xref: /linux/arch/powerpc/kernel/rtas.c (revision b886d83c5b621abc84ff9616f14c529be3f6b147)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Procedures for interfacing to the RTAS on CHRP machines.
5  *
6  * Peter Bergner, IBM	March 2001.
7  * Copyright (C) 2001 IBM.
8  */
9 
10 #include <stdarg.h>
11 #include <linux/kernel.h>
12 #include <linux/types.h>
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/init.h>
16 #include <linux/capability.h>
17 #include <linux/delay.h>
18 #include <linux/cpu.h>
19 #include <linux/smp.h>
20 #include <linux/completion.h>
21 #include <linux/cpumask.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/reboot.h>
25 #include <linux/syscalls.h>
26 
27 #include <asm/prom.h>
28 #include <asm/rtas.h>
29 #include <asm/hvcall.h>
30 #include <asm/machdep.h>
31 #include <asm/firmware.h>
32 #include <asm/page.h>
33 #include <asm/param.h>
34 #include <asm/delay.h>
35 #include <linux/uaccess.h>
36 #include <asm/udbg.h>
37 #include <asm/syscalls.h>
38 #include <asm/smp.h>
39 #include <linux/atomic.h>
40 #include <asm/time.h>
41 #include <asm/mmu.h>
42 #include <asm/topology.h>
43 
44 /* This is here deliberately so it's only used in this file */
45 void enter_rtas(unsigned long);
46 
47 struct rtas_t rtas = {
48 	.lock = __ARCH_SPIN_LOCK_UNLOCKED
49 };
50 EXPORT_SYMBOL(rtas);
51 
52 DEFINE_SPINLOCK(rtas_data_buf_lock);
53 EXPORT_SYMBOL(rtas_data_buf_lock);
54 
55 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned;
56 EXPORT_SYMBOL(rtas_data_buf);
57 
58 unsigned long rtas_rmo_buf;
59 
60 /*
61  * If non-NULL, this gets called when the kernel terminates.
62  * This is done like this so rtas_flash can be a module.
63  */
64 void (*rtas_flash_term_hook)(int);
65 EXPORT_SYMBOL(rtas_flash_term_hook);
66 
67 /* RTAS use home made raw locking instead of spin_lock_irqsave
68  * because those can be called from within really nasty contexts
69  * such as having the timebase stopped which would lockup with
70  * normal locks and spinlock debugging enabled
71  */
72 static unsigned long lock_rtas(void)
73 {
74 	unsigned long flags;
75 
76 	local_irq_save(flags);
77 	preempt_disable();
78 	arch_spin_lock(&rtas.lock);
79 	return flags;
80 }
81 
82 static void unlock_rtas(unsigned long flags)
83 {
84 	arch_spin_unlock(&rtas.lock);
85 	local_irq_restore(flags);
86 	preempt_enable();
87 }
88 
89 /*
90  * call_rtas_display_status and call_rtas_display_status_delay
91  * are designed only for very early low-level debugging, which
92  * is why the token is hard-coded to 10.
93  */
94 static void call_rtas_display_status(unsigned char c)
95 {
96 	unsigned long s;
97 
98 	if (!rtas.base)
99 		return;
100 
101 	s = lock_rtas();
102 	rtas_call_unlocked(&rtas.args, 10, 1, 1, NULL, c);
103 	unlock_rtas(s);
104 }
105 
106 static void call_rtas_display_status_delay(char c)
107 {
108 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
109 	static int width = 16;
110 
111 	if (c == '\n') {
112 		while (width-- > 0)
113 			call_rtas_display_status(' ');
114 		width = 16;
115 		mdelay(500);
116 		pending_newline = 1;
117 	} else {
118 		if (pending_newline) {
119 			call_rtas_display_status('\r');
120 			call_rtas_display_status('\n');
121 		}
122 		pending_newline = 0;
123 		if (width--) {
124 			call_rtas_display_status(c);
125 			udelay(10000);
126 		}
127 	}
128 }
129 
130 void __init udbg_init_rtas_panel(void)
131 {
132 	udbg_putc = call_rtas_display_status_delay;
133 }
134 
135 #ifdef CONFIG_UDBG_RTAS_CONSOLE
136 
137 /* If you think you're dying before early_init_dt_scan_rtas() does its
138  * work, you can hard code the token values for your firmware here and
139  * hardcode rtas.base/entry etc.
140  */
141 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
142 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
143 
144 static void udbg_rtascon_putc(char c)
145 {
146 	int tries;
147 
148 	if (!rtas.base)
149 		return;
150 
151 	/* Add CRs before LFs */
152 	if (c == '\n')
153 		udbg_rtascon_putc('\r');
154 
155 	/* if there is more than one character to be displayed, wait a bit */
156 	for (tries = 0; tries < 16; tries++) {
157 		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
158 			break;
159 		udelay(1000);
160 	}
161 }
162 
163 static int udbg_rtascon_getc_poll(void)
164 {
165 	int c;
166 
167 	if (!rtas.base)
168 		return -1;
169 
170 	if (rtas_call(rtas_getchar_token, 0, 2, &c))
171 		return -1;
172 
173 	return c;
174 }
175 
176 static int udbg_rtascon_getc(void)
177 {
178 	int c;
179 
180 	while ((c = udbg_rtascon_getc_poll()) == -1)
181 		;
182 
183 	return c;
184 }
185 
186 
187 void __init udbg_init_rtas_console(void)
188 {
189 	udbg_putc = udbg_rtascon_putc;
190 	udbg_getc = udbg_rtascon_getc;
191 	udbg_getc_poll = udbg_rtascon_getc_poll;
192 }
193 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
194 
195 void rtas_progress(char *s, unsigned short hex)
196 {
197 	struct device_node *root;
198 	int width;
199 	const __be32 *p;
200 	char *os;
201 	static int display_character, set_indicator;
202 	static int display_width, display_lines, form_feed;
203 	static const int *row_width;
204 	static DEFINE_SPINLOCK(progress_lock);
205 	static int current_line;
206 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
207 
208 	if (!rtas.base)
209 		return;
210 
211 	if (display_width == 0) {
212 		display_width = 0x10;
213 		if ((root = of_find_node_by_path("/rtas"))) {
214 			if ((p = of_get_property(root,
215 					"ibm,display-line-length", NULL)))
216 				display_width = be32_to_cpu(*p);
217 			if ((p = of_get_property(root,
218 					"ibm,form-feed", NULL)))
219 				form_feed = be32_to_cpu(*p);
220 			if ((p = of_get_property(root,
221 					"ibm,display-number-of-lines", NULL)))
222 				display_lines = be32_to_cpu(*p);
223 			row_width = of_get_property(root,
224 					"ibm,display-truncation-length", NULL);
225 			of_node_put(root);
226 		}
227 		display_character = rtas_token("display-character");
228 		set_indicator = rtas_token("set-indicator");
229 	}
230 
231 	if (display_character == RTAS_UNKNOWN_SERVICE) {
232 		/* use hex display if available */
233 		if (set_indicator != RTAS_UNKNOWN_SERVICE)
234 			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
235 		return;
236 	}
237 
238 	spin_lock(&progress_lock);
239 
240 	/*
241 	 * Last write ended with newline, but we didn't print it since
242 	 * it would just clear the bottom line of output. Print it now
243 	 * instead.
244 	 *
245 	 * If no newline is pending and form feed is supported, clear the
246 	 * display with a form feed; otherwise, print a CR to start output
247 	 * at the beginning of the line.
248 	 */
249 	if (pending_newline) {
250 		rtas_call(display_character, 1, 1, NULL, '\r');
251 		rtas_call(display_character, 1, 1, NULL, '\n');
252 		pending_newline = 0;
253 	} else {
254 		current_line = 0;
255 		if (form_feed)
256 			rtas_call(display_character, 1, 1, NULL,
257 				  (char)form_feed);
258 		else
259 			rtas_call(display_character, 1, 1, NULL, '\r');
260 	}
261 
262 	if (row_width)
263 		width = row_width[current_line];
264 	else
265 		width = display_width;
266 	os = s;
267 	while (*os) {
268 		if (*os == '\n' || *os == '\r') {
269 			/* If newline is the last character, save it
270 			 * until next call to avoid bumping up the
271 			 * display output.
272 			 */
273 			if (*os == '\n' && !os[1]) {
274 				pending_newline = 1;
275 				current_line++;
276 				if (current_line > display_lines-1)
277 					current_line = display_lines-1;
278 				spin_unlock(&progress_lock);
279 				return;
280 			}
281 
282 			/* RTAS wants CR-LF, not just LF */
283 
284 			if (*os == '\n') {
285 				rtas_call(display_character, 1, 1, NULL, '\r');
286 				rtas_call(display_character, 1, 1, NULL, '\n');
287 			} else {
288 				/* CR might be used to re-draw a line, so we'll
289 				 * leave it alone and not add LF.
290 				 */
291 				rtas_call(display_character, 1, 1, NULL, *os);
292 			}
293 
294 			if (row_width)
295 				width = row_width[current_line];
296 			else
297 				width = display_width;
298 		} else {
299 			width--;
300 			rtas_call(display_character, 1, 1, NULL, *os);
301 		}
302 
303 		os++;
304 
305 		/* if we overwrite the screen length */
306 		if (width <= 0)
307 			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
308 				os++;
309 	}
310 
311 	spin_unlock(&progress_lock);
312 }
313 EXPORT_SYMBOL(rtas_progress);		/* needed by rtas_flash module */
314 
315 int rtas_token(const char *service)
316 {
317 	const __be32 *tokp;
318 	if (rtas.dev == NULL)
319 		return RTAS_UNKNOWN_SERVICE;
320 	tokp = of_get_property(rtas.dev, service, NULL);
321 	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
322 }
323 EXPORT_SYMBOL(rtas_token);
324 
325 int rtas_service_present(const char *service)
326 {
327 	return rtas_token(service) != RTAS_UNKNOWN_SERVICE;
328 }
329 EXPORT_SYMBOL(rtas_service_present);
330 
331 #ifdef CONFIG_RTAS_ERROR_LOGGING
332 /*
333  * Return the firmware-specified size of the error log buffer
334  *  for all rtas calls that require an error buffer argument.
335  *  This includes 'check-exception' and 'rtas-last-error'.
336  */
337 int rtas_get_error_log_max(void)
338 {
339 	static int rtas_error_log_max;
340 	if (rtas_error_log_max)
341 		return rtas_error_log_max;
342 
343 	rtas_error_log_max = rtas_token ("rtas-error-log-max");
344 	if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) ||
345 	    (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) {
346 		printk (KERN_WARNING "RTAS: bad log buffer size %d\n",
347 			rtas_error_log_max);
348 		rtas_error_log_max = RTAS_ERROR_LOG_MAX;
349 	}
350 	return rtas_error_log_max;
351 }
352 EXPORT_SYMBOL(rtas_get_error_log_max);
353 
354 
355 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
356 static int rtas_last_error_token;
357 
358 /** Return a copy of the detailed error text associated with the
359  *  most recent failed call to rtas.  Because the error text
360  *  might go stale if there are any other intervening rtas calls,
361  *  this routine must be called atomically with whatever produced
362  *  the error (i.e. with rtas.lock still held from the previous call).
363  */
364 static char *__fetch_rtas_last_error(char *altbuf)
365 {
366 	struct rtas_args err_args, save_args;
367 	u32 bufsz;
368 	char *buf = NULL;
369 
370 	if (rtas_last_error_token == -1)
371 		return NULL;
372 
373 	bufsz = rtas_get_error_log_max();
374 
375 	err_args.token = cpu_to_be32(rtas_last_error_token);
376 	err_args.nargs = cpu_to_be32(2);
377 	err_args.nret = cpu_to_be32(1);
378 	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
379 	err_args.args[1] = cpu_to_be32(bufsz);
380 	err_args.args[2] = 0;
381 
382 	save_args = rtas.args;
383 	rtas.args = err_args;
384 
385 	enter_rtas(__pa(&rtas.args));
386 
387 	err_args = rtas.args;
388 	rtas.args = save_args;
389 
390 	/* Log the error in the unlikely case that there was one. */
391 	if (unlikely(err_args.args[2] == 0)) {
392 		if (altbuf) {
393 			buf = altbuf;
394 		} else {
395 			buf = rtas_err_buf;
396 			if (slab_is_available())
397 				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
398 		}
399 		if (buf)
400 			memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
401 	}
402 
403 	return buf;
404 }
405 
406 #define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
407 
408 #else /* CONFIG_RTAS_ERROR_LOGGING */
409 #define __fetch_rtas_last_error(x)	NULL
410 #define get_errorlog_buffer()		NULL
411 #endif
412 
413 
414 static void
415 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
416 		      va_list list)
417 {
418 	int i;
419 
420 	args->token = cpu_to_be32(token);
421 	args->nargs = cpu_to_be32(nargs);
422 	args->nret  = cpu_to_be32(nret);
423 	args->rets  = &(args->args[nargs]);
424 
425 	for (i = 0; i < nargs; ++i)
426 		args->args[i] = cpu_to_be32(va_arg(list, __u32));
427 
428 	for (i = 0; i < nret; ++i)
429 		args->rets[i] = 0;
430 
431 	enter_rtas(__pa(args));
432 }
433 
434 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
435 {
436 	va_list list;
437 
438 	va_start(list, nret);
439 	va_rtas_call_unlocked(args, token, nargs, nret, list);
440 	va_end(list);
441 }
442 
443 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
444 {
445 	va_list list;
446 	int i;
447 	unsigned long s;
448 	struct rtas_args *rtas_args;
449 	char *buff_copy = NULL;
450 	int ret;
451 
452 	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
453 		return -1;
454 
455 	s = lock_rtas();
456 
457 	/* We use the global rtas args buffer */
458 	rtas_args = &rtas.args;
459 
460 	va_start(list, outputs);
461 	va_rtas_call_unlocked(rtas_args, token, nargs, nret, list);
462 	va_end(list);
463 
464 	/* A -1 return code indicates that the last command couldn't
465 	   be completed due to a hardware error. */
466 	if (be32_to_cpu(rtas_args->rets[0]) == -1)
467 		buff_copy = __fetch_rtas_last_error(NULL);
468 
469 	if (nret > 1 && outputs != NULL)
470 		for (i = 0; i < nret-1; ++i)
471 			outputs[i] = be32_to_cpu(rtas_args->rets[i+1]);
472 	ret = (nret > 0)? be32_to_cpu(rtas_args->rets[0]): 0;
473 
474 	unlock_rtas(s);
475 
476 	if (buff_copy) {
477 		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
478 		if (slab_is_available())
479 			kfree(buff_copy);
480 	}
481 	return ret;
482 }
483 EXPORT_SYMBOL(rtas_call);
484 
485 /* For RTAS_BUSY (-2), delay for 1 millisecond.  For an extended busy status
486  * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds.
487  */
488 unsigned int rtas_busy_delay_time(int status)
489 {
490 	int order;
491 	unsigned int ms = 0;
492 
493 	if (status == RTAS_BUSY) {
494 		ms = 1;
495 	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
496 		   status <= RTAS_EXTENDED_DELAY_MAX) {
497 		order = status - RTAS_EXTENDED_DELAY_MIN;
498 		for (ms = 1; order > 0; order--)
499 			ms *= 10;
500 	}
501 
502 	return ms;
503 }
504 EXPORT_SYMBOL(rtas_busy_delay_time);
505 
506 /* For an RTAS busy status code, perform the hinted delay. */
507 unsigned int rtas_busy_delay(int status)
508 {
509 	unsigned int ms;
510 
511 	might_sleep();
512 	ms = rtas_busy_delay_time(status);
513 	if (ms && need_resched())
514 		msleep(ms);
515 
516 	return ms;
517 }
518 EXPORT_SYMBOL(rtas_busy_delay);
519 
520 static int rtas_error_rc(int rtas_rc)
521 {
522 	int rc;
523 
524 	switch (rtas_rc) {
525 		case -1: 		/* Hardware Error */
526 			rc = -EIO;
527 			break;
528 		case -3:		/* Bad indicator/domain/etc */
529 			rc = -EINVAL;
530 			break;
531 		case -9000:		/* Isolation error */
532 			rc = -EFAULT;
533 			break;
534 		case -9001:		/* Outstanding TCE/PTE */
535 			rc = -EEXIST;
536 			break;
537 		case -9002:		/* No usable slot */
538 			rc = -ENODEV;
539 			break;
540 		default:
541 			printk(KERN_ERR "%s: unexpected RTAS error %d\n",
542 					__func__, rtas_rc);
543 			rc = -ERANGE;
544 			break;
545 	}
546 	return rc;
547 }
548 
549 int rtas_get_power_level(int powerdomain, int *level)
550 {
551 	int token = rtas_token("get-power-level");
552 	int rc;
553 
554 	if (token == RTAS_UNKNOWN_SERVICE)
555 		return -ENOENT;
556 
557 	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
558 		udelay(1);
559 
560 	if (rc < 0)
561 		return rtas_error_rc(rc);
562 	return rc;
563 }
564 EXPORT_SYMBOL(rtas_get_power_level);
565 
566 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
567 {
568 	int token = rtas_token("set-power-level");
569 	int rc;
570 
571 	if (token == RTAS_UNKNOWN_SERVICE)
572 		return -ENOENT;
573 
574 	do {
575 		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
576 	} while (rtas_busy_delay(rc));
577 
578 	if (rc < 0)
579 		return rtas_error_rc(rc);
580 	return rc;
581 }
582 EXPORT_SYMBOL(rtas_set_power_level);
583 
584 int rtas_get_sensor(int sensor, int index, int *state)
585 {
586 	int token = rtas_token("get-sensor-state");
587 	int rc;
588 
589 	if (token == RTAS_UNKNOWN_SERVICE)
590 		return -ENOENT;
591 
592 	do {
593 		rc = rtas_call(token, 2, 2, state, sensor, index);
594 	} while (rtas_busy_delay(rc));
595 
596 	if (rc < 0)
597 		return rtas_error_rc(rc);
598 	return rc;
599 }
600 EXPORT_SYMBOL(rtas_get_sensor);
601 
602 int rtas_get_sensor_fast(int sensor, int index, int *state)
603 {
604 	int token = rtas_token("get-sensor-state");
605 	int rc;
606 
607 	if (token == RTAS_UNKNOWN_SERVICE)
608 		return -ENOENT;
609 
610 	rc = rtas_call(token, 2, 2, state, sensor, index);
611 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
612 				    rc <= RTAS_EXTENDED_DELAY_MAX));
613 
614 	if (rc < 0)
615 		return rtas_error_rc(rc);
616 	return rc;
617 }
618 
619 bool rtas_indicator_present(int token, int *maxindex)
620 {
621 	int proplen, count, i;
622 	const struct indicator_elem {
623 		__be32 token;
624 		__be32 maxindex;
625 	} *indicators;
626 
627 	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
628 	if (!indicators)
629 		return false;
630 
631 	count = proplen / sizeof(struct indicator_elem);
632 
633 	for (i = 0; i < count; i++) {
634 		if (__be32_to_cpu(indicators[i].token) != token)
635 			continue;
636 		if (maxindex)
637 			*maxindex = __be32_to_cpu(indicators[i].maxindex);
638 		return true;
639 	}
640 
641 	return false;
642 }
643 EXPORT_SYMBOL(rtas_indicator_present);
644 
645 int rtas_set_indicator(int indicator, int index, int new_value)
646 {
647 	int token = rtas_token("set-indicator");
648 	int rc;
649 
650 	if (token == RTAS_UNKNOWN_SERVICE)
651 		return -ENOENT;
652 
653 	do {
654 		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
655 	} while (rtas_busy_delay(rc));
656 
657 	if (rc < 0)
658 		return rtas_error_rc(rc);
659 	return rc;
660 }
661 EXPORT_SYMBOL(rtas_set_indicator);
662 
663 /*
664  * Ignoring RTAS extended delay
665  */
666 int rtas_set_indicator_fast(int indicator, int index, int new_value)
667 {
668 	int rc;
669 	int token = rtas_token("set-indicator");
670 
671 	if (token == RTAS_UNKNOWN_SERVICE)
672 		return -ENOENT;
673 
674 	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
675 
676 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
677 				    rc <= RTAS_EXTENDED_DELAY_MAX));
678 
679 	if (rc < 0)
680 		return rtas_error_rc(rc);
681 
682 	return rc;
683 }
684 
685 void __noreturn rtas_restart(char *cmd)
686 {
687 	if (rtas_flash_term_hook)
688 		rtas_flash_term_hook(SYS_RESTART);
689 	printk("RTAS system-reboot returned %d\n",
690 	       rtas_call(rtas_token("system-reboot"), 0, 1, NULL));
691 	for (;;);
692 }
693 
694 void rtas_power_off(void)
695 {
696 	if (rtas_flash_term_hook)
697 		rtas_flash_term_hook(SYS_POWER_OFF);
698 	/* allow power on only with power button press */
699 	printk("RTAS power-off returned %d\n",
700 	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
701 	for (;;);
702 }
703 
704 void __noreturn rtas_halt(void)
705 {
706 	if (rtas_flash_term_hook)
707 		rtas_flash_term_hook(SYS_HALT);
708 	/* allow power on only with power button press */
709 	printk("RTAS power-off returned %d\n",
710 	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1));
711 	for (;;);
712 }
713 
714 /* Must be in the RMO region, so we place it here */
715 static char rtas_os_term_buf[2048];
716 
717 void rtas_os_term(char *str)
718 {
719 	int status;
720 
721 	/*
722 	 * Firmware with the ibm,extended-os-term property is guaranteed
723 	 * to always return from an ibm,os-term call. Earlier versions without
724 	 * this property may terminate the partition which we want to avoid
725 	 * since it interferes with panic_timeout.
726 	 */
727 	if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") ||
728 	    RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term"))
729 		return;
730 
731 	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
732 
733 	do {
734 		status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL,
735 				   __pa(rtas_os_term_buf));
736 	} while (rtas_busy_delay(status));
737 
738 	if (status != 0)
739 		printk(KERN_EMERG "ibm,os-term call failed %d\n", status);
740 }
741 
742 static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE;
743 #ifdef CONFIG_PPC_PSERIES
744 static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done)
745 {
746 	u16 slb_size = mmu_slb_size;
747 	int rc = H_MULTI_THREADS_ACTIVE;
748 	int cpu;
749 
750 	slb_set_size(SLB_MIN_SIZE);
751 	printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id());
752 
753 	while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) &&
754 	       !atomic_read(&data->error))
755 		rc = rtas_call(data->token, 0, 1, NULL);
756 
757 	if (rc || atomic_read(&data->error)) {
758 		printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc);
759 		slb_set_size(slb_size);
760 	}
761 
762 	if (atomic_read(&data->error))
763 		rc = atomic_read(&data->error);
764 
765 	atomic_set(&data->error, rc);
766 	pSeries_coalesce_init();
767 
768 	if (wake_when_done) {
769 		atomic_set(&data->done, 1);
770 
771 		for_each_online_cpu(cpu)
772 			plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
773 	}
774 
775 	if (atomic_dec_return(&data->working) == 0)
776 		complete(data->complete);
777 
778 	return rc;
779 }
780 
781 int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data)
782 {
783 	atomic_inc(&data->working);
784 	return __rtas_suspend_last_cpu(data, 0);
785 }
786 
787 static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done)
788 {
789 	long rc = H_SUCCESS;
790 	unsigned long msr_save;
791 	int cpu;
792 
793 	atomic_inc(&data->working);
794 
795 	/* really need to ensure MSR.EE is off for H_JOIN */
796 	msr_save = mfmsr();
797 	mtmsr(msr_save & ~(MSR_EE));
798 
799 	while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error))
800 		rc = plpar_hcall_norets(H_JOIN);
801 
802 	mtmsr(msr_save);
803 
804 	if (rc == H_SUCCESS) {
805 		/* This cpu was prodded and the suspend is complete. */
806 		goto out;
807 	} else if (rc == H_CONTINUE) {
808 		/* All other cpus are in H_JOIN, this cpu does
809 		 * the suspend.
810 		 */
811 		return __rtas_suspend_last_cpu(data, wake_when_done);
812 	} else {
813 		printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n",
814 		       smp_processor_id(), rc);
815 		atomic_set(&data->error, rc);
816 	}
817 
818 	if (wake_when_done) {
819 		atomic_set(&data->done, 1);
820 
821 		/* This cpu did the suspend or got an error; in either case,
822 		 * we need to prod all other other cpus out of join state.
823 		 * Extra prods are harmless.
824 		 */
825 		for_each_online_cpu(cpu)
826 			plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu));
827 	}
828 out:
829 	if (atomic_dec_return(&data->working) == 0)
830 		complete(data->complete);
831 	return rc;
832 }
833 
834 int rtas_suspend_cpu(struct rtas_suspend_me_data *data)
835 {
836 	return __rtas_suspend_cpu(data, 0);
837 }
838 
839 static void rtas_percpu_suspend_me(void *info)
840 {
841 	__rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1);
842 }
843 
844 enum rtas_cpu_state {
845 	DOWN,
846 	UP,
847 };
848 
849 #ifndef CONFIG_SMP
850 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state,
851 				cpumask_var_t cpus)
852 {
853 	if (!cpumask_empty(cpus)) {
854 		cpumask_clear(cpus);
855 		return -EINVAL;
856 	} else
857 		return 0;
858 }
859 #else
860 /* On return cpumask will be altered to indicate CPUs changed.
861  * CPUs with states changed will be set in the mask,
862  * CPUs with status unchanged will be unset in the mask. */
863 static int rtas_cpu_state_change_mask(enum rtas_cpu_state state,
864 				cpumask_var_t cpus)
865 {
866 	int cpu;
867 	int cpuret = 0;
868 	int ret = 0;
869 
870 	if (cpumask_empty(cpus))
871 		return 0;
872 
873 	for_each_cpu(cpu, cpus) {
874 		switch (state) {
875 		case DOWN:
876 			cpuret = cpu_down(cpu);
877 			break;
878 		case UP:
879 			cpuret = cpu_up(cpu);
880 			break;
881 		}
882 		if (cpuret) {
883 			pr_debug("%s: cpu_%s for cpu#%d returned %d.\n",
884 					__func__,
885 					((state == UP) ? "up" : "down"),
886 					cpu, cpuret);
887 			if (!ret)
888 				ret = cpuret;
889 			if (state == UP) {
890 				/* clear bits for unchanged cpus, return */
891 				cpumask_shift_right(cpus, cpus, cpu);
892 				cpumask_shift_left(cpus, cpus, cpu);
893 				break;
894 			} else {
895 				/* clear bit for unchanged cpu, continue */
896 				cpumask_clear_cpu(cpu, cpus);
897 			}
898 		}
899 	}
900 
901 	return ret;
902 }
903 #endif
904 
905 int rtas_online_cpus_mask(cpumask_var_t cpus)
906 {
907 	int ret;
908 
909 	ret = rtas_cpu_state_change_mask(UP, cpus);
910 
911 	if (ret) {
912 		cpumask_var_t tmp_mask;
913 
914 		if (!alloc_cpumask_var(&tmp_mask, GFP_KERNEL))
915 			return ret;
916 
917 		/* Use tmp_mask to preserve cpus mask from first failure */
918 		cpumask_copy(tmp_mask, cpus);
919 		rtas_offline_cpus_mask(tmp_mask);
920 		free_cpumask_var(tmp_mask);
921 	}
922 
923 	return ret;
924 }
925 EXPORT_SYMBOL(rtas_online_cpus_mask);
926 
927 int rtas_offline_cpus_mask(cpumask_var_t cpus)
928 {
929 	return rtas_cpu_state_change_mask(DOWN, cpus);
930 }
931 EXPORT_SYMBOL(rtas_offline_cpus_mask);
932 
933 int rtas_ibm_suspend_me(u64 handle)
934 {
935 	long state;
936 	long rc;
937 	unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
938 	struct rtas_suspend_me_data data;
939 	DECLARE_COMPLETION_ONSTACK(done);
940 	cpumask_var_t offline_mask;
941 	int cpuret;
942 
943 	if (!rtas_service_present("ibm,suspend-me"))
944 		return -ENOSYS;
945 
946 	/* Make sure the state is valid */
947 	rc = plpar_hcall(H_VASI_STATE, retbuf, handle);
948 
949 	state = retbuf[0];
950 
951 	if (rc) {
952 		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc);
953 		return rc;
954 	} else if (state == H_VASI_ENABLED) {
955 		return -EAGAIN;
956 	} else if (state != H_VASI_SUSPENDING) {
957 		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n",
958 		       state);
959 		return -EIO;
960 	}
961 
962 	if (!alloc_cpumask_var(&offline_mask, GFP_KERNEL))
963 		return -ENOMEM;
964 
965 	atomic_set(&data.working, 0);
966 	atomic_set(&data.done, 0);
967 	atomic_set(&data.error, 0);
968 	data.token = rtas_token("ibm,suspend-me");
969 	data.complete = &done;
970 
971 	/* All present CPUs must be online */
972 	cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask);
973 	cpuret = rtas_online_cpus_mask(offline_mask);
974 	if (cpuret) {
975 		pr_err("%s: Could not bring present CPUs online.\n", __func__);
976 		atomic_set(&data.error, cpuret);
977 		goto out;
978 	}
979 
980 	cpu_hotplug_disable();
981 
982 	/* Check if we raced with a CPU-Offline Operation */
983 	if (unlikely(!cpumask_equal(cpu_present_mask, cpu_online_mask))) {
984 		pr_err("%s: Raced against a concurrent CPU-Offline\n",
985 		       __func__);
986 		atomic_set(&data.error, -EBUSY);
987 		goto out_hotplug_enable;
988 	}
989 
990 	/* Call function on all CPUs.  One of us will make the
991 	 * rtas call
992 	 */
993 	if (on_each_cpu(rtas_percpu_suspend_me, &data, 0))
994 		atomic_set(&data.error, -EINVAL);
995 
996 	wait_for_completion(&done);
997 
998 	if (atomic_read(&data.error) != 0)
999 		printk(KERN_ERR "Error doing global join\n");
1000 
1001 out_hotplug_enable:
1002 	cpu_hotplug_enable();
1003 
1004 	/* Take down CPUs not online prior to suspend */
1005 	cpuret = rtas_offline_cpus_mask(offline_mask);
1006 	if (cpuret)
1007 		pr_warn("%s: Could not restore CPUs to offline state.\n",
1008 				__func__);
1009 
1010 out:
1011 	free_cpumask_var(offline_mask);
1012 	return atomic_read(&data.error);
1013 }
1014 #else /* CONFIG_PPC_PSERIES */
1015 int rtas_ibm_suspend_me(u64 handle)
1016 {
1017 	return -ENOSYS;
1018 }
1019 #endif
1020 
1021 /**
1022  * Find a specific pseries error log in an RTAS extended event log.
1023  * @log: RTAS error/event log
1024  * @section_id: two character section identifier
1025  *
1026  * Returns a pointer to the specified errorlog or NULL if not found.
1027  */
1028 struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1029 					      uint16_t section_id)
1030 {
1031 	struct rtas_ext_event_log_v6 *ext_log =
1032 		(struct rtas_ext_event_log_v6 *)log->buffer;
1033 	struct pseries_errorlog *sect;
1034 	unsigned char *p, *log_end;
1035 	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1036 	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1037 	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1038 
1039 	/* Check that we understand the format */
1040 	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1041 	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1042 	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1043 		return NULL;
1044 
1045 	log_end = log->buffer + ext_log_length;
1046 	p = ext_log->vendor_log;
1047 
1048 	while (p < log_end) {
1049 		sect = (struct pseries_errorlog *)p;
1050 		if (pseries_errorlog_id(sect) == section_id)
1051 			return sect;
1052 		p += pseries_errorlog_length(sect);
1053 	}
1054 
1055 	return NULL;
1056 }
1057 
1058 /* We assume to be passed big endian arguments */
1059 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1060 {
1061 	struct rtas_args args;
1062 	unsigned long flags;
1063 	char *buff_copy, *errbuf = NULL;
1064 	int nargs, nret, token;
1065 
1066 	if (!capable(CAP_SYS_ADMIN))
1067 		return -EPERM;
1068 
1069 	if (!rtas.entry)
1070 		return -EINVAL;
1071 
1072 	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1073 		return -EFAULT;
1074 
1075 	nargs = be32_to_cpu(args.nargs);
1076 	nret  = be32_to_cpu(args.nret);
1077 	token = be32_to_cpu(args.token);
1078 
1079 	if (nargs >= ARRAY_SIZE(args.args)
1080 	    || nret > ARRAY_SIZE(args.args)
1081 	    || nargs + nret > ARRAY_SIZE(args.args))
1082 		return -EINVAL;
1083 
1084 	/* Copy in args. */
1085 	if (copy_from_user(args.args, uargs->args,
1086 			   nargs * sizeof(rtas_arg_t)) != 0)
1087 		return -EFAULT;
1088 
1089 	if (token == RTAS_UNKNOWN_SERVICE)
1090 		return -EINVAL;
1091 
1092 	args.rets = &args.args[nargs];
1093 	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1094 
1095 	/* Need to handle ibm,suspend_me call specially */
1096 	if (token == ibm_suspend_me_token) {
1097 
1098 		/*
1099 		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1100 		 * endian, or at least the hcall within it requires it.
1101 		 */
1102 		int rc = 0;
1103 		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1104 		              | be32_to_cpu(args.args[1]);
1105 		rc = rtas_ibm_suspend_me(handle);
1106 		if (rc == -EAGAIN)
1107 			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1108 		else if (rc == -EIO)
1109 			args.rets[0] = cpu_to_be32(-1);
1110 		else if (rc)
1111 			return rc;
1112 		goto copy_return;
1113 	}
1114 
1115 	buff_copy = get_errorlog_buffer();
1116 
1117 	flags = lock_rtas();
1118 
1119 	rtas.args = args;
1120 	enter_rtas(__pa(&rtas.args));
1121 	args = rtas.args;
1122 
1123 	/* A -1 return code indicates that the last command couldn't
1124 	   be completed due to a hardware error. */
1125 	if (be32_to_cpu(args.rets[0]) == -1)
1126 		errbuf = __fetch_rtas_last_error(buff_copy);
1127 
1128 	unlock_rtas(flags);
1129 
1130 	if (buff_copy) {
1131 		if (errbuf)
1132 			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1133 		kfree(buff_copy);
1134 	}
1135 
1136  copy_return:
1137 	/* Copy out args. */
1138 	if (copy_to_user(uargs->args + nargs,
1139 			 args.args + nargs,
1140 			 nret * sizeof(rtas_arg_t)) != 0)
1141 		return -EFAULT;
1142 
1143 	return 0;
1144 }
1145 
1146 /*
1147  * Call early during boot, before mem init, to retrieve the RTAS
1148  * information from the device-tree and allocate the RMO buffer for userland
1149  * accesses.
1150  */
1151 void __init rtas_initialize(void)
1152 {
1153 	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
1154 	u32 base, size, entry;
1155 	int no_base, no_size, no_entry;
1156 
1157 	/* Get RTAS dev node and fill up our "rtas" structure with infos
1158 	 * about it.
1159 	 */
1160 	rtas.dev = of_find_node_by_name(NULL, "rtas");
1161 	if (!rtas.dev)
1162 		return;
1163 
1164 	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
1165 	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
1166 	if (no_base || no_size) {
1167 		of_node_put(rtas.dev);
1168 		rtas.dev = NULL;
1169 		return;
1170 	}
1171 
1172 	rtas.base = base;
1173 	rtas.size = size;
1174 	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
1175 	rtas.entry = no_entry ? rtas.base : entry;
1176 
1177 	/* If RTAS was found, allocate the RMO buffer for it and look for
1178 	 * the stop-self token if any
1179 	 */
1180 #ifdef CONFIG_PPC64
1181 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
1182 		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
1183 		ibm_suspend_me_token = rtas_token("ibm,suspend-me");
1184 	}
1185 #endif
1186 	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_RMOBUF_MAX, PAGE_SIZE,
1187 						 0, rtas_region);
1188 	if (!rtas_rmo_buf)
1189 		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
1190 		      PAGE_SIZE, &rtas_region);
1191 
1192 #ifdef CONFIG_RTAS_ERROR_LOGGING
1193 	rtas_last_error_token = rtas_token("rtas-last-error");
1194 #endif
1195 }
1196 
1197 int __init early_init_dt_scan_rtas(unsigned long node,
1198 		const char *uname, int depth, void *data)
1199 {
1200 	const u32 *basep, *entryp, *sizep;
1201 
1202 	if (depth != 1 || strcmp(uname, "rtas") != 0)
1203 		return 0;
1204 
1205 	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1206 	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1207 	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
1208 
1209 	if (basep && entryp && sizep) {
1210 		rtas.base = *basep;
1211 		rtas.entry = *entryp;
1212 		rtas.size = *sizep;
1213 	}
1214 
1215 #ifdef CONFIG_UDBG_RTAS_CONSOLE
1216 	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
1217 	if (basep)
1218 		rtas_putchar_token = *basep;
1219 
1220 	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
1221 	if (basep)
1222 		rtas_getchar_token = *basep;
1223 
1224 	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
1225 	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
1226 		udbg_init_rtas_console();
1227 
1228 #endif
1229 
1230 	/* break now */
1231 	return 1;
1232 }
1233 
1234 static arch_spinlock_t timebase_lock;
1235 static u64 timebase = 0;
1236 
1237 void rtas_give_timebase(void)
1238 {
1239 	unsigned long flags;
1240 
1241 	local_irq_save(flags);
1242 	hard_irq_disable();
1243 	arch_spin_lock(&timebase_lock);
1244 	rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL);
1245 	timebase = get_tb();
1246 	arch_spin_unlock(&timebase_lock);
1247 
1248 	while (timebase)
1249 		barrier();
1250 	rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL);
1251 	local_irq_restore(flags);
1252 }
1253 
1254 void rtas_take_timebase(void)
1255 {
1256 	while (!timebase)
1257 		barrier();
1258 	arch_spin_lock(&timebase_lock);
1259 	set_tb(timebase >> 32, timebase & 0xffffffff);
1260 	timebase = 0;
1261 	arch_spin_unlock(&timebase_lock);
1262 }
1263