xref: /linux/arch/powerpc/kernel/rtas-proc.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  *   Copyright (C) 2000 Tilmann Bitterberg
3  *   (tilmann@bitterberg.de)
4  *
5  *   RTAS (Runtime Abstraction Services) stuff
6  *   Intention is to provide a clean user interface
7  *   to use the RTAS.
8  *
9  *   TODO:
10  *   Split off a header file and maybe move it to a different
11  *   location. Write Documentation on what the /proc/rtas/ entries
12  *   actually do.
13  */
14 
15 #include <linux/errno.h>
16 #include <linux/sched.h>
17 #include <linux/proc_fs.h>
18 #include <linux/stat.h>
19 #include <linux/ctype.h>
20 #include <linux/time.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/seq_file.h>
24 #include <linux/bitops.h>
25 #include <linux/rtc.h>
26 
27 #include <asm/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/machdep.h> /* for ppc_md */
33 #include <asm/time.h>
34 
35 /* Token for Sensors */
36 #define KEY_SWITCH		0x0001
37 #define ENCLOSURE_SWITCH	0x0002
38 #define THERMAL_SENSOR		0x0003
39 #define LID_STATUS		0x0004
40 #define POWER_SOURCE		0x0005
41 #define BATTERY_VOLTAGE		0x0006
42 #define BATTERY_REMAINING	0x0007
43 #define BATTERY_PERCENTAGE	0x0008
44 #define EPOW_SENSOR		0x0009
45 #define BATTERY_CYCLESTATE	0x000a
46 #define BATTERY_CHARGING	0x000b
47 
48 /* IBM specific sensors */
49 #define IBM_SURVEILLANCE	0x2328 /* 9000 */
50 #define IBM_FANRPM		0x2329 /* 9001 */
51 #define IBM_VOLTAGE		0x232a /* 9002 */
52 #define IBM_DRCONNECTOR		0x232b /* 9003 */
53 #define IBM_POWERSUPPLY		0x232c /* 9004 */
54 
55 /* Status return values */
56 #define SENSOR_CRITICAL_HIGH	13
57 #define SENSOR_WARNING_HIGH	12
58 #define SENSOR_NORMAL		11
59 #define SENSOR_WARNING_LOW	10
60 #define SENSOR_CRITICAL_LOW	 9
61 #define SENSOR_SUCCESS		 0
62 #define SENSOR_HW_ERROR		-1
63 #define SENSOR_BUSY		-2
64 #define SENSOR_NOT_EXIST	-3
65 #define SENSOR_DR_ENTITY	-9000
66 
67 /* Location Codes */
68 #define LOC_SCSI_DEV_ADDR	'A'
69 #define LOC_SCSI_DEV_LOC	'B'
70 #define LOC_CPU			'C'
71 #define LOC_DISKETTE		'D'
72 #define LOC_ETHERNET		'E'
73 #define LOC_FAN			'F'
74 #define LOC_GRAPHICS		'G'
75 /* reserved / not used		'H' */
76 #define LOC_IO_ADAPTER		'I'
77 /* reserved / not used		'J' */
78 #define LOC_KEYBOARD		'K'
79 #define LOC_LCD			'L'
80 #define LOC_MEMORY		'M'
81 #define LOC_NV_MEMORY		'N'
82 #define LOC_MOUSE		'O'
83 #define LOC_PLANAR		'P'
84 #define LOC_OTHER_IO		'Q'
85 #define LOC_PARALLEL		'R'
86 #define LOC_SERIAL		'S'
87 #define LOC_DEAD_RING		'T'
88 #define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
89 #define LOC_VOLTAGE		'V'
90 #define LOC_SWITCH_ADAPTER	'W'
91 #define LOC_OTHER		'X'
92 #define LOC_FIRMWARE		'Y'
93 #define LOC_SCSI		'Z'
94 
95 /* Tokens for indicators */
96 #define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
97 #define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
98 #define SYSTEM_POWER_STATE	0x0003
99 #define WARNING_LIGHT		0x0004
100 #define DISK_ACTIVITY_LIGHT	0x0005
101 #define HEX_DISPLAY_UNIT	0x0006
102 #define BATTERY_WARNING_TIME	0x0007
103 #define CONDITION_CYCLE_REQUEST	0x0008
104 #define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
105 #define DR_ACTION		0x2329 /* 9001 */
106 #define DR_INDICATOR		0x232a /* 9002 */
107 /* 9003 - 9004: Vendor specific */
108 /* 9006 - 9999: Vendor specific */
109 
110 /* other */
111 #define MAX_SENSORS		 17  /* I only know of 17 sensors */
112 #define MAX_LINELENGTH          256
113 #define SENSOR_PREFIX		"ibm,sensor-"
114 #define cel_to_fahr(x)		((x*9/5)+32)
115 
116 struct individual_sensor {
117 	unsigned int token;
118 	unsigned int quant;
119 };
120 
121 struct rtas_sensors {
122         struct individual_sensor sensor[MAX_SENSORS];
123 	unsigned int quant;
124 };
125 
126 /* Globals */
127 static struct rtas_sensors sensors;
128 static struct device_node *rtas_node = NULL;
129 static unsigned long power_on_time = 0; /* Save the time the user set */
130 static char progress_led[MAX_LINELENGTH];
131 
132 static unsigned long rtas_tone_frequency = 1000;
133 static unsigned long rtas_tone_volume = 0;
134 
135 /* ****************************************************************** */
136 /* Declarations */
137 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
138 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
139 static ssize_t ppc_rtas_clock_write(struct file *file,
140 		const char __user *buf, size_t count, loff_t *ppos);
141 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
142 static ssize_t ppc_rtas_progress_write(struct file *file,
143 		const char __user *buf, size_t count, loff_t *ppos);
144 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
145 static ssize_t ppc_rtas_poweron_write(struct file *file,
146 		const char __user *buf, size_t count, loff_t *ppos);
147 
148 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
149 		const char __user *buf, size_t count, loff_t *ppos);
150 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
151 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
152 		const char __user *buf, size_t count, loff_t *ppos);
153 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
154 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
155 
156 static int sensors_open(struct inode *inode, struct file *file)
157 {
158 	return single_open(file, ppc_rtas_sensors_show, NULL);
159 }
160 
161 static const struct file_operations ppc_rtas_sensors_operations = {
162 	.open		= sensors_open,
163 	.read		= seq_read,
164 	.llseek		= seq_lseek,
165 	.release	= single_release,
166 };
167 
168 static int poweron_open(struct inode *inode, struct file *file)
169 {
170 	return single_open(file, ppc_rtas_poweron_show, NULL);
171 }
172 
173 static const struct file_operations ppc_rtas_poweron_operations = {
174 	.open		= poweron_open,
175 	.read		= seq_read,
176 	.llseek		= seq_lseek,
177 	.write		= ppc_rtas_poweron_write,
178 	.release	= single_release,
179 };
180 
181 static int progress_open(struct inode *inode, struct file *file)
182 {
183 	return single_open(file, ppc_rtas_progress_show, NULL);
184 }
185 
186 static const struct file_operations ppc_rtas_progress_operations = {
187 	.open		= progress_open,
188 	.read		= seq_read,
189 	.llseek		= seq_lseek,
190 	.write		= ppc_rtas_progress_write,
191 	.release	= single_release,
192 };
193 
194 static int clock_open(struct inode *inode, struct file *file)
195 {
196 	return single_open(file, ppc_rtas_clock_show, NULL);
197 }
198 
199 static const struct file_operations ppc_rtas_clock_operations = {
200 	.open		= clock_open,
201 	.read		= seq_read,
202 	.llseek		= seq_lseek,
203 	.write		= ppc_rtas_clock_write,
204 	.release	= single_release,
205 };
206 
207 static int tone_freq_open(struct inode *inode, struct file *file)
208 {
209 	return single_open(file, ppc_rtas_tone_freq_show, NULL);
210 }
211 
212 static const struct file_operations ppc_rtas_tone_freq_operations = {
213 	.open		= tone_freq_open,
214 	.read		= seq_read,
215 	.llseek		= seq_lseek,
216 	.write		= ppc_rtas_tone_freq_write,
217 	.release	= single_release,
218 };
219 
220 static int tone_volume_open(struct inode *inode, struct file *file)
221 {
222 	return single_open(file, ppc_rtas_tone_volume_show, NULL);
223 }
224 
225 static const struct file_operations ppc_rtas_tone_volume_operations = {
226 	.open		= tone_volume_open,
227 	.read		= seq_read,
228 	.llseek		= seq_lseek,
229 	.write		= ppc_rtas_tone_volume_write,
230 	.release	= single_release,
231 };
232 
233 static int rmo_buf_open(struct inode *inode, struct file *file)
234 {
235 	return single_open(file, ppc_rtas_rmo_buf_show, NULL);
236 }
237 
238 static const struct file_operations ppc_rtas_rmo_buf_ops = {
239 	.open		= rmo_buf_open,
240 	.read		= seq_read,
241 	.llseek		= seq_lseek,
242 	.release	= single_release,
243 };
244 
245 static int ppc_rtas_find_all_sensors(void);
246 static void ppc_rtas_process_sensor(struct seq_file *m,
247 	struct individual_sensor *s, int state, int error, const char *loc);
248 static char *ppc_rtas_process_error(int error);
249 static void get_location_code(struct seq_file *m,
250 	struct individual_sensor *s, const char *loc);
251 static void check_location_string(struct seq_file *m, const char *c);
252 static void check_location(struct seq_file *m, const char *c);
253 
254 static int __init proc_rtas_init(void)
255 {
256 	if (!machine_is(pseries))
257 		return -ENODEV;
258 
259 	rtas_node = of_find_node_by_name(NULL, "rtas");
260 	if (rtas_node == NULL)
261 		return -ENODEV;
262 
263 	proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL,
264 		    &ppc_rtas_progress_operations);
265 	proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL,
266 		    &ppc_rtas_clock_operations);
267 	proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL,
268 		    &ppc_rtas_poweron_operations);
269 	proc_create("powerpc/rtas/sensors", S_IRUGO, NULL,
270 		    &ppc_rtas_sensors_operations);
271 	proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL,
272 		    &ppc_rtas_tone_freq_operations);
273 	proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL,
274 		    &ppc_rtas_tone_volume_operations);
275 	proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL,
276 		    &ppc_rtas_rmo_buf_ops);
277 	return 0;
278 }
279 
280 __initcall(proc_rtas_init);
281 
282 static int parse_number(const char __user *p, size_t count, unsigned long *val)
283 {
284 	char buf[40];
285 	char *end;
286 
287 	if (count > 39)
288 		return -EINVAL;
289 
290 	if (copy_from_user(buf, p, count))
291 		return -EFAULT;
292 
293 	buf[count] = 0;
294 
295 	*val = simple_strtoul(buf, &end, 10);
296 	if (*end && *end != '\n')
297 		return -EINVAL;
298 
299 	return 0;
300 }
301 
302 /* ****************************************************************** */
303 /* POWER-ON-TIME                                                      */
304 /* ****************************************************************** */
305 static ssize_t ppc_rtas_poweron_write(struct file *file,
306 		const char __user *buf, size_t count, loff_t *ppos)
307 {
308 	struct rtc_time tm;
309 	unsigned long nowtime;
310 	int error = parse_number(buf, count, &nowtime);
311 	if (error)
312 		return error;
313 
314 	power_on_time = nowtime; /* save the time */
315 
316 	to_tm(nowtime, &tm);
317 
318 	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
319 			tm.tm_year, tm.tm_mon, tm.tm_mday,
320 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
321 	if (error)
322 		printk(KERN_WARNING "error: setting poweron time returned: %s\n",
323 				ppc_rtas_process_error(error));
324 	return count;
325 }
326 /* ****************************************************************** */
327 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
328 {
329 	if (power_on_time == 0)
330 		seq_printf(m, "Power on time not set\n");
331 	else
332 		seq_printf(m, "%lu\n",power_on_time);
333 	return 0;
334 }
335 
336 /* ****************************************************************** */
337 /* PROGRESS                                                           */
338 /* ****************************************************************** */
339 static ssize_t ppc_rtas_progress_write(struct file *file,
340 		const char __user *buf, size_t count, loff_t *ppos)
341 {
342 	unsigned long hex;
343 
344 	if (count >= MAX_LINELENGTH)
345 		count = MAX_LINELENGTH -1;
346 	if (copy_from_user(progress_led, buf, count)) { /* save the string */
347 		return -EFAULT;
348 	}
349 	progress_led[count] = 0;
350 
351 	/* Lets see if the user passed hexdigits */
352 	hex = simple_strtoul(progress_led, NULL, 10);
353 
354 	rtas_progress ((char *)progress_led, hex);
355 	return count;
356 
357 	/* clear the line */
358 	/* rtas_progress("                   ", 0xffff);*/
359 }
360 /* ****************************************************************** */
361 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
362 {
363 	if (progress_led[0])
364 		seq_printf(m, "%s\n", progress_led);
365 	return 0;
366 }
367 
368 /* ****************************************************************** */
369 /* CLOCK                                                              */
370 /* ****************************************************************** */
371 static ssize_t ppc_rtas_clock_write(struct file *file,
372 		const char __user *buf, size_t count, loff_t *ppos)
373 {
374 	struct rtc_time tm;
375 	unsigned long nowtime;
376 	int error = parse_number(buf, count, &nowtime);
377 	if (error)
378 		return error;
379 
380 	to_tm(nowtime, &tm);
381 	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
382 			tm.tm_year, tm.tm_mon, tm.tm_mday,
383 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
384 	if (error)
385 		printk(KERN_WARNING "error: setting the clock returned: %s\n",
386 				ppc_rtas_process_error(error));
387 	return count;
388 }
389 /* ****************************************************************** */
390 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
391 {
392 	int ret[8];
393 	int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
394 
395 	if (error) {
396 		printk(KERN_WARNING "error: reading the clock returned: %s\n",
397 				ppc_rtas_process_error(error));
398 		seq_printf(m, "0");
399 	} else {
400 		unsigned int year, mon, day, hour, min, sec;
401 		year = ret[0]; mon  = ret[1]; day  = ret[2];
402 		hour = ret[3]; min  = ret[4]; sec  = ret[5];
403 		seq_printf(m, "%lu\n",
404 				mktime(year, mon, day, hour, min, sec));
405 	}
406 	return 0;
407 }
408 
409 /* ****************************************************************** */
410 /* SENSOR STUFF                                                       */
411 /* ****************************************************************** */
412 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
413 {
414 	int i,j;
415 	int state, error;
416 	int get_sensor_state = rtas_token("get-sensor-state");
417 
418 	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
419 	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
420 	seq_printf(m, "********************************************************\n");
421 
422 	if (ppc_rtas_find_all_sensors() != 0) {
423 		seq_printf(m, "\nNo sensors are available\n");
424 		return 0;
425 	}
426 
427 	for (i=0; i<sensors.quant; i++) {
428 		struct individual_sensor *p = &sensors.sensor[i];
429 		char rstr[64];
430 		const char *loc;
431 		int llen, offs;
432 
433 		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
434 		loc = of_get_property(rtas_node, rstr, &llen);
435 
436 		/* A sensor may have multiple instances */
437 		for (j = 0, offs = 0; j <= p->quant; j++) {
438 			error =	rtas_call(get_sensor_state, 2, 2, &state,
439 				  	  p->token, j);
440 
441 			ppc_rtas_process_sensor(m, p, state, error, loc);
442 			seq_putc(m, '\n');
443 			if (loc) {
444 				offs += strlen(loc) + 1;
445 				loc += strlen(loc) + 1;
446 				if (offs >= llen)
447 					loc = NULL;
448 			}
449 		}
450 	}
451 	return 0;
452 }
453 
454 /* ****************************************************************** */
455 
456 static int ppc_rtas_find_all_sensors(void)
457 {
458 	const unsigned int *utmp;
459 	int len, i;
460 
461 	utmp = of_get_property(rtas_node, "rtas-sensors", &len);
462 	if (utmp == NULL) {
463 		printk (KERN_ERR "error: could not get rtas-sensors\n");
464 		return 1;
465 	}
466 
467 	sensors.quant = len / 8;      /* int + int */
468 
469 	for (i=0; i<sensors.quant; i++) {
470 		sensors.sensor[i].token = *utmp++;
471 		sensors.sensor[i].quant = *utmp++;
472 	}
473 	return 0;
474 }
475 
476 /* ****************************************************************** */
477 /*
478  * Builds a string of what rtas returned
479  */
480 static char *ppc_rtas_process_error(int error)
481 {
482 	switch (error) {
483 		case SENSOR_CRITICAL_HIGH:
484 			return "(critical high)";
485 		case SENSOR_WARNING_HIGH:
486 			return "(warning high)";
487 		case SENSOR_NORMAL:
488 			return "(normal)";
489 		case SENSOR_WARNING_LOW:
490 			return "(warning low)";
491 		case SENSOR_CRITICAL_LOW:
492 			return "(critical low)";
493 		case SENSOR_SUCCESS:
494 			return "(read ok)";
495 		case SENSOR_HW_ERROR:
496 			return "(hardware error)";
497 		case SENSOR_BUSY:
498 			return "(busy)";
499 		case SENSOR_NOT_EXIST:
500 			return "(non existent)";
501 		case SENSOR_DR_ENTITY:
502 			return "(dr entity removed)";
503 		default:
504 			return "(UNKNOWN)";
505 	}
506 }
507 
508 /* ****************************************************************** */
509 /*
510  * Builds a string out of what the sensor said
511  */
512 
513 static void ppc_rtas_process_sensor(struct seq_file *m,
514 	struct individual_sensor *s, int state, int error, const char *loc)
515 {
516 	/* Defined return vales */
517 	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t",
518 						"Maintenance" };
519 	const char * enclosure_switch[]  = { "Closed", "Open" };
520 	const char * lid_status[]        = { " ", "Open", "Closed" };
521 	const char * power_source[]      = { "AC\t", "Battery",
522 		  				"AC & Battery" };
523 	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
524 	const char * epow_sensor[]       = {
525 		"EPOW Reset", "Cooling warning", "Power warning",
526 		"System shutdown", "System halt", "EPOW main enclosure",
527 		"EPOW power off" };
528 	const char * battery_cyclestate[]  = { "None", "In progress",
529 						"Requested" };
530 	const char * battery_charging[]    = { "Charging", "Discharching",
531 						"No current flow" };
532 	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable",
533 						"Exchange" };
534 
535 	int have_strings = 0;
536 	int num_states = 0;
537 	int temperature = 0;
538 	int unknown = 0;
539 
540 	/* What kind of sensor do we have here? */
541 
542 	switch (s->token) {
543 		case KEY_SWITCH:
544 			seq_printf(m, "Key switch:\t");
545 			num_states = sizeof(key_switch) / sizeof(char *);
546 			if (state < num_states) {
547 				seq_printf(m, "%s\t", key_switch[state]);
548 				have_strings = 1;
549 			}
550 			break;
551 		case ENCLOSURE_SWITCH:
552 			seq_printf(m, "Enclosure switch:\t");
553 			num_states = sizeof(enclosure_switch) / sizeof(char *);
554 			if (state < num_states) {
555 				seq_printf(m, "%s\t",
556 						enclosure_switch[state]);
557 				have_strings = 1;
558 			}
559 			break;
560 		case THERMAL_SENSOR:
561 			seq_printf(m, "Temp. (C/F):\t");
562 			temperature = 1;
563 			break;
564 		case LID_STATUS:
565 			seq_printf(m, "Lid status:\t");
566 			num_states = sizeof(lid_status) / sizeof(char *);
567 			if (state < num_states) {
568 				seq_printf(m, "%s\t", lid_status[state]);
569 				have_strings = 1;
570 			}
571 			break;
572 		case POWER_SOURCE:
573 			seq_printf(m, "Power source:\t");
574 			num_states = sizeof(power_source) / sizeof(char *);
575 			if (state < num_states) {
576 				seq_printf(m, "%s\t",
577 						power_source[state]);
578 				have_strings = 1;
579 			}
580 			break;
581 		case BATTERY_VOLTAGE:
582 			seq_printf(m, "Battery voltage:\t");
583 			break;
584 		case BATTERY_REMAINING:
585 			seq_printf(m, "Battery remaining:\t");
586 			num_states = sizeof(battery_remaining) / sizeof(char *);
587 			if (state < num_states)
588 			{
589 				seq_printf(m, "%s\t",
590 						battery_remaining[state]);
591 				have_strings = 1;
592 			}
593 			break;
594 		case BATTERY_PERCENTAGE:
595 			seq_printf(m, "Battery percentage:\t");
596 			break;
597 		case EPOW_SENSOR:
598 			seq_printf(m, "EPOW Sensor:\t");
599 			num_states = sizeof(epow_sensor) / sizeof(char *);
600 			if (state < num_states) {
601 				seq_printf(m, "%s\t", epow_sensor[state]);
602 				have_strings = 1;
603 			}
604 			break;
605 		case BATTERY_CYCLESTATE:
606 			seq_printf(m, "Battery cyclestate:\t");
607 			num_states = sizeof(battery_cyclestate) /
608 				     	sizeof(char *);
609 			if (state < num_states) {
610 				seq_printf(m, "%s\t",
611 						battery_cyclestate[state]);
612 				have_strings = 1;
613 			}
614 			break;
615 		case BATTERY_CHARGING:
616 			seq_printf(m, "Battery Charging:\t");
617 			num_states = sizeof(battery_charging) / sizeof(char *);
618 			if (state < num_states) {
619 				seq_printf(m, "%s\t",
620 						battery_charging[state]);
621 				have_strings = 1;
622 			}
623 			break;
624 		case IBM_SURVEILLANCE:
625 			seq_printf(m, "Surveillance:\t");
626 			break;
627 		case IBM_FANRPM:
628 			seq_printf(m, "Fan (rpm):\t");
629 			break;
630 		case IBM_VOLTAGE:
631 			seq_printf(m, "Voltage (mv):\t");
632 			break;
633 		case IBM_DRCONNECTOR:
634 			seq_printf(m, "DR connector:\t");
635 			num_states = sizeof(ibm_drconnector) / sizeof(char *);
636 			if (state < num_states) {
637 				seq_printf(m, "%s\t",
638 						ibm_drconnector[state]);
639 				have_strings = 1;
640 			}
641 			break;
642 		case IBM_POWERSUPPLY:
643 			seq_printf(m, "Powersupply:\t");
644 			break;
645 		default:
646 			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
647 					s->token);
648 			unknown = 1;
649 			have_strings = 1;
650 			break;
651 	}
652 	if (have_strings == 0) {
653 		if (temperature) {
654 			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
655 		} else
656 			seq_printf(m, "%10d\t", state);
657 	}
658 	if (unknown == 0) {
659 		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
660 		get_location_code(m, s, loc);
661 	}
662 }
663 
664 /* ****************************************************************** */
665 
666 static void check_location(struct seq_file *m, const char *c)
667 {
668 	switch (c[0]) {
669 		case LOC_PLANAR:
670 			seq_printf(m, "Planar #%c", c[1]);
671 			break;
672 		case LOC_CPU:
673 			seq_printf(m, "CPU #%c", c[1]);
674 			break;
675 		case LOC_FAN:
676 			seq_printf(m, "Fan #%c", c[1]);
677 			break;
678 		case LOC_RACKMOUNTED:
679 			seq_printf(m, "Rack #%c", c[1]);
680 			break;
681 		case LOC_VOLTAGE:
682 			seq_printf(m, "Voltage #%c", c[1]);
683 			break;
684 		case LOC_LCD:
685 			seq_printf(m, "LCD #%c", c[1]);
686 			break;
687 		case '.':
688 			seq_printf(m, "- %c", c[1]);
689 			break;
690 		default:
691 			seq_printf(m, "Unknown location");
692 			break;
693 	}
694 }
695 
696 
697 /* ****************************************************************** */
698 /*
699  * Format:
700  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
701  * the '.' may be an abbreviation
702  */
703 static void check_location_string(struct seq_file *m, const char *c)
704 {
705 	while (*c) {
706 		if (isalpha(*c) || *c == '.')
707 			check_location(m, c);
708 		else if (*c == '/' || *c == '-')
709 			seq_printf(m, " at ");
710 		c++;
711 	}
712 }
713 
714 
715 /* ****************************************************************** */
716 
717 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
718 		const char *loc)
719 {
720 	if (!loc || !*loc) {
721 		seq_printf(m, "---");/* does not have a location */
722 	} else {
723 		check_location_string(m, loc);
724 	}
725 	seq_putc(m, ' ');
726 }
727 /* ****************************************************************** */
728 /* INDICATORS - Tone Frequency                                        */
729 /* ****************************************************************** */
730 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
731 		const char __user *buf, size_t count, loff_t *ppos)
732 {
733 	unsigned long freq;
734 	int error = parse_number(buf, count, &freq);
735 	if (error)
736 		return error;
737 
738 	rtas_tone_frequency = freq; /* save it for later */
739 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
740 			TONE_FREQUENCY, 0, freq);
741 	if (error)
742 		printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
743 				ppc_rtas_process_error(error));
744 	return count;
745 }
746 /* ****************************************************************** */
747 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
748 {
749 	seq_printf(m, "%lu\n", rtas_tone_frequency);
750 	return 0;
751 }
752 /* ****************************************************************** */
753 /* INDICATORS - Tone Volume                                           */
754 /* ****************************************************************** */
755 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
756 		const char __user *buf, size_t count, loff_t *ppos)
757 {
758 	unsigned long volume;
759 	int error = parse_number(buf, count, &volume);
760 	if (error)
761 		return error;
762 
763 	if (volume > 100)
764 		volume = 100;
765 
766         rtas_tone_volume = volume; /* save it for later */
767 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
768 			TONE_VOLUME, 0, volume);
769 	if (error)
770 		printk(KERN_WARNING "error: setting tone volume returned: %s\n",
771 				ppc_rtas_process_error(error));
772 	return count;
773 }
774 /* ****************************************************************** */
775 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
776 {
777 	seq_printf(m, "%lu\n", rtas_tone_volume);
778 	return 0;
779 }
780 
781 #define RMO_READ_BUF_MAX 30
782 
783 /* RTAS Userspace access */
784 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
785 {
786 	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
787 	return 0;
788 }
789