xref: /linux/arch/powerpc/kernel/rtas.c (revision 8e3ed5440b0c305dcd1d5fa7419bd8066d22ef42)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *
4  * Procedures for interfacing to the RTAS on CHRP machines.
5  *
6  * Peter Bergner, IBM	March 2001.
7  * Copyright (C) 2001 IBM.
8  */
9 
10 #define pr_fmt(fmt)	"rtas: " fmt
11 
12 #include <linux/bsearch.h>
13 #include <linux/capability.h>
14 #include <linux/delay.h>
15 #include <linux/export.h>
16 #include <linux/init.h>
17 #include <linux/kconfig.h>
18 #include <linux/kernel.h>
19 #include <linux/lockdep.h>
20 #include <linux/memblock.h>
21 #include <linux/mutex.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/reboot.h>
25 #include <linux/sched.h>
26 #include <linux/security.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/stdarg.h>
30 #include <linux/syscalls.h>
31 #include <linux/types.h>
32 #include <linux/uaccess.h>
33 #include <linux/xarray.h>
34 
35 #include <asm/delay.h>
36 #include <asm/firmware.h>
37 #include <asm/interrupt.h>
38 #include <asm/machdep.h>
39 #include <asm/mmu.h>
40 #include <asm/page.h>
41 #include <asm/rtas-work-area.h>
42 #include <asm/rtas.h>
43 #include <asm/time.h>
44 #include <asm/trace.h>
45 #include <asm/udbg.h>
46 
47 struct rtas_filter {
48 	/* Indexes into the args buffer, -1 if not used */
49 	const int buf_idx1;
50 	const int size_idx1;
51 	const int buf_idx2;
52 	const int size_idx2;
53 	/*
54 	 * Assumed buffer size per the spec if the function does not
55 	 * have a size parameter, e.g. ibm,errinjct. 0 if unused.
56 	 */
57 	const int fixed_size;
58 };
59 
60 /**
61  * struct rtas_function - Descriptor for RTAS functions.
62  *
63  * @token: Value of @name if it exists under the /rtas node.
64  * @name: Function name.
65  * @filter: If non-NULL, invoking this function via the rtas syscall is
66  *          generally allowed, and @filter describes constraints on the
67  *          arguments. See also @banned_for_syscall_on_le.
68  * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed
69  *                            but specifically restricted on ppc64le. Such
70  *                            functions are believed to have no users on
71  *                            ppc64le, and we want to keep it that way. It does
72  *                            not make sense for this to be set when @filter
73  *                            is NULL.
74  * @lock: Pointer to an optional dedicated per-function mutex. This
75  *        should be set for functions that require multiple calls in
76  *        sequence to complete a single operation, and such sequences
77  *        will disrupt each other if allowed to interleave. Users of
78  *        this function are required to hold the associated lock for
79  *        the duration of the call sequence. Add an explanatory
80  *        comment to the function table entry if setting this member.
81  */
82 struct rtas_function {
83 	s32 token;
84 	const bool banned_for_syscall_on_le:1;
85 	const char * const name;
86 	const struct rtas_filter *filter;
87 	struct mutex *lock;
88 };
89 
90 /*
91  * Per-function locks for sequence-based RTAS functions.
92  */
93 static DEFINE_MUTEX(rtas_ibm_activate_firmware_lock);
94 static DEFINE_MUTEX(rtas_ibm_get_dynamic_sensor_state_lock);
95 static DEFINE_MUTEX(rtas_ibm_get_indices_lock);
96 static DEFINE_MUTEX(rtas_ibm_lpar_perftools_lock);
97 static DEFINE_MUTEX(rtas_ibm_physical_attestation_lock);
98 static DEFINE_MUTEX(rtas_ibm_set_dynamic_indicator_lock);
99 DEFINE_MUTEX(rtas_ibm_get_vpd_lock);
100 
101 static struct rtas_function rtas_function_table[] __ro_after_init = {
102 	[RTAS_FNIDX__CHECK_EXCEPTION] = {
103 		.name = "check-exception",
104 	},
105 	[RTAS_FNIDX__DISPLAY_CHARACTER] = {
106 		.name = "display-character",
107 		.filter = &(const struct rtas_filter) {
108 			.buf_idx1 = -1, .size_idx1 = -1,
109 			.buf_idx2 = -1, .size_idx2 = -1,
110 		},
111 	},
112 	[RTAS_FNIDX__EVENT_SCAN] = {
113 		.name = "event-scan",
114 	},
115 	[RTAS_FNIDX__FREEZE_TIME_BASE] = {
116 		.name = "freeze-time-base",
117 	},
118 	[RTAS_FNIDX__GET_POWER_LEVEL] = {
119 		.name = "get-power-level",
120 		.filter = &(const struct rtas_filter) {
121 			.buf_idx1 = -1, .size_idx1 = -1,
122 			.buf_idx2 = -1, .size_idx2 = -1,
123 		},
124 	},
125 	[RTAS_FNIDX__GET_SENSOR_STATE] = {
126 		.name = "get-sensor-state",
127 		.filter = &(const struct rtas_filter) {
128 			.buf_idx1 = -1, .size_idx1 = -1,
129 			.buf_idx2 = -1, .size_idx2 = -1,
130 		},
131 	},
132 	[RTAS_FNIDX__GET_TERM_CHAR] = {
133 		.name = "get-term-char",
134 	},
135 	[RTAS_FNIDX__GET_TIME_OF_DAY] = {
136 		.name = "get-time-of-day",
137 		.filter = &(const struct rtas_filter) {
138 			.buf_idx1 = -1, .size_idx1 = -1,
139 			.buf_idx2 = -1, .size_idx2 = -1,
140 		},
141 	},
142 	[RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = {
143 		.name = "ibm,activate-firmware",
144 		.filter = &(const struct rtas_filter) {
145 			.buf_idx1 = -1, .size_idx1 = -1,
146 			.buf_idx2 = -1, .size_idx2 = -1,
147 		},
148 		/*
149 		 * PAPR+ as of v2.13 doesn't explicitly impose any
150 		 * restriction, but this typically requires multiple
151 		 * calls before success, and there's no reason to
152 		 * allow sequences to interleave.
153 		 */
154 		.lock = &rtas_ibm_activate_firmware_lock,
155 	},
156 	[RTAS_FNIDX__IBM_CBE_START_PTCAL] = {
157 		.name = "ibm,cbe-start-ptcal",
158 	},
159 	[RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = {
160 		.name = "ibm,cbe-stop-ptcal",
161 	},
162 	[RTAS_FNIDX__IBM_CHANGE_MSI] = {
163 		.name = "ibm,change-msi",
164 	},
165 	[RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = {
166 		.name = "ibm,close-errinjct",
167 		.filter = &(const struct rtas_filter) {
168 			.buf_idx1 = -1, .size_idx1 = -1,
169 			.buf_idx2 = -1, .size_idx2 = -1,
170 		},
171 	},
172 	[RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = {
173 		.name = "ibm,configure-bridge",
174 	},
175 	[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = {
176 		.name = "ibm,configure-connector",
177 		.filter = &(const struct rtas_filter) {
178 			.buf_idx1 = 0, .size_idx1 = -1,
179 			.buf_idx2 = 1, .size_idx2 = -1,
180 			.fixed_size = 4096,
181 		},
182 	},
183 	[RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = {
184 		.name = "ibm,configure-kernel-dump",
185 	},
186 	[RTAS_FNIDX__IBM_CONFIGURE_PE] = {
187 		.name = "ibm,configure-pe",
188 	},
189 	[RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = {
190 		.name = "ibm,create-pe-dma-window",
191 	},
192 	[RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = {
193 		.name = "ibm,display-message",
194 		.filter = &(const struct rtas_filter) {
195 			.buf_idx1 = 0, .size_idx1 = -1,
196 			.buf_idx2 = -1, .size_idx2 = -1,
197 		},
198 	},
199 	[RTAS_FNIDX__IBM_ERRINJCT] = {
200 		.name = "ibm,errinjct",
201 		.filter = &(const struct rtas_filter) {
202 			.buf_idx1 = 2, .size_idx1 = -1,
203 			.buf_idx2 = -1, .size_idx2 = -1,
204 			.fixed_size = 1024,
205 		},
206 	},
207 	[RTAS_FNIDX__IBM_EXTI2C] = {
208 		.name = "ibm,exti2c",
209 	},
210 	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = {
211 		.name = "ibm,get-config-addr-info",
212 	},
213 	[RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = {
214 		.name = "ibm,get-config-addr-info2",
215 		.filter = &(const struct rtas_filter) {
216 			.buf_idx1 = -1, .size_idx1 = -1,
217 			.buf_idx2 = -1, .size_idx2 = -1,
218 		},
219 	},
220 	[RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = {
221 		.name = "ibm,get-dynamic-sensor-state",
222 		.filter = &(const struct rtas_filter) {
223 			.buf_idx1 = 1, .size_idx1 = -1,
224 			.buf_idx2 = -1, .size_idx2 = -1,
225 		},
226 		/*
227 		 * PAPR+ v2.13 R1–7.3.19–3 is explicit that the OS
228 		 * must not call ibm,get-dynamic-sensor-state with
229 		 * different inputs until a non-retry status has been
230 		 * returned.
231 		 */
232 		.lock = &rtas_ibm_get_dynamic_sensor_state_lock,
233 	},
234 	[RTAS_FNIDX__IBM_GET_INDICES] = {
235 		.name = "ibm,get-indices",
236 		.filter = &(const struct rtas_filter) {
237 			.buf_idx1 = 2, .size_idx1 = 3,
238 			.buf_idx2 = -1, .size_idx2 = -1,
239 		},
240 		/*
241 		 * PAPR+ v2.13 R1–7.3.17–2 says that the OS must not
242 		 * interleave ibm,get-indices call sequences with
243 		 * different inputs.
244 		 */
245 		.lock = &rtas_ibm_get_indices_lock,
246 	},
247 	[RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = {
248 		.name = "ibm,get-rio-topology",
249 	},
250 	[RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = {
251 		.name = "ibm,get-system-parameter",
252 		.filter = &(const struct rtas_filter) {
253 			.buf_idx1 = 1, .size_idx1 = 2,
254 			.buf_idx2 = -1, .size_idx2 = -1,
255 		},
256 	},
257 	[RTAS_FNIDX__IBM_GET_VPD] = {
258 		.name = "ibm,get-vpd",
259 		.filter = &(const struct rtas_filter) {
260 			.buf_idx1 = 0, .size_idx1 = -1,
261 			.buf_idx2 = 1, .size_idx2 = 2,
262 		},
263 		/*
264 		 * PAPR+ v2.13 R1–7.3.20–4 indicates that sequences
265 		 * should not be allowed to interleave.
266 		 */
267 		.lock = &rtas_ibm_get_vpd_lock,
268 	},
269 	[RTAS_FNIDX__IBM_GET_XIVE] = {
270 		.name = "ibm,get-xive",
271 	},
272 	[RTAS_FNIDX__IBM_INT_OFF] = {
273 		.name = "ibm,int-off",
274 	},
275 	[RTAS_FNIDX__IBM_INT_ON] = {
276 		.name = "ibm,int-on",
277 	},
278 	[RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = {
279 		.name = "ibm,io-quiesce-ack",
280 	},
281 	[RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = {
282 		.name = "ibm,lpar-perftools",
283 		.filter = &(const struct rtas_filter) {
284 			.buf_idx1 = 2, .size_idx1 = 3,
285 			.buf_idx2 = -1, .size_idx2 = -1,
286 		},
287 		/*
288 		 * PAPR+ v2.13 R1–7.3.26–6 says the OS should allow
289 		 * only one call sequence in progress at a time.
290 		 */
291 		.lock = &rtas_ibm_lpar_perftools_lock,
292 	},
293 	[RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = {
294 		.name = "ibm,manage-flash-image",
295 	},
296 	[RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = {
297 		.name = "ibm,manage-storage-preservation",
298 	},
299 	[RTAS_FNIDX__IBM_NMI_INTERLOCK] = {
300 		.name = "ibm,nmi-interlock",
301 	},
302 	[RTAS_FNIDX__IBM_NMI_REGISTER] = {
303 		.name = "ibm,nmi-register",
304 	},
305 	[RTAS_FNIDX__IBM_OPEN_ERRINJCT] = {
306 		.name = "ibm,open-errinjct",
307 		.filter = &(const struct rtas_filter) {
308 			.buf_idx1 = -1, .size_idx1 = -1,
309 			.buf_idx2 = -1, .size_idx2 = -1,
310 		},
311 	},
312 	[RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = {
313 		.name = "ibm,open-sriov-allow-unfreeze",
314 	},
315 	[RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = {
316 		.name = "ibm,open-sriov-map-pe-number",
317 	},
318 	[RTAS_FNIDX__IBM_OS_TERM] = {
319 		.name = "ibm,os-term",
320 	},
321 	[RTAS_FNIDX__IBM_PARTNER_CONTROL] = {
322 		.name = "ibm,partner-control",
323 	},
324 	[RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = {
325 		.name = "ibm,physical-attestation",
326 		.filter = &(const struct rtas_filter) {
327 			.buf_idx1 = 0, .size_idx1 = 1,
328 			.buf_idx2 = -1, .size_idx2 = -1,
329 		},
330 		/*
331 		 * This follows a sequence-based pattern similar to
332 		 * ibm,get-vpd et al. Since PAPR+ restricts
333 		 * interleaving call sequences for other functions of
334 		 * this style, assume the restriction applies here,
335 		 * even though it's not explicit in the spec.
336 		 */
337 		.lock = &rtas_ibm_physical_attestation_lock,
338 	},
339 	[RTAS_FNIDX__IBM_PLATFORM_DUMP] = {
340 		.name = "ibm,platform-dump",
341 		.filter = &(const struct rtas_filter) {
342 			.buf_idx1 = 4, .size_idx1 = 5,
343 			.buf_idx2 = -1, .size_idx2 = -1,
344 		},
345 		/*
346 		 * PAPR+ v2.13 7.3.3.4.1 indicates that concurrent
347 		 * sequences of ibm,platform-dump are allowed if they
348 		 * are operating on different dump tags. So leave the
349 		 * lock pointer unset for now. This may need
350 		 * reconsideration if kernel-internal users appear.
351 		 */
352 	},
353 	[RTAS_FNIDX__IBM_POWER_OFF_UPS] = {
354 		.name = "ibm,power-off-ups",
355 	},
356 	[RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = {
357 		.name = "ibm,query-interrupt-source-number",
358 	},
359 	[RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = {
360 		.name = "ibm,query-pe-dma-window",
361 	},
362 	[RTAS_FNIDX__IBM_READ_PCI_CONFIG] = {
363 		.name = "ibm,read-pci-config",
364 	},
365 	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = {
366 		.name = "ibm,read-slot-reset-state",
367 		.filter = &(const struct rtas_filter) {
368 			.buf_idx1 = -1, .size_idx1 = -1,
369 			.buf_idx2 = -1, .size_idx2 = -1,
370 		},
371 	},
372 	[RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = {
373 		.name = "ibm,read-slot-reset-state2",
374 	},
375 	[RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = {
376 		.name = "ibm,remove-pe-dma-window",
377 	},
378 	[RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOWS] = {
379 		.name = "ibm,reset-pe-dma-windows",
380 	},
381 	[RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = {
382 		.name = "ibm,scan-log-dump",
383 		.filter = &(const struct rtas_filter) {
384 			.buf_idx1 = 0, .size_idx1 = 1,
385 			.buf_idx2 = -1, .size_idx2 = -1,
386 		},
387 	},
388 	[RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = {
389 		.name = "ibm,set-dynamic-indicator",
390 		.filter = &(const struct rtas_filter) {
391 			.buf_idx1 = 2, .size_idx1 = -1,
392 			.buf_idx2 = -1, .size_idx2 = -1,
393 		},
394 		/*
395 		 * PAPR+ v2.13 R1–7.3.18–3 says the OS must not call
396 		 * this function with different inputs until a
397 		 * non-retry status has been returned.
398 		 */
399 		.lock = &rtas_ibm_set_dynamic_indicator_lock,
400 	},
401 	[RTAS_FNIDX__IBM_SET_EEH_OPTION] = {
402 		.name = "ibm,set-eeh-option",
403 		.filter = &(const struct rtas_filter) {
404 			.buf_idx1 = -1, .size_idx1 = -1,
405 			.buf_idx2 = -1, .size_idx2 = -1,
406 		},
407 	},
408 	[RTAS_FNIDX__IBM_SET_SLOT_RESET] = {
409 		.name = "ibm,set-slot-reset",
410 	},
411 	[RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = {
412 		.name = "ibm,set-system-parameter",
413 		.filter = &(const struct rtas_filter) {
414 			.buf_idx1 = 1, .size_idx1 = -1,
415 			.buf_idx2 = -1, .size_idx2 = -1,
416 		},
417 	},
418 	[RTAS_FNIDX__IBM_SET_XIVE] = {
419 		.name = "ibm,set-xive",
420 	},
421 	[RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = {
422 		.name = "ibm,slot-error-detail",
423 	},
424 	[RTAS_FNIDX__IBM_SUSPEND_ME] = {
425 		.name = "ibm,suspend-me",
426 		.banned_for_syscall_on_le = true,
427 		.filter = &(const struct rtas_filter) {
428 			.buf_idx1 = -1, .size_idx1 = -1,
429 			.buf_idx2 = -1, .size_idx2 = -1,
430 		},
431 	},
432 	[RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = {
433 		.name = "ibm,tune-dma-parms",
434 	},
435 	[RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = {
436 		.name = "ibm,update-flash-64-and-reboot",
437 	},
438 	[RTAS_FNIDX__IBM_UPDATE_NODES] = {
439 		.name = "ibm,update-nodes",
440 		.banned_for_syscall_on_le = true,
441 		.filter = &(const struct rtas_filter) {
442 			.buf_idx1 = 0, .size_idx1 = -1,
443 			.buf_idx2 = -1, .size_idx2 = -1,
444 			.fixed_size = 4096,
445 		},
446 	},
447 	[RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = {
448 		.name = "ibm,update-properties",
449 		.banned_for_syscall_on_le = true,
450 		.filter = &(const struct rtas_filter) {
451 			.buf_idx1 = 0, .size_idx1 = -1,
452 			.buf_idx2 = -1, .size_idx2 = -1,
453 			.fixed_size = 4096,
454 		},
455 	},
456 	[RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = {
457 		.name = "ibm,validate-flash-image",
458 	},
459 	[RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = {
460 		.name = "ibm,write-pci-config",
461 	},
462 	[RTAS_FNIDX__NVRAM_FETCH] = {
463 		.name = "nvram-fetch",
464 	},
465 	[RTAS_FNIDX__NVRAM_STORE] = {
466 		.name = "nvram-store",
467 	},
468 	[RTAS_FNIDX__POWER_OFF] = {
469 		.name = "power-off",
470 	},
471 	[RTAS_FNIDX__PUT_TERM_CHAR] = {
472 		.name = "put-term-char",
473 	},
474 	[RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = {
475 		.name = "query-cpu-stopped-state",
476 	},
477 	[RTAS_FNIDX__READ_PCI_CONFIG] = {
478 		.name = "read-pci-config",
479 	},
480 	[RTAS_FNIDX__RTAS_LAST_ERROR] = {
481 		.name = "rtas-last-error",
482 	},
483 	[RTAS_FNIDX__SET_INDICATOR] = {
484 		.name = "set-indicator",
485 		.filter = &(const struct rtas_filter) {
486 			.buf_idx1 = -1, .size_idx1 = -1,
487 			.buf_idx2 = -1, .size_idx2 = -1,
488 		},
489 	},
490 	[RTAS_FNIDX__SET_POWER_LEVEL] = {
491 		.name = "set-power-level",
492 		.filter = &(const struct rtas_filter) {
493 			.buf_idx1 = -1, .size_idx1 = -1,
494 			.buf_idx2 = -1, .size_idx2 = -1,
495 		},
496 	},
497 	[RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = {
498 		.name = "set-time-for-power-on",
499 		.filter = &(const struct rtas_filter) {
500 			.buf_idx1 = -1, .size_idx1 = -1,
501 			.buf_idx2 = -1, .size_idx2 = -1,
502 		},
503 	},
504 	[RTAS_FNIDX__SET_TIME_OF_DAY] = {
505 		.name = "set-time-of-day",
506 		.filter = &(const struct rtas_filter) {
507 			.buf_idx1 = -1, .size_idx1 = -1,
508 			.buf_idx2 = -1, .size_idx2 = -1,
509 		},
510 	},
511 	[RTAS_FNIDX__START_CPU] = {
512 		.name = "start-cpu",
513 	},
514 	[RTAS_FNIDX__STOP_SELF] = {
515 		.name = "stop-self",
516 	},
517 	[RTAS_FNIDX__SYSTEM_REBOOT] = {
518 		.name = "system-reboot",
519 	},
520 	[RTAS_FNIDX__THAW_TIME_BASE] = {
521 		.name = "thaw-time-base",
522 	},
523 	[RTAS_FNIDX__WRITE_PCI_CONFIG] = {
524 		.name = "write-pci-config",
525 	},
526 };
527 
528 #define for_each_rtas_function(funcp)                                       \
529 	for (funcp = &rtas_function_table[0];                               \
530 	     funcp < &rtas_function_table[ARRAY_SIZE(rtas_function_table)]; \
531 	     ++funcp)
532 
533 /*
534  * Nearly all RTAS calls need to be serialized. All uses of the
535  * default rtas_args block must hold rtas_lock.
536  *
537  * Exceptions to the RTAS serialization requirement (e.g. stop-self)
538  * must use a separate rtas_args structure.
539  */
540 static DEFINE_RAW_SPINLOCK(rtas_lock);
541 static struct rtas_args rtas_args;
542 
543 /**
544  * rtas_function_token() - RTAS function token lookup.
545  * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN.
546  *
547  * Context: Any context.
548  * Return: the token value for the function if implemented by this platform,
549  *         otherwise RTAS_UNKNOWN_SERVICE.
550  */
551 s32 rtas_function_token(const rtas_fn_handle_t handle)
552 {
553 	const size_t index = handle.index;
554 	const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table);
555 
556 	if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index))
557 		return RTAS_UNKNOWN_SERVICE;
558 	/*
559 	 * Various drivers attempt token lookups on non-RTAS
560 	 * platforms.
561 	 */
562 	if (!rtas.dev)
563 		return RTAS_UNKNOWN_SERVICE;
564 
565 	return rtas_function_table[index].token;
566 }
567 EXPORT_SYMBOL_GPL(rtas_function_token);
568 
569 static int rtas_function_cmp(const void *a, const void *b)
570 {
571 	const struct rtas_function *f1 = a;
572 	const struct rtas_function *f2 = b;
573 
574 	return strcmp(f1->name, f2->name);
575 }
576 
577 /*
578  * Boot-time initialization of the function table needs the lookup to
579  * return a non-const-qualified object. Use rtas_name_to_function()
580  * in all other contexts.
581  */
582 static struct rtas_function *__rtas_name_to_function(const char *name)
583 {
584 	const struct rtas_function key = {
585 		.name = name,
586 	};
587 	struct rtas_function *found;
588 
589 	found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table),
590 			sizeof(rtas_function_table[0]), rtas_function_cmp);
591 
592 	return found;
593 }
594 
595 static const struct rtas_function *rtas_name_to_function(const char *name)
596 {
597 	return __rtas_name_to_function(name);
598 }
599 
600 static DEFINE_XARRAY(rtas_token_to_function_xarray);
601 
602 static int __init rtas_token_to_function_xarray_init(void)
603 {
604 	const struct rtas_function *func;
605 	int err = 0;
606 
607 	for_each_rtas_function(func) {
608 		const s32 token = func->token;
609 
610 		if (token == RTAS_UNKNOWN_SERVICE)
611 			continue;
612 
613 		err = xa_err(xa_store(&rtas_token_to_function_xarray,
614 				      token, (void *)func, GFP_KERNEL));
615 		if (err)
616 			break;
617 	}
618 
619 	return err;
620 }
621 arch_initcall(rtas_token_to_function_xarray_init);
622 
623 /*
624  * For use by sys_rtas(), where the token value is provided by user
625  * space and we don't want to warn on failed lookups.
626  */
627 static const struct rtas_function *rtas_token_to_function_untrusted(s32 token)
628 {
629 	return xa_load(&rtas_token_to_function_xarray, token);
630 }
631 
632 /*
633  * Reverse lookup for deriving the function descriptor from a
634  * known-good token value in contexts where the former is not already
635  * available. @token must be valid, e.g. derived from the result of a
636  * prior lookup against the function table.
637  */
638 static const struct rtas_function *rtas_token_to_function(s32 token)
639 {
640 	const struct rtas_function *func;
641 
642 	if (WARN_ONCE(token < 0, "invalid token %d", token))
643 		return NULL;
644 
645 	func = rtas_token_to_function_untrusted(token);
646 	if (func)
647 		return func;
648 	/*
649 	 * Fall back to linear scan in case the reverse mapping hasn't
650 	 * been initialized yet.
651 	 */
652 	if (xa_empty(&rtas_token_to_function_xarray)) {
653 		for_each_rtas_function(func) {
654 			if (func->token == token)
655 				return func;
656 		}
657 	}
658 
659 	WARN_ONCE(true, "unexpected failed lookup for token %d", token);
660 	return NULL;
661 }
662 
663 /* This is here deliberately so it's only used in this file */
664 void enter_rtas(unsigned long);
665 
666 static void __do_enter_rtas(struct rtas_args *args)
667 {
668 	enter_rtas(__pa(args));
669 	srr_regs_clobbered(); /* rtas uses SRRs, invalidate */
670 }
671 
672 static void __do_enter_rtas_trace(struct rtas_args *args)
673 {
674 	const struct rtas_function *func = rtas_token_to_function(be32_to_cpu(args->token));
675 
676 	/*
677 	 * If there is a per-function lock, it must be held by the
678 	 * caller.
679 	 */
680 	if (func->lock)
681 		lockdep_assert_held(func->lock);
682 
683 	if (args == &rtas_args)
684 		lockdep_assert_held(&rtas_lock);
685 
686 	trace_rtas_input(args, func->name);
687 	trace_rtas_ll_entry(args);
688 
689 	__do_enter_rtas(args);
690 
691 	trace_rtas_ll_exit(args);
692 	trace_rtas_output(args, func->name);
693 }
694 
695 static void do_enter_rtas(struct rtas_args *args)
696 {
697 	const unsigned long msr = mfmsr();
698 	/*
699 	 * Situations where we want to skip any active tracepoints for
700 	 * safety reasons:
701 	 *
702 	 * 1. The last code executed on an offline CPU as it stops,
703 	 *    i.e. we're about to call stop-self. The tracepoints'
704 	 *    function name lookup uses xarray, which uses RCU, which
705 	 *    isn't valid to call on an offline CPU.  Any events
706 	 *    emitted on an offline CPU will be discarded anyway.
707 	 *
708 	 * 2. In real mode, as when invoking ibm,nmi-interlock from
709 	 *    the pseries MCE handler. We cannot count on trace
710 	 *    buffers or the entries in rtas_token_to_function_xarray
711 	 *    to be contained in the RMO.
712 	 */
713 	const unsigned long mask = MSR_IR | MSR_DR;
714 	const bool can_trace = likely(cpu_online(raw_smp_processor_id()) &&
715 				      (msr & mask) == mask);
716 	/*
717 	 * Make sure MSR[RI] is currently enabled as it will be forced later
718 	 * in enter_rtas.
719 	 */
720 	BUG_ON(!(msr & MSR_RI));
721 
722 	BUG_ON(!irqs_disabled());
723 
724 	hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */
725 
726 	if (can_trace)
727 		__do_enter_rtas_trace(args);
728 	else
729 		__do_enter_rtas(args);
730 }
731 
732 struct rtas_t rtas;
733 
734 DEFINE_SPINLOCK(rtas_data_buf_lock);
735 EXPORT_SYMBOL_GPL(rtas_data_buf_lock);
736 
737 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K);
738 EXPORT_SYMBOL_GPL(rtas_data_buf);
739 
740 unsigned long rtas_rmo_buf;
741 
742 /*
743  * If non-NULL, this gets called when the kernel terminates.
744  * This is done like this so rtas_flash can be a module.
745  */
746 void (*rtas_flash_term_hook)(int);
747 EXPORT_SYMBOL_GPL(rtas_flash_term_hook);
748 
749 /*
750  * call_rtas_display_status and call_rtas_display_status_delay
751  * are designed only for very early low-level debugging, which
752  * is why the token is hard-coded to 10.
753  */
754 static void call_rtas_display_status(unsigned char c)
755 {
756 	unsigned long flags;
757 
758 	if (!rtas.base)
759 		return;
760 
761 	raw_spin_lock_irqsave(&rtas_lock, flags);
762 	rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c);
763 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
764 }
765 
766 static void call_rtas_display_status_delay(char c)
767 {
768 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
769 	static int width = 16;
770 
771 	if (c == '\n') {
772 		while (width-- > 0)
773 			call_rtas_display_status(' ');
774 		width = 16;
775 		mdelay(500);
776 		pending_newline = 1;
777 	} else {
778 		if (pending_newline) {
779 			call_rtas_display_status('\r');
780 			call_rtas_display_status('\n');
781 		}
782 		pending_newline = 0;
783 		if (width--) {
784 			call_rtas_display_status(c);
785 			udelay(10000);
786 		}
787 	}
788 }
789 
790 void __init udbg_init_rtas_panel(void)
791 {
792 	udbg_putc = call_rtas_display_status_delay;
793 }
794 
795 #ifdef CONFIG_UDBG_RTAS_CONSOLE
796 
797 /* If you think you're dying before early_init_dt_scan_rtas() does its
798  * work, you can hard code the token values for your firmware here and
799  * hardcode rtas.base/entry etc.
800  */
801 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE;
802 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE;
803 
804 static void udbg_rtascon_putc(char c)
805 {
806 	int tries;
807 
808 	if (!rtas.base)
809 		return;
810 
811 	/* Add CRs before LFs */
812 	if (c == '\n')
813 		udbg_rtascon_putc('\r');
814 
815 	/* if there is more than one character to be displayed, wait a bit */
816 	for (tries = 0; tries < 16; tries++) {
817 		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0)
818 			break;
819 		udelay(1000);
820 	}
821 }
822 
823 static int udbg_rtascon_getc_poll(void)
824 {
825 	int c;
826 
827 	if (!rtas.base)
828 		return -1;
829 
830 	if (rtas_call(rtas_getchar_token, 0, 2, &c))
831 		return -1;
832 
833 	return c;
834 }
835 
836 static int udbg_rtascon_getc(void)
837 {
838 	int c;
839 
840 	while ((c = udbg_rtascon_getc_poll()) == -1)
841 		;
842 
843 	return c;
844 }
845 
846 
847 void __init udbg_init_rtas_console(void)
848 {
849 	udbg_putc = udbg_rtascon_putc;
850 	udbg_getc = udbg_rtascon_getc;
851 	udbg_getc_poll = udbg_rtascon_getc_poll;
852 }
853 #endif /* CONFIG_UDBG_RTAS_CONSOLE */
854 
855 void rtas_progress(char *s, unsigned short hex)
856 {
857 	struct device_node *root;
858 	int width;
859 	const __be32 *p;
860 	char *os;
861 	static int display_character, set_indicator;
862 	static int display_width, display_lines, form_feed;
863 	static const int *row_width;
864 	static DEFINE_SPINLOCK(progress_lock);
865 	static int current_line;
866 	static int pending_newline = 0;  /* did last write end with unprinted newline? */
867 
868 	if (!rtas.base)
869 		return;
870 
871 	if (display_width == 0) {
872 		display_width = 0x10;
873 		if ((root = of_find_node_by_path("/rtas"))) {
874 			if ((p = of_get_property(root,
875 					"ibm,display-line-length", NULL)))
876 				display_width = be32_to_cpu(*p);
877 			if ((p = of_get_property(root,
878 					"ibm,form-feed", NULL)))
879 				form_feed = be32_to_cpu(*p);
880 			if ((p = of_get_property(root,
881 					"ibm,display-number-of-lines", NULL)))
882 				display_lines = be32_to_cpu(*p);
883 			row_width = of_get_property(root,
884 					"ibm,display-truncation-length", NULL);
885 			of_node_put(root);
886 		}
887 		display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER);
888 		set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR);
889 	}
890 
891 	if (display_character == RTAS_UNKNOWN_SERVICE) {
892 		/* use hex display if available */
893 		if (set_indicator != RTAS_UNKNOWN_SERVICE)
894 			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex);
895 		return;
896 	}
897 
898 	spin_lock(&progress_lock);
899 
900 	/*
901 	 * Last write ended with newline, but we didn't print it since
902 	 * it would just clear the bottom line of output. Print it now
903 	 * instead.
904 	 *
905 	 * If no newline is pending and form feed is supported, clear the
906 	 * display with a form feed; otherwise, print a CR to start output
907 	 * at the beginning of the line.
908 	 */
909 	if (pending_newline) {
910 		rtas_call(display_character, 1, 1, NULL, '\r');
911 		rtas_call(display_character, 1, 1, NULL, '\n');
912 		pending_newline = 0;
913 	} else {
914 		current_line = 0;
915 		if (form_feed)
916 			rtas_call(display_character, 1, 1, NULL,
917 				  (char)form_feed);
918 		else
919 			rtas_call(display_character, 1, 1, NULL, '\r');
920 	}
921 
922 	if (row_width)
923 		width = row_width[current_line];
924 	else
925 		width = display_width;
926 	os = s;
927 	while (*os) {
928 		if (*os == '\n' || *os == '\r') {
929 			/* If newline is the last character, save it
930 			 * until next call to avoid bumping up the
931 			 * display output.
932 			 */
933 			if (*os == '\n' && !os[1]) {
934 				pending_newline = 1;
935 				current_line++;
936 				if (current_line > display_lines-1)
937 					current_line = display_lines-1;
938 				spin_unlock(&progress_lock);
939 				return;
940 			}
941 
942 			/* RTAS wants CR-LF, not just LF */
943 
944 			if (*os == '\n') {
945 				rtas_call(display_character, 1, 1, NULL, '\r');
946 				rtas_call(display_character, 1, 1, NULL, '\n');
947 			} else {
948 				/* CR might be used to re-draw a line, so we'll
949 				 * leave it alone and not add LF.
950 				 */
951 				rtas_call(display_character, 1, 1, NULL, *os);
952 			}
953 
954 			if (row_width)
955 				width = row_width[current_line];
956 			else
957 				width = display_width;
958 		} else {
959 			width--;
960 			rtas_call(display_character, 1, 1, NULL, *os);
961 		}
962 
963 		os++;
964 
965 		/* if we overwrite the screen length */
966 		if (width <= 0)
967 			while ((*os != 0) && (*os != '\n') && (*os != '\r'))
968 				os++;
969 	}
970 
971 	spin_unlock(&progress_lock);
972 }
973 EXPORT_SYMBOL_GPL(rtas_progress);		/* needed by rtas_flash module */
974 
975 int rtas_token(const char *service)
976 {
977 	const struct rtas_function *func;
978 	const __be32 *tokp;
979 
980 	if (rtas.dev == NULL)
981 		return RTAS_UNKNOWN_SERVICE;
982 
983 	func = rtas_name_to_function(service);
984 	if (func)
985 		return func->token;
986 	/*
987 	 * The caller is looking up a name that is not known to be an
988 	 * RTAS function. Either it's a function that needs to be
989 	 * added to the table, or they're misusing rtas_token() to
990 	 * access non-function properties of the /rtas node. Warn and
991 	 * fall back to the legacy behavior.
992 	 */
993 	WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n",
994 		  service);
995 
996 	tokp = of_get_property(rtas.dev, service, NULL);
997 	return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE;
998 }
999 EXPORT_SYMBOL_GPL(rtas_token);
1000 
1001 #ifdef CONFIG_RTAS_ERROR_LOGGING
1002 
1003 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX;
1004 
1005 /*
1006  * Return the firmware-specified size of the error log buffer
1007  *  for all rtas calls that require an error buffer argument.
1008  *  This includes 'check-exception' and 'rtas-last-error'.
1009  */
1010 int rtas_get_error_log_max(void)
1011 {
1012 	return rtas_error_log_max;
1013 }
1014 
1015 static void __init init_error_log_max(void)
1016 {
1017 	static const char propname[] __initconst = "rtas-error-log-max";
1018 	u32 max;
1019 
1020 	if (of_property_read_u32(rtas.dev, propname, &max)) {
1021 		pr_warn("%s not found, using default of %u\n",
1022 			propname, RTAS_ERROR_LOG_MAX);
1023 		max = RTAS_ERROR_LOG_MAX;
1024 	}
1025 
1026 	if (max > RTAS_ERROR_LOG_MAX) {
1027 		pr_warn("%s = %u, clamping max error log size to %u\n",
1028 			propname, max, RTAS_ERROR_LOG_MAX);
1029 		max = RTAS_ERROR_LOG_MAX;
1030 	}
1031 
1032 	rtas_error_log_max = max;
1033 }
1034 
1035 
1036 static char rtas_err_buf[RTAS_ERROR_LOG_MAX];
1037 
1038 /** Return a copy of the detailed error text associated with the
1039  *  most recent failed call to rtas.  Because the error text
1040  *  might go stale if there are any other intervening rtas calls,
1041  *  this routine must be called atomically with whatever produced
1042  *  the error (i.e. with rtas_lock still held from the previous call).
1043  */
1044 static char *__fetch_rtas_last_error(char *altbuf)
1045 {
1046 	const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR);
1047 	struct rtas_args err_args, save_args;
1048 	u32 bufsz;
1049 	char *buf = NULL;
1050 
1051 	lockdep_assert_held(&rtas_lock);
1052 
1053 	if (token == -1)
1054 		return NULL;
1055 
1056 	bufsz = rtas_get_error_log_max();
1057 
1058 	err_args.token = cpu_to_be32(token);
1059 	err_args.nargs = cpu_to_be32(2);
1060 	err_args.nret = cpu_to_be32(1);
1061 	err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf));
1062 	err_args.args[1] = cpu_to_be32(bufsz);
1063 	err_args.args[2] = 0;
1064 
1065 	save_args = rtas_args;
1066 	rtas_args = err_args;
1067 
1068 	do_enter_rtas(&rtas_args);
1069 
1070 	err_args = rtas_args;
1071 	rtas_args = save_args;
1072 
1073 	/* Log the error in the unlikely case that there was one. */
1074 	if (unlikely(err_args.args[2] == 0)) {
1075 		if (altbuf) {
1076 			buf = altbuf;
1077 		} else {
1078 			buf = rtas_err_buf;
1079 			if (slab_is_available())
1080 				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC);
1081 		}
1082 		if (buf)
1083 			memmove(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX);
1084 	}
1085 
1086 	return buf;
1087 }
1088 
1089 #define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL)
1090 
1091 #else /* CONFIG_RTAS_ERROR_LOGGING */
1092 #define __fetch_rtas_last_error(x)	NULL
1093 #define get_errorlog_buffer()		NULL
1094 static void __init init_error_log_max(void) {}
1095 #endif
1096 
1097 
1098 static void
1099 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret,
1100 		      va_list list)
1101 {
1102 	int i;
1103 
1104 	args->token = cpu_to_be32(token);
1105 	args->nargs = cpu_to_be32(nargs);
1106 	args->nret  = cpu_to_be32(nret);
1107 	args->rets  = &(args->args[nargs]);
1108 
1109 	for (i = 0; i < nargs; ++i)
1110 		args->args[i] = cpu_to_be32(va_arg(list, __u32));
1111 
1112 	for (i = 0; i < nret; ++i)
1113 		args->rets[i] = 0;
1114 
1115 	do_enter_rtas(args);
1116 }
1117 
1118 /**
1119  * rtas_call_unlocked() - Invoke an RTAS firmware function without synchronization.
1120  * @args: RTAS parameter block to be used for the call, must obey RTAS addressing
1121  *        constraints.
1122  * @token: Identifies the function being invoked.
1123  * @nargs: Number of input parameters. Does not include token.
1124  * @nret: Number of output parameters, including the call status.
1125  * @....: List of @nargs input parameters.
1126  *
1127  * Invokes the RTAS function indicated by @token, which the caller
1128  * should obtain via rtas_function_token().
1129  *
1130  * This function is similar to rtas_call(), but must be used with a
1131  * limited set of RTAS calls specifically exempted from the general
1132  * requirement that only one RTAS call may be in progress at any
1133  * time. Examples include stop-self and ibm,nmi-interlock.
1134  */
1135 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...)
1136 {
1137 	va_list list;
1138 
1139 	va_start(list, nret);
1140 	va_rtas_call_unlocked(args, token, nargs, nret, list);
1141 	va_end(list);
1142 }
1143 
1144 static bool token_is_restricted_errinjct(s32 token)
1145 {
1146 	return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) ||
1147 	       token == rtas_function_token(RTAS_FN_IBM_ERRINJCT);
1148 }
1149 
1150 /**
1151  * rtas_call() - Invoke an RTAS firmware function.
1152  * @token: Identifies the function being invoked.
1153  * @nargs: Number of input parameters. Does not include token.
1154  * @nret: Number of output parameters, including the call status.
1155  * @outputs: Array of @nret output words.
1156  * @....: List of @nargs input parameters.
1157  *
1158  * Invokes the RTAS function indicated by @token, which the caller
1159  * should obtain via rtas_function_token().
1160  *
1161  * The @nargs and @nret arguments must match the number of input and
1162  * output parameters specified for the RTAS function.
1163  *
1164  * rtas_call() returns RTAS status codes, not conventional Linux errno
1165  * values. Callers must translate any failure to an appropriate errno
1166  * in syscall context. Most callers of RTAS functions that can return
1167  * -2 or 990x should use rtas_busy_delay() to correctly handle those
1168  * statuses before calling again.
1169  *
1170  * The return value descriptions are adapted from 7.2.8 [RTAS] Return
1171  * Codes of the PAPR and CHRP specifications.
1172  *
1173  * Context: Process context preferably, interrupt context if
1174  *          necessary.  Acquires an internal spinlock and may perform
1175  *          GFP_ATOMIC slab allocation in error path. Unsafe for NMI
1176  *          context.
1177  * Return:
1178  * *                          0 - RTAS function call succeeded.
1179  * *                         -1 - RTAS function encountered a hardware or
1180  *                                platform error, or the token is invalid,
1181  *                                or the function is restricted by kernel policy.
1182  * *                         -2 - Specs say "A necessary hardware device was busy,
1183  *                                and the requested function could not be
1184  *                                performed. The operation should be retried at
1185  *                                a later time." This is misleading, at least with
1186  *                                respect to current RTAS implementations. What it
1187  *                                usually means in practice is that the function
1188  *                                could not be completed while meeting RTAS's
1189  *                                deadline for returning control to the OS (250us
1190  *                                for PAPR/PowerVM, typically), but the call may be
1191  *                                immediately reattempted to resume work on it.
1192  * *                         -3 - Parameter error.
1193  * *                         -7 - Unexpected state change.
1194  * *                9000...9899 - Vendor-specific success codes.
1195  * *                9900...9905 - Advisory extended delay. Caller should try
1196  *                                again after ~10^x ms has elapsed, where x is
1197  *                                the last digit of the status [0-5]. Again going
1198  *                                beyond the PAPR text, 990x on PowerVM indicates
1199  *                                contention for RTAS-internal resources. Other
1200  *                                RTAS call sequences in progress should be
1201  *                                allowed to complete before reattempting the
1202  *                                call.
1203  * *                      -9000 - Multi-level isolation error.
1204  * *              -9999...-9004 - Vendor-specific error codes.
1205  * * Additional negative values - Function-specific error.
1206  * * Additional positive values - Function-specific success.
1207  */
1208 int rtas_call(int token, int nargs, int nret, int *outputs, ...)
1209 {
1210 	struct pin_cookie cookie;
1211 	va_list list;
1212 	int i;
1213 	unsigned long flags;
1214 	struct rtas_args *args;
1215 	char *buff_copy = NULL;
1216 	int ret;
1217 
1218 	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE)
1219 		return -1;
1220 
1221 	if (token_is_restricted_errinjct(token)) {
1222 		/*
1223 		 * It would be nicer to not discard the error value
1224 		 * from security_locked_down(), but callers expect an
1225 		 * RTAS status, not an errno.
1226 		 */
1227 		if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION))
1228 			return -1;
1229 	}
1230 
1231 	if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) {
1232 		WARN_ON_ONCE(1);
1233 		return -1;
1234 	}
1235 
1236 	raw_spin_lock_irqsave(&rtas_lock, flags);
1237 	cookie = lockdep_pin_lock(&rtas_lock);
1238 
1239 	/* We use the global rtas args buffer */
1240 	args = &rtas_args;
1241 
1242 	va_start(list, outputs);
1243 	va_rtas_call_unlocked(args, token, nargs, nret, list);
1244 	va_end(list);
1245 
1246 	/* A -1 return code indicates that the last command couldn't
1247 	   be completed due to a hardware error. */
1248 	if (be32_to_cpu(args->rets[0]) == -1)
1249 		buff_copy = __fetch_rtas_last_error(NULL);
1250 
1251 	if (nret > 1 && outputs != NULL)
1252 		for (i = 0; i < nret-1; ++i)
1253 			outputs[i] = be32_to_cpu(args->rets[i + 1]);
1254 	ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0;
1255 
1256 	lockdep_unpin_lock(&rtas_lock, cookie);
1257 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1258 
1259 	if (buff_copy) {
1260 		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0);
1261 		if (slab_is_available())
1262 			kfree(buff_copy);
1263 	}
1264 	return ret;
1265 }
1266 EXPORT_SYMBOL_GPL(rtas_call);
1267 
1268 /**
1269  * rtas_busy_delay_time() - From an RTAS status value, calculate the
1270  *                          suggested delay time in milliseconds.
1271  *
1272  * @status: a value returned from rtas_call() or similar APIs which return
1273  *          the status of a RTAS function call.
1274  *
1275  * Context: Any context.
1276  *
1277  * Return:
1278  * * 100000 - If @status is 9905.
1279  * * 10000  - If @status is 9904.
1280  * * 1000   - If @status is 9903.
1281  * * 100    - If @status is 9902.
1282  * * 10     - If @status is 9901.
1283  * * 1      - If @status is either 9900 or -2. This is "wrong" for -2, but
1284  *            some callers depend on this behavior, and the worst outcome
1285  *            is that they will delay for longer than necessary.
1286  * * 0      - If @status is not a busy or extended delay value.
1287  */
1288 unsigned int rtas_busy_delay_time(int status)
1289 {
1290 	int order;
1291 	unsigned int ms = 0;
1292 
1293 	if (status == RTAS_BUSY) {
1294 		ms = 1;
1295 	} else if (status >= RTAS_EXTENDED_DELAY_MIN &&
1296 		   status <= RTAS_EXTENDED_DELAY_MAX) {
1297 		order = status - RTAS_EXTENDED_DELAY_MIN;
1298 		for (ms = 1; order > 0; order--)
1299 			ms *= 10;
1300 	}
1301 
1302 	return ms;
1303 }
1304 
1305 /*
1306  * Early boot fallback for rtas_busy_delay().
1307  */
1308 static bool __init rtas_busy_delay_early(int status)
1309 {
1310 	static size_t successive_ext_delays __initdata;
1311 	bool retry;
1312 
1313 	switch (status) {
1314 	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1315 		/*
1316 		 * In the unlikely case that we receive an extended
1317 		 * delay status in early boot, the OS is probably not
1318 		 * the cause, and there's nothing we can do to clear
1319 		 * the condition. Best we can do is delay for a bit
1320 		 * and hope it's transient. Lie to the caller if it
1321 		 * seems like we're stuck in a retry loop.
1322 		 */
1323 		mdelay(1);
1324 		retry = true;
1325 		successive_ext_delays += 1;
1326 		if (successive_ext_delays > 1000) {
1327 			pr_err("too many extended delays, giving up\n");
1328 			dump_stack();
1329 			retry = false;
1330 			successive_ext_delays = 0;
1331 		}
1332 		break;
1333 	case RTAS_BUSY:
1334 		retry = true;
1335 		successive_ext_delays = 0;
1336 		break;
1337 	default:
1338 		retry = false;
1339 		successive_ext_delays = 0;
1340 		break;
1341 	}
1342 
1343 	return retry;
1344 }
1345 
1346 /**
1347  * rtas_busy_delay() - helper for RTAS busy and extended delay statuses
1348  *
1349  * @status: a value returned from rtas_call() or similar APIs which return
1350  *          the status of a RTAS function call.
1351  *
1352  * Context: Process context. May sleep or schedule.
1353  *
1354  * Return:
1355  * * true  - @status is RTAS_BUSY or an extended delay hint. The
1356  *           caller may assume that the CPU has been yielded if necessary,
1357  *           and that an appropriate delay for @status has elapsed.
1358  *           Generally the caller should reattempt the RTAS call which
1359  *           yielded @status.
1360  *
1361  * * false - @status is not @RTAS_BUSY nor an extended delay hint. The
1362  *           caller is responsible for handling @status.
1363  */
1364 bool __ref rtas_busy_delay(int status)
1365 {
1366 	unsigned int ms;
1367 	bool ret;
1368 
1369 	/*
1370 	 * Can't do timed sleeps before timekeeping is up.
1371 	 */
1372 	if (system_state < SYSTEM_SCHEDULING)
1373 		return rtas_busy_delay_early(status);
1374 
1375 	switch (status) {
1376 	case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX:
1377 		ret = true;
1378 		ms = rtas_busy_delay_time(status);
1379 		/*
1380 		 * The extended delay hint can be as high as 100 seconds.
1381 		 * Surely any function returning such a status is either
1382 		 * buggy or isn't going to be significantly slowed by us
1383 		 * polling at 1HZ. Clamp the sleep time to one second.
1384 		 */
1385 		ms = clamp(ms, 1U, 1000U);
1386 		/*
1387 		 * The delay hint is an order-of-magnitude suggestion, not
1388 		 * a minimum. It is fine, possibly even advantageous, for
1389 		 * us to pause for less time than hinted. For small values,
1390 		 * use usleep_range() to ensure we don't sleep much longer
1391 		 * than actually needed.
1392 		 *
1393 		 * See Documentation/timers/timers-howto.rst for
1394 		 * explanation of the threshold used here. In effect we use
1395 		 * usleep_range() for 9900 and 9901, msleep() for
1396 		 * 9902-9905.
1397 		 */
1398 		if (ms <= 20)
1399 			usleep_range(ms * 100, ms * 1000);
1400 		else
1401 			msleep(ms);
1402 		break;
1403 	case RTAS_BUSY:
1404 		ret = true;
1405 		/*
1406 		 * We should call again immediately if there's no other
1407 		 * work to do.
1408 		 */
1409 		cond_resched();
1410 		break;
1411 	default:
1412 		ret = false;
1413 		/*
1414 		 * Not a busy or extended delay status; the caller should
1415 		 * handle @status itself. Ensure we warn on misuses in
1416 		 * atomic context regardless.
1417 		 */
1418 		might_sleep();
1419 		break;
1420 	}
1421 
1422 	return ret;
1423 }
1424 EXPORT_SYMBOL_GPL(rtas_busy_delay);
1425 
1426 int rtas_error_rc(int rtas_rc)
1427 {
1428 	int rc;
1429 
1430 	switch (rtas_rc) {
1431 	case RTAS_HARDWARE_ERROR:	/* Hardware Error */
1432 		rc = -EIO;
1433 		break;
1434 	case RTAS_INVALID_PARAMETER:	/* Bad indicator/domain/etc */
1435 		rc = -EINVAL;
1436 		break;
1437 	case -9000:			/* Isolation error */
1438 		rc = -EFAULT;
1439 		break;
1440 	case -9001:			/* Outstanding TCE/PTE */
1441 		rc = -EEXIST;
1442 		break;
1443 	case -9002:			/* No usable slot */
1444 		rc = -ENODEV;
1445 		break;
1446 	default:
1447 		pr_err("%s: unexpected error %d\n", __func__, rtas_rc);
1448 		rc = -ERANGE;
1449 		break;
1450 	}
1451 	return rc;
1452 }
1453 EXPORT_SYMBOL_GPL(rtas_error_rc);
1454 
1455 int rtas_get_power_level(int powerdomain, int *level)
1456 {
1457 	int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL);
1458 	int rc;
1459 
1460 	if (token == RTAS_UNKNOWN_SERVICE)
1461 		return -ENOENT;
1462 
1463 	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY)
1464 		udelay(1);
1465 
1466 	if (rc < 0)
1467 		return rtas_error_rc(rc);
1468 	return rc;
1469 }
1470 EXPORT_SYMBOL_GPL(rtas_get_power_level);
1471 
1472 int rtas_set_power_level(int powerdomain, int level, int *setlevel)
1473 {
1474 	int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL);
1475 	int rc;
1476 
1477 	if (token == RTAS_UNKNOWN_SERVICE)
1478 		return -ENOENT;
1479 
1480 	do {
1481 		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level);
1482 	} while (rtas_busy_delay(rc));
1483 
1484 	if (rc < 0)
1485 		return rtas_error_rc(rc);
1486 	return rc;
1487 }
1488 EXPORT_SYMBOL_GPL(rtas_set_power_level);
1489 
1490 int rtas_get_sensor(int sensor, int index, int *state)
1491 {
1492 	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1493 	int rc;
1494 
1495 	if (token == RTAS_UNKNOWN_SERVICE)
1496 		return -ENOENT;
1497 
1498 	do {
1499 		rc = rtas_call(token, 2, 2, state, sensor, index);
1500 	} while (rtas_busy_delay(rc));
1501 
1502 	if (rc < 0)
1503 		return rtas_error_rc(rc);
1504 	return rc;
1505 }
1506 EXPORT_SYMBOL_GPL(rtas_get_sensor);
1507 
1508 int rtas_get_sensor_fast(int sensor, int index, int *state)
1509 {
1510 	int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
1511 	int rc;
1512 
1513 	if (token == RTAS_UNKNOWN_SERVICE)
1514 		return -ENOENT;
1515 
1516 	rc = rtas_call(token, 2, 2, state, sensor, index);
1517 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1518 				    rc <= RTAS_EXTENDED_DELAY_MAX));
1519 
1520 	if (rc < 0)
1521 		return rtas_error_rc(rc);
1522 	return rc;
1523 }
1524 
1525 bool rtas_indicator_present(int token, int *maxindex)
1526 {
1527 	int proplen, count, i;
1528 	const struct indicator_elem {
1529 		__be32 token;
1530 		__be32 maxindex;
1531 	} *indicators;
1532 
1533 	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen);
1534 	if (!indicators)
1535 		return false;
1536 
1537 	count = proplen / sizeof(struct indicator_elem);
1538 
1539 	for (i = 0; i < count; i++) {
1540 		if (__be32_to_cpu(indicators[i].token) != token)
1541 			continue;
1542 		if (maxindex)
1543 			*maxindex = __be32_to_cpu(indicators[i].maxindex);
1544 		return true;
1545 	}
1546 
1547 	return false;
1548 }
1549 
1550 int rtas_set_indicator(int indicator, int index, int new_value)
1551 {
1552 	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1553 	int rc;
1554 
1555 	if (token == RTAS_UNKNOWN_SERVICE)
1556 		return -ENOENT;
1557 
1558 	do {
1559 		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1560 	} while (rtas_busy_delay(rc));
1561 
1562 	if (rc < 0)
1563 		return rtas_error_rc(rc);
1564 	return rc;
1565 }
1566 EXPORT_SYMBOL_GPL(rtas_set_indicator);
1567 
1568 /*
1569  * Ignoring RTAS extended delay
1570  */
1571 int rtas_set_indicator_fast(int indicator, int index, int new_value)
1572 {
1573 	int token = rtas_function_token(RTAS_FN_SET_INDICATOR);
1574 	int rc;
1575 
1576 	if (token == RTAS_UNKNOWN_SERVICE)
1577 		return -ENOENT;
1578 
1579 	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value);
1580 
1581 	WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN &&
1582 				    rc <= RTAS_EXTENDED_DELAY_MAX));
1583 
1584 	if (rc < 0)
1585 		return rtas_error_rc(rc);
1586 
1587 	return rc;
1588 }
1589 
1590 /**
1591  * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR.
1592  *
1593  * @fw_status: RTAS call status will be placed here if not NULL.
1594  *
1595  * rtas_ibm_suspend_me() should be called only on a CPU which has
1596  * received H_CONTINUE from the H_JOIN hcall. All other active CPUs
1597  * should be waiting to return from H_JOIN.
1598  *
1599  * rtas_ibm_suspend_me() may suspend execution of the OS
1600  * indefinitely. Callers should take appropriate measures upon return, such as
1601  * resetting watchdog facilities.
1602  *
1603  * Callers may choose to retry this call if @fw_status is
1604  * %RTAS_THREADS_ACTIVE.
1605  *
1606  * Return:
1607  * 0          - The partition has resumed from suspend, possibly after
1608  *              migration to a different host.
1609  * -ECANCELED - The operation was aborted.
1610  * -EAGAIN    - There were other CPUs not in H_JOIN at the time of the call.
1611  * -EBUSY     - Some other condition prevented the suspend from succeeding.
1612  * -EIO       - Hardware/platform error.
1613  */
1614 int rtas_ibm_suspend_me(int *fw_status)
1615 {
1616 	int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME);
1617 	int fwrc;
1618 	int ret;
1619 
1620 	fwrc = rtas_call(token, 0, 1, NULL);
1621 
1622 	switch (fwrc) {
1623 	case 0:
1624 		ret = 0;
1625 		break;
1626 	case RTAS_SUSPEND_ABORTED:
1627 		ret = -ECANCELED;
1628 		break;
1629 	case RTAS_THREADS_ACTIVE:
1630 		ret = -EAGAIN;
1631 		break;
1632 	case RTAS_NOT_SUSPENDABLE:
1633 	case RTAS_OUTSTANDING_COPROC:
1634 		ret = -EBUSY;
1635 		break;
1636 	case -1:
1637 	default:
1638 		ret = -EIO;
1639 		break;
1640 	}
1641 
1642 	if (fw_status)
1643 		*fw_status = fwrc;
1644 
1645 	return ret;
1646 }
1647 
1648 void __noreturn rtas_restart(char *cmd)
1649 {
1650 	if (rtas_flash_term_hook)
1651 		rtas_flash_term_hook(SYS_RESTART);
1652 	pr_emerg("system-reboot returned %d\n",
1653 		 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL));
1654 	for (;;);
1655 }
1656 
1657 void rtas_power_off(void)
1658 {
1659 	if (rtas_flash_term_hook)
1660 		rtas_flash_term_hook(SYS_POWER_OFF);
1661 	/* allow power on only with power button press */
1662 	pr_emerg("power-off returned %d\n",
1663 		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1664 	for (;;);
1665 }
1666 
1667 void __noreturn rtas_halt(void)
1668 {
1669 	if (rtas_flash_term_hook)
1670 		rtas_flash_term_hook(SYS_HALT);
1671 	/* allow power on only with power button press */
1672 	pr_emerg("power-off returned %d\n",
1673 		 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1));
1674 	for (;;);
1675 }
1676 
1677 /* Must be in the RMO region, so we place it here */
1678 static char rtas_os_term_buf[2048];
1679 static bool ibm_extended_os_term;
1680 
1681 void rtas_os_term(char *str)
1682 {
1683 	s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM);
1684 	static struct rtas_args args;
1685 	int status;
1686 
1687 	/*
1688 	 * Firmware with the ibm,extended-os-term property is guaranteed
1689 	 * to always return from an ibm,os-term call. Earlier versions without
1690 	 * this property may terminate the partition which we want to avoid
1691 	 * since it interferes with panic_timeout.
1692 	 */
1693 
1694 	if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term)
1695 		return;
1696 
1697 	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str);
1698 
1699 	/*
1700 	 * Keep calling as long as RTAS returns a "try again" status,
1701 	 * but don't use rtas_busy_delay(), which potentially
1702 	 * schedules.
1703 	 */
1704 	do {
1705 		rtas_call_unlocked(&args, token, 1, 1, NULL, __pa(rtas_os_term_buf));
1706 		status = be32_to_cpu(args.rets[0]);
1707 	} while (rtas_busy_delay_time(status));
1708 
1709 	if (status != 0)
1710 		pr_emerg("ibm,os-term call failed %d\n", status);
1711 }
1712 
1713 /**
1714  * rtas_activate_firmware() - Activate a new version of firmware.
1715  *
1716  * Context: This function may sleep.
1717  *
1718  * Activate a new version of partition firmware. The OS must call this
1719  * after resuming from a partition hibernation or migration in order
1720  * to maintain the ability to perform live firmware updates. It's not
1721  * catastrophic for this method to be absent or to fail; just log the
1722  * condition in that case.
1723  */
1724 void rtas_activate_firmware(void)
1725 {
1726 	int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE);
1727 	int fwrc;
1728 
1729 	if (token == RTAS_UNKNOWN_SERVICE) {
1730 		pr_notice("ibm,activate-firmware method unavailable\n");
1731 		return;
1732 	}
1733 
1734 	mutex_lock(&rtas_ibm_activate_firmware_lock);
1735 
1736 	do {
1737 		fwrc = rtas_call(token, 0, 1, NULL);
1738 	} while (rtas_busy_delay(fwrc));
1739 
1740 	mutex_unlock(&rtas_ibm_activate_firmware_lock);
1741 
1742 	if (fwrc)
1743 		pr_err("ibm,activate-firmware failed (%i)\n", fwrc);
1744 }
1745 
1746 /**
1747  * get_pseries_errorlog() - Find a specific pseries error log in an RTAS
1748  *                          extended event log.
1749  * @log: RTAS error/event log
1750  * @section_id: two character section identifier
1751  *
1752  * Return: A pointer to the specified errorlog or NULL if not found.
1753  */
1754 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log,
1755 						      uint16_t section_id)
1756 {
1757 	struct rtas_ext_event_log_v6 *ext_log =
1758 		(struct rtas_ext_event_log_v6 *)log->buffer;
1759 	struct pseries_errorlog *sect;
1760 	unsigned char *p, *log_end;
1761 	uint32_t ext_log_length = rtas_error_extended_log_length(log);
1762 	uint8_t log_format = rtas_ext_event_log_format(ext_log);
1763 	uint32_t company_id = rtas_ext_event_company_id(ext_log);
1764 
1765 	/* Check that we understand the format */
1766 	if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) ||
1767 	    log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG ||
1768 	    company_id != RTAS_V6EXT_COMPANY_ID_IBM)
1769 		return NULL;
1770 
1771 	log_end = log->buffer + ext_log_length;
1772 	p = ext_log->vendor_log;
1773 
1774 	while (p < log_end) {
1775 		sect = (struct pseries_errorlog *)p;
1776 		if (pseries_errorlog_id(sect) == section_id)
1777 			return sect;
1778 		p += pseries_errorlog_length(sect);
1779 	}
1780 
1781 	return NULL;
1782 }
1783 
1784 /*
1785  * The sys_rtas syscall, as originally designed, allows root to pass
1786  * arbitrary physical addresses to RTAS calls. A number of RTAS calls
1787  * can be abused to write to arbitrary memory and do other things that
1788  * are potentially harmful to system integrity, and thus should only
1789  * be used inside the kernel and not exposed to userspace.
1790  *
1791  * All known legitimate users of the sys_rtas syscall will only ever
1792  * pass addresses that fall within the RMO buffer, and use a known
1793  * subset of RTAS calls.
1794  *
1795  * Accordingly, we filter RTAS requests to check that the call is
1796  * permitted, and that provided pointers fall within the RMO buffer.
1797  * If a function is allowed to be invoked via the syscall, then its
1798  * entry in the rtas_functions table points to a rtas_filter that
1799  * describes its constraints, with the indexes of the parameters which
1800  * are expected to contain addresses and sizes of buffers allocated
1801  * inside the RMO buffer.
1802  */
1803 
1804 static bool in_rmo_buf(u32 base, u32 end)
1805 {
1806 	return base >= rtas_rmo_buf &&
1807 		base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) &&
1808 		base <= end &&
1809 		end >= rtas_rmo_buf &&
1810 		end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE);
1811 }
1812 
1813 static bool block_rtas_call(const struct rtas_function *func, int nargs,
1814 			    struct rtas_args *args)
1815 {
1816 	const struct rtas_filter *f;
1817 	const bool is_platform_dump =
1818 		func == &rtas_function_table[RTAS_FNIDX__IBM_PLATFORM_DUMP];
1819 	const bool is_config_conn =
1820 		func == &rtas_function_table[RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR];
1821 	u32 base, size, end;
1822 
1823 	/*
1824 	 * Only functions with filters attached are allowed.
1825 	 */
1826 	f = func->filter;
1827 	if (!f)
1828 		goto err;
1829 	/*
1830 	 * And some functions aren't allowed on LE.
1831 	 */
1832 	if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le)
1833 		goto err;
1834 
1835 	if (f->buf_idx1 != -1) {
1836 		base = be32_to_cpu(args->args[f->buf_idx1]);
1837 		if (f->size_idx1 != -1)
1838 			size = be32_to_cpu(args->args[f->size_idx1]);
1839 		else if (f->fixed_size)
1840 			size = f->fixed_size;
1841 		else
1842 			size = 1;
1843 
1844 		end = base + size - 1;
1845 
1846 		/*
1847 		 * Special case for ibm,platform-dump - NULL buffer
1848 		 * address is used to indicate end of dump processing
1849 		 */
1850 		if (is_platform_dump && base == 0)
1851 			return false;
1852 
1853 		if (!in_rmo_buf(base, end))
1854 			goto err;
1855 	}
1856 
1857 	if (f->buf_idx2 != -1) {
1858 		base = be32_to_cpu(args->args[f->buf_idx2]);
1859 		if (f->size_idx2 != -1)
1860 			size = be32_to_cpu(args->args[f->size_idx2]);
1861 		else if (f->fixed_size)
1862 			size = f->fixed_size;
1863 		else
1864 			size = 1;
1865 		end = base + size - 1;
1866 
1867 		/*
1868 		 * Special case for ibm,configure-connector where the
1869 		 * address can be 0
1870 		 */
1871 		if (is_config_conn && base == 0)
1872 			return false;
1873 
1874 		if (!in_rmo_buf(base, end))
1875 			goto err;
1876 	}
1877 
1878 	return false;
1879 err:
1880 	pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n");
1881 	pr_err_ratelimited("sys_rtas: %s nargs=%d (called by %s)\n",
1882 			   func->name, nargs, current->comm);
1883 	return true;
1884 }
1885 
1886 /* We assume to be passed big endian arguments */
1887 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs)
1888 {
1889 	const struct rtas_function *func;
1890 	struct pin_cookie cookie;
1891 	struct rtas_args args;
1892 	unsigned long flags;
1893 	char *buff_copy, *errbuf = NULL;
1894 	int nargs, nret, token;
1895 
1896 	if (!capable(CAP_SYS_ADMIN))
1897 		return -EPERM;
1898 
1899 	if (!rtas.entry)
1900 		return -EINVAL;
1901 
1902 	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0)
1903 		return -EFAULT;
1904 
1905 	nargs = be32_to_cpu(args.nargs);
1906 	nret  = be32_to_cpu(args.nret);
1907 	token = be32_to_cpu(args.token);
1908 
1909 	if (nargs >= ARRAY_SIZE(args.args)
1910 	    || nret > ARRAY_SIZE(args.args)
1911 	    || nargs + nret > ARRAY_SIZE(args.args))
1912 		return -EINVAL;
1913 
1914 	/* Copy in args. */
1915 	if (copy_from_user(args.args, uargs->args,
1916 			   nargs * sizeof(rtas_arg_t)) != 0)
1917 		return -EFAULT;
1918 
1919 	/*
1920 	 * If this token doesn't correspond to a function the kernel
1921 	 * understands, you're not allowed to call it.
1922 	 */
1923 	func = rtas_token_to_function_untrusted(token);
1924 	if (!func)
1925 		return -EINVAL;
1926 
1927 	args.rets = &args.args[nargs];
1928 	memset(args.rets, 0, nret * sizeof(rtas_arg_t));
1929 
1930 	if (block_rtas_call(func, nargs, &args))
1931 		return -EINVAL;
1932 
1933 	if (token_is_restricted_errinjct(token)) {
1934 		int err;
1935 
1936 		err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION);
1937 		if (err)
1938 			return err;
1939 	}
1940 
1941 	/* Need to handle ibm,suspend_me call specially */
1942 	if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) {
1943 
1944 		/*
1945 		 * rtas_ibm_suspend_me assumes the streamid handle is in cpu
1946 		 * endian, or at least the hcall within it requires it.
1947 		 */
1948 		int rc = 0;
1949 		u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32)
1950 		              | be32_to_cpu(args.args[1]);
1951 		rc = rtas_syscall_dispatch_ibm_suspend_me(handle);
1952 		if (rc == -EAGAIN)
1953 			args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE);
1954 		else if (rc == -EIO)
1955 			args.rets[0] = cpu_to_be32(-1);
1956 		else if (rc)
1957 			return rc;
1958 		goto copy_return;
1959 	}
1960 
1961 	buff_copy = get_errorlog_buffer();
1962 
1963 	/*
1964 	 * If this function has a mutex assigned to it, we must
1965 	 * acquire it to avoid interleaving with any kernel-based uses
1966 	 * of the same function. Kernel-based sequences acquire the
1967 	 * appropriate mutex explicitly.
1968 	 */
1969 	if (func->lock)
1970 		mutex_lock(func->lock);
1971 
1972 	raw_spin_lock_irqsave(&rtas_lock, flags);
1973 	cookie = lockdep_pin_lock(&rtas_lock);
1974 
1975 	rtas_args = args;
1976 	do_enter_rtas(&rtas_args);
1977 	args = rtas_args;
1978 
1979 	/* A -1 return code indicates that the last command couldn't
1980 	   be completed due to a hardware error. */
1981 	if (be32_to_cpu(args.rets[0]) == -1)
1982 		errbuf = __fetch_rtas_last_error(buff_copy);
1983 
1984 	lockdep_unpin_lock(&rtas_lock, cookie);
1985 	raw_spin_unlock_irqrestore(&rtas_lock, flags);
1986 
1987 	if (func->lock)
1988 		mutex_unlock(func->lock);
1989 
1990 	if (buff_copy) {
1991 		if (errbuf)
1992 			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0);
1993 		kfree(buff_copy);
1994 	}
1995 
1996  copy_return:
1997 	/* Copy out args. */
1998 	if (copy_to_user(uargs->args + nargs,
1999 			 args.args + nargs,
2000 			 nret * sizeof(rtas_arg_t)) != 0)
2001 		return -EFAULT;
2002 
2003 	return 0;
2004 }
2005 
2006 static void __init rtas_function_table_init(void)
2007 {
2008 	struct property *prop;
2009 
2010 	for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) {
2011 		struct rtas_function *curr = &rtas_function_table[i];
2012 		struct rtas_function *prior;
2013 		int cmp;
2014 
2015 		curr->token = RTAS_UNKNOWN_SERVICE;
2016 
2017 		if (i == 0)
2018 			continue;
2019 		/*
2020 		 * Ensure table is sorted correctly for binary search
2021 		 * on function names.
2022 		 */
2023 		prior = &rtas_function_table[i - 1];
2024 
2025 		cmp = strcmp(prior->name, curr->name);
2026 		if (cmp < 0)
2027 			continue;
2028 
2029 		if (cmp == 0) {
2030 			pr_err("'%s' has duplicate function table entries\n",
2031 			       curr->name);
2032 		} else {
2033 			pr_err("function table unsorted: '%s' wrongly precedes '%s'\n",
2034 			       prior->name, curr->name);
2035 		}
2036 	}
2037 
2038 	for_each_property_of_node(rtas.dev, prop) {
2039 		struct rtas_function *func;
2040 
2041 		if (prop->length != sizeof(u32))
2042 			continue;
2043 
2044 		func = __rtas_name_to_function(prop->name);
2045 		if (!func)
2046 			continue;
2047 
2048 		func->token = be32_to_cpup((__be32 *)prop->value);
2049 
2050 		pr_debug("function %s has token %u\n", func->name, func->token);
2051 	}
2052 }
2053 
2054 /*
2055  * Call early during boot, before mem init, to retrieve the RTAS
2056  * information from the device-tree and allocate the RMO buffer for userland
2057  * accesses.
2058  */
2059 void __init rtas_initialize(void)
2060 {
2061 	unsigned long rtas_region = RTAS_INSTANTIATE_MAX;
2062 	u32 base, size, entry;
2063 	int no_base, no_size, no_entry;
2064 
2065 	/* Get RTAS dev node and fill up our "rtas" structure with infos
2066 	 * about it.
2067 	 */
2068 	rtas.dev = of_find_node_by_name(NULL, "rtas");
2069 	if (!rtas.dev)
2070 		return;
2071 
2072 	no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base);
2073 	no_size = of_property_read_u32(rtas.dev, "rtas-size", &size);
2074 	if (no_base || no_size) {
2075 		of_node_put(rtas.dev);
2076 		rtas.dev = NULL;
2077 		return;
2078 	}
2079 
2080 	rtas.base = base;
2081 	rtas.size = size;
2082 	no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry);
2083 	rtas.entry = no_entry ? rtas.base : entry;
2084 
2085 	init_error_log_max();
2086 
2087 	/* Must be called before any function token lookups */
2088 	rtas_function_table_init();
2089 
2090 	/*
2091 	 * Discover this now to avoid a device tree lookup in the
2092 	 * panic path.
2093 	 */
2094 	ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term");
2095 
2096 	/* If RTAS was found, allocate the RMO buffer for it and look for
2097 	 * the stop-self token if any
2098 	 */
2099 #ifdef CONFIG_PPC64
2100 	if (firmware_has_feature(FW_FEATURE_LPAR))
2101 		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX);
2102 #endif
2103 	rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE,
2104 						 0, rtas_region);
2105 	if (!rtas_rmo_buf)
2106 		panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n",
2107 		      PAGE_SIZE, &rtas_region);
2108 
2109 	rtas_work_area_reserve_arena(rtas_region);
2110 }
2111 
2112 int __init early_init_dt_scan_rtas(unsigned long node,
2113 		const char *uname, int depth, void *data)
2114 {
2115 	const u32 *basep, *entryp, *sizep;
2116 
2117 	if (depth != 1 || strcmp(uname, "rtas") != 0)
2118 		return 0;
2119 
2120 	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
2121 	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
2122 	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL);
2123 
2124 #ifdef CONFIG_PPC64
2125 	/* need this feature to decide the crashkernel offset */
2126 	if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL))
2127 		powerpc_firmware_features |= FW_FEATURE_LPAR;
2128 #endif
2129 
2130 	if (basep && entryp && sizep) {
2131 		rtas.base = *basep;
2132 		rtas.entry = *entryp;
2133 		rtas.size = *sizep;
2134 	}
2135 
2136 #ifdef CONFIG_UDBG_RTAS_CONSOLE
2137 	basep = of_get_flat_dt_prop(node, "put-term-char", NULL);
2138 	if (basep)
2139 		rtas_putchar_token = *basep;
2140 
2141 	basep = of_get_flat_dt_prop(node, "get-term-char", NULL);
2142 	if (basep)
2143 		rtas_getchar_token = *basep;
2144 
2145 	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE &&
2146 	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE)
2147 		udbg_init_rtas_console();
2148 
2149 #endif
2150 
2151 	/* break now */
2152 	return 1;
2153 }
2154 
2155 static DEFINE_RAW_SPINLOCK(timebase_lock);
2156 static u64 timebase = 0;
2157 
2158 void rtas_give_timebase(void)
2159 {
2160 	unsigned long flags;
2161 
2162 	raw_spin_lock_irqsave(&timebase_lock, flags);
2163 	hard_irq_disable();
2164 	rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL);
2165 	timebase = get_tb();
2166 	raw_spin_unlock(&timebase_lock);
2167 
2168 	while (timebase)
2169 		barrier();
2170 	rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL);
2171 	local_irq_restore(flags);
2172 }
2173 
2174 void rtas_take_timebase(void)
2175 {
2176 	while (!timebase)
2177 		barrier();
2178 	raw_spin_lock(&timebase_lock);
2179 	set_tb(timebase >> 32, timebase & 0xffffffff);
2180 	timebase = 0;
2181 	raw_spin_unlock(&timebase_lock);
2182 }
2183