1 /* 2 * Copyright (C) 2000 Tilmann Bitterberg 3 * (tilmann@bitterberg.de) 4 * 5 * RTAS (Runtime Abstraction Services) stuff 6 * Intention is to provide a clean user interface 7 * to use the RTAS. 8 * 9 * TODO: 10 * Split off a header file and maybe move it to a different 11 * location. Write Documentation on what the /proc/rtas/ entries 12 * actually do. 13 */ 14 15 #include <linux/errno.h> 16 #include <linux/sched.h> 17 #include <linux/proc_fs.h> 18 #include <linux/stat.h> 19 #include <linux/ctype.h> 20 #include <linux/time.h> 21 #include <linux/string.h> 22 #include <linux/init.h> 23 #include <linux/seq_file.h> 24 #include <linux/bitops.h> 25 #include <linux/rtc.h> 26 27 #include <asm/uaccess.h> 28 #include <asm/processor.h> 29 #include <asm/io.h> 30 #include <asm/prom.h> 31 #include <asm/rtas.h> 32 #include <asm/machdep.h> /* for ppc_md */ 33 #include <asm/time.h> 34 35 /* Token for Sensors */ 36 #define KEY_SWITCH 0x0001 37 #define ENCLOSURE_SWITCH 0x0002 38 #define THERMAL_SENSOR 0x0003 39 #define LID_STATUS 0x0004 40 #define POWER_SOURCE 0x0005 41 #define BATTERY_VOLTAGE 0x0006 42 #define BATTERY_REMAINING 0x0007 43 #define BATTERY_PERCENTAGE 0x0008 44 #define EPOW_SENSOR 0x0009 45 #define BATTERY_CYCLESTATE 0x000a 46 #define BATTERY_CHARGING 0x000b 47 48 /* IBM specific sensors */ 49 #define IBM_SURVEILLANCE 0x2328 /* 9000 */ 50 #define IBM_FANRPM 0x2329 /* 9001 */ 51 #define IBM_VOLTAGE 0x232a /* 9002 */ 52 #define IBM_DRCONNECTOR 0x232b /* 9003 */ 53 #define IBM_POWERSUPPLY 0x232c /* 9004 */ 54 55 /* Status return values */ 56 #define SENSOR_CRITICAL_HIGH 13 57 #define SENSOR_WARNING_HIGH 12 58 #define SENSOR_NORMAL 11 59 #define SENSOR_WARNING_LOW 10 60 #define SENSOR_CRITICAL_LOW 9 61 #define SENSOR_SUCCESS 0 62 #define SENSOR_HW_ERROR -1 63 #define SENSOR_BUSY -2 64 #define SENSOR_NOT_EXIST -3 65 #define SENSOR_DR_ENTITY -9000 66 67 /* Location Codes */ 68 #define LOC_SCSI_DEV_ADDR 'A' 69 #define LOC_SCSI_DEV_LOC 'B' 70 #define LOC_CPU 'C' 71 #define LOC_DISKETTE 'D' 72 #define LOC_ETHERNET 'E' 73 #define LOC_FAN 'F' 74 #define LOC_GRAPHICS 'G' 75 /* reserved / not used 'H' */ 76 #define LOC_IO_ADAPTER 'I' 77 /* reserved / not used 'J' */ 78 #define LOC_KEYBOARD 'K' 79 #define LOC_LCD 'L' 80 #define LOC_MEMORY 'M' 81 #define LOC_NV_MEMORY 'N' 82 #define LOC_MOUSE 'O' 83 #define LOC_PLANAR 'P' 84 #define LOC_OTHER_IO 'Q' 85 #define LOC_PARALLEL 'R' 86 #define LOC_SERIAL 'S' 87 #define LOC_DEAD_RING 'T' 88 #define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */ 89 #define LOC_VOLTAGE 'V' 90 #define LOC_SWITCH_ADAPTER 'W' 91 #define LOC_OTHER 'X' 92 #define LOC_FIRMWARE 'Y' 93 #define LOC_SCSI 'Z' 94 95 /* Tokens for indicators */ 96 #define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/ 97 #define TONE_VOLUME 0x0002 /* 0 - 100 (%) */ 98 #define SYSTEM_POWER_STATE 0x0003 99 #define WARNING_LIGHT 0x0004 100 #define DISK_ACTIVITY_LIGHT 0x0005 101 #define HEX_DISPLAY_UNIT 0x0006 102 #define BATTERY_WARNING_TIME 0x0007 103 #define CONDITION_CYCLE_REQUEST 0x0008 104 #define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */ 105 #define DR_ACTION 0x2329 /* 9001 */ 106 #define DR_INDICATOR 0x232a /* 9002 */ 107 /* 9003 - 9004: Vendor specific */ 108 /* 9006 - 9999: Vendor specific */ 109 110 /* other */ 111 #define MAX_SENSORS 17 /* I only know of 17 sensors */ 112 #define MAX_LINELENGTH 256 113 #define SENSOR_PREFIX "ibm,sensor-" 114 #define cel_to_fahr(x) ((x*9/5)+32) 115 116 struct individual_sensor { 117 unsigned int token; 118 unsigned int quant; 119 }; 120 121 struct rtas_sensors { 122 struct individual_sensor sensor[MAX_SENSORS]; 123 unsigned int quant; 124 }; 125 126 /* Globals */ 127 static struct rtas_sensors sensors; 128 static struct device_node *rtas_node = NULL; 129 static unsigned long power_on_time = 0; /* Save the time the user set */ 130 static char progress_led[MAX_LINELENGTH]; 131 132 static unsigned long rtas_tone_frequency = 1000; 133 static unsigned long rtas_tone_volume = 0; 134 135 /* ****************************************************************** */ 136 /* Declarations */ 137 static int ppc_rtas_sensors_show(struct seq_file *m, void *v); 138 static int ppc_rtas_clock_show(struct seq_file *m, void *v); 139 static ssize_t ppc_rtas_clock_write(struct file *file, 140 const char __user *buf, size_t count, loff_t *ppos); 141 static int ppc_rtas_progress_show(struct seq_file *m, void *v); 142 static ssize_t ppc_rtas_progress_write(struct file *file, 143 const char __user *buf, size_t count, loff_t *ppos); 144 static int ppc_rtas_poweron_show(struct seq_file *m, void *v); 145 static ssize_t ppc_rtas_poweron_write(struct file *file, 146 const char __user *buf, size_t count, loff_t *ppos); 147 148 static ssize_t ppc_rtas_tone_freq_write(struct file *file, 149 const char __user *buf, size_t count, loff_t *ppos); 150 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v); 151 static ssize_t ppc_rtas_tone_volume_write(struct file *file, 152 const char __user *buf, size_t count, loff_t *ppos); 153 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v); 154 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v); 155 156 static int sensors_open(struct inode *inode, struct file *file) 157 { 158 return single_open(file, ppc_rtas_sensors_show, NULL); 159 } 160 161 static const struct file_operations ppc_rtas_sensors_operations = { 162 .open = sensors_open, 163 .read = seq_read, 164 .llseek = seq_lseek, 165 .release = single_release, 166 }; 167 168 static int poweron_open(struct inode *inode, struct file *file) 169 { 170 return single_open(file, ppc_rtas_poweron_show, NULL); 171 } 172 173 static const struct file_operations ppc_rtas_poweron_operations = { 174 .open = poweron_open, 175 .read = seq_read, 176 .llseek = seq_lseek, 177 .write = ppc_rtas_poweron_write, 178 .release = single_release, 179 }; 180 181 static int progress_open(struct inode *inode, struct file *file) 182 { 183 return single_open(file, ppc_rtas_progress_show, NULL); 184 } 185 186 static const struct file_operations ppc_rtas_progress_operations = { 187 .open = progress_open, 188 .read = seq_read, 189 .llseek = seq_lseek, 190 .write = ppc_rtas_progress_write, 191 .release = single_release, 192 }; 193 194 static int clock_open(struct inode *inode, struct file *file) 195 { 196 return single_open(file, ppc_rtas_clock_show, NULL); 197 } 198 199 static const struct file_operations ppc_rtas_clock_operations = { 200 .open = clock_open, 201 .read = seq_read, 202 .llseek = seq_lseek, 203 .write = ppc_rtas_clock_write, 204 .release = single_release, 205 }; 206 207 static int tone_freq_open(struct inode *inode, struct file *file) 208 { 209 return single_open(file, ppc_rtas_tone_freq_show, NULL); 210 } 211 212 static const struct file_operations ppc_rtas_tone_freq_operations = { 213 .open = tone_freq_open, 214 .read = seq_read, 215 .llseek = seq_lseek, 216 .write = ppc_rtas_tone_freq_write, 217 .release = single_release, 218 }; 219 220 static int tone_volume_open(struct inode *inode, struct file *file) 221 { 222 return single_open(file, ppc_rtas_tone_volume_show, NULL); 223 } 224 225 static const struct file_operations ppc_rtas_tone_volume_operations = { 226 .open = tone_volume_open, 227 .read = seq_read, 228 .llseek = seq_lseek, 229 .write = ppc_rtas_tone_volume_write, 230 .release = single_release, 231 }; 232 233 static int rmo_buf_open(struct inode *inode, struct file *file) 234 { 235 return single_open(file, ppc_rtas_rmo_buf_show, NULL); 236 } 237 238 static const struct file_operations ppc_rtas_rmo_buf_ops = { 239 .open = rmo_buf_open, 240 .read = seq_read, 241 .llseek = seq_lseek, 242 .release = single_release, 243 }; 244 245 static int ppc_rtas_find_all_sensors(void); 246 static void ppc_rtas_process_sensor(struct seq_file *m, 247 struct individual_sensor *s, int state, int error, const char *loc); 248 static char *ppc_rtas_process_error(int error); 249 static void get_location_code(struct seq_file *m, 250 struct individual_sensor *s, const char *loc); 251 static void check_location_string(struct seq_file *m, const char *c); 252 static void check_location(struct seq_file *m, const char *c); 253 254 static int __init proc_rtas_init(void) 255 { 256 if (!machine_is(pseries)) 257 return -ENODEV; 258 259 rtas_node = of_find_node_by_name(NULL, "rtas"); 260 if (rtas_node == NULL) 261 return -ENODEV; 262 263 proc_create("powerpc/rtas/progress", S_IRUGO|S_IWUSR, NULL, 264 &ppc_rtas_progress_operations); 265 proc_create("powerpc/rtas/clock", S_IRUGO|S_IWUSR, NULL, 266 &ppc_rtas_clock_operations); 267 proc_create("powerpc/rtas/poweron", S_IWUSR|S_IRUGO, NULL, 268 &ppc_rtas_poweron_operations); 269 proc_create("powerpc/rtas/sensors", S_IRUGO, NULL, 270 &ppc_rtas_sensors_operations); 271 proc_create("powerpc/rtas/frequency", S_IWUSR|S_IRUGO, NULL, 272 &ppc_rtas_tone_freq_operations); 273 proc_create("powerpc/rtas/volume", S_IWUSR|S_IRUGO, NULL, 274 &ppc_rtas_tone_volume_operations); 275 proc_create("powerpc/rtas/rmo_buffer", S_IRUSR, NULL, 276 &ppc_rtas_rmo_buf_ops); 277 return 0; 278 } 279 280 __initcall(proc_rtas_init); 281 282 static int parse_number(const char __user *p, size_t count, unsigned long *val) 283 { 284 char buf[40]; 285 char *end; 286 287 if (count > 39) 288 return -EINVAL; 289 290 if (copy_from_user(buf, p, count)) 291 return -EFAULT; 292 293 buf[count] = 0; 294 295 *val = simple_strtoul(buf, &end, 10); 296 if (*end && *end != '\n') 297 return -EINVAL; 298 299 return 0; 300 } 301 302 /* ****************************************************************** */ 303 /* POWER-ON-TIME */ 304 /* ****************************************************************** */ 305 static ssize_t ppc_rtas_poweron_write(struct file *file, 306 const char __user *buf, size_t count, loff_t *ppos) 307 { 308 struct rtc_time tm; 309 unsigned long nowtime; 310 int error = parse_number(buf, count, &nowtime); 311 if (error) 312 return error; 313 314 power_on_time = nowtime; /* save the time */ 315 316 to_tm(nowtime, &tm); 317 318 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL, 319 tm.tm_year, tm.tm_mon, tm.tm_mday, 320 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */); 321 if (error) 322 printk(KERN_WARNING "error: setting poweron time returned: %s\n", 323 ppc_rtas_process_error(error)); 324 return count; 325 } 326 /* ****************************************************************** */ 327 static int ppc_rtas_poweron_show(struct seq_file *m, void *v) 328 { 329 if (power_on_time == 0) 330 seq_printf(m, "Power on time not set\n"); 331 else 332 seq_printf(m, "%lu\n",power_on_time); 333 return 0; 334 } 335 336 /* ****************************************************************** */ 337 /* PROGRESS */ 338 /* ****************************************************************** */ 339 static ssize_t ppc_rtas_progress_write(struct file *file, 340 const char __user *buf, size_t count, loff_t *ppos) 341 { 342 unsigned long hex; 343 344 if (count >= MAX_LINELENGTH) 345 count = MAX_LINELENGTH -1; 346 if (copy_from_user(progress_led, buf, count)) { /* save the string */ 347 return -EFAULT; 348 } 349 progress_led[count] = 0; 350 351 /* Lets see if the user passed hexdigits */ 352 hex = simple_strtoul(progress_led, NULL, 10); 353 354 rtas_progress ((char *)progress_led, hex); 355 return count; 356 357 /* clear the line */ 358 /* rtas_progress(" ", 0xffff);*/ 359 } 360 /* ****************************************************************** */ 361 static int ppc_rtas_progress_show(struct seq_file *m, void *v) 362 { 363 if (progress_led[0]) 364 seq_printf(m, "%s\n", progress_led); 365 return 0; 366 } 367 368 /* ****************************************************************** */ 369 /* CLOCK */ 370 /* ****************************************************************** */ 371 static ssize_t ppc_rtas_clock_write(struct file *file, 372 const char __user *buf, size_t count, loff_t *ppos) 373 { 374 struct rtc_time tm; 375 unsigned long nowtime; 376 int error = parse_number(buf, count, &nowtime); 377 if (error) 378 return error; 379 380 to_tm(nowtime, &tm); 381 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL, 382 tm.tm_year, tm.tm_mon, tm.tm_mday, 383 tm.tm_hour, tm.tm_min, tm.tm_sec, 0); 384 if (error) 385 printk(KERN_WARNING "error: setting the clock returned: %s\n", 386 ppc_rtas_process_error(error)); 387 return count; 388 } 389 /* ****************************************************************** */ 390 static int ppc_rtas_clock_show(struct seq_file *m, void *v) 391 { 392 int ret[8]; 393 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret); 394 395 if (error) { 396 printk(KERN_WARNING "error: reading the clock returned: %s\n", 397 ppc_rtas_process_error(error)); 398 seq_printf(m, "0"); 399 } else { 400 unsigned int year, mon, day, hour, min, sec; 401 year = ret[0]; mon = ret[1]; day = ret[2]; 402 hour = ret[3]; min = ret[4]; sec = ret[5]; 403 seq_printf(m, "%lu\n", 404 mktime(year, mon, day, hour, min, sec)); 405 } 406 return 0; 407 } 408 409 /* ****************************************************************** */ 410 /* SENSOR STUFF */ 411 /* ****************************************************************** */ 412 static int ppc_rtas_sensors_show(struct seq_file *m, void *v) 413 { 414 int i,j; 415 int state, error; 416 int get_sensor_state = rtas_token("get-sensor-state"); 417 418 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n"); 419 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n"); 420 seq_printf(m, "********************************************************\n"); 421 422 if (ppc_rtas_find_all_sensors() != 0) { 423 seq_printf(m, "\nNo sensors are available\n"); 424 return 0; 425 } 426 427 for (i=0; i<sensors.quant; i++) { 428 struct individual_sensor *p = &sensors.sensor[i]; 429 char rstr[64]; 430 const char *loc; 431 int llen, offs; 432 433 sprintf (rstr, SENSOR_PREFIX"%04d", p->token); 434 loc = of_get_property(rtas_node, rstr, &llen); 435 436 /* A sensor may have multiple instances */ 437 for (j = 0, offs = 0; j <= p->quant; j++) { 438 error = rtas_call(get_sensor_state, 2, 2, &state, 439 p->token, j); 440 441 ppc_rtas_process_sensor(m, p, state, error, loc); 442 seq_putc(m, '\n'); 443 if (loc) { 444 offs += strlen(loc) + 1; 445 loc += strlen(loc) + 1; 446 if (offs >= llen) 447 loc = NULL; 448 } 449 } 450 } 451 return 0; 452 } 453 454 /* ****************************************************************** */ 455 456 static int ppc_rtas_find_all_sensors(void) 457 { 458 const unsigned int *utmp; 459 int len, i; 460 461 utmp = of_get_property(rtas_node, "rtas-sensors", &len); 462 if (utmp == NULL) { 463 printk (KERN_ERR "error: could not get rtas-sensors\n"); 464 return 1; 465 } 466 467 sensors.quant = len / 8; /* int + int */ 468 469 for (i=0; i<sensors.quant; i++) { 470 sensors.sensor[i].token = *utmp++; 471 sensors.sensor[i].quant = *utmp++; 472 } 473 return 0; 474 } 475 476 /* ****************************************************************** */ 477 /* 478 * Builds a string of what rtas returned 479 */ 480 static char *ppc_rtas_process_error(int error) 481 { 482 switch (error) { 483 case SENSOR_CRITICAL_HIGH: 484 return "(critical high)"; 485 case SENSOR_WARNING_HIGH: 486 return "(warning high)"; 487 case SENSOR_NORMAL: 488 return "(normal)"; 489 case SENSOR_WARNING_LOW: 490 return "(warning low)"; 491 case SENSOR_CRITICAL_LOW: 492 return "(critical low)"; 493 case SENSOR_SUCCESS: 494 return "(read ok)"; 495 case SENSOR_HW_ERROR: 496 return "(hardware error)"; 497 case SENSOR_BUSY: 498 return "(busy)"; 499 case SENSOR_NOT_EXIST: 500 return "(non existent)"; 501 case SENSOR_DR_ENTITY: 502 return "(dr entity removed)"; 503 default: 504 return "(UNKNOWN)"; 505 } 506 } 507 508 /* ****************************************************************** */ 509 /* 510 * Builds a string out of what the sensor said 511 */ 512 513 static void ppc_rtas_process_sensor(struct seq_file *m, 514 struct individual_sensor *s, int state, int error, const char *loc) 515 { 516 /* Defined return vales */ 517 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t", 518 "Maintenance" }; 519 const char * enclosure_switch[] = { "Closed", "Open" }; 520 const char * lid_status[] = { " ", "Open", "Closed" }; 521 const char * power_source[] = { "AC\t", "Battery", 522 "AC & Battery" }; 523 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" }; 524 const char * epow_sensor[] = { 525 "EPOW Reset", "Cooling warning", "Power warning", 526 "System shutdown", "System halt", "EPOW main enclosure", 527 "EPOW power off" }; 528 const char * battery_cyclestate[] = { "None", "In progress", 529 "Requested" }; 530 const char * battery_charging[] = { "Charging", "Discharching", 531 "No current flow" }; 532 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable", 533 "Exchange" }; 534 535 int have_strings = 0; 536 int num_states = 0; 537 int temperature = 0; 538 int unknown = 0; 539 540 /* What kind of sensor do we have here? */ 541 542 switch (s->token) { 543 case KEY_SWITCH: 544 seq_printf(m, "Key switch:\t"); 545 num_states = sizeof(key_switch) / sizeof(char *); 546 if (state < num_states) { 547 seq_printf(m, "%s\t", key_switch[state]); 548 have_strings = 1; 549 } 550 break; 551 case ENCLOSURE_SWITCH: 552 seq_printf(m, "Enclosure switch:\t"); 553 num_states = sizeof(enclosure_switch) / sizeof(char *); 554 if (state < num_states) { 555 seq_printf(m, "%s\t", 556 enclosure_switch[state]); 557 have_strings = 1; 558 } 559 break; 560 case THERMAL_SENSOR: 561 seq_printf(m, "Temp. (C/F):\t"); 562 temperature = 1; 563 break; 564 case LID_STATUS: 565 seq_printf(m, "Lid status:\t"); 566 num_states = sizeof(lid_status) / sizeof(char *); 567 if (state < num_states) { 568 seq_printf(m, "%s\t", lid_status[state]); 569 have_strings = 1; 570 } 571 break; 572 case POWER_SOURCE: 573 seq_printf(m, "Power source:\t"); 574 num_states = sizeof(power_source) / sizeof(char *); 575 if (state < num_states) { 576 seq_printf(m, "%s\t", 577 power_source[state]); 578 have_strings = 1; 579 } 580 break; 581 case BATTERY_VOLTAGE: 582 seq_printf(m, "Battery voltage:\t"); 583 break; 584 case BATTERY_REMAINING: 585 seq_printf(m, "Battery remaining:\t"); 586 num_states = sizeof(battery_remaining) / sizeof(char *); 587 if (state < num_states) 588 { 589 seq_printf(m, "%s\t", 590 battery_remaining[state]); 591 have_strings = 1; 592 } 593 break; 594 case BATTERY_PERCENTAGE: 595 seq_printf(m, "Battery percentage:\t"); 596 break; 597 case EPOW_SENSOR: 598 seq_printf(m, "EPOW Sensor:\t"); 599 num_states = sizeof(epow_sensor) / sizeof(char *); 600 if (state < num_states) { 601 seq_printf(m, "%s\t", epow_sensor[state]); 602 have_strings = 1; 603 } 604 break; 605 case BATTERY_CYCLESTATE: 606 seq_printf(m, "Battery cyclestate:\t"); 607 num_states = sizeof(battery_cyclestate) / 608 sizeof(char *); 609 if (state < num_states) { 610 seq_printf(m, "%s\t", 611 battery_cyclestate[state]); 612 have_strings = 1; 613 } 614 break; 615 case BATTERY_CHARGING: 616 seq_printf(m, "Battery Charging:\t"); 617 num_states = sizeof(battery_charging) / sizeof(char *); 618 if (state < num_states) { 619 seq_printf(m, "%s\t", 620 battery_charging[state]); 621 have_strings = 1; 622 } 623 break; 624 case IBM_SURVEILLANCE: 625 seq_printf(m, "Surveillance:\t"); 626 break; 627 case IBM_FANRPM: 628 seq_printf(m, "Fan (rpm):\t"); 629 break; 630 case IBM_VOLTAGE: 631 seq_printf(m, "Voltage (mv):\t"); 632 break; 633 case IBM_DRCONNECTOR: 634 seq_printf(m, "DR connector:\t"); 635 num_states = sizeof(ibm_drconnector) / sizeof(char *); 636 if (state < num_states) { 637 seq_printf(m, "%s\t", 638 ibm_drconnector[state]); 639 have_strings = 1; 640 } 641 break; 642 case IBM_POWERSUPPLY: 643 seq_printf(m, "Powersupply:\t"); 644 break; 645 default: 646 seq_printf(m, "Unknown sensor (type %d), ignoring it\n", 647 s->token); 648 unknown = 1; 649 have_strings = 1; 650 break; 651 } 652 if (have_strings == 0) { 653 if (temperature) { 654 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state)); 655 } else 656 seq_printf(m, "%10d\t", state); 657 } 658 if (unknown == 0) { 659 seq_printf(m, "%s\t", ppc_rtas_process_error(error)); 660 get_location_code(m, s, loc); 661 } 662 } 663 664 /* ****************************************************************** */ 665 666 static void check_location(struct seq_file *m, const char *c) 667 { 668 switch (c[0]) { 669 case LOC_PLANAR: 670 seq_printf(m, "Planar #%c", c[1]); 671 break; 672 case LOC_CPU: 673 seq_printf(m, "CPU #%c", c[1]); 674 break; 675 case LOC_FAN: 676 seq_printf(m, "Fan #%c", c[1]); 677 break; 678 case LOC_RACKMOUNTED: 679 seq_printf(m, "Rack #%c", c[1]); 680 break; 681 case LOC_VOLTAGE: 682 seq_printf(m, "Voltage #%c", c[1]); 683 break; 684 case LOC_LCD: 685 seq_printf(m, "LCD #%c", c[1]); 686 break; 687 case '.': 688 seq_printf(m, "- %c", c[1]); 689 break; 690 default: 691 seq_printf(m, "Unknown location"); 692 break; 693 } 694 } 695 696 697 /* ****************************************************************** */ 698 /* 699 * Format: 700 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ] 701 * the '.' may be an abbreviation 702 */ 703 static void check_location_string(struct seq_file *m, const char *c) 704 { 705 while (*c) { 706 if (isalpha(*c) || *c == '.') 707 check_location(m, c); 708 else if (*c == '/' || *c == '-') 709 seq_printf(m, " at "); 710 c++; 711 } 712 } 713 714 715 /* ****************************************************************** */ 716 717 static void get_location_code(struct seq_file *m, struct individual_sensor *s, 718 const char *loc) 719 { 720 if (!loc || !*loc) { 721 seq_printf(m, "---");/* does not have a location */ 722 } else { 723 check_location_string(m, loc); 724 } 725 seq_putc(m, ' '); 726 } 727 /* ****************************************************************** */ 728 /* INDICATORS - Tone Frequency */ 729 /* ****************************************************************** */ 730 static ssize_t ppc_rtas_tone_freq_write(struct file *file, 731 const char __user *buf, size_t count, loff_t *ppos) 732 { 733 unsigned long freq; 734 int error = parse_number(buf, count, &freq); 735 if (error) 736 return error; 737 738 rtas_tone_frequency = freq; /* save it for later */ 739 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL, 740 TONE_FREQUENCY, 0, freq); 741 if (error) 742 printk(KERN_WARNING "error: setting tone frequency returned: %s\n", 743 ppc_rtas_process_error(error)); 744 return count; 745 } 746 /* ****************************************************************** */ 747 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v) 748 { 749 seq_printf(m, "%lu\n", rtas_tone_frequency); 750 return 0; 751 } 752 /* ****************************************************************** */ 753 /* INDICATORS - Tone Volume */ 754 /* ****************************************************************** */ 755 static ssize_t ppc_rtas_tone_volume_write(struct file *file, 756 const char __user *buf, size_t count, loff_t *ppos) 757 { 758 unsigned long volume; 759 int error = parse_number(buf, count, &volume); 760 if (error) 761 return error; 762 763 if (volume > 100) 764 volume = 100; 765 766 rtas_tone_volume = volume; /* save it for later */ 767 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL, 768 TONE_VOLUME, 0, volume); 769 if (error) 770 printk(KERN_WARNING "error: setting tone volume returned: %s\n", 771 ppc_rtas_process_error(error)); 772 return count; 773 } 774 /* ****************************************************************** */ 775 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v) 776 { 777 seq_printf(m, "%lu\n", rtas_tone_volume); 778 return 0; 779 } 780 781 #define RMO_READ_BUF_MAX 30 782 783 /* RTAS Userspace access */ 784 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v) 785 { 786 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX); 787 return 0; 788 } 789