_scan_work, rtas_event_scan);
451 
452 /*
453  * Delay should be at least one second since some machines have problems if
454  * we call event-scan too quickly.
455  */
456 static unsigned long event_scan_delay = 1*HZ;
457 static int first_pass = 1;
458 
459 static void rtas_event_scan(struct work_struct *w)
460 {
461 	unsigned int cpu;
462 
463 	do_event_scan();
464 
465 	get_online_cpus();
466 
467 	/* raw_ OK because just using CPU as starting point. */
468 	cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
469         if (cpu >= nr_cpu_ids) {
470 		cpu = cpumask_first(cpu_online_mask);
471 
472 		if (first_pass) {
473 			first_pass = 0;
474 			event_scan_delay = 30*HZ/rtas_event_scan_rate;
475 
476 			if (surveillance_timeout != -1) {
477 				pr_debug("rtasd: enabling surveillance\n");
478 				enable_surveillance(surveillance_timeout);
479 				pr_debug("rtasd: surveillance enabled\n");
480 			}
481 		}
482 	}
483 
484 	schedule_delayed_work_on(cpu, &event_scan_work,
485 		__round_jiffies_relative(event_scan_delay, cpu));
486 
487 	put_online_cpus();
488 }
489 
490 #ifdef CONFIG_PPC64
491 static void retrieve_nvram_error_log(void)
492 {
493 	unsigned int err_type ;
494 	int rc ;
495 
496 	/* See if we have any error stored in NVRAM */
497 	memset(logdata, 0, rtas_error_log_max);
498 	rc = nvram_read_error_log(logdata, rtas_error_log_max,
499 	                          &err_type, &error_log_cnt);
500 	/* We can use rtas_log_buf now */
501 	logging_enabled = 1;
502 	if (!rc) {
503 		if (err_type != ERR_FLAG_ALREADY_LOGGED) {
504 			pSeries_log_error(logdata, err_type | ERR_FLAG_BOOT, 0);
505 		}
506 	}
507 }
508 #else /* CONFIG_PPC64 */
509 static void retrieve_nvram_error_log(void)
510 {
511 }
512 #endif /* CONFIG_PPC64 */
513 
514 static void start_event_scan(void)
515 {
516 	printk(KERN_DEBUG "RTAS daemon started\n");
517 	pr_debug("rtasd: will sleep for %d milliseconds\n",
518 		 (30000 / rtas_event_scan_rate));
519 
520 	/* Retrieve errors from nvram if any */
521 	retrieve_nvram_error_log();
522 
523 	schedule_delayed_work_on(cpumask_first(cpu_online_mask),
524 				 &event_scan_work, event_scan_delay);
525 }
526 
527 /* Cancel the rtas event scan work */
528 void rtas_cancel_event_scan(void)
529 {
530 	cancel_delayed_work_sync(&event_scan_work);
531 }
532 EXPORT_SYMBOL_GPL(rtas_cancel_event_scan);
533 
534 static int __init rtas_event_scan_init(void)
535 {
536 	if (!machine_is(pseries) && !machine_is(chrp))
537 		return 0;
538 
539 	/* No RTAS */
540 	event_scan = rtas_token("event-scan");
541 	if (event_scan == RTAS_UNKNOWN_SERVICE) {
542 		printk(KERN_INFO "rtasd: No event-scan on system\n");
543 		return -ENODEV;
544 	}
545 
546 	rtas_event_scan_rate = rtas_token("rtas-event-scan-rate");
547 	if (rtas_event_scan_rate == RTAS_UNKNOWN_SERVICE) {
548 		printk(KERN_ERR "rtasd: no rtas-event-scan-rate on system\n");
549 		return -ENODEV;
550 	}
551 
552 	if (!rtas_event_scan_rate) {
553 		/* Broken firmware: take a rate of zero to mean don't scan */
554 		printk(KERN_DEBUG "rtasd: scan rate is 0, not scanning\n");
555 		return 0;
556 	}
557 
558 	/* Make room for the sequence number */
559 	rtas_error_log_max = rtas_get_error_log_max();
560 	rtas_error_log_buffer_max = rtas_error_log_max + sizeof(int);
561 
562 	rtas_log_buf = vmalloc(rtas_error_log_buffer_max*LOG_NUMBER);
563 	if (!rtas_log_buf) {
564 		printk(KERN_ERR "rtasd: no memory\n");
565 		return -ENOMEM;
566 	}
567 
568 	start_event_scan();
569 
570 	return 0;
571 }
572 arch_initcall(rtas_event_scan_init);
573 
574 static int __init rtas_init(void)
575 {
576 	struct proc_dir_entry *entry;
577 
578 	if (!machine_is(pseries) && !machine_is(chrp))
579 		return 0;
580 
581 	if (!rtas_log_buf)
582 		return -ENODEV;
583 
584 	entry = proc_create("powerpc/rtas/error_log", 0400, NULL,
585 			    &proc_rtas_log_operations);
586 	if (!entry)
587 		printk(KERN_ERR "Failed to create error_log proc entry\n");
588 
589 	return 0;
590 }
591 __initcall(rtas_init);
592 
593 static int __init surveillance_setup(char *str)
594 {
595 	int i;
596 
597 	/* We only do surveillance on pseries */
598 	if (!machine_is(pseries))
599 		return 0;
600 
601 	if (get_option(&str,&i)) {
602 		if (i >= 0 && i <= 255)
603 			surveillance_timeout = i;
604 	}
605 
606 	return 1;
607 }
608 __setup("surveillance=", surveillance_setup);
609 
610 static int __init rtasmsgs_setup(char *str)
611 {
612 	return (kstrtobool(str, &full_rtas_msgs) == 0);
613 }
614 __setup("rtasmsgs=", rtasmsgs_setup);
615