xref: /linux/arch/powerpc/kernel/rtas.c (revision ef9226cd56b718c79184a3466d32984a51cb449c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Procedures for interfacing to the RTAS on CHRP machines.
5  *
6  * Peter Bergner, IBM	March 2001.
7  * Copyright (C) 2001 IBM.
8  */
9 
10 #define pr_fmt(fmt)	"rtas: " fmt
11 
12 #include <linux/bsearch.h>
13 #include <linux/capability.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/kconfig.h>
18 #include <linux/kernel.h>
19 #include <linux/lockdep.h>
20 #include <linux/memblock.h>
21 #include <linux/mutex.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/reboot.h>
25 #include <linux/sched.h>
26 #include <linux/security.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/stdarg.h>
30 #include <linux/syscalls.h>
31 #include <linux/types.h>
32 #include <linux/uaccess.h>
33 #include <linux/xarray.h>
34 
35 #include <asm/delay.h>
36 #include <asm/firmware.h>
37 #include <asm/interrupt.h>
38 #include <asm/machdep.h>
39 #include <asm/mmu.h>
40 #include <asm/page.h>
41 #include <asm/rtas-work-area.h>
42 #include <asm/rtas.h>
43 #include <asm/time.h>
44 #include <asm/trace.h>
45 #include <asm/udbg.h>
46 
47 struct rtas_filter {
48 	/* Indexes into the args buffer, -1 if not used */
49 	const int buf_idx1;
50 	const int size_idx1;
51 	const int buf_idx2;
52 	const int size_idx2;
53 	/*
54 	 * Assumed buffer size per the spec if the function does not
55 	 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
56 	 */
57 	const int fixed_size;
58 };
59 
60 /**
61  * struct rtas_function - Descriptor for RTAS functions.
62  *
63  * @token: Value of @name if it exists under the /rtas node.
64  * @name: Function name.
65  * @filter: If non-NULL, invoking this function via the rtas syscall is
66  *          generally allowed, and @filter describes constraints on the
67  *          arguments. See also @banned_for_syscall_on_le.
68  * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
69  *                            but specifically restricted on ppc64le. Such
70  *                            functions are believed to have no users on
71  *                            ppc64le, and we want to keep it that way. It does
72  *                            not make sense for this to be set when @filter
73  *                            is NULL.
74  * @lock: Pointer to an optional dedicated per-function mutex. This
75  *        should be set for functions that require multiple calls in
76  *        sequence to complete a single operation, and such sequences
77  *        will disrupt each other if allowed to interleave. Users of
78  *        this function are required to hold the associated lock for
79  *        the duration of the call sequence. Add an explanatory
80  *        comment to the function table entry if setting this member.
81  */
82 struct rtas_function {
83 	s32 token;
84 	const bool banned_for_syscall_on_le:1;
85 	const char * const name;
86 	const struct rtas_filter *filter;
87 	struct mutex *lock;
88 };
89 
90 /*
91  * Per-function locks for sequence-based RTAS functions.
92  */
93 static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
94 static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
95 static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
96 static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
97 static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
98 static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
99 DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
100 
101 static struct rtas_function rtas_function_table[] __ro_after_init = {
102 	[RTAS_FNIDX__CHECK_EXCEPTION] = {
103 		.name = "check-exception",
104 	},
105 	[RTAS_FNIDX__DISPLAY_CHARACTER] = {
106 		.name = "display-character",
107 		.filter = &(const struct rtas_filter) {
108 			.buf_idx1 = -1, .size_idx1 = -1,
109 			.buf_idx2 = -1, .size_idx2 = -1,
110 		},
111 	},
112 	[RTAS_FNIDX__EVENT_SCAN] = {
113 		.name = "event-scan",
114 	},
115 	[RTAS_FNIDX__FREEZE_TIME_BASE] = {
116 		.name = "freeze-time-base",
117 	},
118 	[RTAS_FNIDX__GET_POWER_LEVEL] = {
119 		.name = "get-power-level",
120 		.filter = &(const struct rtas_filter) {
121 			.buf_idx1 = -1, .size_idx1 = -1,
122 			.buf_idx2 = -1, .size_idx2 = -1,
123 		},
124 	},
125 	[RTAS_FNIDX__GET_SENSOR_STATE] = {
126 		.name = "get-sensor-state",
127 		.filter = &(const struct rtas_filter) {
128 			.buf_idx1 = -1, .size_idx1 = -1,
129 			.buf_idx2 = -1, .size_idx2 = -1,
130 		},
131 	},
132 	[RTAS_FNIDX__GET_TERM_CHAR] = {
133 		.name = "get-term-char",
134 	},
135 	[RTAS_FNIDX__GET_TIME_OF_DAY] = {
136 		.name = "get-time-of-day",
137 		.filter = &(const struct rtas_filter) {
138 			.buf_idx1 = -1, .size_idx1 = -1,
139 			.buf_idx2 = -1, .size_idx2 = -1,
140 		},
141 	},
142 	[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
143 		.name = "ibm,activate-firmware",
144 		.filter = &(const struct rtas_filter) {
145 			.buf_idx1 = -1, .size_idx1 = -1,
146 			.buf_idx2 = -1, .size_idx2 = -1,
147 		},
148 		/*
149 		 * PAPR+ as of v2.13 doesn't explicitly impose any
150 		 * restriction, but this typically requires multiple
151 		 * calls before success, and there's no reason to
152 		 * allow sequences to interleave.
153 		 */
154 		.lock = &rtas_ibm_activate_firmware_lock,
155 	},
156 	[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
157 		.name = "ibm,cbe-start-ptcal",
158 	},
159 	[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
160 		.name = "ibm,cbe-stop-ptcal",
161 	},
162 	[RTAS_FNIDX__IBM_CHANGE_MSI] = {
163 		.name = "ibm,change-msi",
164 	},
165 	[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
166 		.name = "ibm,close-errinjct",
167 		.filter = &(const struct rtas_filter) {
168 			.buf_idx1 = -1, .size_idx1 = -1,
169 			.buf_idx2 = -1, .size_idx2 = -1,
170 		},
171 	},
172 	[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
173 		.name = "ibm,configure-bridge",
174 	},
175 	[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
176 		.name = "ibm,configure-connector",
177 		.filter = &(const struct rtas_filter) {
178 			.buf_idx1 = 0, .size_idx1 = -1,
179 			.buf_idx2 = 1, .size_idx2 = -1,
180 			.fixed_size = 4096,
181 		},
182 	},
183 	[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
184 		.name = "ibm,configure-kernel-dump",
185 	},
186 	[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
187 		.name = "ibm,configure-pe",
188 	},
189 	[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
190 		.name = "ibm,create-pe-dma-window",
191 	},
192 	[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
193 		.name = "ibm,display-message",
194 		.filter = &(const struct rtas_filter) {
195 			.buf_idx1 = 0, .size_idx1 = -1,
196 			.buf_idx2 = -1, .size_idx2 = -1,
197 		},
198 	},
199 	[RTAS_FNIDX__IBM_ERRINJCT] = {
200 		.name = "ibm,errinjct",
201 		.filter = &(const struct rtas_filter) {
202 			.buf_idx1 = 2, .size_idx1 = -1,
203 			.buf_idx2 = -1, .size_idx2 = -1,
204 			.fixed_size = 1024,
205 		},
206 	},
207 	[RTAS_FNIDX__IBM_EXTI2C] = {
208 		.name = "ibm,exti2c",
209 	},
210 	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
211 		.name = "ibm,get-config-addr-info",
212 	},
213 	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
214 		.name = "ibm,get-config-addr-info2",
215 		.filter = &(const struct rtas_filter) {
216 			.buf_idx1 = -1, .size_idx1 = -1,
217 			.buf_idx2 = -1, .size_idx2 = -1,
218 		},
219 	},
220 	[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
221 		.name = "ibm,get-dynamic-sensor-state",
222 		.filter = &(const struct rtas_filter) {
223 			.buf_idx1 = 1, .size_idx1 = -1,
224 			.buf_idx2 = -1, .size_idx2 = -1,
225 		},
226 		/*
227 		 * PAPR+ v2.13 R1–7.3.19–3 is explicit that the OS
228 		 * must not call ibm,get-dynamic-sensor-state with
229 		 * different inputs until a non-retry status has been
230 		 * returned.
231 		 */
232 		.lock = &rtas_ibm_get_dynamic_sensor_state_lock,
233 	},
234 	[RTAS_FNIDX__IBM_GET_INDICES] = {
235 		.name = "ibm,get-indices",
236 		.filter = &(const struct rtas_filter) {
237 			.buf_idx1 = 2, .size_idx1 = 3,
238 			.buf_idx2 = -1, .size_idx2 = -1,
239 		},
240 		/*
241 		 * PAPR+ v2.13 R1–7.3.17–2 says that the OS must not
242 		 * interleave ibm,get-indices call sequences with
243 		 * different inputs.
244 		 */
245 		.lock = &rtas_ibm_get_indices_lock,
246 	},
247 	[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
248 		.name = "ibm,get-rio-topology",
249 	},
250 	[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
251 		.name = "ibm,get-system-parameter",
252 		.filter = &(const struct rtas_filter) {
253 			.buf_idx1 = 1, .size_idx1 = 2,
254 			.buf_idx2 = -1, .size_idx2 = -1,
255 		},
256 	},
257 	[RTAS_FNIDX__IBM_GET_VPD] = {
258 		.name = "ibm,get-vpd",
259 		.filter = &(const struct rtas_filter) {
260 			.buf_idx1 = 0, .size_idx1 = -1,
261 			.buf_idx2 = 1, .size_idx2 = 2,
262 		},
263 		/*
264 		 * PAPR+ v2.13 R1–7.3.20–4 indicates that sequences
265 		 * should not be allowed to interleave.
266 		 */
267 		.lock = &rtas_ibm_get_vpd_lock,
268 	},
269 	[RTAS_FNIDX__IBM_GET_XIVE] = {
270 		.name = "ibm,get-xive",
271 	},
272 	[RTAS_FNIDX__IBM_INT_OFF] = {
273 		.name = "ibm,int-off",
274 	},
275 	[RTAS_FNIDX__IBM_INT_ON] = {
276 		.name = "ibm,int-on",
277 	},
278 	[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
279 		.name = "ibm,io-quiesce-ack",
280 	},
281 	[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
282 		.name = "ibm,lpar-perftools",
283 		.filter = &(const struct rtas_filter) {
284 			.buf_idx1 = 2, .size_idx1 = 3,
285 			.buf_idx2 = -1, .size_idx2 = -1,
286 		},
287 		/*
288 		 * PAPR+ v2.13 R1–7.3.26–6 says the OS should allow
289 		 * only one call sequence in progress at a time.
290 		 */
291 		.lock = &rtas_ibm_lpar_perftools_lock,
292 	},
293 	[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
294 		.name = "ibm,manage-flash-image",
295 	},
296 	[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
297 		.name = "ibm,manage-storage-preservation",
298 	},
299 	[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
300 		.name = "ibm,nmi-interlock",
301 	},
302 	[RTAS_FNIDX__IBM_NMI_REGISTER] = {
303 		.name = "ibm,nmi-register",
304 	},
305 	[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
306 		.name = "ibm,open-errinjct",
307 		.filter = &(const struct rtas_filter) {
308 			.buf_idx1 = -1, .size_idx1 = -1,
309 			.buf_idx2 = -1, .size_idx2 = -1,
310 		},
311 	},
312 	[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
313 		.name = "ibm,open-sriov-allow-unfreeze",
314 	},
315 	[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
316 		.name = "ibm,open-sriov-map-pe-number",
317 	},
318 	[RTAS_FNIDX__IBM_OS_TERM] = {
319 		.name = "ibm,os-term",
320 	},
321 	[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
322 		.name = "ibm,partner-control",
323 	},
324 	[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
325 		.name = "ibm,physical-attestation",
326 		.filter = &(const struct rtas_filter) {
327 			.buf_idx1 = 0, .size_idx1 = 1,
328 			.buf_idx2 = -1, .size_idx2 = -1,
329 		},
330 		/*
331 		 * This follows a sequence-based pattern similar to
332 		 * ibm,get-vpd et al. Since PAPR+ restricts
333 		 * interleaving call sequences for other functions of
334 		 * this style, assume the restriction applies here,
335 		 * even though it's not explicit in the spec.
336 		 */
337 		.lock = &rtas_ibm_physical_attestation_lock,
338 	},
339 	[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
340 		.name = "ibm,platform-dump",
341 		.filter = &(const struct rtas_filter) {
342 			.buf_idx1 = 4, .size_idx1 = 5,
343 			.buf_idx2 = -1, .size_idx2 = -1,
344 		},
345 		/*
346 		 * PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
347 		 * sequences of ibm,platform-dump are allowed if they
348 		 * are operating on different dump tags. So leave the
349 		 * lock pointer unset for now. This may need
350 		 * reconsideration if kernel-internal users appear.
351 		 */
352 	},
353 	[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
354 		.name = "ibm,power-off-ups",
355 	},
356 	[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
357 		.name = "ibm,query-interrupt-source-number",
358 	},
359 	[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
360 		.name = "ibm,query-pe-dma-window",
361 	},
362 	[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
363 		.name = "ibm,read-pci-config",
364 	},
365 	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
366 		.name = "ibm,read-slot-reset-state",
367 		.filter = &(const struct rtas_filter) {
368 			.buf_idx1 = -1, .size_idx1 = -1,
369 			.buf_idx2 = -1, .size_idx2 = -1,
370 		},
371 	},
372 	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
373 		.name = "ibm,read-slot-reset-state2",
374 	},
375 	[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
376 		.name = "ibm,remove-pe-dma-window",
377 	},
378 	[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOW] = {
379 		/*
380 		 * Note: PAPR+ v2.13 7.3.31.4.1 spells this as
381 		 * "ibm,reset-pe-dma-windows" (plural), but RTAS
382 		 * implementations use the singular form in practice.
383 		 */
384 		.name = "ibm,reset-pe-dma-window",
385 	},
386 	[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
387 		.name = "ibm,scan-log-dump",
388 		.filter = &(const struct rtas_filter) {
389 			.buf_idx1 = 0, .size_idx1 = 1,
390 			.buf_idx2 = -1, .size_idx2 = -1,
391 		},
392 	},
393 	[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
394 		.name = "ibm,set-dynamic-indicator",
395 		.filter = &(const struct rtas_filter) {
396 			.buf_idx1 = 2, .size_idx1 = -1,
397 			.buf_idx2 = -1, .size_idx2 = -1,
398 		},
399 		/*
400 		 * PAPR+ v2.13 R1–7.3.18–3 says the OS must not call
401 		 * this function with different inputs until a
402 		 * non-retry status has been returned.
403 		 */
404 		.lock = &rtas_ibm_set_dynamic_indicator_lock,
405 	},
406 	[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
407 		.name = "ibm,set-eeh-option",
408 		.filter = &(const struct rtas_filter) {
409 			.buf_idx1 = -1, .size_idx1 = -1,
410 			.buf_idx2 = -1, .size_idx2 = -1,
411 		},
412 	},
413 	[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
414 		.name = "ibm,set-slot-reset",
415 	},
416 	[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
417 		.name = "ibm,set-system-parameter",
418 		.filter = &(const struct rtas_filter) {
419 			.buf_idx1 = 1, .size_idx1 = -1,
420 			.buf_idx2 = -1, .size_idx2 = -1,
421 		},
422 	},
423 	[RTAS_FNIDX__IBM_SET_XIVE] = {
424 		.name = "ibm,set-xive",
425 	},
426 	[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
427 		.name = "ibm,slot-error-detail",
428 	},
429 	[RTAS_FNIDX__IBM_SUSPEND_ME] = {
430 		.name = "ibm,suspend-me",
431 		.banned_for_syscall_on_le = true,
432 		.filter = &(const struct rtas_filter) {
433 			.buf_idx1 = -1, .size_idx1 = -1,
434 			.buf_idx2 = -1, .size_idx2 = -1,
435 		},
436 	},
437 	[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
438 		.name = "ibm,tune-dma-parms",
439 	},
440 	[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
441 		.name = "ibm,update-flash-64-and-reboot",
442 	},
443 	[RTAS_FNIDX__IBM_UPDATE_NODES] = {
444 		.name = "ibm,update-nodes",
445 		.banned_for_syscall_on_le = true,
446 		.filter = &(const struct rtas_filter) {
447 			.buf_idx1 = 0, .size_idx1 = -1,
448 			.buf_idx2 = -1, .size_idx2 = -1,
449 			.fixed_size = 4096,
450 		},
451 	},
452 	[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
453 		.name = "ibm,update-properties",
454 		.banned_for_syscall_on_le = true,
455 		.filter = &(const struct rtas_filter) {
456 			.buf_idx1 = 0, .size_idx1 = -1,
457 			.buf_idx2 = -1, .size_idx2 = -1,
458 			.fixed_size = 4096,
459 		},
460 	},
461 	[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
462 		.name = "ibm,validate-flash-image",
463 	},
464 	[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
465 		.name = "ibm,write-pci-config",
466 	},
467 	[RTAS_FNIDX__NVRAM_FETCH] = {
468 		.name = "nvram-fetch",
469 	},
470 	[RTAS_FNIDX__NVRAM_STORE] = {
471 		.name = "nvram-store",
472 	},
473 	[RTAS_FNIDX__POWER_OFF] = {
474 		.name = "power-off",
475 	},
476 	[RTAS_FNIDX__PUT_TERM_CHAR] = {
477 		.name = "put-term-char",
478 	},
479 	[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
480 		.name = "query-cpu-stopped-state",
481 	},
482 	[RTAS_FNIDX__READ_PCI_CONFIG] = {
483 		.name = "read-pci-config",
484 	},
485 	[RTAS_FNIDX__RTAS_LAST_ERROR] = {
486 		.name = "rtas-last-error",
487 	},
488 	[RTAS_FNIDX__SET_INDICATOR] = {
489 		.name = "set-indicator",
490 		.filter = &(const struct rtas_filter) {
491 			.buf_idx1 = -1, .size_idx1 = -1,
492 			.buf_idx2 = -1, .size_idx2 = -1,
493 		},
494 	},
495 	[RTAS_FNIDX__SET_POWER_LEVEL] = {
496 		.name = "set-power-level",
497 		.filter = &(const struct rtas_filter) {
498 			.buf_idx1 = -1, .size_idx1 = -1,
499 			.buf_idx2 = -1, .size_idx2 = -1,
500 		},
501 	},
502 	[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
503 		.name = "set-time-for-power-on",
504 		.filter = &(const struct rtas_filter) {
505 			.buf_idx1 = -1, .size_idx1 = -1,
506 			.buf_idx2 = -1, .size_idx2 = -1,
507 		},
508 	},
509 	[RTAS_FNIDX__SET_TIME_OF_DAY] = {
510 		.name = "set-time-of-day",
511 		.filter = &(const struct rtas_filter) {
512 			.buf_idx1 = -1, .size_idx1 = -1,
513 			.buf_idx2 = -1, .size_idx2 = -1,
514 		},
515 	},
516 	[RTAS_FNIDX__START_CPU] = {
517 		.name = "start-cpu",
518 	},
519 	[RTAS_FNIDX__STOP_SELF] = {
520 		.name = "stop-self",
521 	},
522 	[RTAS_FNIDX__SYSTEM_REBOOT] = {
523 		.name = "system-reboot",
524 	},
525 	[RTAS_FNIDX__THAW_TIME_BASE] = {
526 		.name = "thaw-time-base",
527 	},
528 	[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
529 		.name = "write-pci-config",
530 	},
531 };
532 
533 #define for_each_rtas_function(funcp)                                       \
534 	for (funcp = &rtas_function_table[0];                               \
535 	     funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
536 	     ++funcp)
537 
538 /*
539  * Nearly all RTAS calls need to be serialized. All uses of the
540  * default rtas_args block must hold rtas_lock.
541  *
542  * Exceptions to the RTAS serialization requirement (e.g. stop-self)
543  * must use a separate rtas_args structure.
544  */
545 static DEFINE_RAW_SPINLOCK(rtas_lock);
546 static struct rtas_args rtas_args;
547 
548 /**
549  * rtas_function_token() - RTAS function token lookup.
550  * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
551  *
552  * Context: Any context.
553  * Return: the token value for the function if implemented by this platform,
554  *         otherwise RTAS_UNKNOWN_SERVICE.
555  */
556 s32 rtas_function_token(const rtas_fn_handle_t handle)
557 {
558 	const size_t index = handle.index;
559 	const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
560 
561 	if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
562 		return RTAS_UNKNOWN_SERVICE;
563 	/*
564 	 * Various drivers attempt token lookups on non-RTAS
565 	 * platforms.
566 	 */
567 	if (!rtas.dev)
568 		return RTAS_UNKNOWN_SERVICE;
569 
570 	return rtas_function_table[index].token;
571 }
572 EXPORT_SYMBOL_GPL(rtas_function_token);
573 
574 static int rtas_function_cmp(const void *a, const void *b)
575 {
576 	const struct rtas_function *f1 = a;
577 	const struct rtas_function *f2 = b;
578 
579 	return strcmp(f1->name, f2->name);
580 }
581 
582 /*
583  * Boot-time initialization of the function table needs the lookup to
584  * return a non-const-qualified object. Use rtas_name_to_function()
585  * in all other contexts.
586  */
587 static struct rtas_function *__rtas_name_to_function(const char *name)
588 {
589 	const struct rtas_function key = {
590 		.name = name,
591 	};
592 	struct rtas_function *found;
593 
594 	found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
595 			sizeof(rtas_function_table[0]), rtas_function_cmp);
596 
597 	return found;
598 }
599 
600 static const struct rtas_function *rtas_name_to_function(const char *name)
601 {
602 	return __rtas_name_to_function(name);
603 }
604 
605 static DEFINE_XARRAY(rtas_token_to_function_xarray);
606 
607 static int __init rtas_token_to_function_xarray_init(void)
608 {
609 	const struct rtas_function *func;
610 	int err = 0;
611 
612 	for_each_rtas_function(func) {
613 		const s32 token = func->token;
614 
615 		if (token == RTAS_UNKNOWN_SERVICE)
616 			continue;
617 
618 		err = xa_err(xa_store(&rtas_token_to_function_xarray,
619 				      token, (void *)func, GFP_KERNEL));
620 		if (err)
621 			break;
622 	}
623 
624 	return err;
625 }
626 arch_initcall(rtas_token_to_function_xarray_init);
627 
628 /*
629  * For use by sys_rtas(), where the token value is provided by user
630  * space and we don't want to warn on failed lookups.
631  */
632 static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
633 {
634 	return xa_load(&rtas_token_to_function_xarray, token);
635 }
636 
637 /*
638  * Reverse lookup for deriving the function descriptor from a
639  * known-good token value in contexts where the former is not already
640  * available. @token must be valid, e.g. derived from the result of a
641  * prior lookup against the function table.
642  */
643 static const struct rtas_function *rtas_token_to_function(s32 token)
644 {
645 	const struct rtas_function *func;
646 
647 	if (WARN_ONCE(token < 0, "invalid token %d", token))
648 		return NULL;
649 
650 	func = rtas_token_to_function_untrusted(token);
651 	if (func)
652 		return func;
653 	/*
654 	 * Fall back to linear scan in case the reverse mapping hasn't
655 	 * been initialized yet.
656 	 */
657 	if (xa_empty(&rtas_token_to_function_xarray)) {
658 		for_each_rtas_function(func) {
659 			if (func->token == token)
660 				return func;
661 		}
662 	}
663 
664 	WARN_ONCE(true, "unexpected failed lookup for token %d", token);
665 	return NULL;
666 }
667 
668 /* This is here deliberately so it's only used in this file */
669 void enter_rtas(unsigned long);
670 
671 static void __do_enter_rtas(struct rtas_args *args)
672 {
673 	enter_rtas(__pa(args));
674 	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
675 }
676 
677 static void __do_enter_rtas_trace(struct rtas_args *args)
678 {
679 	const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
680 
681 	/*
682 	 * If there is a per-function lock, it must be held by the
683 	 * caller.
684 	 */
685 	if (func->lock)
686 		lockdep_assert_held(func->lock);
687 
688 	if (args == &rtas_args)
689 		lockdep_assert_held(&rtas_lock);
690 
691 	trace_rtas_input(args, func->name);
692 	trace_rtas_ll_entry(args);
693 
694 	__do_enter_rtas(args);
695 
696 	trace_rtas_ll_exit(args);
697 	trace_rtas_output(args, func->name);
698 }
699 
700 static void do_enter_rtas(struct rtas_args *args)
701 {
702 	const unsigned long msr = mfmsr();
703 	/*
704 	 * Situations where we want to skip any active tracepoints for
705 	 * safety reasons:
706 	 *
707 	 * 1. The last code executed on an offline CPU as it stops,
708 	 *    i.e. we're about to call stop-self. The tracepoints'
709 	 *    function name lookup uses xarray, which uses RCU, which
710 	 *    isn't valid to call on an offline CPU.  Any events
711 	 *    emitted on an offline CPU will be discarded anyway.
712 	 *
713 	 * 2. In real mode, as when invoking ibm,nmi-interlock from
714 	 *    the pseries MCE handler. We cannot count on trace
715 	 *    buffers or the entries in rtas_token_to_function_xarray
716 	 *    to be contained in the RMO.
717 	 */
718 	const unsigned long mask = MSR_IR | MSR_DR;
719 	const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
720 				      (msr & mask) == mask);
721 	/*
722 	 * Make sure MSR[RI] is currently enabled as it will be forced later
723 	 * in enter_rtas.
724 	 */
725 	BUG_ON(!(msr & MSR_RI));
726 
727 	BUG_ON(!irqs_disabled());
728 
729 	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
730 
731 	if (can_trace)
732 		__do_enter_rtas_trace(args);
733 	else
734 		__do_enter_rtas(args);
735 }
736 
737 struct rtas_t rtas;
738 
739 DEFINE_SPINLOCK(rtas_data_buf_lock);
740 EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
741 
742 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
743 EXPORT_SYMBOL_GPL(rtas_data_buf);
744 
745 unsigned long rtas_rmo_buf;
746 
747 /*
748  * If non-NULL, this gets called when the kernel terminates.
749  * This is done like this so rtas_flash can be a module.
750  */
751 void (*rtas_flash_term_hook)(int);
752 EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
753 
754 /*
755  * call_rtas_display_status and call_rtas_display_status_delay
756  * are designed only for very early low-level debugging, which
757  * is why the token is hard-coded to 10.
758  */
759 static void call_rtas_display_status(unsigned char c)
760 {
761 	unsigned long flags;
762 
763 	if (!rtas.base)
764 		return;
765 
766 	raw_spin_lock_irqsave(&rtas_lock, flags);
767 	rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
768 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
769 }
770 
771 static void call_rtas_display_status_delay(char c)
772 {
773 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
774 	static int width = 16;
775 
776 	if (c == '\n') {
777 		while (width-- > 0)
778 			call_rtas_display_status(' ');
779 		width = 16;
780 		mdelay(500);
781 		pending_newline = 1;
782 	} else {
783 		if (pending_newline) {
784 			call_rtas_display_status('\r');
785 			call_rtas_display_status('\n');
786 		}
787 		pending_newline = 0;
788 		if (width--) {
789 			call_rtas_display_status(c);
790 			udelay(10000);
791 		}
792 	}
793 }
794 
795 void __init udbg_init_rtas_panel(void)
796 {
797 	udbg_putc = call_rtas_display_status_delay;
798 }
799 
800 #ifdef CONFIG_UDBG_RTAS_CONSOLE
801 
802 /* If you think you're dying before early_init_dt_scan_rtas() does its
803  * work, you can hard code the token values for your firmware here and
804  * hardcode rtas.base/entry etc.
805  */
806 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
807 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
808 
809 static void udbg_rtascon_putc(char c)
810 {
811 	int tries;
812 
813 	if (!rtas.base)
814 		return;
815 
816 	/* Add CRs before LFs */
817 	if (c == '\n')
818 		udbg_rtascon_putc('\r');
819 
820 	/* if there is more than one character to be displayed, wait a bit */
821 	for (tries = 0; tries < 16; tries++) {
822 		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
823 			break;
824 		udelay(1000);
825 	}
826 }
827 
828 static int udbg_rtascon_getc_poll(void)
829 {
830 	int c;
831 
832 	if (!rtas.base)
833 		return -1;
834 
835 	if (rtas_call(rtas_getchar_token, 0, 2, &c))
836 		return -1;
837 
838 	return c;
839 }
840 
841 static int udbg_rtascon_getc(void)
842 {
843 	int c;
844 
845 	while ((c = udbg_rtascon_getc_poll()) == -1)
846 		;
847 
848 	return c;
849 }
850 
851 
852 void __init udbg_init_rtas_console(void)
853 {
854 	udbg_putc = udbg_rtascon_putc;
855 	udbg_getc = udbg_rtascon_getc;
856 	udbg_getc_poll = udbg_rtascon_getc_poll;
857 }
858 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
859 
860 void rtas_progress(char *s, unsigned short hex)
861 {
862 	struct device_node *root;
863 	int width;
864 	const __be32 *p;
865 	char *os;
866 	static int display_character, set_indicator;
867 	static int display_width, display_lines, form_feed;
868 	static const int *row_width;
869 	static DEFINE_SPINLOCK(progress_lock);
870 	static int current_line;
871 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
872 
873 	if (!rtas.base)
874 		return;
875 
876 	if (display_width == 0) {
877 		display_width = 0x10;
878 		if ((root = of_find_node_by_path("/rtas"))) {
879 			if ((p = of_get_property(root,
880 					"ibm,display-line-length", NULL)))
881 				display_width = be32_to_cpu(*p);
882 			if ((p = of_get_property(root,
883 					"ibm,form-feed", NULL)))
884 				form_feed = be32_to_cpu(*p);
885 			if ((p = of_get_property(root,
886 					"ibm,display-number-of-lines", NULL)))
887 				display_lines = be32_to_cpu(*p);
888 			row_width = of_get_property(root,
889 					"ibm,display-truncation-length", NULL);
890 			of_node_put(root);
891 		}
892 		display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
893 		set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
894 	}
895 
896 	if (display_character == RTAS_UNKNOWN_SERVICE) {
897 		/* use hex display if available */
898 		if (set_indicator != RTAS_UNKNOWN_SERVICE)
899 			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
900 		return;
901 	}
902 
903 	spin_lock(&progress_lock);
904 
905 	/*
906 	 * Last write ended with newline, but we didn't print it since
907 	 * it would just clear the bottom line of output. Print it now
908 	 * instead.
909 	 *
910 	 * If no newline is pending and form feed is supported, clear the
911 	 * display with a form feed; otherwise, print a CR to start output
912 	 * at the beginning of the line.
913 	 */
914 	if (pending_newline) {
915 		rtas_call(display_character, 1, 1, NULL, '\r');
916 		rtas_call(display_character, 1, 1, NULL, '\n');
917 		pending_newline = 0;
918 	} else {
919 		current_line = 0;
920 		if (form_feed)
921 			rtas_call(display_character, 1, 1, NULL,
922 				  (char)form_feed);
923 		else
924 			rtas_call(display_character, 1, 1, NULL, '\r');
925 	}
926 
927 	if (row_width)
928 		width = row_width[current_line];
929 	else
930 		width = display_width;
931 	os = s;
932 	while (*os) {
933 		if (*os == '\n' || *os == '\r') {
934 			/* If newline is the last character, save it
935 			 * until next call to avoid bumping up the
936 			 * display output.
937 			 */
938 			if (*os == '\n' && !os[1]) {
939 				pending_newline = 1;
940 				current_line++;
941 				if (current_line > display_lines-1)
942 					current_line = display_lines-1;
943 				spin_unlock(&progress_lock);
944 				return;
945 			}
946 
947 			/* RTAS wants CR-LF, not just LF */
948 
949 			if (*os == '\n') {
950 				rtas_call(display_character, 1, 1, NULL, '\r');
951 				rtas_call(display_character, 1, 1, NULL, '\n');
952 			} else {
953 				/* CR might be used to re-draw a line, so we'll
954 				 * leave it alone and not add LF.
955 				 */
956 				rtas_call(display_character, 1, 1, NULL, *os);
957 			}
958 
959 			if (row_width)
960 				width = row_width[current_line];
961 			else
962 				width = display_width;
963 		} else {
964 			width--;
965 			rtas_call(display_character, 1, 1, NULL, *os);
966 		}
967 
968 		os++;
969 
970 		/* if we overwrite the screen length */
971 		if (width <= 0)
972 			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
973 				os++;
974 	}
975 
976 	spin_unlock(&progress_lock);
977 }
978 EXPORT_SYMBOL_GPL(rtas_progress);		/* needed by rtas_flash module */
979 
980 int rtas_token(const char *service)
981 {
982 	const struct rtas_function *func;
983 	const __be32 *tokp;
984 
985 	if (rtas.dev == NULL)
986 		return RTAS_UNKNOWN_SERVICE;
987 
988 	func = rtas_name_to_function(service);
989 	if (func)
990 		return func->token;
991 	/*
992 	 * The caller is looking up a name that is not known to be an
993 	 * RTAS function. Either it's a function that needs to be
994 	 * added to the table, or they're misusing rtas_token() to
995 	 * access non-function properties of the /rtas node. Warn and
996 	 * fall back to the legacy behavior.
997 	 */
998 	WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
999 		  service);
1000 
1001 	tokp = of_get_property(rtas.dev, service, NULL);
1002 	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
1003 }
1004 EXPORT_SYMBOL_GPL(rtas_token);
1005 
1006 #ifdef CONFIG_RTAS_ERROR_LOGGING
1007 
1008 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
1009 
1010 /*
1011  * Return the firmware-specified size of the error log buffer
1012  *  for all rtas calls that require an error buffer argument.
1013  *  This includes 'check-exception' and 'rtas-last-error'.
1014  */
1015 int rtas_get_error_log_max(void)
1016 {
1017 	return rtas_error_log_max;
1018 }
1019 
1020 static void __init init_error_log_max(void)
1021 {
1022 	static const char propname[] __initconst = "rtas-error-log-max";
1023 	u32 max;
1024 
1025 	if (of_property_read_u32(rtas.dev, propname, &max)) {
1026 		pr_warn("%s not found, using default of %u\n",
1027 			propname, RTAS_ERROR_LOG_MAX);
1028 		max = RTAS_ERROR_LOG_MAX;
1029 	}
1030 
1031 	if (max > RTAS_ERROR_LOG_MAX) {
1032 		pr_warn("%s = %u, clamping max error log size to %u\n",
1033 			propname, max, RTAS_ERROR_LOG_MAX);
1034 		max = RTAS_ERROR_LOG_MAX;
1035 	}
1036 
1037 	rtas_error_log_max = max;
1038 }
1039 
1040 
1041 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
1042 
1043 /** Return a copy of the detailed error text associated with the
1044  *  most recent failed call to rtas.  Because the error text
1045  *  might go stale if there are any other intervening rtas calls,
1046  *  this routine must be called atomically with whatever produced
1047  *  the error (i.e. with rtas_lock still held from the previous call).
1048  */
1049 static char *__fetch_rtas_last_error(char *altbuf)
1050 {
1051 	const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
1052 	struct rtas_args err_args, save_args;
1053 	u32 bufsz;
1054 	char *buf = NULL;
1055 
1056 	lockdep_assert_held(&rtas_lock);
1057 
1058 	if (token == -1)
1059 		return NULL;
1060 
1061 	bufsz = rtas_get_error_log_max();
1062 
1063 	err_args.token = cpu_to_be32(token);
1064 	err_args.nargs = cpu_to_be32(2);
1065 	err_args.nret = cpu_to_be32(1);
1066 	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
1067 	err_args.args[1] = cpu_to_be32(bufsz);
1068 	err_args.args[2] = 0;
1069 
1070 	save_args = rtas_args;
1071 	rtas_args = err_args;
1072 
1073 	do_enter_rtas(&rtas_args);
1074 
1075 	err_args = rtas_args;
1076 	rtas_args = save_args;
1077 
1078 	/* Log the error in the unlikely case that there was one. */
1079 	if (unlikely(err_args.args[2] == 0)) {
1080 		if (altbuf) {
1081 			buf = altbuf;
1082 		} else {
1083 			buf = rtas_err_buf;
1084 			if (slab_is_available())
1085 				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1086 		}
1087 		if (buf)
1088 			memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1089 	}
1090 
1091 	return buf;
1092 }
1093 
1094 #define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1095 
1096 #else /* CONFIG_RTAS_ERROR_LOGGING */
1097 #define __fetch_rtas_last_error(x)	NULL
1098 #define get_errorlog_buffer()		NULL
1099 static void __init init_error_log_max(void) {}
1100 #endif
1101 
1102 
1103 static void
1104 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1105 		      va_list list)
1106 {
1107 	int i;
1108 
1109 	args->token = cpu_to_be32(token);
1110 	args->nargs = cpu_to_be32(nargs);
1111 	args->nret  = cpu_to_be32(nret);
1112 	args->rets  = &(args->args[nargs]);
1113 
1114 	for (i = 0; i < nargs; ++i)
1115 		args->args[i] = cpu_to_be32(va_arg(list, __u32));
1116 
1117 	for (i = 0; i < nret; ++i)
1118 		args->rets[i] = 0;
1119 
1120 	do_enter_rtas(args);
1121 }
1122 
1123 /**
1124  * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1125  * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1126  *        constraints.
1127  * @token: Identifies the function being invoked.
1128  * @nargs: Number of input parameters. Does not include token.
1129  * @nret: Number of output parameters, including the call status.
1130  * @....: List of @nargs input parameters.
1131  *
1132  * Invokes the RTAS function indicated by @token, which the caller
1133  * should obtain via rtas_function_token().
1134  *
1135  * This function is similar to rtas_call(), but must be used with a
1136  * limited set of RTAS calls specifically exempted from the general
1137  * requirement that only one RTAS call may be in progress at any
1138  * time. Examples include stop-self and ibm,nmi-interlock.
1139  */
1140 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1141 {
1142 	va_list list;
1143 
1144 	va_start(list, nret);
1145 	va_rtas_call_unlocked(args, token, nargs, nret, list);
1146 	va_end(list);
1147 }
1148 
1149 static bool token_is_restricted_errinjct(s32 token)
1150 {
1151 	return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1152 	       token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1153 }
1154 
1155 /**
1156  * rtas_call() - Invoke an RTAS firmware function.
1157  * @token: Identifies the function being invoked.
1158  * @nargs: Number of input parameters. Does not include token.
1159  * @nret: Number of output parameters, including the call status.
1160  * @outputs: Array of @nret output words.
1161  * @....: List of @nargs input parameters.
1162  *
1163  * Invokes the RTAS function indicated by @token, which the caller
1164  * should obtain via rtas_function_token().
1165  *
1166  * The @nargs and @nret arguments must match the number of input and
1167  * output parameters specified for the RTAS function.
1168  *
1169  * rtas_call() returns RTAS status codes, not conventional Linux errno
1170  * values. Callers must translate any failure to an appropriate errno
1171  * in syscall context. Most callers of RTAS functions that can return
1172  * -2 or 990x should use rtas_busy_delay() to correctly handle those
1173  * statuses before calling again.
1174  *
1175  * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1176  * Codes of the PAPR and CHRP specifications.
1177  *
1178  * Context: Process context preferably, interrupt context if
1179  *          necessary.  Acquires an internal spinlock and may perform
1180  *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1181  *          context.
1182  * Return:
1183  * *                          0 - RTAS function call succeeded.
1184  * *                         -1 - RTAS function encountered a hardware or
1185  *                                platform error, or the token is invalid,
1186  *                                or the function is restricted by kernel policy.
1187  * *                         -2 - Specs say "A necessary hardware device was busy,
1188  *                                and the requested function could not be
1189  *                                performed. The operation should be retried at
1190  *                                a later time." This is misleading, at least with
1191  *                                respect to current RTAS implementations. What it
1192  *                                usually means in practice is that the function
1193  *                                could not be completed while meeting RTAS's
1194  *                                deadline for returning control to the OS (250us
1195  *                                for PAPR/PowerVM, typically), but the call may be
1196  *                                immediately reattempted to resume work on it.
1197  * *                         -3 - Parameter error.
1198  * *                         -7 - Unexpected state change.
1199  * *                9000...9899 - Vendor-specific success codes.
1200  * *                9900...9905 - Advisory extended delay. Caller should try
1201  *                                again after ~10^x ms has elapsed, where x is
1202  *                                the last digit of the status [0-5]. Again going
1203  *                                beyond the PAPR text, 990x on PowerVM indicates
1204  *                                contention for RTAS-internal resources. Other
1205  *                                RTAS call sequences in progress should be
1206  *                                allowed to complete before reattempting the
1207  *                                call.
1208  * *                      -9000 - Multi-level isolation error.
1209  * *              -9999...-9004 - Vendor-specific error codes.
1210  * * Additional negative values - Function-specific error.
1211  * * Additional positive values - Function-specific success.
1212  */
1213 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1214 {
1215 	struct pin_cookie cookie;
1216 	va_list list;
1217 	int i;
1218 	unsigned long flags;
1219 	struct rtas_args *args;
1220 	char *buff_copy = NULL;
1221 	int ret;
1222 
1223 	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1224 		return -1;
1225 
1226 	if (token_is_restricted_errinjct(token)) {
1227 		/*
1228 		 * It would be nicer to not discard the error value
1229 		 * from security_locked_down(), but callers expect an
1230 		 * RTAS status, not an errno.
1231 		 */
1232 		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1233 			return -1;
1234 	}
1235 
1236 	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1237 		WARN_ON_ONCE(1);
1238 		return -1;
1239 	}
1240 
1241 	raw_spin_lock_irqsave(&rtas_lock, flags);
1242 	cookie = lockdep_pin_lock(&rtas_lock);
1243 
1244 	/* We use the global rtas args buffer */
1245 	args = &rtas_args;
1246 
1247 	va_start(list, outputs);
1248 	va_rtas_call_unlocked(args, token, nargs, nret, list);
1249 	va_end(list);
1250 
1251 	/* A -1 return code indicates that the last command couldn't
1252 	   be completed due to a hardware error. */
1253 	if (be32_to_cpu(args->rets[0]) == -1)
1254 		buff_copy = __fetch_rtas_last_error(NULL);
1255 
1256 	if (nret > 1 && outputs != NULL)
1257 		for (i = 0; i < nret-1; ++i)
1258 			outputs[i] = be32_to_cpu(args->rets[i + 1]);
1259 	ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1260 
1261 	lockdep_unpin_lock(&rtas_lock, cookie);
1262 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1263 
1264 	if (buff_copy) {
1265 		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1266 		if (slab_is_available())
1267 			kfree(buff_copy);
1268 	}
1269 	return ret;
1270 }
1271 EXPORT_SYMBOL_GPL(rtas_call);
1272 
1273 /**
1274  * rtas_busy_delay_time() - From an RTAS status value, calculate the
1275  *                          suggested delay time in milliseconds.
1276  *
1277  * @status: a value returned from rtas_call() or similar APIs which return
1278  *          the status of a RTAS function call.
1279  *
1280  * Context: Any context.
1281  *
1282  * Return:
1283  * * 100000 - If @status is 9905.
1284  * * 10000  - If @status is 9904.
1285  * * 1000   - If @status is 9903.
1286  * * 100    - If @status is 9902.
1287  * * 10     - If @status is 9901.
1288  * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1289  *            some callers depend on this behavior, and the worst outcome
1290  *            is that they will delay for longer than necessary.
1291  * * 0      - If @status is not a busy or extended delay value.
1292  */
1293 unsigned int rtas_busy_delay_time(int status)
1294 {
1295 	int order;
1296 	unsigned int ms = 0;
1297 
1298 	if (status == RTAS_BUSY) {
1299 		ms = 1;
1300 	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1301 		   status <= RTAS_EXTENDED_DELAY_MAX) {
1302 		order = status - RTAS_EXTENDED_DELAY_MIN;
1303 		for (ms = 1; order > 0; order--)
1304 			ms *= 10;
1305 	}
1306 
1307 	return ms;
1308 }
1309 
1310 /*
1311  * Early boot fallback for rtas_busy_delay().
1312  */
1313 static bool __init rtas_busy_delay_early(int status)
1314 {
1315 	static size_t successive_ext_delays __initdata;
1316 	bool retry;
1317 
1318 	switch (status) {
1319 	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1320 		/*
1321 		 * In the unlikely case that we receive an extended
1322 		 * delay status in early boot, the OS is probably not
1323 		 * the cause, and there's nothing we can do to clear
1324 		 * the condition. Best we can do is delay for a bit
1325 		 * and hope it's transient. Lie to the caller if it
1326 		 * seems like we're stuck in a retry loop.
1327 		 */
1328 		mdelay(1);
1329 		retry = true;
1330 		successive_ext_delays += 1;
1331 		if (successive_ext_delays > 1000) {
1332 			pr_err("too many extended delays, giving up\n");
1333 			dump_stack();
1334 			retry = false;
1335 			successive_ext_delays = 0;
1336 		}
1337 		break;
1338 	case RTAS_BUSY:
1339 		retry = true;
1340 		successive_ext_delays = 0;
1341 		break;
1342 	default:
1343 		retry = false;
1344 		successive_ext_delays = 0;
1345 		break;
1346 	}
1347 
1348 	return retry;
1349 }
1350 
1351 /**
1352  * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1353  *
1354  * @status: a value returned from rtas_call() or similar APIs which return
1355  *          the status of a RTAS function call.
1356  *
1357  * Context: Process context. May sleep or schedule.
1358  *
1359  * Return:
1360  * * true  - @status is RTAS_BUSY or an extended delay hint. The
1361  *           caller may assume that the CPU has been yielded if necessary,
1362  *           and that an appropriate delay for @status has elapsed.
1363  *           Generally the caller should reattempt the RTAS call which
1364  *           yielded @status.
1365  *
1366  * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1367  *           caller is responsible for handling @status.
1368  */
1369 bool __ref rtas_busy_delay(int status)
1370 {
1371 	unsigned int ms;
1372 	bool ret;
1373 
1374 	/*
1375 	 * Can't do timed sleeps before timekeeping is up.
1376 	 */
1377 	if (system_state < SYSTEM_SCHEDULING)
1378 		return rtas_busy_delay_early(status);
1379 
1380 	switch (status) {
1381 	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1382 		ret = true;
1383 		ms = rtas_busy_delay_time(status);
1384 		/*
1385 		 * The extended delay hint can be as high as 100 seconds.
1386 		 * Surely any function returning such a status is either
1387 		 * buggy or isn't going to be significantly slowed by us
1388 		 * polling at 1HZ. Clamp the sleep time to one second.
1389 		 */
1390 		ms = clamp(ms, 1U, 1000U);
1391 		/*
1392 		 * The delay hint is an order-of-magnitude suggestion, not
1393 		 * a minimum. It is fine, possibly even advantageous, for
1394 		 * us to pause for less time than hinted. For small values,
1395 		 * use usleep_range() to ensure we don't sleep much longer
1396 		 * than actually needed.
1397 		 *
1398 		 * See Documentation/timers/timers-howto.rst for
1399 		 * explanation of the threshold used here. In effect we use
1400 		 * usleep_range() for 9900 and 9901, msleep() for
1401 		 * 9902-9905.
1402 		 */
1403 		if (ms <= 20)
1404 			usleep_range(ms * 100, ms * 1000);
1405 		else
1406 			msleep(ms);
1407 		break;
1408 	case RTAS_BUSY:
1409 		ret = true;
1410 		/*
1411 		 * We should call again immediately if there's no other
1412 		 * work to do.
1413 		 */
1414 		cond_resched();
1415 		break;
1416 	default:
1417 		ret = false;
1418 		/*
1419 		 * Not a busy or extended delay status; the caller should
1420 		 * handle @status itself. Ensure we warn on misuses in
1421 		 * atomic context regardless.
1422 		 */
1423 		might_sleep();
1424 		break;
1425 	}
1426 
1427 	return ret;
1428 }
1429 EXPORT_SYMBOL_GPL(rtas_busy_delay);
1430 
1431 int rtas_error_rc(int rtas_rc)
1432 {
1433 	int rc;
1434 
1435 	switch (rtas_rc) {
1436 	case RTAS_HARDWARE_ERROR:	/* Hardware Error */
1437 		rc = -EIO;
1438 		break;
1439 	case RTAS_INVALID_PARAMETER:	/* Bad indicator/domain/etc */
1440 		rc = -EINVAL;
1441 		break;
1442 	case -9000:			/* Isolation error */
1443 		rc = -EFAULT;
1444 		break;
1445 	case -9001:			/* Outstanding TCE/PTE */
1446 		rc = -EEXIST;
1447 		break;
1448 	case -9002:			/* No usable slot */
1449 		rc = -ENODEV;
1450 		break;
1451 	default:
1452 		pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1453 		rc = -ERANGE;
1454 		break;
1455 	}
1456 	return rc;
1457 }
1458 EXPORT_SYMBOL_GPL(rtas_error_rc);
1459 
1460 int rtas_get_power_level(int powerdomain, int *level)
1461 {
1462 	int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1463 	int rc;
1464 
1465 	if (token == RTAS_UNKNOWN_SERVICE)
1466 		return -ENOENT;
1467 
1468 	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1469 		udelay(1);
1470 
1471 	if (rc < 0)
1472 		return rtas_error_rc(rc);
1473 	return rc;
1474 }
1475 EXPORT_SYMBOL_GPL(rtas_get_power_level);
1476 
1477 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1478 {
1479 	int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1480 	int rc;
1481 
1482 	if (token == RTAS_UNKNOWN_SERVICE)
1483 		return -ENOENT;
1484 
1485 	do {
1486 		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1487 	} while (rtas_busy_delay(rc));
1488 
1489 	if (rc < 0)
1490 		return rtas_error_rc(rc);
1491 	return rc;
1492 }
1493 EXPORT_SYMBOL_GPL(rtas_set_power_level);
1494 
1495 int rtas_get_sensor(int sensor, int index, int *state)
1496 {
1497 	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1498 	int rc;
1499 
1500 	if (token == RTAS_UNKNOWN_SERVICE)
1501 		return -ENOENT;
1502 
1503 	do {
1504 		rc = rtas_call(token, 2, 2, state, sensor, index);
1505 	} while (rtas_busy_delay(rc));
1506 
1507 	if (rc < 0)
1508 		return rtas_error_rc(rc);
1509 	return rc;
1510 }
1511 EXPORT_SYMBOL_GPL(rtas_get_sensor);
1512 
1513 int rtas_get_sensor_fast(int sensor, int index, int *state)
1514 {
1515 	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1516 	int rc;
1517 
1518 	if (token == RTAS_UNKNOWN_SERVICE)
1519 		return -ENOENT;
1520 
1521 	rc = rtas_call(token, 2, 2, state, sensor, index);
1522 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1523 				    rc <= RTAS_EXTENDED_DELAY_MAX));
1524 
1525 	if (rc < 0)
1526 		return rtas_error_rc(rc);
1527 	return rc;
1528 }
1529 
1530 bool rtas_indicator_present(int token, int *maxindex)
1531 {
1532 	int proplen, count, i;
1533 	const struct indicator_elem {
1534 		__be32 token;
1535 		__be32 maxindex;
1536 	} *indicators;
1537 
1538 	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1539 	if (!indicators)
1540 		return false;
1541 
1542 	count = proplen / sizeof(struct indicator_elem);
1543 
1544 	for (i = 0; i < count; i++) {
1545 		if (__be32_to_cpu(indicators[i].token) != token)
1546 			continue;
1547 		if (maxindex)
1548 			*maxindex = __be32_to_cpu(indicators[i].maxindex);
1549 		return true;
1550 	}
1551 
1552 	return false;
1553 }
1554 
1555 int rtas_set_indicator(int indicator, int index, int new_value)
1556 {
1557 	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1558 	int rc;
1559 
1560 	if (token == RTAS_UNKNOWN_SERVICE)
1561 		return -ENOENT;
1562 
1563 	do {
1564 		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1565 	} while (rtas_busy_delay(rc));
1566 
1567 	if (rc < 0)
1568 		return rtas_error_rc(rc);
1569 	return rc;
1570 }
1571 EXPORT_SYMBOL_GPL(rtas_set_indicator);
1572 
1573 /*
1574  * Ignoring RTAS extended delay
1575  */
1576 int rtas_set_indicator_fast(int indicator, int index, int new_value)
1577 {
1578 	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1579 	int rc;
1580 
1581 	if (token == RTAS_UNKNOWN_SERVICE)
1582 		return -ENOENT;
1583 
1584 	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1585 
1586 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1587 				    rc <= RTAS_EXTENDED_DELAY_MAX));
1588 
1589 	if (rc < 0)
1590 		return rtas_error_rc(rc);
1591 
1592 	return rc;
1593 }
1594 
1595 /**
1596  * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1597  *
1598  * @fw_status: RTAS call status will be placed here if not NULL.
1599  *
1600  * rtas_ibm_suspend_me() should be called only on a CPU which has
1601  * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1602  * should be waiting to return from H_JOIN.
1603  *
1604  * rtas_ibm_suspend_me() may suspend execution of the OS
1605  * indefinitely. Callers should take appropriate measures upon return, such as
1606  * resetting watchdog facilities.
1607  *
1608  * Callers may choose to retry this call if @fw_status is
1609  * %RTAS_THREADS_ACTIVE.
1610  *
1611  * Return:
1612  * 0          - The partition has resumed from suspend, possibly after
1613  *              migration to a different host.
1614  * -ECANCELED - The operation was aborted.
1615  * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1616  * -EBUSY     - Some other condition prevented the suspend from succeeding.
1617  * -EIO       - Hardware/platform error.
1618  */
1619 int rtas_ibm_suspend_me(int *fw_status)
1620 {
1621 	int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1622 	int fwrc;
1623 	int ret;
1624 
1625 	fwrc = rtas_call(token, 0, 1, NULL);
1626 
1627 	switch (fwrc) {
1628 	case 0:
1629 		ret = 0;
1630 		break;
1631 	case RTAS_SUSPEND_ABORTED:
1632 		ret = -ECANCELED;
1633 		break;
1634 	case RTAS_THREADS_ACTIVE:
1635 		ret = -EAGAIN;
1636 		break;
1637 	case RTAS_NOT_SUSPENDABLE:
1638 	case RTAS_OUTSTANDING_COPROC:
1639 		ret = -EBUSY;
1640 		break;
1641 	case -1:
1642 	default:
1643 		ret = -EIO;
1644 		break;
1645 	}
1646 
1647 	if (fw_status)
1648 		*fw_status = fwrc;
1649 
1650 	return ret;
1651 }
1652 
1653 void __noreturn rtas_restart(char *cmd)
1654 {
1655 	if (rtas_flash_term_hook)
1656 		rtas_flash_term_hook(SYS_RESTART);
1657 	pr_emerg("system-reboot returned %d\n",
1658 		 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1659 	for (;;);
1660 }
1661 
1662 void rtas_power_off(void)
1663 {
1664 	if (rtas_flash_term_hook)
1665 		rtas_flash_term_hook(SYS_POWER_OFF);
1666 	/* allow power on only with power button press */
1667 	pr_emerg("power-off returned %d\n",
1668 		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1669 	for (;;);
1670 }
1671 
1672 void __noreturn rtas_halt(void)
1673 {
1674 	if (rtas_flash_term_hook)
1675 		rtas_flash_term_hook(SYS_HALT);
1676 	/* allow power on only with power button press */
1677 	pr_emerg("power-off returned %d\n",
1678 		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1679 	for (;;);
1680 }
1681 
1682 /* Must be in the RMO region, so we place it here */
1683 static char rtas_os_term_buf[2048];
1684 static bool ibm_extended_os_term;
1685 
1686 void rtas_os_term(char *str)
1687 {
1688 	s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1689 	static struct rtas_args args;
1690 	int status;
1691 
1692 	/*
1693 	 * Firmware with the ibm,extended-os-term property is guaranteed
1694 	 * to always return from an ibm,os-term call. Earlier versions without
1695 	 * this property may terminate the partition which we want to avoid
1696 	 * since it interferes with panic_timeout.
1697 	 */
1698 
1699 	if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1700 		return;
1701 
1702 	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1703 
1704 	/*
1705 	 * Keep calling as long as RTAS returns a "try again" status,
1706 	 * but don't use rtas_busy_delay(), which potentially
1707 	 * schedules.
1708 	 */
1709 	do {
1710 		rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1711 		status = be32_to_cpu(args.rets[0]);
1712 	} while (rtas_busy_delay_time(status));
1713 
1714 	if (status != 0)
1715 		pr_emerg("ibm,os-term call failed %d\n", status);
1716 }
1717 
1718 /**
1719  * rtas_activate_firmware() - Activate a new version of firmware.
1720  *
1721  * Context: This function may sleep.
1722  *
1723  * Activate a new version of partition firmware. The OS must call this
1724  * after resuming from a partition hibernation or migration in order
1725  * to maintain the ability to perform live firmware updates. It's not
1726  * catastrophic for this method to be absent or to fail; just log the
1727  * condition in that case.
1728  */
1729 void rtas_activate_firmware(void)
1730 {
1731 	int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1732 	int fwrc;
1733 
1734 	if (token == RTAS_UNKNOWN_SERVICE) {
1735 		pr_notice("ibm,activate-firmware method unavailable\n");
1736 		return;
1737 	}
1738 
1739 	mutex_lock(&rtas_ibm_activate_firmware_lock);
1740 
1741 	do {
1742 		fwrc = rtas_call(token, 0, 1, NULL);
1743 	} while (rtas_busy_delay(fwrc));
1744 
1745 	mutex_unlock(&rtas_ibm_activate_firmware_lock);
1746 
1747 	if (fwrc)
1748 		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1749 }
1750 
1751 /**
1752  * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1753  *                          extended event log.
1754  * @log: RTAS error/event log
1755  * @section_id: two character section identifier
1756  *
1757  * Return: A pointer to the specified errorlog or NULL if not found.
1758  */
1759 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1760 						      uint16_t section_id)
1761 {
1762 	struct rtas_ext_event_log_v6 *ext_log =
1763 		(struct rtas_ext_event_log_v6 *)log->buffer;
1764 	struct pseries_errorlog *sect;
1765 	unsigned char *p, *log_end;
1766 	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1767 	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1768 	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1769 
1770 	/* Check that we understand the format */
1771 	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1772 	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1773 	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1774 		return NULL;
1775 
1776 	log_end = log->buffer + ext_log_length;
1777 	p = ext_log->vendor_log;
1778 
1779 	while (p < log_end) {
1780 		sect = (struct pseries_errorlog *)p;
1781 		if (pseries_errorlog_id(sect) == section_id)
1782 			return sect;
1783 		p += pseries_errorlog_length(sect);
1784 	}
1785 
1786 	return NULL;
1787 }
1788 
1789 /*
1790  * The sys_rtas syscall, as originally designed, allows root to pass
1791  * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1792  * can be abused to write to arbitrary memory and do other things that
1793  * are potentially harmful to system integrity, and thus should only
1794  * be used inside the kernel and not exposed to userspace.
1795  *
1796  * All known legitimate users of the sys_rtas syscall will only ever
1797  * pass addresses that fall within the RMO buffer, and use a known
1798  * subset of RTAS calls.
1799  *
1800  * Accordingly, we filter RTAS requests to check that the call is
1801  * permitted, and that provided pointers fall within the RMO buffer.
1802  * If a function is allowed to be invoked via the syscall, then its
1803  * entry in the rtas_functions table points to a rtas_filter that
1804  * describes its constraints, with the indexes of the parameters which
1805  * are expected to contain addresses and sizes of buffers allocated
1806  * inside the RMO buffer.
1807  */
1808 
1809 static bool in_rmo_buf(u32 base, u32 end)
1810 {
1811 	return base >= rtas_rmo_buf &&
1812 		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1813 		base <= end &&
1814 		end >= rtas_rmo_buf &&
1815 		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1816 }
1817 
1818 static bool block_rtas_call(const struct rtas_function *func, int nargs,
1819 			    struct rtas_args *args)
1820 {
1821 	const struct rtas_filter *f;
1822 	const bool is_platform_dump =
1823 		func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
1824 	const bool is_config_conn =
1825 		func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
1826 	u32 base, size, end;
1827 
1828 	/*
1829 	 * Only functions with filters attached are allowed.
1830 	 */
1831 	f = func->filter;
1832 	if (!f)
1833 		goto err;
1834 	/*
1835 	 * And some functions aren't allowed on LE.
1836 	 */
1837 	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1838 		goto err;
1839 
1840 	if (f->buf_idx1 != -1) {
1841 		base = be32_to_cpu(args->args[f->buf_idx1]);
1842 		if (f->size_idx1 != -1)
1843 			size = be32_to_cpu(args->args[f->size_idx1]);
1844 		else if (f->fixed_size)
1845 			size = f->fixed_size;
1846 		else
1847 			size = 1;
1848 
1849 		end = base + size - 1;
1850 
1851 		/*
1852 		 * Special case for ibm,platform-dump - NULL buffer
1853 		 * address is used to indicate end of dump processing
1854 		 */
1855 		if (is_platform_dump && base == 0)
1856 			return false;
1857 
1858 		if (!in_rmo_buf(base, end))
1859 			goto err;
1860 	}
1861 
1862 	if (f->buf_idx2 != -1) {
1863 		base = be32_to_cpu(args->args[f->buf_idx2]);
1864 		if (f->size_idx2 != -1)
1865 			size = be32_to_cpu(args->args[f->size_idx2]);
1866 		else if (f->fixed_size)
1867 			size = f->fixed_size;
1868 		else
1869 			size = 1;
1870 		end = base + size - 1;
1871 
1872 		/*
1873 		 * Special case for ibm,configure-connector where the
1874 		 * address can be 0
1875 		 */
1876 		if (is_config_conn && base == 0)
1877 			return false;
1878 
1879 		if (!in_rmo_buf(base, end))
1880 			goto err;
1881 	}
1882 
1883 	return false;
1884 err:
1885 	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1886 	pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
1887 			   func->name, nargs, current->comm);
1888 	return true;
1889 }
1890 
1891 /* We assume to be passed big endian arguments */
1892 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1893 {
1894 	const struct rtas_function *func;
1895 	struct pin_cookie cookie;
1896 	struct rtas_args args;
1897 	unsigned long flags;
1898 	char *buff_copy, *errbuf = NULL;
1899 	int nargs, nret, token;
1900 
1901 	if (!capable(CAP_SYS_ADMIN))
1902 		return -EPERM;
1903 
1904 	if (!rtas.entry)
1905 		return -EINVAL;
1906 
1907 	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1908 		return -EFAULT;
1909 
1910 	nargs = be32_to_cpu(args.nargs);
1911 	nret  = be32_to_cpu(args.nret);
1912 	token = be32_to_cpu(args.token);
1913 
1914 	if (nargs >= ARRAY_SIZE(args.args)
1915 	    || nret > ARRAY_SIZE(args.args)
1916 	    || nargs + nret > ARRAY_SIZE(args.args))
1917 		return -EINVAL;
1918 
1919 	/* Copy in args. */
1920 	if (copy_from_user(args.args, uargs->args,
1921 			   nargs * sizeof(rtas_arg_t)) != 0)
1922 		return -EFAULT;
1923 
1924 	/*
1925 	 * If this token doesn't correspond to a function the kernel
1926 	 * understands, you're not allowed to call it.
1927 	 */
1928 	func = rtas_token_to_function_untrusted(token);
1929 	if (!func)
1930 		return -EINVAL;
1931 
1932 	args.rets = &args.args[nargs];
1933 	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1934 
1935 	if (block_rtas_call(func, nargs, &args))
1936 		return -EINVAL;
1937 
1938 	if (token_is_restricted_errinjct(token)) {
1939 		int err;
1940 
1941 		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1942 		if (err)
1943 			return err;
1944 	}
1945 
1946 	/* Need to handle ibm,suspend_me call specially */
1947 	if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1948 
1949 		/*
1950 		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1951 		 * endian, or at least the hcall within it requires it.
1952 		 */
1953 		int rc = 0;
1954 		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1955 		              | be32_to_cpu(args.args[1]);
1956 		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1957 		if (rc == -EAGAIN)
1958 			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1959 		else if (rc == -EIO)
1960 			args.rets[0] = cpu_to_be32(-1);
1961 		else if (rc)
1962 			return rc;
1963 		goto copy_return;
1964 	}
1965 
1966 	buff_copy = get_errorlog_buffer();
1967 
1968 	/*
1969 	 * If this function has a mutex assigned to it, we must
1970 	 * acquire it to avoid interleaving with any kernel-based uses
1971 	 * of the same function. Kernel-based sequences acquire the
1972 	 * appropriate mutex explicitly.
1973 	 */
1974 	if (func->lock)
1975 		mutex_lock(func->lock);
1976 
1977 	raw_spin_lock_irqsave(&rtas_lock, flags);
1978 	cookie = lockdep_pin_lock(&rtas_lock);
1979 
1980 	rtas_args = args;
1981 	do_enter_rtas(&rtas_args);
1982 	args = rtas_args;
1983 
1984 	/* A -1 return code indicates that the last command couldn't
1985 	   be completed due to a hardware error. */
1986 	if (be32_to_cpu(args.rets[0]) == -1)
1987 		errbuf = __fetch_rtas_last_error(buff_copy);
1988 
1989 	lockdep_unpin_lock(&rtas_lock, cookie);
1990 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1991 
1992 	if (func->lock)
1993 		mutex_unlock(func->lock);
1994 
1995 	if (buff_copy) {
1996 		if (errbuf)
1997 			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1998 		kfree(buff_copy);
1999 	}
2000 
2001  copy_return:
2002 	/* Copy out args. */
2003 	if (copy_to_user(uargs->args + nargs,
2004 			 args.args + nargs,
2005 			 nret * sizeof(rtas_arg_t)) != 0)
2006 		return -EFAULT;
2007 
2008 	return 0;
2009 }
2010 
2011 static void __init rtas_function_table_init(void)
2012 {
2013 	struct property *prop;
2014 
2015 	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
2016 		struct rtas_function *curr = &rtas_function_table[i];
2017 		struct rtas_function *prior;
2018 		int cmp;
2019 
2020 		curr->token = RTAS_UNKNOWN_SERVICE;
2021 
2022 		if (i == 0)
2023 			continue;
2024 		/*
2025 		 * Ensure table is sorted correctly for binary search
2026 		 * on function names.
2027 		 */
2028 		prior = &rtas_function_table[i - 1];
2029 
2030 		cmp = strcmp(prior->name, curr->name);
2031 		if (cmp < 0)
2032 			continue;
2033 
2034 		if (cmp == 0) {
2035 			pr_err("'%s' has duplicate function table entries\n",
2036 			       curr->name);
2037 		} else {
2038 			pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
2039 			       prior->name, curr->name);
2040 		}
2041 	}
2042 
2043 	for_each_property_of_node(rtas.dev, prop) {
2044 		struct rtas_function *func;
2045 
2046 		if (prop->length != sizeof(u32))
2047 			continue;
2048 
2049 		func = __rtas_name_to_function(prop->name);
2050 		if (!func)
2051 			continue;
2052 
2053 		func->token = be32_to_cpup((__be32 *)prop->value);
2054 
2055 		pr_debug("function %s has token %u\n", func->name, func->token);
2056 	}
2057 }
2058 
2059 /*
2060  * Call early during boot, before mem init, to retrieve the RTAS
2061  * information from the device-tree and allocate the RMO buffer for userland
2062  * accesses.
2063  */
2064 void __init rtas_initialize(void)
2065 {
2066 	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
2067 	u32 base, size, entry;
2068 	int no_base, no_size, no_entry;
2069 
2070 	/* Get RTAS dev node and fill up our "rtas" structure with infos
2071 	 * about it.
2072 	 */
2073 	rtas.dev = of_find_node_by_name(NULL, "rtas");
2074 	if (!rtas.dev)
2075 		return;
2076 
2077 	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
2078 	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
2079 	if (no_base || no_size) {
2080 		of_node_put(rtas.dev);
2081 		rtas.dev = NULL;
2082 		return;
2083 	}
2084 
2085 	rtas.base = base;
2086 	rtas.size = size;
2087 	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
2088 	rtas.entry = no_entry ? rtas.base : entry;
2089 
2090 	init_error_log_max();
2091 
2092 	/* Must be called before any function token lookups */
2093 	rtas_function_table_init();
2094 
2095 	/*
2096 	 * Discover this now to avoid a device tree lookup in the
2097 	 * panic path.
2098 	 */
2099 	ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
2100 
2101 	/* If RTAS was found, allocate the RMO buffer for it and look for
2102 	 * the stop-self token if any
2103 	 */
2104 #ifdef CONFIG_PPC64
2105 	if (firmware_has_feature(FW_FEATURE_LPAR))
2106 		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
2107 #endif
2108 	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2109 						 0, rtas_region);
2110 	if (!rtas_rmo_buf)
2111 		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2112 		      PAGE_SIZE, &rtas_region);
2113 
2114 	rtas_work_area_reserve_arena(rtas_region);
2115 }
2116 
2117 int __init early_init_dt_scan_rtas(unsigned long node,
2118 		const char *uname, int depth, void *data)
2119 {
2120 	const u32 *basep, *entryp, *sizep;
2121 
2122 	if (depth != 1 || strcmp(uname, "rtas") != 0)
2123 		return 0;
2124 
2125 	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2126 	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2127 	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2128 
2129 #ifdef CONFIG_PPC64
2130 	/* need this feature to decide the crashkernel offset */
2131 	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2132 		powerpc_firmware_features |= FW_FEATURE_LPAR;
2133 #endif
2134 
2135 	if (basep && entryp && sizep) {
2136 		rtas.base = *basep;
2137 		rtas.entry = *entryp;
2138 		rtas.size = *sizep;
2139 	}
2140 
2141 #ifdef CONFIG_UDBG_RTAS_CONSOLE
2142 	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2143 	if (basep)
2144 		rtas_putchar_token = *basep;
2145 
2146 	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2147 	if (basep)
2148 		rtas_getchar_token = *basep;
2149 
2150 	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2151 	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2152 		udbg_init_rtas_console();
2153 
2154 #endif
2155 
2156 	/* break now */
2157 	return 1;
2158 }
2159 
2160 static DEFINE_RAW_SPINLOCK(timebase_lock);
2161 static u64 timebase = 0;
2162 
2163 void rtas_give_timebase(void)
2164 {
2165 	unsigned long flags;
2166 
2167 	raw_spin_lock_irqsave(&timebase_lock, flags);
2168 	hard_irq_disable();
2169 	rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
2170 	timebase = get_tb();
2171 	raw_spin_unlock(&timebase_lock);
2172 
2173 	while (timebase)
2174 		barrier();
2175 	rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2176 	local_irq_restore(flags);
2177 }
2178 
2179 void rtas_take_timebase(void)
2180 {
2181 	while (!timebase)
2182 		barrier();
2183 	raw_spin_lock(&timebase_lock);
2184 	set_tb(timebase >> 32, timebase & 0xffffffff);
2185 	timebase = 0;
2186 	raw_spin_unlock(&timebase_lock);
2187 }
2188