1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Procedures for interfacing to the RTAS on CHRP machines. 5 * 6 * Peter Bergner, IBM March 2001. 7 * Copyright (C) 2001 IBM. 8 */ 9 10 #define pr_fmt(fmt) "rtas: " fmt 11 12 #include <linux/bsearch.h> 13 #include <linux/capability.h> 14 #include <linux/delay.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/kconfig.h> 18 #include <linux/kernel.h> 19 #include <linux/lockdep.h> 20 #include <linux/memblock.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/reboot.h> 24 #include <linux/sched.h> 25 #include <linux/security.h> 26 #include <linux/slab.h> 27 #include <linux/spinlock.h> 28 #include <linux/stdarg.h> 29 #include <linux/syscalls.h> 30 #include <linux/types.h> 31 #include <linux/uaccess.h> 32 #include <linux/xarray.h> 33 34 #include <asm/delay.h> 35 #include <asm/firmware.h> 36 #include <asm/interrupt.h> 37 #include <asm/machdep.h> 38 #include <asm/mmu.h> 39 #include <asm/page.h> 40 #include <asm/rtas-work-area.h> 41 #include <asm/rtas.h> 42 #include <asm/time.h> 43 #include <asm/trace.h> 44 #include <asm/udbg.h> 45 46 struct rtas_filter { 47 /* Indexes into the args buffer, -1 if not used */ 48 const int buf_idx1; 49 const int size_idx1; 50 const int buf_idx2; 51 const int size_idx2; 52 /* 53 * Assumed buffer size per the spec if the function does not 54 * have a size parameter, e.g. ibm,errinjct. 0 if unused. 55 */ 56 const int fixed_size; 57 }; 58 59 /** 60 * struct rtas_function - Descriptor for RTAS functions. 61 * 62 * @token: Value of @name if it exists under the /rtas node. 63 * @name: Function name. 64 * @filter: If non-NULL, invoking this function via the rtas syscall is 65 * generally allowed, and @filter describes constraints on the 66 * arguments. See also @banned_for_syscall_on_le. 67 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed 68 * but specifically restricted on ppc64le. Such 69 * functions are believed to have no users on 70 * ppc64le, and we want to keep it that way. It does 71 * not make sense for this to be set when @filter 72 * is NULL. 73 */ 74 struct rtas_function { 75 s32 token; 76 const bool banned_for_syscall_on_le:1; 77 const char * const name; 78 const struct rtas_filter *filter; 79 }; 80 81 static struct rtas_function rtas_function_table[] __ro_after_init = { 82 [RTAS_FNIDX__CHECK_EXCEPTION] = { 83 .name = "check-exception", 84 }, 85 [RTAS_FNIDX__DISPLAY_CHARACTER] = { 86 .name = "display-character", 87 .filter = &(const struct rtas_filter) { 88 .buf_idx1 = -1, .size_idx1 = -1, 89 .buf_idx2 = -1, .size_idx2 = -1, 90 }, 91 }, 92 [RTAS_FNIDX__EVENT_SCAN] = { 93 .name = "event-scan", 94 }, 95 [RTAS_FNIDX__FREEZE_TIME_BASE] = { 96 .name = "freeze-time-base", 97 }, 98 [RTAS_FNIDX__GET_POWER_LEVEL] = { 99 .name = "get-power-level", 100 .filter = &(const struct rtas_filter) { 101 .buf_idx1 = -1, .size_idx1 = -1, 102 .buf_idx2 = -1, .size_idx2 = -1, 103 }, 104 }, 105 [RTAS_FNIDX__GET_SENSOR_STATE] = { 106 .name = "get-sensor-state", 107 .filter = &(const struct rtas_filter) { 108 .buf_idx1 = -1, .size_idx1 = -1, 109 .buf_idx2 = -1, .size_idx2 = -1, 110 }, 111 }, 112 [RTAS_FNIDX__GET_TERM_CHAR] = { 113 .name = "get-term-char", 114 }, 115 [RTAS_FNIDX__GET_TIME_OF_DAY] = { 116 .name = "get-time-of-day", 117 .filter = &(const struct rtas_filter) { 118 .buf_idx1 = -1, .size_idx1 = -1, 119 .buf_idx2 = -1, .size_idx2 = -1, 120 }, 121 }, 122 [RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = { 123 .name = "ibm,activate-firmware", 124 .filter = &(const struct rtas_filter) { 125 .buf_idx1 = -1, .size_idx1 = -1, 126 .buf_idx2 = -1, .size_idx2 = -1, 127 }, 128 }, 129 [RTAS_FNIDX__IBM_CBE_START_PTCAL] = { 130 .name = "ibm,cbe-start-ptcal", 131 }, 132 [RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = { 133 .name = "ibm,cbe-stop-ptcal", 134 }, 135 [RTAS_FNIDX__IBM_CHANGE_MSI] = { 136 .name = "ibm,change-msi", 137 }, 138 [RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = { 139 .name = "ibm,close-errinjct", 140 .filter = &(const struct rtas_filter) { 141 .buf_idx1 = -1, .size_idx1 = -1, 142 .buf_idx2 = -1, .size_idx2 = -1, 143 }, 144 }, 145 [RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = { 146 .name = "ibm,configure-bridge", 147 }, 148 [RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = { 149 .name = "ibm,configure-connector", 150 .filter = &(const struct rtas_filter) { 151 .buf_idx1 = 0, .size_idx1 = -1, 152 .buf_idx2 = 1, .size_idx2 = -1, 153 .fixed_size = 4096, 154 }, 155 }, 156 [RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = { 157 .name = "ibm,configure-kernel-dump", 158 }, 159 [RTAS_FNIDX__IBM_CONFIGURE_PE] = { 160 .name = "ibm,configure-pe", 161 }, 162 [RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = { 163 .name = "ibm,create-pe-dma-window", 164 }, 165 [RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = { 166 .name = "ibm,display-message", 167 .filter = &(const struct rtas_filter) { 168 .buf_idx1 = 0, .size_idx1 = -1, 169 .buf_idx2 = -1, .size_idx2 = -1, 170 }, 171 }, 172 [RTAS_FNIDX__IBM_ERRINJCT] = { 173 .name = "ibm,errinjct", 174 .filter = &(const struct rtas_filter) { 175 .buf_idx1 = 2, .size_idx1 = -1, 176 .buf_idx2 = -1, .size_idx2 = -1, 177 .fixed_size = 1024, 178 }, 179 }, 180 [RTAS_FNIDX__IBM_EXTI2C] = { 181 .name = "ibm,exti2c", 182 }, 183 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = { 184 .name = "ibm,get-config-addr-info", 185 }, 186 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = { 187 .name = "ibm,get-config-addr-info2", 188 .filter = &(const struct rtas_filter) { 189 .buf_idx1 = -1, .size_idx1 = -1, 190 .buf_idx2 = -1, .size_idx2 = -1, 191 }, 192 }, 193 [RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = { 194 .name = "ibm,get-dynamic-sensor-state", 195 .filter = &(const struct rtas_filter) { 196 .buf_idx1 = 1, .size_idx1 = -1, 197 .buf_idx2 = -1, .size_idx2 = -1, 198 }, 199 }, 200 [RTAS_FNIDX__IBM_GET_INDICES] = { 201 .name = "ibm,get-indices", 202 .filter = &(const struct rtas_filter) { 203 .buf_idx1 = 2, .size_idx1 = 3, 204 .buf_idx2 = -1, .size_idx2 = -1, 205 }, 206 }, 207 [RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = { 208 .name = "ibm,get-rio-topology", 209 }, 210 [RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = { 211 .name = "ibm,get-system-parameter", 212 .filter = &(const struct rtas_filter) { 213 .buf_idx1 = 1, .size_idx1 = 2, 214 .buf_idx2 = -1, .size_idx2 = -1, 215 }, 216 }, 217 [RTAS_FNIDX__IBM_GET_VPD] = { 218 .name = "ibm,get-vpd", 219 .filter = &(const struct rtas_filter) { 220 .buf_idx1 = 0, .size_idx1 = -1, 221 .buf_idx2 = 1, .size_idx2 = 2, 222 }, 223 }, 224 [RTAS_FNIDX__IBM_GET_XIVE] = { 225 .name = "ibm,get-xive", 226 }, 227 [RTAS_FNIDX__IBM_INT_OFF] = { 228 .name = "ibm,int-off", 229 }, 230 [RTAS_FNIDX__IBM_INT_ON] = { 231 .name = "ibm,int-on", 232 }, 233 [RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = { 234 .name = "ibm,io-quiesce-ack", 235 }, 236 [RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = { 237 .name = "ibm,lpar-perftools", 238 .filter = &(const struct rtas_filter) { 239 .buf_idx1 = 2, .size_idx1 = 3, 240 .buf_idx2 = -1, .size_idx2 = -1, 241 }, 242 }, 243 [RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = { 244 .name = "ibm,manage-flash-image", 245 }, 246 [RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = { 247 .name = "ibm,manage-storage-preservation", 248 }, 249 [RTAS_FNIDX__IBM_NMI_INTERLOCK] = { 250 .name = "ibm,nmi-interlock", 251 }, 252 [RTAS_FNIDX__IBM_NMI_REGISTER] = { 253 .name = "ibm,nmi-register", 254 }, 255 [RTAS_FNIDX__IBM_OPEN_ERRINJCT] = { 256 .name = "ibm,open-errinjct", 257 .filter = &(const struct rtas_filter) { 258 .buf_idx1 = -1, .size_idx1 = -1, 259 .buf_idx2 = -1, .size_idx2 = -1, 260 }, 261 }, 262 [RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = { 263 .name = "ibm,open-sriov-allow-unfreeze", 264 }, 265 [RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = { 266 .name = "ibm,open-sriov-map-pe-number", 267 }, 268 [RTAS_FNIDX__IBM_OS_TERM] = { 269 .name = "ibm,os-term", 270 }, 271 [RTAS_FNIDX__IBM_PARTNER_CONTROL] = { 272 .name = "ibm,partner-control", 273 }, 274 [RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = { 275 .name = "ibm,physical-attestation", 276 .filter = &(const struct rtas_filter) { 277 .buf_idx1 = 0, .size_idx1 = 1, 278 .buf_idx2 = -1, .size_idx2 = -1, 279 }, 280 }, 281 [RTAS_FNIDX__IBM_PLATFORM_DUMP] = { 282 .name = "ibm,platform-dump", 283 .filter = &(const struct rtas_filter) { 284 .buf_idx1 = 4, .size_idx1 = 5, 285 .buf_idx2 = -1, .size_idx2 = -1, 286 }, 287 }, 288 [RTAS_FNIDX__IBM_POWER_OFF_UPS] = { 289 .name = "ibm,power-off-ups", 290 }, 291 [RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = { 292 .name = "ibm,query-interrupt-source-number", 293 }, 294 [RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = { 295 .name = "ibm,query-pe-dma-window", 296 }, 297 [RTAS_FNIDX__IBM_READ_PCI_CONFIG] = { 298 .name = "ibm,read-pci-config", 299 }, 300 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = { 301 .name = "ibm,read-slot-reset-state", 302 .filter = &(const struct rtas_filter) { 303 .buf_idx1 = -1, .size_idx1 = -1, 304 .buf_idx2 = -1, .size_idx2 = -1, 305 }, 306 }, 307 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = { 308 .name = "ibm,read-slot-reset-state2", 309 }, 310 [RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = { 311 .name = "ibm,remove-pe-dma-window", 312 }, 313 [RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOWS] = { 314 .name = "ibm,reset-pe-dma-windows", 315 }, 316 [RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = { 317 .name = "ibm,scan-log-dump", 318 .filter = &(const struct rtas_filter) { 319 .buf_idx1 = 0, .size_idx1 = 1, 320 .buf_idx2 = -1, .size_idx2 = -1, 321 }, 322 }, 323 [RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = { 324 .name = "ibm,set-dynamic-indicator", 325 .filter = &(const struct rtas_filter) { 326 .buf_idx1 = 2, .size_idx1 = -1, 327 .buf_idx2 = -1, .size_idx2 = -1, 328 }, 329 }, 330 [RTAS_FNIDX__IBM_SET_EEH_OPTION] = { 331 .name = "ibm,set-eeh-option", 332 .filter = &(const struct rtas_filter) { 333 .buf_idx1 = -1, .size_idx1 = -1, 334 .buf_idx2 = -1, .size_idx2 = -1, 335 }, 336 }, 337 [RTAS_FNIDX__IBM_SET_SLOT_RESET] = { 338 .name = "ibm,set-slot-reset", 339 }, 340 [RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = { 341 .name = "ibm,set-system-parameter", 342 .filter = &(const struct rtas_filter) { 343 .buf_idx1 = 1, .size_idx1 = -1, 344 .buf_idx2 = -1, .size_idx2 = -1, 345 }, 346 }, 347 [RTAS_FNIDX__IBM_SET_XIVE] = { 348 .name = "ibm,set-xive", 349 }, 350 [RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = { 351 .name = "ibm,slot-error-detail", 352 }, 353 [RTAS_FNIDX__IBM_SUSPEND_ME] = { 354 .name = "ibm,suspend-me", 355 .banned_for_syscall_on_le = true, 356 .filter = &(const struct rtas_filter) { 357 .buf_idx1 = -1, .size_idx1 = -1, 358 .buf_idx2 = -1, .size_idx2 = -1, 359 }, 360 }, 361 [RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = { 362 .name = "ibm,tune-dma-parms", 363 }, 364 [RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = { 365 .name = "ibm,update-flash-64-and-reboot", 366 }, 367 [RTAS_FNIDX__IBM_UPDATE_NODES] = { 368 .name = "ibm,update-nodes", 369 .banned_for_syscall_on_le = true, 370 .filter = &(const struct rtas_filter) { 371 .buf_idx1 = 0, .size_idx1 = -1, 372 .buf_idx2 = -1, .size_idx2 = -1, 373 .fixed_size = 4096, 374 }, 375 }, 376 [RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = { 377 .name = "ibm,update-properties", 378 .banned_for_syscall_on_le = true, 379 .filter = &(const struct rtas_filter) { 380 .buf_idx1 = 0, .size_idx1 = -1, 381 .buf_idx2 = -1, .size_idx2 = -1, 382 .fixed_size = 4096, 383 }, 384 }, 385 [RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = { 386 .name = "ibm,validate-flash-image", 387 }, 388 [RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = { 389 .name = "ibm,write-pci-config", 390 }, 391 [RTAS_FNIDX__NVRAM_FETCH] = { 392 .name = "nvram-fetch", 393 }, 394 [RTAS_FNIDX__NVRAM_STORE] = { 395 .name = "nvram-store", 396 }, 397 [RTAS_FNIDX__POWER_OFF] = { 398 .name = "power-off", 399 }, 400 [RTAS_FNIDX__PUT_TERM_CHAR] = { 401 .name = "put-term-char", 402 }, 403 [RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = { 404 .name = "query-cpu-stopped-state", 405 }, 406 [RTAS_FNIDX__READ_PCI_CONFIG] = { 407 .name = "read-pci-config", 408 }, 409 [RTAS_FNIDX__RTAS_LAST_ERROR] = { 410 .name = "rtas-last-error", 411 }, 412 [RTAS_FNIDX__SET_INDICATOR] = { 413 .name = "set-indicator", 414 .filter = &(const struct rtas_filter) { 415 .buf_idx1 = -1, .size_idx1 = -1, 416 .buf_idx2 = -1, .size_idx2 = -1, 417 }, 418 }, 419 [RTAS_FNIDX__SET_POWER_LEVEL] = { 420 .name = "set-power-level", 421 .filter = &(const struct rtas_filter) { 422 .buf_idx1 = -1, .size_idx1 = -1, 423 .buf_idx2 = -1, .size_idx2 = -1, 424 }, 425 }, 426 [RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = { 427 .name = "set-time-for-power-on", 428 .filter = &(const struct rtas_filter) { 429 .buf_idx1 = -1, .size_idx1 = -1, 430 .buf_idx2 = -1, .size_idx2 = -1, 431 }, 432 }, 433 [RTAS_FNIDX__SET_TIME_OF_DAY] = { 434 .name = "set-time-of-day", 435 .filter = &(const struct rtas_filter) { 436 .buf_idx1 = -1, .size_idx1 = -1, 437 .buf_idx2 = -1, .size_idx2 = -1, 438 }, 439 }, 440 [RTAS_FNIDX__START_CPU] = { 441 .name = "start-cpu", 442 }, 443 [RTAS_FNIDX__STOP_SELF] = { 444 .name = "stop-self", 445 }, 446 [RTAS_FNIDX__SYSTEM_REBOOT] = { 447 .name = "system-reboot", 448 }, 449 [RTAS_FNIDX__THAW_TIME_BASE] = { 450 .name = "thaw-time-base", 451 }, 452 [RTAS_FNIDX__WRITE_PCI_CONFIG] = { 453 .name = "write-pci-config", 454 }, 455 }; 456 457 /* 458 * Nearly all RTAS calls need to be serialized. All uses of the 459 * default rtas_args block must hold rtas_lock. 460 * 461 * Exceptions to the RTAS serialization requirement (e.g. stop-self) 462 * must use a separate rtas_args structure. 463 */ 464 static DEFINE_RAW_SPINLOCK(rtas_lock); 465 static struct rtas_args rtas_args; 466 467 /** 468 * rtas_function_token() - RTAS function token lookup. 469 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN. 470 * 471 * Context: Any context. 472 * Return: the token value for the function if implemented by this platform, 473 * otherwise RTAS_UNKNOWN_SERVICE. 474 */ 475 s32 rtas_function_token(const rtas_fn_handle_t handle) 476 { 477 const size_t index = handle.index; 478 const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table); 479 480 if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index)) 481 return RTAS_UNKNOWN_SERVICE; 482 /* 483 * Various drivers attempt token lookups on non-RTAS 484 * platforms. 485 */ 486 if (!rtas.dev) 487 return RTAS_UNKNOWN_SERVICE; 488 489 return rtas_function_table[index].token; 490 } 491 EXPORT_SYMBOL_GPL(rtas_function_token); 492 493 static int rtas_function_cmp(const void *a, const void *b) 494 { 495 const struct rtas_function *f1 = a; 496 const struct rtas_function *f2 = b; 497 498 return strcmp(f1->name, f2->name); 499 } 500 501 /* 502 * Boot-time initialization of the function table needs the lookup to 503 * return a non-const-qualified object. Use rtas_name_to_function() 504 * in all other contexts. 505 */ 506 static struct rtas_function *__rtas_name_to_function(const char *name) 507 { 508 const struct rtas_function key = { 509 .name = name, 510 }; 511 struct rtas_function *found; 512 513 found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table), 514 sizeof(rtas_function_table[0]), rtas_function_cmp); 515 516 return found; 517 } 518 519 static const struct rtas_function *rtas_name_to_function(const char *name) 520 { 521 return __rtas_name_to_function(name); 522 } 523 524 static DEFINE_XARRAY(rtas_token_to_function_xarray); 525 526 static int __init rtas_token_to_function_xarray_init(void) 527 { 528 int err = 0; 529 530 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) { 531 const struct rtas_function *func = &rtas_function_table[i]; 532 const s32 token = func->token; 533 534 if (token == RTAS_UNKNOWN_SERVICE) 535 continue; 536 537 err = xa_err(xa_store(&rtas_token_to_function_xarray, 538 token, (void *)func, GFP_KERNEL)); 539 if (err) 540 break; 541 } 542 543 return err; 544 } 545 arch_initcall(rtas_token_to_function_xarray_init); 546 547 static const struct rtas_function *rtas_token_to_function(s32 token) 548 { 549 const struct rtas_function *func; 550 551 if (WARN_ONCE(token < 0, "invalid token %d", token)) 552 return NULL; 553 554 func = xa_load(&rtas_token_to_function_xarray, token); 555 556 if (WARN_ONCE(!func, "unexpected failed lookup for token %d", token)) 557 return NULL; 558 559 return func; 560 } 561 562 /* This is here deliberately so it's only used in this file */ 563 void enter_rtas(unsigned long); 564 565 static void __do_enter_rtas(struct rtas_args *args) 566 { 567 enter_rtas(__pa(args)); 568 srr_regs_clobbered(); /* rtas uses SRRs, invalidate */ 569 } 570 571 static void __do_enter_rtas_trace(struct rtas_args *args) 572 { 573 const char *name = NULL; 574 575 if (args == &rtas_args) 576 lockdep_assert_held(&rtas_lock); 577 /* 578 * If the tracepoints that consume the function name aren't 579 * active, avoid the lookup. 580 */ 581 if ((trace_rtas_input_enabled() || trace_rtas_output_enabled())) { 582 const s32 token = be32_to_cpu(args->token); 583 const struct rtas_function *func = rtas_token_to_function(token); 584 585 name = func->name; 586 } 587 588 trace_rtas_input(args, name); 589 trace_rtas_ll_entry(args); 590 591 __do_enter_rtas(args); 592 593 trace_rtas_ll_exit(args); 594 trace_rtas_output(args, name); 595 } 596 597 static void do_enter_rtas(struct rtas_args *args) 598 { 599 const unsigned long msr = mfmsr(); 600 /* 601 * Situations where we want to skip any active tracepoints for 602 * safety reasons: 603 * 604 * 1. The last code executed on an offline CPU as it stops, 605 * i.e. we're about to call stop-self. The tracepoints' 606 * function name lookup uses xarray, which uses RCU, which 607 * isn't valid to call on an offline CPU. Any events 608 * emitted on an offline CPU will be discarded anyway. 609 * 610 * 2. In real mode, as when invoking ibm,nmi-interlock from 611 * the pseries MCE handler. We cannot count on trace 612 * buffers or the entries in rtas_token_to_function_xarray 613 * to be contained in the RMO. 614 */ 615 const unsigned long mask = MSR_IR | MSR_DR; 616 const bool can_trace = likely(cpu_online(raw_smp_processor_id()) && 617 (msr & mask) == mask); 618 /* 619 * Make sure MSR[RI] is currently enabled as it will be forced later 620 * in enter_rtas. 621 */ 622 BUG_ON(!(msr & MSR_RI)); 623 624 BUG_ON(!irqs_disabled()); 625 626 hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */ 627 628 if (can_trace) 629 __do_enter_rtas_trace(args); 630 else 631 __do_enter_rtas(args); 632 } 633 634 struct rtas_t rtas; 635 636 DEFINE_SPINLOCK(rtas_data_buf_lock); 637 EXPORT_SYMBOL_GPL(rtas_data_buf_lock); 638 639 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K); 640 EXPORT_SYMBOL_GPL(rtas_data_buf); 641 642 unsigned long rtas_rmo_buf; 643 644 /* 645 * If non-NULL, this gets called when the kernel terminates. 646 * This is done like this so rtas_flash can be a module. 647 */ 648 void (*rtas_flash_term_hook)(int); 649 EXPORT_SYMBOL_GPL(rtas_flash_term_hook); 650 651 /* 652 * call_rtas_display_status and call_rtas_display_status_delay 653 * are designed only for very early low-level debugging, which 654 * is why the token is hard-coded to 10. 655 */ 656 static void call_rtas_display_status(unsigned char c) 657 { 658 unsigned long flags; 659 660 if (!rtas.base) 661 return; 662 663 raw_spin_lock_irqsave(&rtas_lock, flags); 664 rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c); 665 raw_spin_unlock_irqrestore(&rtas_lock, flags); 666 } 667 668 static void call_rtas_display_status_delay(char c) 669 { 670 static int pending_newline = 0; /* did last write end with unprinted newline? */ 671 static int width = 16; 672 673 if (c == '\n') { 674 while (width-- > 0) 675 call_rtas_display_status(' '); 676 width = 16; 677 mdelay(500); 678 pending_newline = 1; 679 } else { 680 if (pending_newline) { 681 call_rtas_display_status('\r'); 682 call_rtas_display_status('\n'); 683 } 684 pending_newline = 0; 685 if (width--) { 686 call_rtas_display_status(c); 687 udelay(10000); 688 } 689 } 690 } 691 692 void __init udbg_init_rtas_panel(void) 693 { 694 udbg_putc = call_rtas_display_status_delay; 695 } 696 697 #ifdef CONFIG_UDBG_RTAS_CONSOLE 698 699 /* If you think you're dying before early_init_dt_scan_rtas() does its 700 * work, you can hard code the token values for your firmware here and 701 * hardcode rtas.base/entry etc. 702 */ 703 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; 704 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; 705 706 static void udbg_rtascon_putc(char c) 707 { 708 int tries; 709 710 if (!rtas.base) 711 return; 712 713 /* Add CRs before LFs */ 714 if (c == '\n') 715 udbg_rtascon_putc('\r'); 716 717 /* if there is more than one character to be displayed, wait a bit */ 718 for (tries = 0; tries < 16; tries++) { 719 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) 720 break; 721 udelay(1000); 722 } 723 } 724 725 static int udbg_rtascon_getc_poll(void) 726 { 727 int c; 728 729 if (!rtas.base) 730 return -1; 731 732 if (rtas_call(rtas_getchar_token, 0, 2, &c)) 733 return -1; 734 735 return c; 736 } 737 738 static int udbg_rtascon_getc(void) 739 { 740 int c; 741 742 while ((c = udbg_rtascon_getc_poll()) == -1) 743 ; 744 745 return c; 746 } 747 748 749 void __init udbg_init_rtas_console(void) 750 { 751 udbg_putc = udbg_rtascon_putc; 752 udbg_getc = udbg_rtascon_getc; 753 udbg_getc_poll = udbg_rtascon_getc_poll; 754 } 755 #endif /* CONFIG_UDBG_RTAS_CONSOLE */ 756 757 void rtas_progress(char *s, unsigned short hex) 758 { 759 struct device_node *root; 760 int width; 761 const __be32 *p; 762 char *os; 763 static int display_character, set_indicator; 764 static int display_width, display_lines, form_feed; 765 static const int *row_width; 766 static DEFINE_SPINLOCK(progress_lock); 767 static int current_line; 768 static int pending_newline = 0; /* did last write end with unprinted newline? */ 769 770 if (!rtas.base) 771 return; 772 773 if (display_width == 0) { 774 display_width = 0x10; 775 if ((root = of_find_node_by_path("/rtas"))) { 776 if ((p = of_get_property(root, 777 "ibm,display-line-length", NULL))) 778 display_width = be32_to_cpu(*p); 779 if ((p = of_get_property(root, 780 "ibm,form-feed", NULL))) 781 form_feed = be32_to_cpu(*p); 782 if ((p = of_get_property(root, 783 "ibm,display-number-of-lines", NULL))) 784 display_lines = be32_to_cpu(*p); 785 row_width = of_get_property(root, 786 "ibm,display-truncation-length", NULL); 787 of_node_put(root); 788 } 789 display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER); 790 set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR); 791 } 792 793 if (display_character == RTAS_UNKNOWN_SERVICE) { 794 /* use hex display if available */ 795 if (set_indicator != RTAS_UNKNOWN_SERVICE) 796 rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); 797 return; 798 } 799 800 spin_lock(&progress_lock); 801 802 /* 803 * Last write ended with newline, but we didn't print it since 804 * it would just clear the bottom line of output. Print it now 805 * instead. 806 * 807 * If no newline is pending and form feed is supported, clear the 808 * display with a form feed; otherwise, print a CR to start output 809 * at the beginning of the line. 810 */ 811 if (pending_newline) { 812 rtas_call(display_character, 1, 1, NULL, '\r'); 813 rtas_call(display_character, 1, 1, NULL, '\n'); 814 pending_newline = 0; 815 } else { 816 current_line = 0; 817 if (form_feed) 818 rtas_call(display_character, 1, 1, NULL, 819 (char)form_feed); 820 else 821 rtas_call(display_character, 1, 1, NULL, '\r'); 822 } 823 824 if (row_width) 825 width = row_width[current_line]; 826 else 827 width = display_width; 828 os = s; 829 while (*os) { 830 if (*os == '\n' || *os == '\r') { 831 /* If newline is the last character, save it 832 * until next call to avoid bumping up the 833 * display output. 834 */ 835 if (*os == '\n' && !os[1]) { 836 pending_newline = 1; 837 current_line++; 838 if (current_line > display_lines-1) 839 current_line = display_lines-1; 840 spin_unlock(&progress_lock); 841 return; 842 } 843 844 /* RTAS wants CR-LF, not just LF */ 845 846 if (*os == '\n') { 847 rtas_call(display_character, 1, 1, NULL, '\r'); 848 rtas_call(display_character, 1, 1, NULL, '\n'); 849 } else { 850 /* CR might be used to re-draw a line, so we'll 851 * leave it alone and not add LF. 852 */ 853 rtas_call(display_character, 1, 1, NULL, *os); 854 } 855 856 if (row_width) 857 width = row_width[current_line]; 858 else 859 width = display_width; 860 } else { 861 width--; 862 rtas_call(display_character, 1, 1, NULL, *os); 863 } 864 865 os++; 866 867 /* if we overwrite the screen length */ 868 if (width <= 0) 869 while ((*os != 0) && (*os != '\n') && (*os != '\r')) 870 os++; 871 } 872 873 spin_unlock(&progress_lock); 874 } 875 EXPORT_SYMBOL_GPL(rtas_progress); /* needed by rtas_flash module */ 876 877 int rtas_token(const char *service) 878 { 879 const struct rtas_function *func; 880 const __be32 *tokp; 881 882 if (rtas.dev == NULL) 883 return RTAS_UNKNOWN_SERVICE; 884 885 func = rtas_name_to_function(service); 886 if (func) 887 return func->token; 888 /* 889 * The caller is looking up a name that is not known to be an 890 * RTAS function. Either it's a function that needs to be 891 * added to the table, or they're misusing rtas_token() to 892 * access non-function properties of the /rtas node. Warn and 893 * fall back to the legacy behavior. 894 */ 895 WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n", 896 service); 897 898 tokp = of_get_property(rtas.dev, service, NULL); 899 return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE; 900 } 901 EXPORT_SYMBOL_GPL(rtas_token); 902 903 int rtas_service_present(const char *service) 904 { 905 return rtas_token(service) != RTAS_UNKNOWN_SERVICE; 906 } 907 908 #ifdef CONFIG_RTAS_ERROR_LOGGING 909 910 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX; 911 912 /* 913 * Return the firmware-specified size of the error log buffer 914 * for all rtas calls that require an error buffer argument. 915 * This includes 'check-exception' and 'rtas-last-error'. 916 */ 917 int rtas_get_error_log_max(void) 918 { 919 return rtas_error_log_max; 920 } 921 922 static void __init init_error_log_max(void) 923 { 924 static const char propname[] __initconst = "rtas-error-log-max"; 925 u32 max; 926 927 if (of_property_read_u32(rtas.dev, propname, &max)) { 928 pr_warn("%s not found, using default of %u\n", 929 propname, RTAS_ERROR_LOG_MAX); 930 max = RTAS_ERROR_LOG_MAX; 931 } 932 933 if (max > RTAS_ERROR_LOG_MAX) { 934 pr_warn("%s = %u, clamping max error log size to %u\n", 935 propname, max, RTAS_ERROR_LOG_MAX); 936 max = RTAS_ERROR_LOG_MAX; 937 } 938 939 rtas_error_log_max = max; 940 } 941 942 943 static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; 944 945 /** Return a copy of the detailed error text associated with the 946 * most recent failed call to rtas. Because the error text 947 * might go stale if there are any other intervening rtas calls, 948 * this routine must be called atomically with whatever produced 949 * the error (i.e. with rtas_lock still held from the previous call). 950 */ 951 static char *__fetch_rtas_last_error(char *altbuf) 952 { 953 const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR); 954 struct rtas_args err_args, save_args; 955 u32 bufsz; 956 char *buf = NULL; 957 958 lockdep_assert_held(&rtas_lock); 959 960 if (token == -1) 961 return NULL; 962 963 bufsz = rtas_get_error_log_max(); 964 965 err_args.token = cpu_to_be32(token); 966 err_args.nargs = cpu_to_be32(2); 967 err_args.nret = cpu_to_be32(1); 968 err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf)); 969 err_args.args[1] = cpu_to_be32(bufsz); 970 err_args.args[2] = 0; 971 972 save_args = rtas_args; 973 rtas_args = err_args; 974 975 do_enter_rtas(&rtas_args); 976 977 err_args = rtas_args; 978 rtas_args = save_args; 979 980 /* Log the error in the unlikely case that there was one. */ 981 if (unlikely(err_args.args[2] == 0)) { 982 if (altbuf) { 983 buf = altbuf; 984 } else { 985 buf = rtas_err_buf; 986 if (slab_is_available()) 987 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); 988 } 989 if (buf) 990 memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); 991 } 992 993 return buf; 994 } 995 996 #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) 997 998 #else /* CONFIG_RTAS_ERROR_LOGGING */ 999 #define __fetch_rtas_last_error(x) NULL 1000 #define get_errorlog_buffer() NULL 1001 static void __init init_error_log_max(void) {} 1002 #endif 1003 1004 1005 static void 1006 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, 1007 va_list list) 1008 { 1009 int i; 1010 1011 args->token = cpu_to_be32(token); 1012 args->nargs = cpu_to_be32(nargs); 1013 args->nret = cpu_to_be32(nret); 1014 args->rets = &(args->args[nargs]); 1015 1016 for (i = 0; i < nargs; ++i) 1017 args->args[i] = cpu_to_be32(va_arg(list, __u32)); 1018 1019 for (i = 0; i < nret; ++i) 1020 args->rets[i] = 0; 1021 1022 do_enter_rtas(args); 1023 } 1024 1025 /** 1026 * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization. 1027 * @args: RTAS parameter block to be used for the call, must obey RTAS addressing 1028 * constraints. 1029 * @token: Identifies the function being invoked. 1030 * @nargs: Number of input parameters. Does not include token. 1031 * @nret: Number of output parameters, including the call status. 1032 * @....: List of @nargs input parameters. 1033 * 1034 * Invokes the RTAS function indicated by @token, which the caller 1035 * should obtain via rtas_function_token(). 1036 * 1037 * This function is similar to rtas_call(), but must be used with a 1038 * limited set of RTAS calls specifically exempted from the general 1039 * requirement that only one RTAS call may be in progress at any 1040 * time. Examples include stop-self and ibm,nmi-interlock. 1041 */ 1042 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...) 1043 { 1044 va_list list; 1045 1046 va_start(list, nret); 1047 va_rtas_call_unlocked(args, token, nargs, nret, list); 1048 va_end(list); 1049 } 1050 1051 static bool token_is_restricted_errinjct(s32 token) 1052 { 1053 return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) || 1054 token == rtas_function_token(RTAS_FN_IBM_ERRINJCT); 1055 } 1056 1057 /** 1058 * rtas_call() - Invoke an RTAS firmware function. 1059 * @token: Identifies the function being invoked. 1060 * @nargs: Number of input parameters. Does not include token. 1061 * @nret: Number of output parameters, including the call status. 1062 * @outputs: Array of @nret output words. 1063 * @....: List of @nargs input parameters. 1064 * 1065 * Invokes the RTAS function indicated by @token, which the caller 1066 * should obtain via rtas_function_token(). 1067 * 1068 * The @nargs and @nret arguments must match the number of input and 1069 * output parameters specified for the RTAS function. 1070 * 1071 * rtas_call() returns RTAS status codes, not conventional Linux errno 1072 * values. Callers must translate any failure to an appropriate errno 1073 * in syscall context. Most callers of RTAS functions that can return 1074 * -2 or 990x should use rtas_busy_delay() to correctly handle those 1075 * statuses before calling again. 1076 * 1077 * The return value descriptions are adapted from 7.2.8 [RTAS] Return 1078 * Codes of the PAPR and CHRP specifications. 1079 * 1080 * Context: Process context preferably, interrupt context if 1081 * necessary. Acquires an internal spinlock and may perform 1082 * GFP_ATOMIC slab allocation in error path. Unsafe for NMI 1083 * context. 1084 * Return: 1085 * * 0 - RTAS function call succeeded. 1086 * * -1 - RTAS function encountered a hardware or 1087 * platform error, or the token is invalid, 1088 * or the function is restricted by kernel policy. 1089 * * -2 - Specs say "A necessary hardware device was busy, 1090 * and the requested function could not be 1091 * performed. The operation should be retried at 1092 * a later time." This is misleading, at least with 1093 * respect to current RTAS implementations. What it 1094 * usually means in practice is that the function 1095 * could not be completed while meeting RTAS's 1096 * deadline for returning control to the OS (250us 1097 * for PAPR/PowerVM, typically), but the call may be 1098 * immediately reattempted to resume work on it. 1099 * * -3 - Parameter error. 1100 * * -7 - Unexpected state change. 1101 * * 9000...9899 - Vendor-specific success codes. 1102 * * 9900...9905 - Advisory extended delay. Caller should try 1103 * again after ~10^x ms has elapsed, where x is 1104 * the last digit of the status [0-5]. Again going 1105 * beyond the PAPR text, 990x on PowerVM indicates 1106 * contention for RTAS-internal resources. Other 1107 * RTAS call sequences in progress should be 1108 * allowed to complete before reattempting the 1109 * call. 1110 * * -9000 - Multi-level isolation error. 1111 * * -9999...-9004 - Vendor-specific error codes. 1112 * * Additional negative values - Function-specific error. 1113 * * Additional positive values - Function-specific success. 1114 */ 1115 int rtas_call(int token, int nargs, int nret, int *outputs, ...) 1116 { 1117 struct pin_cookie cookie; 1118 va_list list; 1119 int i; 1120 unsigned long flags; 1121 struct rtas_args *args; 1122 char *buff_copy = NULL; 1123 int ret; 1124 1125 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) 1126 return -1; 1127 1128 if (token_is_restricted_errinjct(token)) { 1129 /* 1130 * It would be nicer to not discard the error value 1131 * from security_locked_down(), but callers expect an 1132 * RTAS status, not an errno. 1133 */ 1134 if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION)) 1135 return -1; 1136 } 1137 1138 if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) { 1139 WARN_ON_ONCE(1); 1140 return -1; 1141 } 1142 1143 raw_spin_lock_irqsave(&rtas_lock, flags); 1144 cookie = lockdep_pin_lock(&rtas_lock); 1145 1146 /* We use the global rtas args buffer */ 1147 args = &rtas_args; 1148 1149 va_start(list, outputs); 1150 va_rtas_call_unlocked(args, token, nargs, nret, list); 1151 va_end(list); 1152 1153 /* A -1 return code indicates that the last command couldn't 1154 be completed due to a hardware error. */ 1155 if (be32_to_cpu(args->rets[0]) == -1) 1156 buff_copy = __fetch_rtas_last_error(NULL); 1157 1158 if (nret > 1 && outputs != NULL) 1159 for (i = 0; i < nret-1; ++i) 1160 outputs[i] = be32_to_cpu(args->rets[i + 1]); 1161 ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0; 1162 1163 lockdep_unpin_lock(&rtas_lock, cookie); 1164 raw_spin_unlock_irqrestore(&rtas_lock, flags); 1165 1166 if (buff_copy) { 1167 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); 1168 if (slab_is_available()) 1169 kfree(buff_copy); 1170 } 1171 return ret; 1172 } 1173 EXPORT_SYMBOL_GPL(rtas_call); 1174 1175 /** 1176 * rtas_busy_delay_time() - From an RTAS status value, calculate the 1177 * suggested delay time in milliseconds. 1178 * 1179 * @status: a value returned from rtas_call() or similar APIs which return 1180 * the status of a RTAS function call. 1181 * 1182 * Context: Any context. 1183 * 1184 * Return: 1185 * * 100000 - If @status is 9905. 1186 * * 10000 - If @status is 9904. 1187 * * 1000 - If @status is 9903. 1188 * * 100 - If @status is 9902. 1189 * * 10 - If @status is 9901. 1190 * * 1 - If @status is either 9900 or -2. This is "wrong" for -2, but 1191 * some callers depend on this behavior, and the worst outcome 1192 * is that they will delay for longer than necessary. 1193 * * 0 - If @status is not a busy or extended delay value. 1194 */ 1195 unsigned int rtas_busy_delay_time(int status) 1196 { 1197 int order; 1198 unsigned int ms = 0; 1199 1200 if (status == RTAS_BUSY) { 1201 ms = 1; 1202 } else if (status >= RTAS_EXTENDED_DELAY_MIN && 1203 status <= RTAS_EXTENDED_DELAY_MAX) { 1204 order = status - RTAS_EXTENDED_DELAY_MIN; 1205 for (ms = 1; order > 0; order--) 1206 ms *= 10; 1207 } 1208 1209 return ms; 1210 } 1211 1212 /* 1213 * Early boot fallback for rtas_busy_delay(). 1214 */ 1215 static bool __init rtas_busy_delay_early(int status) 1216 { 1217 static size_t successive_ext_delays __initdata; 1218 bool retry; 1219 1220 switch (status) { 1221 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX: 1222 /* 1223 * In the unlikely case that we receive an extended 1224 * delay status in early boot, the OS is probably not 1225 * the cause, and there's nothing we can do to clear 1226 * the condition. Best we can do is delay for a bit 1227 * and hope it's transient. Lie to the caller if it 1228 * seems like we're stuck in a retry loop. 1229 */ 1230 mdelay(1); 1231 retry = true; 1232 successive_ext_delays += 1; 1233 if (successive_ext_delays > 1000) { 1234 pr_err("too many extended delays, giving up\n"); 1235 dump_stack(); 1236 retry = false; 1237 successive_ext_delays = 0; 1238 } 1239 break; 1240 case RTAS_BUSY: 1241 retry = true; 1242 successive_ext_delays = 0; 1243 break; 1244 default: 1245 retry = false; 1246 successive_ext_delays = 0; 1247 break; 1248 } 1249 1250 return retry; 1251 } 1252 1253 /** 1254 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses 1255 * 1256 * @status: a value returned from rtas_call() or similar APIs which return 1257 * the status of a RTAS function call. 1258 * 1259 * Context: Process context. May sleep or schedule. 1260 * 1261 * Return: 1262 * * true - @status is RTAS_BUSY or an extended delay hint. The 1263 * caller may assume that the CPU has been yielded if necessary, 1264 * and that an appropriate delay for @status has elapsed. 1265 * Generally the caller should reattempt the RTAS call which 1266 * yielded @status. 1267 * 1268 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The 1269 * caller is responsible for handling @status. 1270 */ 1271 bool __ref rtas_busy_delay(int status) 1272 { 1273 unsigned int ms; 1274 bool ret; 1275 1276 /* 1277 * Can't do timed sleeps before timekeeping is up. 1278 */ 1279 if (system_state < SYSTEM_SCHEDULING) 1280 return rtas_busy_delay_early(status); 1281 1282 switch (status) { 1283 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX: 1284 ret = true; 1285 ms = rtas_busy_delay_time(status); 1286 /* 1287 * The extended delay hint can be as high as 100 seconds. 1288 * Surely any function returning such a status is either 1289 * buggy or isn't going to be significantly slowed by us 1290 * polling at 1HZ. Clamp the sleep time to one second. 1291 */ 1292 ms = clamp(ms, 1U, 1000U); 1293 /* 1294 * The delay hint is an order-of-magnitude suggestion, not 1295 * a minimum. It is fine, possibly even advantageous, for 1296 * us to pause for less time than hinted. For small values, 1297 * use usleep_range() to ensure we don't sleep much longer 1298 * than actually needed. 1299 * 1300 * See Documentation/timers/timers-howto.rst for 1301 * explanation of the threshold used here. In effect we use 1302 * usleep_range() for 9900 and 9901, msleep() for 1303 * 9902-9905. 1304 */ 1305 if (ms <= 20) 1306 usleep_range(ms * 100, ms * 1000); 1307 else 1308 msleep(ms); 1309 break; 1310 case RTAS_BUSY: 1311 ret = true; 1312 /* 1313 * We should call again immediately if there's no other 1314 * work to do. 1315 */ 1316 cond_resched(); 1317 break; 1318 default: 1319 ret = false; 1320 /* 1321 * Not a busy or extended delay status; the caller should 1322 * handle @status itself. Ensure we warn on misuses in 1323 * atomic context regardless. 1324 */ 1325 might_sleep(); 1326 break; 1327 } 1328 1329 return ret; 1330 } 1331 EXPORT_SYMBOL_GPL(rtas_busy_delay); 1332 1333 int rtas_error_rc(int rtas_rc) 1334 { 1335 int rc; 1336 1337 switch (rtas_rc) { 1338 case RTAS_HARDWARE_ERROR: /* Hardware Error */ 1339 rc = -EIO; 1340 break; 1341 case RTAS_INVALID_PARAMETER: /* Bad indicator/domain/etc */ 1342 rc = -EINVAL; 1343 break; 1344 case -9000: /* Isolation error */ 1345 rc = -EFAULT; 1346 break; 1347 case -9001: /* Outstanding TCE/PTE */ 1348 rc = -EEXIST; 1349 break; 1350 case -9002: /* No usable slot */ 1351 rc = -ENODEV; 1352 break; 1353 default: 1354 pr_err("%s: unexpected error %d\n", __func__, rtas_rc); 1355 rc = -ERANGE; 1356 break; 1357 } 1358 return rc; 1359 } 1360 EXPORT_SYMBOL_GPL(rtas_error_rc); 1361 1362 int rtas_get_power_level(int powerdomain, int *level) 1363 { 1364 int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL); 1365 int rc; 1366 1367 if (token == RTAS_UNKNOWN_SERVICE) 1368 return -ENOENT; 1369 1370 while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) 1371 udelay(1); 1372 1373 if (rc < 0) 1374 return rtas_error_rc(rc); 1375 return rc; 1376 } 1377 EXPORT_SYMBOL_GPL(rtas_get_power_level); 1378 1379 int rtas_set_power_level(int powerdomain, int level, int *setlevel) 1380 { 1381 int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL); 1382 int rc; 1383 1384 if (token == RTAS_UNKNOWN_SERVICE) 1385 return -ENOENT; 1386 1387 do { 1388 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); 1389 } while (rtas_busy_delay(rc)); 1390 1391 if (rc < 0) 1392 return rtas_error_rc(rc); 1393 return rc; 1394 } 1395 EXPORT_SYMBOL_GPL(rtas_set_power_level); 1396 1397 int rtas_get_sensor(int sensor, int index, int *state) 1398 { 1399 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE); 1400 int rc; 1401 1402 if (token == RTAS_UNKNOWN_SERVICE) 1403 return -ENOENT; 1404 1405 do { 1406 rc = rtas_call(token, 2, 2, state, sensor, index); 1407 } while (rtas_busy_delay(rc)); 1408 1409 if (rc < 0) 1410 return rtas_error_rc(rc); 1411 return rc; 1412 } 1413 EXPORT_SYMBOL_GPL(rtas_get_sensor); 1414 1415 int rtas_get_sensor_fast(int sensor, int index, int *state) 1416 { 1417 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE); 1418 int rc; 1419 1420 if (token == RTAS_UNKNOWN_SERVICE) 1421 return -ENOENT; 1422 1423 rc = rtas_call(token, 2, 2, state, sensor, index); 1424 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 1425 rc <= RTAS_EXTENDED_DELAY_MAX)); 1426 1427 if (rc < 0) 1428 return rtas_error_rc(rc); 1429 return rc; 1430 } 1431 1432 bool rtas_indicator_present(int token, int *maxindex) 1433 { 1434 int proplen, count, i; 1435 const struct indicator_elem { 1436 __be32 token; 1437 __be32 maxindex; 1438 } *indicators; 1439 1440 indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); 1441 if (!indicators) 1442 return false; 1443 1444 count = proplen / sizeof(struct indicator_elem); 1445 1446 for (i = 0; i < count; i++) { 1447 if (__be32_to_cpu(indicators[i].token) != token) 1448 continue; 1449 if (maxindex) 1450 *maxindex = __be32_to_cpu(indicators[i].maxindex); 1451 return true; 1452 } 1453 1454 return false; 1455 } 1456 1457 int rtas_set_indicator(int indicator, int index, int new_value) 1458 { 1459 int token = rtas_function_token(RTAS_FN_SET_INDICATOR); 1460 int rc; 1461 1462 if (token == RTAS_UNKNOWN_SERVICE) 1463 return -ENOENT; 1464 1465 do { 1466 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 1467 } while (rtas_busy_delay(rc)); 1468 1469 if (rc < 0) 1470 return rtas_error_rc(rc); 1471 return rc; 1472 } 1473 EXPORT_SYMBOL_GPL(rtas_set_indicator); 1474 1475 /* 1476 * Ignoring RTAS extended delay 1477 */ 1478 int rtas_set_indicator_fast(int indicator, int index, int new_value) 1479 { 1480 int token = rtas_function_token(RTAS_FN_SET_INDICATOR); 1481 int rc; 1482 1483 if (token == RTAS_UNKNOWN_SERVICE) 1484 return -ENOENT; 1485 1486 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 1487 1488 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 1489 rc <= RTAS_EXTENDED_DELAY_MAX)); 1490 1491 if (rc < 0) 1492 return rtas_error_rc(rc); 1493 1494 return rc; 1495 } 1496 1497 /** 1498 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR. 1499 * 1500 * @fw_status: RTAS call status will be placed here if not NULL. 1501 * 1502 * rtas_ibm_suspend_me() should be called only on a CPU which has 1503 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs 1504 * should be waiting to return from H_JOIN. 1505 * 1506 * rtas_ibm_suspend_me() may suspend execution of the OS 1507 * indefinitely. Callers should take appropriate measures upon return, such as 1508 * resetting watchdog facilities. 1509 * 1510 * Callers may choose to retry this call if @fw_status is 1511 * %RTAS_THREADS_ACTIVE. 1512 * 1513 * Return: 1514 * 0 - The partition has resumed from suspend, possibly after 1515 * migration to a different host. 1516 * -ECANCELED - The operation was aborted. 1517 * -EAGAIN - There were other CPUs not in H_JOIN at the time of the call. 1518 * -EBUSY - Some other condition prevented the suspend from succeeding. 1519 * -EIO - Hardware/platform error. 1520 */ 1521 int rtas_ibm_suspend_me(int *fw_status) 1522 { 1523 int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME); 1524 int fwrc; 1525 int ret; 1526 1527 fwrc = rtas_call(token, 0, 1, NULL); 1528 1529 switch (fwrc) { 1530 case 0: 1531 ret = 0; 1532 break; 1533 case RTAS_SUSPEND_ABORTED: 1534 ret = -ECANCELED; 1535 break; 1536 case RTAS_THREADS_ACTIVE: 1537 ret = -EAGAIN; 1538 break; 1539 case RTAS_NOT_SUSPENDABLE: 1540 case RTAS_OUTSTANDING_COPROC: 1541 ret = -EBUSY; 1542 break; 1543 case -1: 1544 default: 1545 ret = -EIO; 1546 break; 1547 } 1548 1549 if (fw_status) 1550 *fw_status = fwrc; 1551 1552 return ret; 1553 } 1554 1555 void __noreturn rtas_restart(char *cmd) 1556 { 1557 if (rtas_flash_term_hook) 1558 rtas_flash_term_hook(SYS_RESTART); 1559 pr_emerg("system-reboot returned %d\n", 1560 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL)); 1561 for (;;); 1562 } 1563 1564 void rtas_power_off(void) 1565 { 1566 if (rtas_flash_term_hook) 1567 rtas_flash_term_hook(SYS_POWER_OFF); 1568 /* allow power on only with power button press */ 1569 pr_emerg("power-off returned %d\n", 1570 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1)); 1571 for (;;); 1572 } 1573 1574 void __noreturn rtas_halt(void) 1575 { 1576 if (rtas_flash_term_hook) 1577 rtas_flash_term_hook(SYS_HALT); 1578 /* allow power on only with power button press */ 1579 pr_emerg("power-off returned %d\n", 1580 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1)); 1581 for (;;); 1582 } 1583 1584 /* Must be in the RMO region, so we place it here */ 1585 static char rtas_os_term_buf[2048]; 1586 static bool ibm_extended_os_term; 1587 1588 void rtas_os_term(char *str) 1589 { 1590 s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM); 1591 static struct rtas_args args; 1592 int status; 1593 1594 /* 1595 * Firmware with the ibm,extended-os-term property is guaranteed 1596 * to always return from an ibm,os-term call. Earlier versions without 1597 * this property may terminate the partition which we want to avoid 1598 * since it interferes with panic_timeout. 1599 */ 1600 1601 if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term) 1602 return; 1603 1604 snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); 1605 1606 /* 1607 * Keep calling as long as RTAS returns a "try again" status, 1608 * but don't use rtas_busy_delay(), which potentially 1609 * schedules. 1610 */ 1611 do { 1612 rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf)); 1613 status = be32_to_cpu(args.rets[0]); 1614 } while (rtas_busy_delay_time(status)); 1615 1616 if (status != 0) 1617 pr_emerg("ibm,os-term call failed %d\n", status); 1618 } 1619 1620 /** 1621 * rtas_activate_firmware() - Activate a new version of firmware. 1622 * 1623 * Context: This function may sleep. 1624 * 1625 * Activate a new version of partition firmware. The OS must call this 1626 * after resuming from a partition hibernation or migration in order 1627 * to maintain the ability to perform live firmware updates. It's not 1628 * catastrophic for this method to be absent or to fail; just log the 1629 * condition in that case. 1630 */ 1631 void rtas_activate_firmware(void) 1632 { 1633 int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE); 1634 int fwrc; 1635 1636 if (token == RTAS_UNKNOWN_SERVICE) { 1637 pr_notice("ibm,activate-firmware method unavailable\n"); 1638 return; 1639 } 1640 1641 do { 1642 fwrc = rtas_call(token, 0, 1, NULL); 1643 } while (rtas_busy_delay(fwrc)); 1644 1645 if (fwrc) 1646 pr_err("ibm,activate-firmware failed (%i)\n", fwrc); 1647 } 1648 1649 /** 1650 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS 1651 * extended event log. 1652 * @log: RTAS error/event log 1653 * @section_id: two character section identifier 1654 * 1655 * Return: A pointer to the specified errorlog or NULL if not found. 1656 */ 1657 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, 1658 uint16_t section_id) 1659 { 1660 struct rtas_ext_event_log_v6 *ext_log = 1661 (struct rtas_ext_event_log_v6 *)log->buffer; 1662 struct pseries_errorlog *sect; 1663 unsigned char *p, *log_end; 1664 uint32_t ext_log_length = rtas_error_extended_log_length(log); 1665 uint8_t log_format = rtas_ext_event_log_format(ext_log); 1666 uint32_t company_id = rtas_ext_event_company_id(ext_log); 1667 1668 /* Check that we understand the format */ 1669 if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) || 1670 log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || 1671 company_id != RTAS_V6EXT_COMPANY_ID_IBM) 1672 return NULL; 1673 1674 log_end = log->buffer + ext_log_length; 1675 p = ext_log->vendor_log; 1676 1677 while (p < log_end) { 1678 sect = (struct pseries_errorlog *)p; 1679 if (pseries_errorlog_id(sect) == section_id) 1680 return sect; 1681 p += pseries_errorlog_length(sect); 1682 } 1683 1684 return NULL; 1685 } 1686 1687 /* 1688 * The sys_rtas syscall, as originally designed, allows root to pass 1689 * arbitrary physical addresses to RTAS calls. A number of RTAS calls 1690 * can be abused to write to arbitrary memory and do other things that 1691 * are potentially harmful to system integrity, and thus should only 1692 * be used inside the kernel and not exposed to userspace. 1693 * 1694 * All known legitimate users of the sys_rtas syscall will only ever 1695 * pass addresses that fall within the RMO buffer, and use a known 1696 * subset of RTAS calls. 1697 * 1698 * Accordingly, we filter RTAS requests to check that the call is 1699 * permitted, and that provided pointers fall within the RMO buffer. 1700 * If a function is allowed to be invoked via the syscall, then its 1701 * entry in the rtas_functions table points to a rtas_filter that 1702 * describes its constraints, with the indexes of the parameters which 1703 * are expected to contain addresses and sizes of buffers allocated 1704 * inside the RMO buffer. 1705 */ 1706 1707 static bool in_rmo_buf(u32 base, u32 end) 1708 { 1709 return base >= rtas_rmo_buf && 1710 base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) && 1711 base <= end && 1712 end >= rtas_rmo_buf && 1713 end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE); 1714 } 1715 1716 static bool block_rtas_call(int token, int nargs, 1717 struct rtas_args *args) 1718 { 1719 const struct rtas_function *func; 1720 const struct rtas_filter *f; 1721 const bool is_platform_dump = token == rtas_function_token(RTAS_FN_IBM_PLATFORM_DUMP); 1722 const bool is_config_conn = token == rtas_function_token(RTAS_FN_IBM_CONFIGURE_CONNECTOR); 1723 u32 base, size, end; 1724 1725 /* 1726 * If this token doesn't correspond to a function the kernel 1727 * understands, you're not allowed to call it. 1728 */ 1729 func = rtas_token_to_function(token); 1730 if (!func) 1731 goto err; 1732 /* 1733 * And only functions with filters attached are allowed. 1734 */ 1735 f = func->filter; 1736 if (!f) 1737 goto err; 1738 /* 1739 * And some functions aren't allowed on LE. 1740 */ 1741 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le) 1742 goto err; 1743 1744 if (f->buf_idx1 != -1) { 1745 base = be32_to_cpu(args->args[f->buf_idx1]); 1746 if (f->size_idx1 != -1) 1747 size = be32_to_cpu(args->args[f->size_idx1]); 1748 else if (f->fixed_size) 1749 size = f->fixed_size; 1750 else 1751 size = 1; 1752 1753 end = base + size - 1; 1754 1755 /* 1756 * Special case for ibm,platform-dump - NULL buffer 1757 * address is used to indicate end of dump processing 1758 */ 1759 if (is_platform_dump && base == 0) 1760 return false; 1761 1762 if (!in_rmo_buf(base, end)) 1763 goto err; 1764 } 1765 1766 if (f->buf_idx2 != -1) { 1767 base = be32_to_cpu(args->args[f->buf_idx2]); 1768 if (f->size_idx2 != -1) 1769 size = be32_to_cpu(args->args[f->size_idx2]); 1770 else if (f->fixed_size) 1771 size = f->fixed_size; 1772 else 1773 size = 1; 1774 end = base + size - 1; 1775 1776 /* 1777 * Special case for ibm,configure-connector where the 1778 * address can be 0 1779 */ 1780 if (is_config_conn && base == 0) 1781 return false; 1782 1783 if (!in_rmo_buf(base, end)) 1784 goto err; 1785 } 1786 1787 return false; 1788 err: 1789 pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n"); 1790 pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n", 1791 token, nargs, current->comm); 1792 return true; 1793 } 1794 1795 /* We assume to be passed big endian arguments */ 1796 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs) 1797 { 1798 struct pin_cookie cookie; 1799 struct rtas_args args; 1800 unsigned long flags; 1801 char *buff_copy, *errbuf = NULL; 1802 int nargs, nret, token; 1803 1804 if (!capable(CAP_SYS_ADMIN)) 1805 return -EPERM; 1806 1807 if (!rtas.entry) 1808 return -EINVAL; 1809 1810 if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) 1811 return -EFAULT; 1812 1813 nargs = be32_to_cpu(args.nargs); 1814 nret = be32_to_cpu(args.nret); 1815 token = be32_to_cpu(args.token); 1816 1817 if (nargs >= ARRAY_SIZE(args.args) 1818 || nret > ARRAY_SIZE(args.args) 1819 || nargs + nret > ARRAY_SIZE(args.args)) 1820 return -EINVAL; 1821 1822 /* Copy in args. */ 1823 if (copy_from_user(args.args, uargs->args, 1824 nargs * sizeof(rtas_arg_t)) != 0) 1825 return -EFAULT; 1826 1827 if (token == RTAS_UNKNOWN_SERVICE) 1828 return -EINVAL; 1829 1830 args.rets = &args.args[nargs]; 1831 memset(args.rets, 0, nret * sizeof(rtas_arg_t)); 1832 1833 if (block_rtas_call(token, nargs, &args)) 1834 return -EINVAL; 1835 1836 if (token_is_restricted_errinjct(token)) { 1837 int err; 1838 1839 err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION); 1840 if (err) 1841 return err; 1842 } 1843 1844 /* Need to handle ibm,suspend_me call specially */ 1845 if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) { 1846 1847 /* 1848 * rtas_ibm_suspend_me assumes the streamid handle is in cpu 1849 * endian, or at least the hcall within it requires it. 1850 */ 1851 int rc = 0; 1852 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32) 1853 | be32_to_cpu(args.args[1]); 1854 rc = rtas_syscall_dispatch_ibm_suspend_me(handle); 1855 if (rc == -EAGAIN) 1856 args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE); 1857 else if (rc == -EIO) 1858 args.rets[0] = cpu_to_be32(-1); 1859 else if (rc) 1860 return rc; 1861 goto copy_return; 1862 } 1863 1864 buff_copy = get_errorlog_buffer(); 1865 1866 raw_spin_lock_irqsave(&rtas_lock, flags); 1867 cookie = lockdep_pin_lock(&rtas_lock); 1868 1869 rtas_args = args; 1870 do_enter_rtas(&rtas_args); 1871 args = rtas_args; 1872 1873 /* A -1 return code indicates that the last command couldn't 1874 be completed due to a hardware error. */ 1875 if (be32_to_cpu(args.rets[0]) == -1) 1876 errbuf = __fetch_rtas_last_error(buff_copy); 1877 1878 lockdep_unpin_lock(&rtas_lock, cookie); 1879 raw_spin_unlock_irqrestore(&rtas_lock, flags); 1880 1881 if (buff_copy) { 1882 if (errbuf) 1883 log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); 1884 kfree(buff_copy); 1885 } 1886 1887 copy_return: 1888 /* Copy out args. */ 1889 if (copy_to_user(uargs->args + nargs, 1890 args.args + nargs, 1891 nret * sizeof(rtas_arg_t)) != 0) 1892 return -EFAULT; 1893 1894 return 0; 1895 } 1896 1897 static void __init rtas_function_table_init(void) 1898 { 1899 struct property *prop; 1900 1901 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) { 1902 struct rtas_function *curr = &rtas_function_table[i]; 1903 struct rtas_function *prior; 1904 int cmp; 1905 1906 curr->token = RTAS_UNKNOWN_SERVICE; 1907 1908 if (i == 0) 1909 continue; 1910 /* 1911 * Ensure table is sorted correctly for binary search 1912 * on function names. 1913 */ 1914 prior = &rtas_function_table[i - 1]; 1915 1916 cmp = strcmp(prior->name, curr->name); 1917 if (cmp < 0) 1918 continue; 1919 1920 if (cmp == 0) { 1921 pr_err("'%s' has duplicate function table entries\n", 1922 curr->name); 1923 } else { 1924 pr_err("function table unsorted: '%s' wrongly precedes '%s'\n", 1925 prior->name, curr->name); 1926 } 1927 } 1928 1929 for_each_property_of_node(rtas.dev, prop) { 1930 struct rtas_function *func; 1931 1932 if (prop->length != sizeof(u32)) 1933 continue; 1934 1935 func = __rtas_name_to_function(prop->name); 1936 if (!func) 1937 continue; 1938 1939 func->token = be32_to_cpup((__be32 *)prop->value); 1940 1941 pr_debug("function %s has token %u\n", func->name, func->token); 1942 } 1943 } 1944 1945 /* 1946 * Call early during boot, before mem init, to retrieve the RTAS 1947 * information from the device-tree and allocate the RMO buffer for userland 1948 * accesses. 1949 */ 1950 void __init rtas_initialize(void) 1951 { 1952 unsigned long rtas_region = RTAS_INSTANTIATE_MAX; 1953 u32 base, size, entry; 1954 int no_base, no_size, no_entry; 1955 1956 /* Get RTAS dev node and fill up our "rtas" structure with infos 1957 * about it. 1958 */ 1959 rtas.dev = of_find_node_by_name(NULL, "rtas"); 1960 if (!rtas.dev) 1961 return; 1962 1963 no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base); 1964 no_size = of_property_read_u32(rtas.dev, "rtas-size", &size); 1965 if (no_base || no_size) { 1966 of_node_put(rtas.dev); 1967 rtas.dev = NULL; 1968 return; 1969 } 1970 1971 rtas.base = base; 1972 rtas.size = size; 1973 no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry); 1974 rtas.entry = no_entry ? rtas.base : entry; 1975 1976 init_error_log_max(); 1977 1978 /* Must be called before any function token lookups */ 1979 rtas_function_table_init(); 1980 1981 /* 1982 * Discover this now to avoid a device tree lookup in the 1983 * panic path. 1984 */ 1985 ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term"); 1986 1987 /* If RTAS was found, allocate the RMO buffer for it and look for 1988 * the stop-self token if any 1989 */ 1990 #ifdef CONFIG_PPC64 1991 if (firmware_has_feature(FW_FEATURE_LPAR)) 1992 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); 1993 #endif 1994 rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE, 1995 0, rtas_region); 1996 if (!rtas_rmo_buf) 1997 panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n", 1998 PAGE_SIZE, &rtas_region); 1999 2000 rtas_work_area_reserve_arena(rtas_region); 2001 } 2002 2003 int __init early_init_dt_scan_rtas(unsigned long node, 2004 const char *uname, int depth, void *data) 2005 { 2006 const u32 *basep, *entryp, *sizep; 2007 2008 if (depth != 1 || strcmp(uname, "rtas") != 0) 2009 return 0; 2010 2011 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); 2012 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); 2013 sizep = of_get_flat_dt_prop(node, "rtas-size", NULL); 2014 2015 #ifdef CONFIG_PPC64 2016 /* need this feature to decide the crashkernel offset */ 2017 if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL)) 2018 powerpc_firmware_features |= FW_FEATURE_LPAR; 2019 #endif 2020 2021 if (basep && entryp && sizep) { 2022 rtas.base = *basep; 2023 rtas.entry = *entryp; 2024 rtas.size = *sizep; 2025 } 2026 2027 #ifdef CONFIG_UDBG_RTAS_CONSOLE 2028 basep = of_get_flat_dt_prop(node, "put-term-char", NULL); 2029 if (basep) 2030 rtas_putchar_token = *basep; 2031 2032 basep = of_get_flat_dt_prop(node, "get-term-char", NULL); 2033 if (basep) 2034 rtas_getchar_token = *basep; 2035 2036 if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && 2037 rtas_getchar_token != RTAS_UNKNOWN_SERVICE) 2038 udbg_init_rtas_console(); 2039 2040 #endif 2041 2042 /* break now */ 2043 return 1; 2044 } 2045 2046 static DEFINE_RAW_SPINLOCK(timebase_lock); 2047 static u64 timebase = 0; 2048 2049 void rtas_give_timebase(void) 2050 { 2051 unsigned long flags; 2052 2053 raw_spin_lock_irqsave(&timebase_lock, flags); 2054 hard_irq_disable(); 2055 rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL); 2056 timebase = get_tb(); 2057 raw_spin_unlock(&timebase_lock); 2058 2059 while (timebase) 2060 barrier(); 2061 rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL); 2062 local_irq_restore(flags); 2063 } 2064 2065 void rtas_take_timebase(void) 2066 { 2067 while (!timebase) 2068 barrier(); 2069 raw_spin_lock(&timebase_lock); 2070 set_tb(timebase >> 32, timebase & 0xffffffff); 2071 timebase = 0; 2072 raw_spin_unlock(&timebase_lock); 2073 } 2074