xref: /linux/arch/powerpc/kernel/rtas_pci.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Copyright (C) 2001 Dave Engebretsen, IBM Corporation
3  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
4  *
5  * RTAS specific routines for PCI.
6  *
7  * Based on code from pci.c, chrp_pci.c and pSeries_pci.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
22  */
23 
24 #include <linux/kernel.h>
25 #include <linux/threads.h>
26 #include <linux/pci.h>
27 #include <linux/string.h>
28 #include <linux/init.h>
29 
30 #include <asm/io.h>
31 #include <asm/pgtable.h>
32 #include <asm/irq.h>
33 #include <asm/prom.h>
34 #include <asm/machdep.h>
35 #include <asm/pci-bridge.h>
36 #include <asm/iommu.h>
37 #include <asm/rtas.h>
38 #include <asm/mpic.h>
39 #include <asm/ppc-pci.h>
40 #include <asm/eeh.h>
41 
42 /* RTAS tokens */
43 static int read_pci_config;
44 static int write_pci_config;
45 static int ibm_read_pci_config;
46 static int ibm_write_pci_config;
47 
48 static inline int config_access_valid(struct pci_dn *dn, int where)
49 {
50 	if (where < 256)
51 		return 1;
52 	if (where < 4096 && dn->pci_ext_config_space)
53 		return 1;
54 
55 	return 0;
56 }
57 
58 int rtas_read_config(struct pci_dn *pdn, int where, int size, u32 *val)
59 {
60 	int returnval = -1;
61 	unsigned long buid, addr;
62 	int ret;
63 
64 	if (!pdn)
65 		return PCIBIOS_DEVICE_NOT_FOUND;
66 	if (!config_access_valid(pdn, where))
67 		return PCIBIOS_BAD_REGISTER_NUMBER;
68 #ifdef CONFIG_EEH
69 	if (pdn->edev && pdn->edev->pe &&
70 	    (pdn->edev->pe->state & EEH_PE_CFG_BLOCKED))
71 		return PCIBIOS_SET_FAILED;
72 #endif
73 
74 	addr = rtas_config_addr(pdn->busno, pdn->devfn, where);
75 	buid = pdn->phb->buid;
76 	if (buid) {
77 		ret = rtas_call(ibm_read_pci_config, 4, 2, &returnval,
78 				addr, BUID_HI(buid), BUID_LO(buid), size);
79 	} else {
80 		ret = rtas_call(read_pci_config, 2, 2, &returnval, addr, size);
81 	}
82 	*val = returnval;
83 
84 	if (ret)
85 		return PCIBIOS_DEVICE_NOT_FOUND;
86 
87 	return PCIBIOS_SUCCESSFUL;
88 }
89 
90 static int rtas_pci_read_config(struct pci_bus *bus,
91 				unsigned int devfn,
92 				int where, int size, u32 *val)
93 {
94 	struct device_node *busdn, *dn;
95 	struct pci_dn *pdn;
96 	bool found = false;
97 	int ret;
98 
99 	/* Search only direct children of the bus */
100 	*val = 0xFFFFFFFF;
101 	busdn = pci_bus_to_OF_node(bus);
102 	for (dn = busdn->child; dn; dn = dn->sibling) {
103 		pdn = PCI_DN(dn);
104 		if (pdn && pdn->devfn == devfn
105 		    && of_device_is_available(dn)) {
106 			found = true;
107 			break;
108 		}
109 	}
110 
111 	if (!found)
112 		return PCIBIOS_DEVICE_NOT_FOUND;
113 
114 	ret = rtas_read_config(pdn, where, size, val);
115 	if (*val == EEH_IO_ERROR_VALUE(size) &&
116 	    eeh_dev_check_failure(pdn_to_eeh_dev(pdn)))
117 		return PCIBIOS_DEVICE_NOT_FOUND;
118 
119 	return ret;
120 }
121 
122 int rtas_write_config(struct pci_dn *pdn, int where, int size, u32 val)
123 {
124 	unsigned long buid, addr;
125 	int ret;
126 
127 	if (!pdn)
128 		return PCIBIOS_DEVICE_NOT_FOUND;
129 	if (!config_access_valid(pdn, where))
130 		return PCIBIOS_BAD_REGISTER_NUMBER;
131 #ifdef CONFIG_EEH
132 	if (pdn->edev && pdn->edev->pe &&
133 	    (pdn->edev->pe->state & EEH_PE_CFG_BLOCKED))
134 		return PCIBIOS_SET_FAILED;
135 #endif
136 
137 	addr = rtas_config_addr(pdn->busno, pdn->devfn, where);
138 	buid = pdn->phb->buid;
139 	if (buid) {
140 		ret = rtas_call(ibm_write_pci_config, 5, 1, NULL, addr,
141 			BUID_HI(buid), BUID_LO(buid), size, (ulong) val);
142 	} else {
143 		ret = rtas_call(write_pci_config, 3, 1, NULL, addr, size, (ulong)val);
144 	}
145 
146 	if (ret)
147 		return PCIBIOS_DEVICE_NOT_FOUND;
148 
149 	return PCIBIOS_SUCCESSFUL;
150 }
151 
152 static int rtas_pci_write_config(struct pci_bus *bus,
153 				 unsigned int devfn,
154 				 int where, int size, u32 val)
155 {
156 	struct device_node *busdn, *dn;
157 	struct pci_dn *pdn;
158 	bool found = false;
159 
160 	/* Search only direct children of the bus */
161 	busdn = pci_bus_to_OF_node(bus);
162 	for (dn = busdn->child; dn; dn = dn->sibling) {
163 		pdn = PCI_DN(dn);
164 		if (pdn && pdn->devfn == devfn
165 		    && of_device_is_available(dn)) {
166 			found = true;
167 			break;
168 		}
169 	}
170 
171 	if (!found)
172 		return PCIBIOS_DEVICE_NOT_FOUND;
173 
174 	return rtas_write_config(pdn, where, size, val);
175 }
176 
177 static struct pci_ops rtas_pci_ops = {
178 	.read = rtas_pci_read_config,
179 	.write = rtas_pci_write_config,
180 };
181 
182 static int is_python(struct device_node *dev)
183 {
184 	const char *model = of_get_property(dev, "model", NULL);
185 
186 	if (model && strstr(model, "Python"))
187 		return 1;
188 
189 	return 0;
190 }
191 
192 static void python_countermeasures(struct device_node *dev)
193 {
194 	struct resource registers;
195 	void __iomem *chip_regs;
196 	volatile u32 val;
197 
198 	if (of_address_to_resource(dev, 0, &registers)) {
199 		printk(KERN_ERR "Can't get address for Python workarounds !\n");
200 		return;
201 	}
202 
203 	/* Python's register file is 1 MB in size. */
204 	chip_regs = ioremap(registers.start & ~(0xfffffUL), 0x100000);
205 
206 	/*
207 	 * Firmware doesn't always clear this bit which is critical
208 	 * for good performance - Anton
209 	 */
210 
211 #define PRG_CL_RESET_VALID 0x00010000
212 
213 	val = in_be32(chip_regs + 0xf6030);
214 	if (val & PRG_CL_RESET_VALID) {
215 		printk(KERN_INFO "Python workaround: ");
216 		val &= ~PRG_CL_RESET_VALID;
217 		out_be32(chip_regs + 0xf6030, val);
218 		/*
219 		 * We must read it back for changes to
220 		 * take effect
221 		 */
222 		val = in_be32(chip_regs + 0xf6030);
223 		printk("reg0: %x\n", val);
224 	}
225 
226 	iounmap(chip_regs);
227 }
228 
229 void __init init_pci_config_tokens(void)
230 {
231 	read_pci_config = rtas_token("read-pci-config");
232 	write_pci_config = rtas_token("write-pci-config");
233 	ibm_read_pci_config = rtas_token("ibm,read-pci-config");
234 	ibm_write_pci_config = rtas_token("ibm,write-pci-config");
235 }
236 
237 unsigned long get_phb_buid(struct device_node *phb)
238 {
239 	struct resource r;
240 
241 	if (ibm_read_pci_config == -1)
242 		return 0;
243 	if (of_address_to_resource(phb, 0, &r))
244 		return 0;
245 	return r.start;
246 }
247 
248 static int phb_set_bus_ranges(struct device_node *dev,
249 			      struct pci_controller *phb)
250 {
251 	const __be32 *bus_range;
252 	unsigned int len;
253 
254 	bus_range = of_get_property(dev, "bus-range", &len);
255 	if (bus_range == NULL || len < 2 * sizeof(int)) {
256 		return 1;
257  	}
258 
259 	phb->first_busno = be32_to_cpu(bus_range[0]);
260 	phb->last_busno  = be32_to_cpu(bus_range[1]);
261 
262 	return 0;
263 }
264 
265 int rtas_setup_phb(struct pci_controller *phb)
266 {
267 	struct device_node *dev = phb->dn;
268 
269 	if (is_python(dev))
270 		python_countermeasures(dev);
271 
272 	if (phb_set_bus_ranges(dev, phb))
273 		return 1;
274 
275 	phb->ops = &rtas_pci_ops;
276 	phb->buid = get_phb_buid(dev);
277 
278 	return 0;
279 }
280