1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * 4 * Procedures for interfacing to the RTAS on CHRP machines. 5 * 6 * Peter Bergner, IBM March 2001. 7 * Copyright (C) 2001 IBM. 8 */ 9 10 #define pr_fmt(fmt) "rtas: " fmt 11 12 #include <linux/bsearch.h> 13 #include <linux/capability.h> 14 #include <linux/delay.h> 15 #include <linux/export.h> 16 #include <linux/init.h> 17 #include <linux/kconfig.h> 18 #include <linux/kernel.h> 19 #include <linux/memblock.h> 20 #include <linux/of.h> 21 #include <linux/of_fdt.h> 22 #include <linux/reboot.h> 23 #include <linux/sched.h> 24 #include <linux/security.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 #include <linux/stdarg.h> 28 #include <linux/syscalls.h> 29 #include <linux/types.h> 30 #include <linux/uaccess.h> 31 #include <linux/xarray.h> 32 33 #include <asm/delay.h> 34 #include <asm/firmware.h> 35 #include <asm/interrupt.h> 36 #include <asm/machdep.h> 37 #include <asm/mmu.h> 38 #include <asm/page.h> 39 #include <asm/rtas-work-area.h> 40 #include <asm/rtas.h> 41 #include <asm/time.h> 42 #include <asm/trace.h> 43 #include <asm/udbg.h> 44 45 struct rtas_filter { 46 /* Indexes into the args buffer, -1 if not used */ 47 const int buf_idx1; 48 const int size_idx1; 49 const int buf_idx2; 50 const int size_idx2; 51 /* 52 * Assumed buffer size per the spec if the function does not 53 * have a size parameter, e.g. ibm,errinjct. 0 if unused. 54 */ 55 const int fixed_size; 56 }; 57 58 /** 59 * struct rtas_function - Descriptor for RTAS functions. 60 * 61 * @token: Value of @name if it exists under the /rtas node. 62 * @name: Function name. 63 * @filter: If non-NULL, invoking this function via the rtas syscall is 64 * generally allowed, and @filter describes constraints on the 65 * arguments. See also @banned_for_syscall_on_le. 66 * @banned_for_syscall_on_le: Set when call via sys_rtas is generally allowed 67 * but specifically restricted on ppc64le. Such 68 * functions are believed to have no users on 69 * ppc64le, and we want to keep it that way. It does 70 * not make sense for this to be set when @filter 71 * is false. 72 */ 73 struct rtas_function { 74 s32 token; 75 const bool banned_for_syscall_on_le:1; 76 const char * const name; 77 const struct rtas_filter *filter; 78 }; 79 80 static struct rtas_function rtas_function_table[] __ro_after_init = { 81 [RTAS_FNIDX__CHECK_EXCEPTION] = { 82 .name = "check-exception", 83 }, 84 [RTAS_FNIDX__DISPLAY_CHARACTER] = { 85 .name = "display-character", 86 .filter = &(const struct rtas_filter) { 87 .buf_idx1 = -1, .size_idx1 = -1, 88 .buf_idx2 = -1, .size_idx2 = -1, 89 }, 90 }, 91 [RTAS_FNIDX__EVENT_SCAN] = { 92 .name = "event-scan", 93 }, 94 [RTAS_FNIDX__FREEZE_TIME_BASE] = { 95 .name = "freeze-time-base", 96 }, 97 [RTAS_FNIDX__GET_POWER_LEVEL] = { 98 .name = "get-power-level", 99 .filter = &(const struct rtas_filter) { 100 .buf_idx1 = -1, .size_idx1 = -1, 101 .buf_idx2 = -1, .size_idx2 = -1, 102 }, 103 }, 104 [RTAS_FNIDX__GET_SENSOR_STATE] = { 105 .name = "get-sensor-state", 106 .filter = &(const struct rtas_filter) { 107 .buf_idx1 = -1, .size_idx1 = -1, 108 .buf_idx2 = -1, .size_idx2 = -1, 109 }, 110 }, 111 [RTAS_FNIDX__GET_TERM_CHAR] = { 112 .name = "get-term-char", 113 }, 114 [RTAS_FNIDX__GET_TIME_OF_DAY] = { 115 .name = "get-time-of-day", 116 .filter = &(const struct rtas_filter) { 117 .buf_idx1 = -1, .size_idx1 = -1, 118 .buf_idx2 = -1, .size_idx2 = -1, 119 }, 120 }, 121 [RTAS_FNIDX__IBM_ACTIVATE_FIRMWARE] = { 122 .name = "ibm,activate-firmware", 123 .filter = &(const struct rtas_filter) { 124 .buf_idx1 = -1, .size_idx1 = -1, 125 .buf_idx2 = -1, .size_idx2 = -1, 126 }, 127 }, 128 [RTAS_FNIDX__IBM_CBE_START_PTCAL] = { 129 .name = "ibm,cbe-start-ptcal", 130 }, 131 [RTAS_FNIDX__IBM_CBE_STOP_PTCAL] = { 132 .name = "ibm,cbe-stop-ptcal", 133 }, 134 [RTAS_FNIDX__IBM_CHANGE_MSI] = { 135 .name = "ibm,change-msi", 136 }, 137 [RTAS_FNIDX__IBM_CLOSE_ERRINJCT] = { 138 .name = "ibm,close-errinjct", 139 .filter = &(const struct rtas_filter) { 140 .buf_idx1 = -1, .size_idx1 = -1, 141 .buf_idx2 = -1, .size_idx2 = -1, 142 }, 143 }, 144 [RTAS_FNIDX__IBM_CONFIGURE_BRIDGE] = { 145 .name = "ibm,configure-bridge", 146 }, 147 [RTAS_FNIDX__IBM_CONFIGURE_CONNECTOR] = { 148 .name = "ibm,configure-connector", 149 .filter = &(const struct rtas_filter) { 150 .buf_idx1 = 0, .size_idx1 = -1, 151 .buf_idx2 = 1, .size_idx2 = -1, 152 .fixed_size = 4096, 153 }, 154 }, 155 [RTAS_FNIDX__IBM_CONFIGURE_KERNEL_DUMP] = { 156 .name = "ibm,configure-kernel-dump", 157 }, 158 [RTAS_FNIDX__IBM_CONFIGURE_PE] = { 159 .name = "ibm,configure-pe", 160 }, 161 [RTAS_FNIDX__IBM_CREATE_PE_DMA_WINDOW] = { 162 .name = "ibm,create-pe-dma-window", 163 }, 164 [RTAS_FNIDX__IBM_DISPLAY_MESSAGE] = { 165 .name = "ibm,display-message", 166 .filter = &(const struct rtas_filter) { 167 .buf_idx1 = 0, .size_idx1 = -1, 168 .buf_idx2 = -1, .size_idx2 = -1, 169 }, 170 }, 171 [RTAS_FNIDX__IBM_ERRINJCT] = { 172 .name = "ibm,errinjct", 173 .filter = &(const struct rtas_filter) { 174 .buf_idx1 = 2, .size_idx1 = -1, 175 .buf_idx2 = -1, .size_idx2 = -1, 176 .fixed_size = 1024, 177 }, 178 }, 179 [RTAS_FNIDX__IBM_EXTI2C] = { 180 .name = "ibm,exti2c", 181 }, 182 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO] = { 183 .name = "ibm,get-config-addr-info", 184 }, 185 [RTAS_FNIDX__IBM_GET_CONFIG_ADDR_INFO2] = { 186 .name = "ibm,get-config-addr-info2", 187 .filter = &(const struct rtas_filter) { 188 .buf_idx1 = -1, .size_idx1 = -1, 189 .buf_idx2 = -1, .size_idx2 = -1, 190 }, 191 }, 192 [RTAS_FNIDX__IBM_GET_DYNAMIC_SENSOR_STATE] = { 193 .name = "ibm,get-dynamic-sensor-state", 194 .filter = &(const struct rtas_filter) { 195 .buf_idx1 = 1, .size_idx1 = -1, 196 .buf_idx2 = -1, .size_idx2 = -1, 197 }, 198 }, 199 [RTAS_FNIDX__IBM_GET_INDICES] = { 200 .name = "ibm,get-indices", 201 .filter = &(const struct rtas_filter) { 202 .buf_idx1 = 2, .size_idx1 = 3, 203 .buf_idx2 = -1, .size_idx2 = -1, 204 }, 205 }, 206 [RTAS_FNIDX__IBM_GET_RIO_TOPOLOGY] = { 207 .name = "ibm,get-rio-topology", 208 }, 209 [RTAS_FNIDX__IBM_GET_SYSTEM_PARAMETER] = { 210 .name = "ibm,get-system-parameter", 211 .filter = &(const struct rtas_filter) { 212 .buf_idx1 = 1, .size_idx1 = 2, 213 .buf_idx2 = -1, .size_idx2 = -1, 214 }, 215 }, 216 [RTAS_FNIDX__IBM_GET_VPD] = { 217 .name = "ibm,get-vpd", 218 .filter = &(const struct rtas_filter) { 219 .buf_idx1 = 0, .size_idx1 = -1, 220 .buf_idx2 = 1, .size_idx2 = 2, 221 }, 222 }, 223 [RTAS_FNIDX__IBM_GET_XIVE] = { 224 .name = "ibm,get-xive", 225 }, 226 [RTAS_FNIDX__IBM_INT_OFF] = { 227 .name = "ibm,int-off", 228 }, 229 [RTAS_FNIDX__IBM_INT_ON] = { 230 .name = "ibm,int-on", 231 }, 232 [RTAS_FNIDX__IBM_IO_QUIESCE_ACK] = { 233 .name = "ibm,io-quiesce-ack", 234 }, 235 [RTAS_FNIDX__IBM_LPAR_PERFTOOLS] = { 236 .name = "ibm,lpar-perftools", 237 .filter = &(const struct rtas_filter) { 238 .buf_idx1 = 2, .size_idx1 = 3, 239 .buf_idx2 = -1, .size_idx2 = -1, 240 }, 241 }, 242 [RTAS_FNIDX__IBM_MANAGE_FLASH_IMAGE] = { 243 .name = "ibm,manage-flash-image", 244 }, 245 [RTAS_FNIDX__IBM_MANAGE_STORAGE_PRESERVATION] = { 246 .name = "ibm,manage-storage-preservation", 247 }, 248 [RTAS_FNIDX__IBM_NMI_INTERLOCK] = { 249 .name = "ibm,nmi-interlock", 250 }, 251 [RTAS_FNIDX__IBM_NMI_REGISTER] = { 252 .name = "ibm,nmi-register", 253 }, 254 [RTAS_FNIDX__IBM_OPEN_ERRINJCT] = { 255 .name = "ibm,open-errinjct", 256 .filter = &(const struct rtas_filter) { 257 .buf_idx1 = -1, .size_idx1 = -1, 258 .buf_idx2 = -1, .size_idx2 = -1, 259 }, 260 }, 261 [RTAS_FNIDX__IBM_OPEN_SRIOV_ALLOW_UNFREEZE] = { 262 .name = "ibm,open-sriov-allow-unfreeze", 263 }, 264 [RTAS_FNIDX__IBM_OPEN_SRIOV_MAP_PE_NUMBER] = { 265 .name = "ibm,open-sriov-map-pe-number", 266 }, 267 [RTAS_FNIDX__IBM_OS_TERM] = { 268 .name = "ibm,os-term", 269 }, 270 [RTAS_FNIDX__IBM_PARTNER_CONTROL] = { 271 .name = "ibm,partner-control", 272 }, 273 [RTAS_FNIDX__IBM_PHYSICAL_ATTESTATION] = { 274 .name = "ibm,physical-attestation", 275 .filter = &(const struct rtas_filter) { 276 .buf_idx1 = 0, .size_idx1 = 1, 277 .buf_idx2 = -1, .size_idx2 = -1, 278 }, 279 }, 280 [RTAS_FNIDX__IBM_PLATFORM_DUMP] = { 281 .name = "ibm,platform-dump", 282 .filter = &(const struct rtas_filter) { 283 .buf_idx1 = 4, .size_idx1 = 5, 284 .buf_idx2 = -1, .size_idx2 = -1, 285 }, 286 }, 287 [RTAS_FNIDX__IBM_POWER_OFF_UPS] = { 288 .name = "ibm,power-off-ups", 289 }, 290 [RTAS_FNIDX__IBM_QUERY_INTERRUPT_SOURCE_NUMBER] = { 291 .name = "ibm,query-interrupt-source-number", 292 }, 293 [RTAS_FNIDX__IBM_QUERY_PE_DMA_WINDOW] = { 294 .name = "ibm,query-pe-dma-window", 295 }, 296 [RTAS_FNIDX__IBM_READ_PCI_CONFIG] = { 297 .name = "ibm,read-pci-config", 298 }, 299 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE] = { 300 .name = "ibm,read-slot-reset-state", 301 .filter = &(const struct rtas_filter) { 302 .buf_idx1 = -1, .size_idx1 = -1, 303 .buf_idx2 = -1, .size_idx2 = -1, 304 }, 305 }, 306 [RTAS_FNIDX__IBM_READ_SLOT_RESET_STATE2] = { 307 .name = "ibm,read-slot-reset-state2", 308 }, 309 [RTAS_FNIDX__IBM_REMOVE_PE_DMA_WINDOW] = { 310 .name = "ibm,remove-pe-dma-window", 311 }, 312 [RTAS_FNIDX__IBM_RESET_PE_DMA_WINDOWS] = { 313 .name = "ibm,reset-pe-dma-windows", 314 }, 315 [RTAS_FNIDX__IBM_SCAN_LOG_DUMP] = { 316 .name = "ibm,scan-log-dump", 317 .filter = &(const struct rtas_filter) { 318 .buf_idx1 = 0, .size_idx1 = 1, 319 .buf_idx2 = -1, .size_idx2 = -1, 320 }, 321 }, 322 [RTAS_FNIDX__IBM_SET_DYNAMIC_INDICATOR] = { 323 .name = "ibm,set-dynamic-indicator", 324 .filter = &(const struct rtas_filter) { 325 .buf_idx1 = 2, .size_idx1 = -1, 326 .buf_idx2 = -1, .size_idx2 = -1, 327 }, 328 }, 329 [RTAS_FNIDX__IBM_SET_EEH_OPTION] = { 330 .name = "ibm,set-eeh-option", 331 .filter = &(const struct rtas_filter) { 332 .buf_idx1 = -1, .size_idx1 = -1, 333 .buf_idx2 = -1, .size_idx2 = -1, 334 }, 335 }, 336 [RTAS_FNIDX__IBM_SET_SLOT_RESET] = { 337 .name = "ibm,set-slot-reset", 338 }, 339 [RTAS_FNIDX__IBM_SET_SYSTEM_PARAMETER] = { 340 .name = "ibm,set-system-parameter", 341 .filter = &(const struct rtas_filter) { 342 .buf_idx1 = 1, .size_idx1 = -1, 343 .buf_idx2 = -1, .size_idx2 = -1, 344 }, 345 }, 346 [RTAS_FNIDX__IBM_SET_XIVE] = { 347 .name = "ibm,set-xive", 348 }, 349 [RTAS_FNIDX__IBM_SLOT_ERROR_DETAIL] = { 350 .name = "ibm,slot-error-detail", 351 }, 352 [RTAS_FNIDX__IBM_SUSPEND_ME] = { 353 .name = "ibm,suspend-me", 354 .banned_for_syscall_on_le = true, 355 .filter = &(const struct rtas_filter) { 356 .buf_idx1 = -1, .size_idx1 = -1, 357 .buf_idx2 = -1, .size_idx2 = -1, 358 }, 359 }, 360 [RTAS_FNIDX__IBM_TUNE_DMA_PARMS] = { 361 .name = "ibm,tune-dma-parms", 362 }, 363 [RTAS_FNIDX__IBM_UPDATE_FLASH_64_AND_REBOOT] = { 364 .name = "ibm,update-flash-64-and-reboot", 365 }, 366 [RTAS_FNIDX__IBM_UPDATE_NODES] = { 367 .name = "ibm,update-nodes", 368 .banned_for_syscall_on_le = true, 369 .filter = &(const struct rtas_filter) { 370 .buf_idx1 = 0, .size_idx1 = -1, 371 .buf_idx2 = -1, .size_idx2 = -1, 372 .fixed_size = 4096, 373 }, 374 }, 375 [RTAS_FNIDX__IBM_UPDATE_PROPERTIES] = { 376 .name = "ibm,update-properties", 377 .banned_for_syscall_on_le = true, 378 .filter = &(const struct rtas_filter) { 379 .buf_idx1 = 0, .size_idx1 = -1, 380 .buf_idx2 = -1, .size_idx2 = -1, 381 .fixed_size = 4096, 382 }, 383 }, 384 [RTAS_FNIDX__IBM_VALIDATE_FLASH_IMAGE] = { 385 .name = "ibm,validate-flash-image", 386 }, 387 [RTAS_FNIDX__IBM_WRITE_PCI_CONFIG] = { 388 .name = "ibm,write-pci-config", 389 }, 390 [RTAS_FNIDX__NVRAM_FETCH] = { 391 .name = "nvram-fetch", 392 }, 393 [RTAS_FNIDX__NVRAM_STORE] = { 394 .name = "nvram-store", 395 }, 396 [RTAS_FNIDX__POWER_OFF] = { 397 .name = "power-off", 398 }, 399 [RTAS_FNIDX__PUT_TERM_CHAR] = { 400 .name = "put-term-char", 401 }, 402 [RTAS_FNIDX__QUERY_CPU_STOPPED_STATE] = { 403 .name = "query-cpu-stopped-state", 404 }, 405 [RTAS_FNIDX__READ_PCI_CONFIG] = { 406 .name = "read-pci-config", 407 }, 408 [RTAS_FNIDX__RTAS_LAST_ERROR] = { 409 .name = "rtas-last-error", 410 }, 411 [RTAS_FNIDX__SET_INDICATOR] = { 412 .name = "set-indicator", 413 .filter = &(const struct rtas_filter) { 414 .buf_idx1 = -1, .size_idx1 = -1, 415 .buf_idx2 = -1, .size_idx2 = -1, 416 }, 417 }, 418 [RTAS_FNIDX__SET_POWER_LEVEL] = { 419 .name = "set-power-level", 420 .filter = &(const struct rtas_filter) { 421 .buf_idx1 = -1, .size_idx1 = -1, 422 .buf_idx2 = -1, .size_idx2 = -1, 423 }, 424 }, 425 [RTAS_FNIDX__SET_TIME_FOR_POWER_ON] = { 426 .name = "set-time-for-power-on", 427 .filter = &(const struct rtas_filter) { 428 .buf_idx1 = -1, .size_idx1 = -1, 429 .buf_idx2 = -1, .size_idx2 = -1, 430 }, 431 }, 432 [RTAS_FNIDX__SET_TIME_OF_DAY] = { 433 .name = "set-time-of-day", 434 .filter = &(const struct rtas_filter) { 435 .buf_idx1 = -1, .size_idx1 = -1, 436 .buf_idx2 = -1, .size_idx2 = -1, 437 }, 438 }, 439 [RTAS_FNIDX__START_CPU] = { 440 .name = "start-cpu", 441 }, 442 [RTAS_FNIDX__STOP_SELF] = { 443 .name = "stop-self", 444 }, 445 [RTAS_FNIDX__SYSTEM_REBOOT] = { 446 .name = "system-reboot", 447 }, 448 [RTAS_FNIDX__THAW_TIME_BASE] = { 449 .name = "thaw-time-base", 450 }, 451 [RTAS_FNIDX__WRITE_PCI_CONFIG] = { 452 .name = "write-pci-config", 453 }, 454 }; 455 456 /** 457 * rtas_function_token() - RTAS function token lookup. 458 * @handle: Function handle, e.g. RTAS_FN_EVENT_SCAN. 459 * 460 * Context: Any context. 461 * Return: the token value for the function if implemented by this platform, 462 * otherwise RTAS_UNKNOWN_SERVICE. 463 */ 464 s32 rtas_function_token(const rtas_fn_handle_t handle) 465 { 466 const size_t index = handle.index; 467 const bool out_of_bounds = index >= ARRAY_SIZE(rtas_function_table); 468 469 if (WARN_ONCE(out_of_bounds, "invalid function index %zu", index)) 470 return RTAS_UNKNOWN_SERVICE; 471 /* 472 * Various drivers attempt token lookups on non-RTAS 473 * platforms. 474 */ 475 if (!rtas.dev) 476 return RTAS_UNKNOWN_SERVICE; 477 478 return rtas_function_table[index].token; 479 } 480 EXPORT_SYMBOL_GPL(rtas_function_token); 481 482 static int rtas_function_cmp(const void *a, const void *b) 483 { 484 const struct rtas_function *f1 = a; 485 const struct rtas_function *f2 = b; 486 487 return strcmp(f1->name, f2->name); 488 } 489 490 /* 491 * Boot-time initialization of the function table needs the lookup to 492 * return a non-const-qualified object. Use rtas_name_to_function() 493 * in all other contexts. 494 */ 495 static struct rtas_function *__rtas_name_to_function(const char *name) 496 { 497 const struct rtas_function key = { 498 .name = name, 499 }; 500 struct rtas_function *found; 501 502 found = bsearch(&key, rtas_function_table, ARRAY_SIZE(rtas_function_table), 503 sizeof(rtas_function_table[0]), rtas_function_cmp); 504 505 return found; 506 } 507 508 static const struct rtas_function *rtas_name_to_function(const char *name) 509 { 510 return __rtas_name_to_function(name); 511 } 512 513 static DEFINE_XARRAY(rtas_token_to_function_xarray); 514 515 static int __init rtas_token_to_function_xarray_init(void) 516 { 517 int err = 0; 518 519 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) { 520 const struct rtas_function *func = &rtas_function_table[i]; 521 const s32 token = func->token; 522 523 if (token == RTAS_UNKNOWN_SERVICE) 524 continue; 525 526 err = xa_err(xa_store(&rtas_token_to_function_xarray, 527 token, (void *)func, GFP_KERNEL)); 528 if (err) 529 break; 530 } 531 532 return err; 533 } 534 arch_initcall(rtas_token_to_function_xarray_init); 535 536 static const struct rtas_function *rtas_token_to_function(s32 token) 537 { 538 const struct rtas_function *func; 539 540 if (WARN_ONCE(token < 0, "invalid token %d", token)) 541 return NULL; 542 543 func = xa_load(&rtas_token_to_function_xarray, token); 544 545 if (WARN_ONCE(!func, "unexpected failed lookup for token %d", token)) 546 return NULL; 547 548 return func; 549 } 550 551 /* This is here deliberately so it's only used in this file */ 552 void enter_rtas(unsigned long); 553 554 static void __do_enter_rtas(struct rtas_args *args) 555 { 556 enter_rtas(__pa(args)); 557 srr_regs_clobbered(); /* rtas uses SRRs, invalidate */ 558 } 559 560 static void __do_enter_rtas_trace(struct rtas_args *args) 561 { 562 const char *name = NULL; 563 /* 564 * If the tracepoints that consume the function name aren't 565 * active, avoid the lookup. 566 */ 567 if ((trace_rtas_input_enabled() || trace_rtas_output_enabled())) { 568 const s32 token = be32_to_cpu(args->token); 569 const struct rtas_function *func = rtas_token_to_function(token); 570 571 name = func->name; 572 } 573 574 trace_rtas_input(args, name); 575 trace_rtas_ll_entry(args); 576 577 __do_enter_rtas(args); 578 579 trace_rtas_ll_exit(args); 580 trace_rtas_output(args, name); 581 } 582 583 static void do_enter_rtas(struct rtas_args *args) 584 { 585 const unsigned long msr = mfmsr(); 586 /* 587 * Situations where we want to skip any active tracepoints for 588 * safety reasons: 589 * 590 * 1. The last code executed on an offline CPU as it stops, 591 * i.e. we're about to call stop-self. The tracepoints' 592 * function name lookup uses xarray, which uses RCU, which 593 * isn't valid to call on an offline CPU. Any events 594 * emitted on an offline CPU will be discarded anyway. 595 * 596 * 2. In real mode, as when invoking ibm,nmi-interlock from 597 * the pseries MCE handler. We cannot count on trace 598 * buffers or the entries in rtas_token_to_function_xarray 599 * to be contained in the RMO. 600 */ 601 const unsigned long mask = MSR_IR | MSR_DR; 602 const bool can_trace = likely(cpu_online(raw_smp_processor_id()) && 603 (msr & mask) == mask); 604 /* 605 * Make sure MSR[RI] is currently enabled as it will be forced later 606 * in enter_rtas. 607 */ 608 BUG_ON(!(msr & MSR_RI)); 609 610 BUG_ON(!irqs_disabled()); 611 612 hard_irq_disable(); /* Ensure MSR[EE] is disabled on PPC64 */ 613 614 if (can_trace) 615 __do_enter_rtas_trace(args); 616 else 617 __do_enter_rtas(args); 618 } 619 620 struct rtas_t rtas; 621 622 /* 623 * Nearly all RTAS calls need to be serialized. All uses of the 624 * default rtas_args block must hold rtas_lock. 625 * 626 * Exceptions to the RTAS serialization requirement (e.g. stop-self) 627 * must use a separate rtas_args structure. 628 */ 629 static DEFINE_RAW_SPINLOCK(rtas_lock); 630 static struct rtas_args rtas_args; 631 632 DEFINE_SPINLOCK(rtas_data_buf_lock); 633 EXPORT_SYMBOL_GPL(rtas_data_buf_lock); 634 635 char rtas_data_buf[RTAS_DATA_BUF_SIZE] __aligned(SZ_4K); 636 EXPORT_SYMBOL_GPL(rtas_data_buf); 637 638 unsigned long rtas_rmo_buf; 639 640 /* 641 * If non-NULL, this gets called when the kernel terminates. 642 * This is done like this so rtas_flash can be a module. 643 */ 644 void (*rtas_flash_term_hook)(int); 645 EXPORT_SYMBOL_GPL(rtas_flash_term_hook); 646 647 /* 648 * call_rtas_display_status and call_rtas_display_status_delay 649 * are designed only for very early low-level debugging, which 650 * is why the token is hard-coded to 10. 651 */ 652 static void call_rtas_display_status(unsigned char c) 653 { 654 unsigned long flags; 655 656 if (!rtas.base) 657 return; 658 659 raw_spin_lock_irqsave(&rtas_lock, flags); 660 rtas_call_unlocked(&rtas_args, 10, 1, 1, NULL, c); 661 raw_spin_unlock_irqrestore(&rtas_lock, flags); 662 } 663 664 static void call_rtas_display_status_delay(char c) 665 { 666 static int pending_newline = 0; /* did last write end with unprinted newline? */ 667 static int width = 16; 668 669 if (c == '\n') { 670 while (width-- > 0) 671 call_rtas_display_status(' '); 672 width = 16; 673 mdelay(500); 674 pending_newline = 1; 675 } else { 676 if (pending_newline) { 677 call_rtas_display_status('\r'); 678 call_rtas_display_status('\n'); 679 } 680 pending_newline = 0; 681 if (width--) { 682 call_rtas_display_status(c); 683 udelay(10000); 684 } 685 } 686 } 687 688 void __init udbg_init_rtas_panel(void) 689 { 690 udbg_putc = call_rtas_display_status_delay; 691 } 692 693 #ifdef CONFIG_UDBG_RTAS_CONSOLE 694 695 /* If you think you're dying before early_init_dt_scan_rtas() does its 696 * work, you can hard code the token values for your firmware here and 697 * hardcode rtas.base/entry etc. 698 */ 699 static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; 700 static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; 701 702 static void udbg_rtascon_putc(char c) 703 { 704 int tries; 705 706 if (!rtas.base) 707 return; 708 709 /* Add CRs before LFs */ 710 if (c == '\n') 711 udbg_rtascon_putc('\r'); 712 713 /* if there is more than one character to be displayed, wait a bit */ 714 for (tries = 0; tries < 16; tries++) { 715 if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) 716 break; 717 udelay(1000); 718 } 719 } 720 721 static int udbg_rtascon_getc_poll(void) 722 { 723 int c; 724 725 if (!rtas.base) 726 return -1; 727 728 if (rtas_call(rtas_getchar_token, 0, 2, &c)) 729 return -1; 730 731 return c; 732 } 733 734 static int udbg_rtascon_getc(void) 735 { 736 int c; 737 738 while ((c = udbg_rtascon_getc_poll()) == -1) 739 ; 740 741 return c; 742 } 743 744 745 void __init udbg_init_rtas_console(void) 746 { 747 udbg_putc = udbg_rtascon_putc; 748 udbg_getc = udbg_rtascon_getc; 749 udbg_getc_poll = udbg_rtascon_getc_poll; 750 } 751 #endif /* CONFIG_UDBG_RTAS_CONSOLE */ 752 753 void rtas_progress(char *s, unsigned short hex) 754 { 755 struct device_node *root; 756 int width; 757 const __be32 *p; 758 char *os; 759 static int display_character, set_indicator; 760 static int display_width, display_lines, form_feed; 761 static const int *row_width; 762 static DEFINE_SPINLOCK(progress_lock); 763 static int current_line; 764 static int pending_newline = 0; /* did last write end with unprinted newline? */ 765 766 if (!rtas.base) 767 return; 768 769 if (display_width == 0) { 770 display_width = 0x10; 771 if ((root = of_find_node_by_path("/rtas"))) { 772 if ((p = of_get_property(root, 773 "ibm,display-line-length", NULL))) 774 display_width = be32_to_cpu(*p); 775 if ((p = of_get_property(root, 776 "ibm,form-feed", NULL))) 777 form_feed = be32_to_cpu(*p); 778 if ((p = of_get_property(root, 779 "ibm,display-number-of-lines", NULL))) 780 display_lines = be32_to_cpu(*p); 781 row_width = of_get_property(root, 782 "ibm,display-truncation-length", NULL); 783 of_node_put(root); 784 } 785 display_character = rtas_function_token(RTAS_FN_DISPLAY_CHARACTER); 786 set_indicator = rtas_function_token(RTAS_FN_SET_INDICATOR); 787 } 788 789 if (display_character == RTAS_UNKNOWN_SERVICE) { 790 /* use hex display if available */ 791 if (set_indicator != RTAS_UNKNOWN_SERVICE) 792 rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); 793 return; 794 } 795 796 spin_lock(&progress_lock); 797 798 /* 799 * Last write ended with newline, but we didn't print it since 800 * it would just clear the bottom line of output. Print it now 801 * instead. 802 * 803 * If no newline is pending and form feed is supported, clear the 804 * display with a form feed; otherwise, print a CR to start output 805 * at the beginning of the line. 806 */ 807 if (pending_newline) { 808 rtas_call(display_character, 1, 1, NULL, '\r'); 809 rtas_call(display_character, 1, 1, NULL, '\n'); 810 pending_newline = 0; 811 } else { 812 current_line = 0; 813 if (form_feed) 814 rtas_call(display_character, 1, 1, NULL, 815 (char)form_feed); 816 else 817 rtas_call(display_character, 1, 1, NULL, '\r'); 818 } 819 820 if (row_width) 821 width = row_width[current_line]; 822 else 823 width = display_width; 824 os = s; 825 while (*os) { 826 if (*os == '\n' || *os == '\r') { 827 /* If newline is the last character, save it 828 * until next call to avoid bumping up the 829 * display output. 830 */ 831 if (*os == '\n' && !os[1]) { 832 pending_newline = 1; 833 current_line++; 834 if (current_line > display_lines-1) 835 current_line = display_lines-1; 836 spin_unlock(&progress_lock); 837 return; 838 } 839 840 /* RTAS wants CR-LF, not just LF */ 841 842 if (*os == '\n') { 843 rtas_call(display_character, 1, 1, NULL, '\r'); 844 rtas_call(display_character, 1, 1, NULL, '\n'); 845 } else { 846 /* CR might be used to re-draw a line, so we'll 847 * leave it alone and not add LF. 848 */ 849 rtas_call(display_character, 1, 1, NULL, *os); 850 } 851 852 if (row_width) 853 width = row_width[current_line]; 854 else 855 width = display_width; 856 } else { 857 width--; 858 rtas_call(display_character, 1, 1, NULL, *os); 859 } 860 861 os++; 862 863 /* if we overwrite the screen length */ 864 if (width <= 0) 865 while ((*os != 0) && (*os != '\n') && (*os != '\r')) 866 os++; 867 } 868 869 spin_unlock(&progress_lock); 870 } 871 EXPORT_SYMBOL_GPL(rtas_progress); /* needed by rtas_flash module */ 872 873 int rtas_token(const char *service) 874 { 875 const struct rtas_function *func; 876 const __be32 *tokp; 877 878 if (rtas.dev == NULL) 879 return RTAS_UNKNOWN_SERVICE; 880 881 func = rtas_name_to_function(service); 882 if (func) 883 return func->token; 884 /* 885 * The caller is looking up a name that is not known to be an 886 * RTAS function. Either it's a function that needs to be 887 * added to the table, or they're misusing rtas_token() to 888 * access non-function properties of the /rtas node. Warn and 889 * fall back to the legacy behavior. 890 */ 891 WARN_ONCE(1, "unknown function `%s`, should it be added to rtas_function_table?\n", 892 service); 893 894 tokp = of_get_property(rtas.dev, service, NULL); 895 return tokp ? be32_to_cpu(*tokp) : RTAS_UNKNOWN_SERVICE; 896 } 897 EXPORT_SYMBOL_GPL(rtas_token); 898 899 int rtas_service_present(const char *service) 900 { 901 return rtas_token(service) != RTAS_UNKNOWN_SERVICE; 902 } 903 904 #ifdef CONFIG_RTAS_ERROR_LOGGING 905 906 static u32 rtas_error_log_max __ro_after_init = RTAS_ERROR_LOG_MAX; 907 908 /* 909 * Return the firmware-specified size of the error log buffer 910 * for all rtas calls that require an error buffer argument. 911 * This includes 'check-exception' and 'rtas-last-error'. 912 */ 913 int rtas_get_error_log_max(void) 914 { 915 return rtas_error_log_max; 916 } 917 918 static void __init init_error_log_max(void) 919 { 920 static const char propname[] __initconst = "rtas-error-log-max"; 921 u32 max; 922 923 if (of_property_read_u32(rtas.dev, propname, &max)) { 924 pr_warn("%s not found, using default of %u\n", 925 propname, RTAS_ERROR_LOG_MAX); 926 max = RTAS_ERROR_LOG_MAX; 927 } 928 929 if (max > RTAS_ERROR_LOG_MAX) { 930 pr_warn("%s = %u, clamping max error log size to %u\n", 931 propname, max, RTAS_ERROR_LOG_MAX); 932 max = RTAS_ERROR_LOG_MAX; 933 } 934 935 rtas_error_log_max = max; 936 } 937 938 939 static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; 940 941 /** Return a copy of the detailed error text associated with the 942 * most recent failed call to rtas. Because the error text 943 * might go stale if there are any other intervening rtas calls, 944 * this routine must be called atomically with whatever produced 945 * the error (i.e. with rtas_lock still held from the previous call). 946 */ 947 static char *__fetch_rtas_last_error(char *altbuf) 948 { 949 const s32 token = rtas_function_token(RTAS_FN_RTAS_LAST_ERROR); 950 struct rtas_args err_args, save_args; 951 u32 bufsz; 952 char *buf = NULL; 953 954 if (token == -1) 955 return NULL; 956 957 bufsz = rtas_get_error_log_max(); 958 959 err_args.token = cpu_to_be32(token); 960 err_args.nargs = cpu_to_be32(2); 961 err_args.nret = cpu_to_be32(1); 962 err_args.args[0] = cpu_to_be32(__pa(rtas_err_buf)); 963 err_args.args[1] = cpu_to_be32(bufsz); 964 err_args.args[2] = 0; 965 966 save_args = rtas_args; 967 rtas_args = err_args; 968 969 do_enter_rtas(&rtas_args); 970 971 err_args = rtas_args; 972 rtas_args = save_args; 973 974 /* Log the error in the unlikely case that there was one. */ 975 if (unlikely(err_args.args[2] == 0)) { 976 if (altbuf) { 977 buf = altbuf; 978 } else { 979 buf = rtas_err_buf; 980 if (slab_is_available()) 981 buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); 982 } 983 if (buf) 984 memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); 985 } 986 987 return buf; 988 } 989 990 #define get_errorlog_buffer() kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) 991 992 #else /* CONFIG_RTAS_ERROR_LOGGING */ 993 #define __fetch_rtas_last_error(x) NULL 994 #define get_errorlog_buffer() NULL 995 static void __init init_error_log_max(void) {} 996 #endif 997 998 999 static void 1000 va_rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, 1001 va_list list) 1002 { 1003 int i; 1004 1005 args->token = cpu_to_be32(token); 1006 args->nargs = cpu_to_be32(nargs); 1007 args->nret = cpu_to_be32(nret); 1008 args->rets = &(args->args[nargs]); 1009 1010 for (i = 0; i < nargs; ++i) 1011 args->args[i] = cpu_to_be32(va_arg(list, __u32)); 1012 1013 for (i = 0; i < nret; ++i) 1014 args->rets[i] = 0; 1015 1016 do_enter_rtas(args); 1017 } 1018 1019 void rtas_call_unlocked(struct rtas_args *args, int token, int nargs, int nret, ...) 1020 { 1021 va_list list; 1022 1023 va_start(list, nret); 1024 va_rtas_call_unlocked(args, token, nargs, nret, list); 1025 va_end(list); 1026 } 1027 1028 static bool token_is_restricted_errinjct(s32 token) 1029 { 1030 return token == rtas_function_token(RTAS_FN_IBM_OPEN_ERRINJCT) || 1031 token == rtas_function_token(RTAS_FN_IBM_ERRINJCT); 1032 } 1033 1034 /** 1035 * rtas_call() - Invoke an RTAS firmware function. 1036 * @token: Identifies the function being invoked. 1037 * @nargs: Number of input parameters. Does not include token. 1038 * @nret: Number of output parameters, including the call status. 1039 * @outputs: Array of @nret output words. 1040 * @....: List of @nargs input parameters. 1041 * 1042 * Invokes the RTAS function indicated by @token, which the caller 1043 * should obtain via rtas_function_token(). 1044 * 1045 * The @nargs and @nret arguments must match the number of input and 1046 * output parameters specified for the RTAS function. 1047 * 1048 * rtas_call() returns RTAS status codes, not conventional Linux errno 1049 * values. Callers must translate any failure to an appropriate errno 1050 * in syscall context. Most callers of RTAS functions that can return 1051 * -2 or 990x should use rtas_busy_delay() to correctly handle those 1052 * statuses before calling again. 1053 * 1054 * The return value descriptions are adapted from 7.2.8 [RTAS] Return 1055 * Codes of the PAPR and CHRP specifications. 1056 * 1057 * Context: Process context preferably, interrupt context if 1058 * necessary. Acquires an internal spinlock and may perform 1059 * GFP_ATOMIC slab allocation in error path. Unsafe for NMI 1060 * context. 1061 * Return: 1062 * * 0 - RTAS function call succeeded. 1063 * * -1 - RTAS function encountered a hardware or 1064 * platform error, or the token is invalid, 1065 * or the function is restricted by kernel policy. 1066 * * -2 - Specs say "A necessary hardware device was busy, 1067 * and the requested function could not be 1068 * performed. The operation should be retried at 1069 * a later time." This is misleading, at least with 1070 * respect to current RTAS implementations. What it 1071 * usually means in practice is that the function 1072 * could not be completed while meeting RTAS's 1073 * deadline for returning control to the OS (250us 1074 * for PAPR/PowerVM, typically), but the call may be 1075 * immediately reattempted to resume work on it. 1076 * * -3 - Parameter error. 1077 * * -7 - Unexpected state change. 1078 * * 9000...9899 - Vendor-specific success codes. 1079 * * 9900...9905 - Advisory extended delay. Caller should try 1080 * again after ~10^x ms has elapsed, where x is 1081 * the last digit of the status [0-5]. Again going 1082 * beyond the PAPR text, 990x on PowerVM indicates 1083 * contention for RTAS-internal resources. Other 1084 * RTAS call sequences in progress should be 1085 * allowed to complete before reattempting the 1086 * call. 1087 * * -9000 - Multi-level isolation error. 1088 * * -9999...-9004 - Vendor-specific error codes. 1089 * * Additional negative values - Function-specific error. 1090 * * Additional positive values - Function-specific success. 1091 */ 1092 int rtas_call(int token, int nargs, int nret, int *outputs, ...) 1093 { 1094 va_list list; 1095 int i; 1096 unsigned long flags; 1097 struct rtas_args *args; 1098 char *buff_copy = NULL; 1099 int ret; 1100 1101 if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) 1102 return -1; 1103 1104 if (token_is_restricted_errinjct(token)) { 1105 /* 1106 * It would be nicer to not discard the error value 1107 * from security_locked_down(), but callers expect an 1108 * RTAS status, not an errno. 1109 */ 1110 if (security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION)) 1111 return -1; 1112 } 1113 1114 if ((mfmsr() & (MSR_IR|MSR_DR)) != (MSR_IR|MSR_DR)) { 1115 WARN_ON_ONCE(1); 1116 return -1; 1117 } 1118 1119 raw_spin_lock_irqsave(&rtas_lock, flags); 1120 /* We use the global rtas args buffer */ 1121 args = &rtas_args; 1122 1123 va_start(list, outputs); 1124 va_rtas_call_unlocked(args, token, nargs, nret, list); 1125 va_end(list); 1126 1127 /* A -1 return code indicates that the last command couldn't 1128 be completed due to a hardware error. */ 1129 if (be32_to_cpu(args->rets[0]) == -1) 1130 buff_copy = __fetch_rtas_last_error(NULL); 1131 1132 if (nret > 1 && outputs != NULL) 1133 for (i = 0; i < nret-1; ++i) 1134 outputs[i] = be32_to_cpu(args->rets[i + 1]); 1135 ret = (nret > 0) ? be32_to_cpu(args->rets[0]) : 0; 1136 1137 raw_spin_unlock_irqrestore(&rtas_lock, flags); 1138 1139 if (buff_copy) { 1140 log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); 1141 if (slab_is_available()) 1142 kfree(buff_copy); 1143 } 1144 return ret; 1145 } 1146 EXPORT_SYMBOL_GPL(rtas_call); 1147 1148 /** 1149 * rtas_busy_delay_time() - From an RTAS status value, calculate the 1150 * suggested delay time in milliseconds. 1151 * 1152 * @status: a value returned from rtas_call() or similar APIs which return 1153 * the status of a RTAS function call. 1154 * 1155 * Context: Any context. 1156 * 1157 * Return: 1158 * * 100000 - If @status is 9905. 1159 * * 10000 - If @status is 9904. 1160 * * 1000 - If @status is 9903. 1161 * * 100 - If @status is 9902. 1162 * * 10 - If @status is 9901. 1163 * * 1 - If @status is either 9900 or -2. This is "wrong" for -2, but 1164 * some callers depend on this behavior, and the worst outcome 1165 * is that they will delay for longer than necessary. 1166 * * 0 - If @status is not a busy or extended delay value. 1167 */ 1168 unsigned int rtas_busy_delay_time(int status) 1169 { 1170 int order; 1171 unsigned int ms = 0; 1172 1173 if (status == RTAS_BUSY) { 1174 ms = 1; 1175 } else if (status >= RTAS_EXTENDED_DELAY_MIN && 1176 status <= RTAS_EXTENDED_DELAY_MAX) { 1177 order = status - RTAS_EXTENDED_DELAY_MIN; 1178 for (ms = 1; order > 0; order--) 1179 ms *= 10; 1180 } 1181 1182 return ms; 1183 } 1184 1185 /* 1186 * Early boot fallback for rtas_busy_delay(). 1187 */ 1188 static bool __init rtas_busy_delay_early(int status) 1189 { 1190 static size_t successive_ext_delays __initdata; 1191 bool retry; 1192 1193 switch (status) { 1194 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX: 1195 /* 1196 * In the unlikely case that we receive an extended 1197 * delay status in early boot, the OS is probably not 1198 * the cause, and there's nothing we can do to clear 1199 * the condition. Best we can do is delay for a bit 1200 * and hope it's transient. Lie to the caller if it 1201 * seems like we're stuck in a retry loop. 1202 */ 1203 mdelay(1); 1204 retry = true; 1205 successive_ext_delays += 1; 1206 if (successive_ext_delays > 1000) { 1207 pr_err("too many extended delays, giving up\n"); 1208 dump_stack(); 1209 retry = false; 1210 successive_ext_delays = 0; 1211 } 1212 break; 1213 case RTAS_BUSY: 1214 retry = true; 1215 successive_ext_delays = 0; 1216 break; 1217 default: 1218 retry = false; 1219 successive_ext_delays = 0; 1220 break; 1221 } 1222 1223 return retry; 1224 } 1225 1226 /** 1227 * rtas_busy_delay() - helper for RTAS busy and extended delay statuses 1228 * 1229 * @status: a value returned from rtas_call() or similar APIs which return 1230 * the status of a RTAS function call. 1231 * 1232 * Context: Process context. May sleep or schedule. 1233 * 1234 * Return: 1235 * * true - @status is RTAS_BUSY or an extended delay hint. The 1236 * caller may assume that the CPU has been yielded if necessary, 1237 * and that an appropriate delay for @status has elapsed. 1238 * Generally the caller should reattempt the RTAS call which 1239 * yielded @status. 1240 * 1241 * * false - @status is not @RTAS_BUSY nor an extended delay hint. The 1242 * caller is responsible for handling @status. 1243 */ 1244 bool __ref rtas_busy_delay(int status) 1245 { 1246 unsigned int ms; 1247 bool ret; 1248 1249 /* 1250 * Can't do timed sleeps before timekeeping is up. 1251 */ 1252 if (system_state < SYSTEM_SCHEDULING) 1253 return rtas_busy_delay_early(status); 1254 1255 switch (status) { 1256 case RTAS_EXTENDED_DELAY_MIN...RTAS_EXTENDED_DELAY_MAX: 1257 ret = true; 1258 ms = rtas_busy_delay_time(status); 1259 /* 1260 * The extended delay hint can be as high as 100 seconds. 1261 * Surely any function returning such a status is either 1262 * buggy or isn't going to be significantly slowed by us 1263 * polling at 1HZ. Clamp the sleep time to one second. 1264 */ 1265 ms = clamp(ms, 1U, 1000U); 1266 /* 1267 * The delay hint is an order-of-magnitude suggestion, not 1268 * a minimum. It is fine, possibly even advantageous, for 1269 * us to pause for less time than hinted. For small values, 1270 * use usleep_range() to ensure we don't sleep much longer 1271 * than actually needed. 1272 * 1273 * See Documentation/timers/timers-howto.rst for 1274 * explanation of the threshold used here. In effect we use 1275 * usleep_range() for 9900 and 9901, msleep() for 1276 * 9902-9905. 1277 */ 1278 if (ms <= 20) 1279 usleep_range(ms * 100, ms * 1000); 1280 else 1281 msleep(ms); 1282 break; 1283 case RTAS_BUSY: 1284 ret = true; 1285 /* 1286 * We should call again immediately if there's no other 1287 * work to do. 1288 */ 1289 cond_resched(); 1290 break; 1291 default: 1292 ret = false; 1293 /* 1294 * Not a busy or extended delay status; the caller should 1295 * handle @status itself. Ensure we warn on misuses in 1296 * atomic context regardless. 1297 */ 1298 might_sleep(); 1299 break; 1300 } 1301 1302 return ret; 1303 } 1304 EXPORT_SYMBOL_GPL(rtas_busy_delay); 1305 1306 static int rtas_error_rc(int rtas_rc) 1307 { 1308 int rc; 1309 1310 switch (rtas_rc) { 1311 case -1: /* Hardware Error */ 1312 rc = -EIO; 1313 break; 1314 case -3: /* Bad indicator/domain/etc */ 1315 rc = -EINVAL; 1316 break; 1317 case -9000: /* Isolation error */ 1318 rc = -EFAULT; 1319 break; 1320 case -9001: /* Outstanding TCE/PTE */ 1321 rc = -EEXIST; 1322 break; 1323 case -9002: /* No usable slot */ 1324 rc = -ENODEV; 1325 break; 1326 default: 1327 pr_err("%s: unexpected error %d\n", __func__, rtas_rc); 1328 rc = -ERANGE; 1329 break; 1330 } 1331 return rc; 1332 } 1333 1334 int rtas_get_power_level(int powerdomain, int *level) 1335 { 1336 int token = rtas_function_token(RTAS_FN_GET_POWER_LEVEL); 1337 int rc; 1338 1339 if (token == RTAS_UNKNOWN_SERVICE) 1340 return -ENOENT; 1341 1342 while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) 1343 udelay(1); 1344 1345 if (rc < 0) 1346 return rtas_error_rc(rc); 1347 return rc; 1348 } 1349 EXPORT_SYMBOL_GPL(rtas_get_power_level); 1350 1351 int rtas_set_power_level(int powerdomain, int level, int *setlevel) 1352 { 1353 int token = rtas_function_token(RTAS_FN_SET_POWER_LEVEL); 1354 int rc; 1355 1356 if (token == RTAS_UNKNOWN_SERVICE) 1357 return -ENOENT; 1358 1359 do { 1360 rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); 1361 } while (rtas_busy_delay(rc)); 1362 1363 if (rc < 0) 1364 return rtas_error_rc(rc); 1365 return rc; 1366 } 1367 EXPORT_SYMBOL_GPL(rtas_set_power_level); 1368 1369 int rtas_get_sensor(int sensor, int index, int *state) 1370 { 1371 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE); 1372 int rc; 1373 1374 if (token == RTAS_UNKNOWN_SERVICE) 1375 return -ENOENT; 1376 1377 do { 1378 rc = rtas_call(token, 2, 2, state, sensor, index); 1379 } while (rtas_busy_delay(rc)); 1380 1381 if (rc < 0) 1382 return rtas_error_rc(rc); 1383 return rc; 1384 } 1385 EXPORT_SYMBOL_GPL(rtas_get_sensor); 1386 1387 int rtas_get_sensor_fast(int sensor, int index, int *state) 1388 { 1389 int token = rtas_function_token(RTAS_FN_GET_SENSOR_STATE); 1390 int rc; 1391 1392 if (token == RTAS_UNKNOWN_SERVICE) 1393 return -ENOENT; 1394 1395 rc = rtas_call(token, 2, 2, state, sensor, index); 1396 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 1397 rc <= RTAS_EXTENDED_DELAY_MAX)); 1398 1399 if (rc < 0) 1400 return rtas_error_rc(rc); 1401 return rc; 1402 } 1403 1404 bool rtas_indicator_present(int token, int *maxindex) 1405 { 1406 int proplen, count, i; 1407 const struct indicator_elem { 1408 __be32 token; 1409 __be32 maxindex; 1410 } *indicators; 1411 1412 indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); 1413 if (!indicators) 1414 return false; 1415 1416 count = proplen / sizeof(struct indicator_elem); 1417 1418 for (i = 0; i < count; i++) { 1419 if (__be32_to_cpu(indicators[i].token) != token) 1420 continue; 1421 if (maxindex) 1422 *maxindex = __be32_to_cpu(indicators[i].maxindex); 1423 return true; 1424 } 1425 1426 return false; 1427 } 1428 1429 int rtas_set_indicator(int indicator, int index, int new_value) 1430 { 1431 int token = rtas_function_token(RTAS_FN_SET_INDICATOR); 1432 int rc; 1433 1434 if (token == RTAS_UNKNOWN_SERVICE) 1435 return -ENOENT; 1436 1437 do { 1438 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 1439 } while (rtas_busy_delay(rc)); 1440 1441 if (rc < 0) 1442 return rtas_error_rc(rc); 1443 return rc; 1444 } 1445 EXPORT_SYMBOL_GPL(rtas_set_indicator); 1446 1447 /* 1448 * Ignoring RTAS extended delay 1449 */ 1450 int rtas_set_indicator_fast(int indicator, int index, int new_value) 1451 { 1452 int token = rtas_function_token(RTAS_FN_SET_INDICATOR); 1453 int rc; 1454 1455 if (token == RTAS_UNKNOWN_SERVICE) 1456 return -ENOENT; 1457 1458 rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); 1459 1460 WARN_ON(rc == RTAS_BUSY || (rc >= RTAS_EXTENDED_DELAY_MIN && 1461 rc <= RTAS_EXTENDED_DELAY_MAX)); 1462 1463 if (rc < 0) 1464 return rtas_error_rc(rc); 1465 1466 return rc; 1467 } 1468 1469 /** 1470 * rtas_ibm_suspend_me() - Call ibm,suspend-me to suspend the LPAR. 1471 * 1472 * @fw_status: RTAS call status will be placed here if not NULL. 1473 * 1474 * rtas_ibm_suspend_me() should be called only on a CPU which has 1475 * received H_CONTINUE from the H_JOIN hcall. All other active CPUs 1476 * should be waiting to return from H_JOIN. 1477 * 1478 * rtas_ibm_suspend_me() may suspend execution of the OS 1479 * indefinitely. Callers should take appropriate measures upon return, such as 1480 * resetting watchdog facilities. 1481 * 1482 * Callers may choose to retry this call if @fw_status is 1483 * %RTAS_THREADS_ACTIVE. 1484 * 1485 * Return: 1486 * 0 - The partition has resumed from suspend, possibly after 1487 * migration to a different host. 1488 * -ECANCELED - The operation was aborted. 1489 * -EAGAIN - There were other CPUs not in H_JOIN at the time of the call. 1490 * -EBUSY - Some other condition prevented the suspend from succeeding. 1491 * -EIO - Hardware/platform error. 1492 */ 1493 int rtas_ibm_suspend_me(int *fw_status) 1494 { 1495 int token = rtas_function_token(RTAS_FN_IBM_SUSPEND_ME); 1496 int fwrc; 1497 int ret; 1498 1499 fwrc = rtas_call(token, 0, 1, NULL); 1500 1501 switch (fwrc) { 1502 case 0: 1503 ret = 0; 1504 break; 1505 case RTAS_SUSPEND_ABORTED: 1506 ret = -ECANCELED; 1507 break; 1508 case RTAS_THREADS_ACTIVE: 1509 ret = -EAGAIN; 1510 break; 1511 case RTAS_NOT_SUSPENDABLE: 1512 case RTAS_OUTSTANDING_COPROC: 1513 ret = -EBUSY; 1514 break; 1515 case -1: 1516 default: 1517 ret = -EIO; 1518 break; 1519 } 1520 1521 if (fw_status) 1522 *fw_status = fwrc; 1523 1524 return ret; 1525 } 1526 1527 void __noreturn rtas_restart(char *cmd) 1528 { 1529 if (rtas_flash_term_hook) 1530 rtas_flash_term_hook(SYS_RESTART); 1531 pr_emerg("system-reboot returned %d\n", 1532 rtas_call(rtas_function_token(RTAS_FN_SYSTEM_REBOOT), 0, 1, NULL)); 1533 for (;;); 1534 } 1535 1536 void rtas_power_off(void) 1537 { 1538 if (rtas_flash_term_hook) 1539 rtas_flash_term_hook(SYS_POWER_OFF); 1540 /* allow power on only with power button press */ 1541 pr_emerg("power-off returned %d\n", 1542 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1)); 1543 for (;;); 1544 } 1545 1546 void __noreturn rtas_halt(void) 1547 { 1548 if (rtas_flash_term_hook) 1549 rtas_flash_term_hook(SYS_HALT); 1550 /* allow power on only with power button press */ 1551 pr_emerg("power-off returned %d\n", 1552 rtas_call(rtas_function_token(RTAS_FN_POWER_OFF), 2, 1, NULL, -1, -1)); 1553 for (;;); 1554 } 1555 1556 /* Must be in the RMO region, so we place it here */ 1557 static char rtas_os_term_buf[2048]; 1558 static bool ibm_extended_os_term; 1559 1560 void rtas_os_term(char *str) 1561 { 1562 s32 token = rtas_function_token(RTAS_FN_IBM_OS_TERM); 1563 int status; 1564 1565 /* 1566 * Firmware with the ibm,extended-os-term property is guaranteed 1567 * to always return from an ibm,os-term call. Earlier versions without 1568 * this property may terminate the partition which we want to avoid 1569 * since it interferes with panic_timeout. 1570 */ 1571 1572 if (token == RTAS_UNKNOWN_SERVICE || !ibm_extended_os_term) 1573 return; 1574 1575 snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); 1576 1577 /* 1578 * Keep calling as long as RTAS returns a "try again" status, 1579 * but don't use rtas_busy_delay(), which potentially 1580 * schedules. 1581 */ 1582 do { 1583 status = rtas_call(token, 1, 1, NULL, __pa(rtas_os_term_buf)); 1584 } while (rtas_busy_delay_time(status)); 1585 1586 if (status != 0) 1587 pr_emerg("ibm,os-term call failed %d\n", status); 1588 } 1589 1590 /** 1591 * rtas_activate_firmware() - Activate a new version of firmware. 1592 * 1593 * Context: This function may sleep. 1594 * 1595 * Activate a new version of partition firmware. The OS must call this 1596 * after resuming from a partition hibernation or migration in order 1597 * to maintain the ability to perform live firmware updates. It's not 1598 * catastrophic for this method to be absent or to fail; just log the 1599 * condition in that case. 1600 */ 1601 void rtas_activate_firmware(void) 1602 { 1603 int token = rtas_function_token(RTAS_FN_IBM_ACTIVATE_FIRMWARE); 1604 int fwrc; 1605 1606 if (token == RTAS_UNKNOWN_SERVICE) { 1607 pr_notice("ibm,activate-firmware method unavailable\n"); 1608 return; 1609 } 1610 1611 do { 1612 fwrc = rtas_call(token, 0, 1, NULL); 1613 } while (rtas_busy_delay(fwrc)); 1614 1615 if (fwrc) 1616 pr_err("ibm,activate-firmware failed (%i)\n", fwrc); 1617 } 1618 1619 /** 1620 * get_pseries_errorlog() - Find a specific pseries error log in an RTAS 1621 * extended event log. 1622 * @log: RTAS error/event log 1623 * @section_id: two character section identifier 1624 * 1625 * Return: A pointer to the specified errorlog or NULL if not found. 1626 */ 1627 noinstr struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, 1628 uint16_t section_id) 1629 { 1630 struct rtas_ext_event_log_v6 *ext_log = 1631 (struct rtas_ext_event_log_v6 *)log->buffer; 1632 struct pseries_errorlog *sect; 1633 unsigned char *p, *log_end; 1634 uint32_t ext_log_length = rtas_error_extended_log_length(log); 1635 uint8_t log_format = rtas_ext_event_log_format(ext_log); 1636 uint32_t company_id = rtas_ext_event_company_id(ext_log); 1637 1638 /* Check that we understand the format */ 1639 if (ext_log_length < sizeof(struct rtas_ext_event_log_v6) || 1640 log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || 1641 company_id != RTAS_V6EXT_COMPANY_ID_IBM) 1642 return NULL; 1643 1644 log_end = log->buffer + ext_log_length; 1645 p = ext_log->vendor_log; 1646 1647 while (p < log_end) { 1648 sect = (struct pseries_errorlog *)p; 1649 if (pseries_errorlog_id(sect) == section_id) 1650 return sect; 1651 p += pseries_errorlog_length(sect); 1652 } 1653 1654 return NULL; 1655 } 1656 1657 /* 1658 * The sys_rtas syscall, as originally designed, allows root to pass 1659 * arbitrary physical addresses to RTAS calls. A number of RTAS calls 1660 * can be abused to write to arbitrary memory and do other things that 1661 * are potentially harmful to system integrity, and thus should only 1662 * be used inside the kernel and not exposed to userspace. 1663 * 1664 * All known legitimate users of the sys_rtas syscall will only ever 1665 * pass addresses that fall within the RMO buffer, and use a known 1666 * subset of RTAS calls. 1667 * 1668 * Accordingly, we filter RTAS requests to check that the call is 1669 * permitted, and that provided pointers fall within the RMO buffer. 1670 * If a function is allowed to be invoked via the syscall, then its 1671 * entry in the rtas_functions table points to a rtas_filter that 1672 * describes its constraints, with the indexes of the parameters which 1673 * are expected to contain addresses and sizes of buffers allocated 1674 * inside the RMO buffer. 1675 */ 1676 1677 static bool in_rmo_buf(u32 base, u32 end) 1678 { 1679 return base >= rtas_rmo_buf && 1680 base < (rtas_rmo_buf + RTAS_USER_REGION_SIZE) && 1681 base <= end && 1682 end >= rtas_rmo_buf && 1683 end < (rtas_rmo_buf + RTAS_USER_REGION_SIZE); 1684 } 1685 1686 static bool block_rtas_call(int token, int nargs, 1687 struct rtas_args *args) 1688 { 1689 const struct rtas_function *func; 1690 const struct rtas_filter *f; 1691 const bool is_platform_dump = token == rtas_function_token(RTAS_FN_IBM_PLATFORM_DUMP); 1692 const bool is_config_conn = token == rtas_function_token(RTAS_FN_IBM_CONFIGURE_CONNECTOR); 1693 u32 base, size, end; 1694 1695 /* 1696 * If this token doesn't correspond to a function the kernel 1697 * understands, you're not allowed to call it. 1698 */ 1699 func = rtas_token_to_function(token); 1700 if (!func) 1701 goto err; 1702 /* 1703 * And only functions with filters attached are allowed. 1704 */ 1705 f = func->filter; 1706 if (!f) 1707 goto err; 1708 /* 1709 * And some functions aren't allowed on LE. 1710 */ 1711 if (IS_ENABLED(CONFIG_CPU_LITTLE_ENDIAN) && func->banned_for_syscall_on_le) 1712 goto err; 1713 1714 if (f->buf_idx1 != -1) { 1715 base = be32_to_cpu(args->args[f->buf_idx1]); 1716 if (f->size_idx1 != -1) 1717 size = be32_to_cpu(args->args[f->size_idx1]); 1718 else if (f->fixed_size) 1719 size = f->fixed_size; 1720 else 1721 size = 1; 1722 1723 end = base + size - 1; 1724 1725 /* 1726 * Special case for ibm,platform-dump - NULL buffer 1727 * address is used to indicate end of dump processing 1728 */ 1729 if (is_platform_dump && base == 0) 1730 return false; 1731 1732 if (!in_rmo_buf(base, end)) 1733 goto err; 1734 } 1735 1736 if (f->buf_idx2 != -1) { 1737 base = be32_to_cpu(args->args[f->buf_idx2]); 1738 if (f->size_idx2 != -1) 1739 size = be32_to_cpu(args->args[f->size_idx2]); 1740 else if (f->fixed_size) 1741 size = f->fixed_size; 1742 else 1743 size = 1; 1744 end = base + size - 1; 1745 1746 /* 1747 * Special case for ibm,configure-connector where the 1748 * address can be 0 1749 */ 1750 if (is_config_conn && base == 0) 1751 return false; 1752 1753 if (!in_rmo_buf(base, end)) 1754 goto err; 1755 } 1756 1757 return false; 1758 err: 1759 pr_err_ratelimited("sys_rtas: RTAS call blocked - exploit attempt?\n"); 1760 pr_err_ratelimited("sys_rtas: token=0x%x, nargs=%d (called by %s)\n", 1761 token, nargs, current->comm); 1762 return true; 1763 } 1764 1765 /* We assume to be passed big endian arguments */ 1766 SYSCALL_DEFINE1(rtas, struct rtas_args __user *, uargs) 1767 { 1768 struct rtas_args args; 1769 unsigned long flags; 1770 char *buff_copy, *errbuf = NULL; 1771 int nargs, nret, token; 1772 1773 if (!capable(CAP_SYS_ADMIN)) 1774 return -EPERM; 1775 1776 if (!rtas.entry) 1777 return -EINVAL; 1778 1779 if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) 1780 return -EFAULT; 1781 1782 nargs = be32_to_cpu(args.nargs); 1783 nret = be32_to_cpu(args.nret); 1784 token = be32_to_cpu(args.token); 1785 1786 if (nargs >= ARRAY_SIZE(args.args) 1787 || nret > ARRAY_SIZE(args.args) 1788 || nargs + nret > ARRAY_SIZE(args.args)) 1789 return -EINVAL; 1790 1791 /* Copy in args. */ 1792 if (copy_from_user(args.args, uargs->args, 1793 nargs * sizeof(rtas_arg_t)) != 0) 1794 return -EFAULT; 1795 1796 if (token == RTAS_UNKNOWN_SERVICE) 1797 return -EINVAL; 1798 1799 args.rets = &args.args[nargs]; 1800 memset(args.rets, 0, nret * sizeof(rtas_arg_t)); 1801 1802 if (block_rtas_call(token, nargs, &args)) 1803 return -EINVAL; 1804 1805 if (token_is_restricted_errinjct(token)) { 1806 int err; 1807 1808 err = security_locked_down(LOCKDOWN_RTAS_ERROR_INJECTION); 1809 if (err) 1810 return err; 1811 } 1812 1813 /* Need to handle ibm,suspend_me call specially */ 1814 if (token == rtas_function_token(RTAS_FN_IBM_SUSPEND_ME)) { 1815 1816 /* 1817 * rtas_ibm_suspend_me assumes the streamid handle is in cpu 1818 * endian, or at least the hcall within it requires it. 1819 */ 1820 int rc = 0; 1821 u64 handle = ((u64)be32_to_cpu(args.args[0]) << 32) 1822 | be32_to_cpu(args.args[1]); 1823 rc = rtas_syscall_dispatch_ibm_suspend_me(handle); 1824 if (rc == -EAGAIN) 1825 args.rets[0] = cpu_to_be32(RTAS_NOT_SUSPENDABLE); 1826 else if (rc == -EIO) 1827 args.rets[0] = cpu_to_be32(-1); 1828 else if (rc) 1829 return rc; 1830 goto copy_return; 1831 } 1832 1833 buff_copy = get_errorlog_buffer(); 1834 1835 raw_spin_lock_irqsave(&rtas_lock, flags); 1836 1837 rtas_args = args; 1838 do_enter_rtas(&rtas_args); 1839 args = rtas_args; 1840 1841 /* A -1 return code indicates that the last command couldn't 1842 be completed due to a hardware error. */ 1843 if (be32_to_cpu(args.rets[0]) == -1) 1844 errbuf = __fetch_rtas_last_error(buff_copy); 1845 1846 raw_spin_unlock_irqrestore(&rtas_lock, flags); 1847 1848 if (buff_copy) { 1849 if (errbuf) 1850 log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); 1851 kfree(buff_copy); 1852 } 1853 1854 copy_return: 1855 /* Copy out args. */ 1856 if (copy_to_user(uargs->args + nargs, 1857 args.args + nargs, 1858 nret * sizeof(rtas_arg_t)) != 0) 1859 return -EFAULT; 1860 1861 return 0; 1862 } 1863 1864 static void __init rtas_function_table_init(void) 1865 { 1866 struct property *prop; 1867 1868 for (size_t i = 0; i < ARRAY_SIZE(rtas_function_table); ++i) { 1869 struct rtas_function *curr = &rtas_function_table[i]; 1870 struct rtas_function *prior; 1871 int cmp; 1872 1873 curr->token = RTAS_UNKNOWN_SERVICE; 1874 1875 if (i == 0) 1876 continue; 1877 /* 1878 * Ensure table is sorted correctly for binary search 1879 * on function names. 1880 */ 1881 prior = &rtas_function_table[i - 1]; 1882 1883 cmp = strcmp(prior->name, curr->name); 1884 if (cmp < 0) 1885 continue; 1886 1887 if (cmp == 0) { 1888 pr_err("'%s' has duplicate function table entries\n", 1889 curr->name); 1890 } else { 1891 pr_err("function table unsorted: '%s' wrongly precedes '%s'\n", 1892 prior->name, curr->name); 1893 } 1894 } 1895 1896 for_each_property_of_node(rtas.dev, prop) { 1897 struct rtas_function *func; 1898 1899 if (prop->length != sizeof(u32)) 1900 continue; 1901 1902 func = __rtas_name_to_function(prop->name); 1903 if (!func) 1904 continue; 1905 1906 func->token = be32_to_cpup((__be32 *)prop->value); 1907 1908 pr_debug("function %s has token %u\n", func->name, func->token); 1909 } 1910 } 1911 1912 /* 1913 * Call early during boot, before mem init, to retrieve the RTAS 1914 * information from the device-tree and allocate the RMO buffer for userland 1915 * accesses. 1916 */ 1917 void __init rtas_initialize(void) 1918 { 1919 unsigned long rtas_region = RTAS_INSTANTIATE_MAX; 1920 u32 base, size, entry; 1921 int no_base, no_size, no_entry; 1922 1923 /* Get RTAS dev node and fill up our "rtas" structure with infos 1924 * about it. 1925 */ 1926 rtas.dev = of_find_node_by_name(NULL, "rtas"); 1927 if (!rtas.dev) 1928 return; 1929 1930 no_base = of_property_read_u32(rtas.dev, "linux,rtas-base", &base); 1931 no_size = of_property_read_u32(rtas.dev, "rtas-size", &size); 1932 if (no_base || no_size) { 1933 of_node_put(rtas.dev); 1934 rtas.dev = NULL; 1935 return; 1936 } 1937 1938 rtas.base = base; 1939 rtas.size = size; 1940 no_entry = of_property_read_u32(rtas.dev, "linux,rtas-entry", &entry); 1941 rtas.entry = no_entry ? rtas.base : entry; 1942 1943 init_error_log_max(); 1944 1945 /* Must be called before any function token lookups */ 1946 rtas_function_table_init(); 1947 1948 /* 1949 * Discover this now to avoid a device tree lookup in the 1950 * panic path. 1951 */ 1952 ibm_extended_os_term = of_property_read_bool(rtas.dev, "ibm,extended-os-term"); 1953 1954 /* If RTAS was found, allocate the RMO buffer for it and look for 1955 * the stop-self token if any 1956 */ 1957 #ifdef CONFIG_PPC64 1958 if (firmware_has_feature(FW_FEATURE_LPAR)) 1959 rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); 1960 #endif 1961 rtas_rmo_buf = memblock_phys_alloc_range(RTAS_USER_REGION_SIZE, PAGE_SIZE, 1962 0, rtas_region); 1963 if (!rtas_rmo_buf) 1964 panic("ERROR: RTAS: Failed to allocate %lx bytes below %pa\n", 1965 PAGE_SIZE, &rtas_region); 1966 1967 rtas_work_area_reserve_arena(rtas_region); 1968 } 1969 1970 int __init early_init_dt_scan_rtas(unsigned long node, 1971 const char *uname, int depth, void *data) 1972 { 1973 const u32 *basep, *entryp, *sizep; 1974 1975 if (depth != 1 || strcmp(uname, "rtas") != 0) 1976 return 0; 1977 1978 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); 1979 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); 1980 sizep = of_get_flat_dt_prop(node, "rtas-size", NULL); 1981 1982 #ifdef CONFIG_PPC64 1983 /* need this feature to decide the crashkernel offset */ 1984 if (of_get_flat_dt_prop(node, "ibm,hypertas-functions", NULL)) 1985 powerpc_firmware_features |= FW_FEATURE_LPAR; 1986 #endif 1987 1988 if (basep && entryp && sizep) { 1989 rtas.base = *basep; 1990 rtas.entry = *entryp; 1991 rtas.size = *sizep; 1992 } 1993 1994 #ifdef CONFIG_UDBG_RTAS_CONSOLE 1995 basep = of_get_flat_dt_prop(node, "put-term-char", NULL); 1996 if (basep) 1997 rtas_putchar_token = *basep; 1998 1999 basep = of_get_flat_dt_prop(node, "get-term-char", NULL); 2000 if (basep) 2001 rtas_getchar_token = *basep; 2002 2003 if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && 2004 rtas_getchar_token != RTAS_UNKNOWN_SERVICE) 2005 udbg_init_rtas_console(); 2006 2007 #endif 2008 2009 /* break now */ 2010 return 1; 2011 } 2012 2013 static DEFINE_RAW_SPINLOCK(timebase_lock); 2014 static u64 timebase = 0; 2015 2016 void rtas_give_timebase(void) 2017 { 2018 unsigned long flags; 2019 2020 raw_spin_lock_irqsave(&timebase_lock, flags); 2021 hard_irq_disable(); 2022 rtas_call(rtas_function_token(RTAS_FN_FREEZE_TIME_BASE), 0, 1, NULL); 2023 timebase = get_tb(); 2024 raw_spin_unlock(&timebase_lock); 2025 2026 while (timebase) 2027 barrier(); 2028 rtas_call(rtas_function_token(RTAS_FN_THAW_TIME_BASE), 0, 1, NULL); 2029 local_irq_restore(flags); 2030 } 2031 2032 void rtas_take_timebase(void) 2033 { 2034 while (!timebase) 2035 barrier(); 2036 raw_spin_lock(&timebase_lock); 2037 set_tb(timebase >> 32, timebase & 0xffffffff); 2038 timebase = 0; 2039 raw_spin_unlock(&timebase_lock); 2040 } 2041