xref: /linux/arch/powerpc/kernel/rtas-proc.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *   Copyright (C) 2000 Tilmann Bitterberg
4  *   (tilmann@bitterberg.de)
5  *
6  *   RTAS (Runtime Abstraction Services) stuff
7  *   Intention is to provide a clean user interface
8  *   to use the RTAS.
9  *
10  *   TODO:
11  *   Split off a header file and maybe move it to a different
12  *   location. Write Documentation on what the /proc/rtas/ entries
13  *   actually do.
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/proc_fs.h>
19 #include <linux/stat.h>
20 #include <linux/ctype.h>
21 #include <linux/time.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/seq_file.h>
25 #include <linux/bitops.h>
26 #include <linux/rtc.h>
27 #include <linux/of.h>
28 
29 #include <linux/uaccess.h>
30 #include <asm/processor.h>
31 #include <asm/io.h>
32 #include <asm/rtas.h>
33 #include <asm/machdep.h> /* for ppc_md */
34 #include <asm/time.h>
35 
36 /* Token for Sensors */
37 #define KEY_SWITCH		0x0001
38 #define ENCLOSURE_SWITCH	0x0002
39 #define THERMAL_SENSOR		0x0003
40 #define LID_STATUS		0x0004
41 #define POWER_SOURCE		0x0005
42 #define BATTERY_VOLTAGE		0x0006
43 #define BATTERY_REMAINING	0x0007
44 #define BATTERY_PERCENTAGE	0x0008
45 #define EPOW_SENSOR		0x0009
46 #define BATTERY_CYCLESTATE	0x000a
47 #define BATTERY_CHARGING	0x000b
48 
49 /* IBM specific sensors */
50 #define IBM_SURVEILLANCE	0x2328 /* 9000 */
51 #define IBM_FANRPM		0x2329 /* 9001 */
52 #define IBM_VOLTAGE		0x232a /* 9002 */
53 #define IBM_DRCONNECTOR		0x232b /* 9003 */
54 #define IBM_POWERSUPPLY		0x232c /* 9004 */
55 
56 /* Status return values */
57 #define SENSOR_CRITICAL_HIGH	13
58 #define SENSOR_WARNING_HIGH	12
59 #define SENSOR_NORMAL		11
60 #define SENSOR_WARNING_LOW	10
61 #define SENSOR_CRITICAL_LOW	 9
62 #define SENSOR_SUCCESS		 0
63 #define SENSOR_HW_ERROR		-1
64 #define SENSOR_BUSY		-2
65 #define SENSOR_NOT_EXIST	-3
66 #define SENSOR_DR_ENTITY	-9000
67 
68 /* Location Codes */
69 #define LOC_SCSI_DEV_ADDR	'A'
70 #define LOC_SCSI_DEV_LOC	'B'
71 #define LOC_CPU			'C'
72 #define LOC_DISKETTE		'D'
73 #define LOC_ETHERNET		'E'
74 #define LOC_FAN			'F'
75 #define LOC_GRAPHICS		'G'
76 /* reserved / not used		'H' */
77 #define LOC_IO_ADAPTER		'I'
78 /* reserved / not used		'J' */
79 #define LOC_KEYBOARD		'K'
80 #define LOC_LCD			'L'
81 #define LOC_MEMORY		'M'
82 #define LOC_NV_MEMORY		'N'
83 #define LOC_MOUSE		'O'
84 #define LOC_PLANAR		'P'
85 #define LOC_OTHER_IO		'Q'
86 #define LOC_PARALLEL		'R'
87 #define LOC_SERIAL		'S'
88 #define LOC_DEAD_RING		'T'
89 #define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
90 #define LOC_VOLTAGE		'V'
91 #define LOC_SWITCH_ADAPTER	'W'
92 #define LOC_OTHER		'X'
93 #define LOC_FIRMWARE		'Y'
94 #define LOC_SCSI		'Z'
95 
96 /* Tokens for indicators */
97 #define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
98 #define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
99 #define SYSTEM_POWER_STATE	0x0003
100 #define WARNING_LIGHT		0x0004
101 #define DISK_ACTIVITY_LIGHT	0x0005
102 #define HEX_DISPLAY_UNIT	0x0006
103 #define BATTERY_WARNING_TIME	0x0007
104 #define CONDITION_CYCLE_REQUEST	0x0008
105 #define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
106 #define DR_ACTION		0x2329 /* 9001 */
107 #define DR_INDICATOR		0x232a /* 9002 */
108 /* 9003 - 9004: Vendor specific */
109 /* 9006 - 9999: Vendor specific */
110 
111 /* other */
112 #define MAX_SENSORS		 17  /* I only know of 17 sensors */
113 #define MAX_LINELENGTH          256
114 #define SENSOR_PREFIX		"ibm,sensor-"
115 #define cel_to_fahr(x)		((x*9/5)+32)
116 
117 struct individual_sensor {
118 	unsigned int token;
119 	unsigned int quant;
120 };
121 
122 struct rtas_sensors {
123         struct individual_sensor sensor[MAX_SENSORS];
124 	unsigned int quant;
125 };
126 
127 /* Globals */
128 static struct rtas_sensors sensors;
129 static struct device_node *rtas_node = NULL;
130 static unsigned long power_on_time = 0; /* Save the time the user set */
131 static char progress_led[MAX_LINELENGTH];
132 
133 static unsigned long rtas_tone_frequency = 1000;
134 static unsigned long rtas_tone_volume = 0;
135 
136 /* ****************************************************************** */
137 /* Declarations */
138 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
139 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
140 static ssize_t ppc_rtas_clock_write(struct file *file,
141 		const char __user *buf, size_t count, loff_t *ppos);
142 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
143 static ssize_t ppc_rtas_progress_write(struct file *file,
144 		const char __user *buf, size_t count, loff_t *ppos);
145 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
146 static ssize_t ppc_rtas_poweron_write(struct file *file,
147 		const char __user *buf, size_t count, loff_t *ppos);
148 
149 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
150 		const char __user *buf, size_t count, loff_t *ppos);
151 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
152 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
153 		const char __user *buf, size_t count, loff_t *ppos);
154 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
155 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
156 
157 static int poweron_open(struct inode *inode, struct file *file)
158 {
159 	return single_open(file, ppc_rtas_poweron_show, NULL);
160 }
161 
162 static const struct proc_ops ppc_rtas_poweron_proc_ops = {
163 	.proc_open	= poweron_open,
164 	.proc_read	= seq_read,
165 	.proc_lseek	= seq_lseek,
166 	.proc_write	= ppc_rtas_poweron_write,
167 	.proc_release	= single_release,
168 };
169 
170 static int progress_open(struct inode *inode, struct file *file)
171 {
172 	return single_open(file, ppc_rtas_progress_show, NULL);
173 }
174 
175 static const struct proc_ops ppc_rtas_progress_proc_ops = {
176 	.proc_open	= progress_open,
177 	.proc_read	= seq_read,
178 	.proc_lseek	= seq_lseek,
179 	.proc_write	= ppc_rtas_progress_write,
180 	.proc_release	= single_release,
181 };
182 
183 static int clock_open(struct inode *inode, struct file *file)
184 {
185 	return single_open(file, ppc_rtas_clock_show, NULL);
186 }
187 
188 static const struct proc_ops ppc_rtas_clock_proc_ops = {
189 	.proc_open	= clock_open,
190 	.proc_read	= seq_read,
191 	.proc_lseek	= seq_lseek,
192 	.proc_write	= ppc_rtas_clock_write,
193 	.proc_release	= single_release,
194 };
195 
196 static int tone_freq_open(struct inode *inode, struct file *file)
197 {
198 	return single_open(file, ppc_rtas_tone_freq_show, NULL);
199 }
200 
201 static const struct proc_ops ppc_rtas_tone_freq_proc_ops = {
202 	.proc_open	= tone_freq_open,
203 	.proc_read	= seq_read,
204 	.proc_lseek	= seq_lseek,
205 	.proc_write	= ppc_rtas_tone_freq_write,
206 	.proc_release	= single_release,
207 };
208 
209 static int tone_volume_open(struct inode *inode, struct file *file)
210 {
211 	return single_open(file, ppc_rtas_tone_volume_show, NULL);
212 }
213 
214 static const struct proc_ops ppc_rtas_tone_volume_proc_ops = {
215 	.proc_open	= tone_volume_open,
216 	.proc_read	= seq_read,
217 	.proc_lseek	= seq_lseek,
218 	.proc_write	= ppc_rtas_tone_volume_write,
219 	.proc_release	= single_release,
220 };
221 
222 static int ppc_rtas_find_all_sensors(void);
223 static void ppc_rtas_process_sensor(struct seq_file *m,
224 	struct individual_sensor *s, int state, int error, const char *loc);
225 static char *ppc_rtas_process_error(int error);
226 static void get_location_code(struct seq_file *m,
227 	struct individual_sensor *s, const char *loc);
228 static void check_location_string(struct seq_file *m, const char *c);
229 static void check_location(struct seq_file *m, const char *c);
230 
231 static int __init proc_rtas_init(void)
232 {
233 	if (!machine_is(pseries))
234 		return -ENODEV;
235 
236 	rtas_node = of_find_node_by_name(NULL, "rtas");
237 	if (rtas_node == NULL)
238 		return -ENODEV;
239 
240 	proc_create("powerpc/rtas/progress", 0644, NULL,
241 		    &ppc_rtas_progress_proc_ops);
242 	proc_create("powerpc/rtas/clock", 0644, NULL,
243 		    &ppc_rtas_clock_proc_ops);
244 	proc_create("powerpc/rtas/poweron", 0644, NULL,
245 		    &ppc_rtas_poweron_proc_ops);
246 	proc_create_single("powerpc/rtas/sensors", 0444, NULL,
247 			ppc_rtas_sensors_show);
248 	proc_create("powerpc/rtas/frequency", 0644, NULL,
249 		    &ppc_rtas_tone_freq_proc_ops);
250 	proc_create("powerpc/rtas/volume", 0644, NULL,
251 		    &ppc_rtas_tone_volume_proc_ops);
252 	proc_create_single("powerpc/rtas/rmo_buffer", 0400, NULL,
253 			ppc_rtas_rmo_buf_show);
254 	return 0;
255 }
256 
257 __initcall(proc_rtas_init);
258 
259 static int parse_number(const char __user *p, size_t count, u64 *val)
260 {
261 	char buf[40];
262 
263 	if (count > 39)
264 		return -EINVAL;
265 
266 	if (copy_from_user(buf, p, count))
267 		return -EFAULT;
268 
269 	buf[count] = 0;
270 
271 	return kstrtoull(buf, 10, val);
272 }
273 
274 /* ****************************************************************** */
275 /* POWER-ON-TIME                                                      */
276 /* ****************************************************************** */
277 static ssize_t ppc_rtas_poweron_write(struct file *file,
278 		const char __user *buf, size_t count, loff_t *ppos)
279 {
280 	struct rtc_time tm;
281 	time64_t nowtime;
282 	int error = parse_number(buf, count, &nowtime);
283 	if (error)
284 		return error;
285 
286 	power_on_time = nowtime; /* save the time */
287 
288 	rtc_time64_to_tm(nowtime, &tm);
289 
290 	error = rtas_call(rtas_function_token(RTAS_FN_SET_TIME_FOR_POWER_ON), 7, 1, NULL,
291 			  tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
292 			  tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
293 	if (error)
294 		printk(KERN_WARNING "error: setting poweron time returned: %s\n",
295 				ppc_rtas_process_error(error));
296 	return count;
297 }
298 /* ****************************************************************** */
299 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
300 {
301 	if (power_on_time == 0)
302 		seq_printf(m, "Power on time not set\n");
303 	else
304 		seq_printf(m, "%lu\n",power_on_time);
305 	return 0;
306 }
307 
308 /* ****************************************************************** */
309 /* PROGRESS                                                           */
310 /* ****************************************************************** */
311 static ssize_t ppc_rtas_progress_write(struct file *file,
312 		const char __user *buf, size_t count, loff_t *ppos)
313 {
314 	unsigned long hex;
315 
316 	if (count >= MAX_LINELENGTH)
317 		count = MAX_LINELENGTH -1;
318 	if (copy_from_user(progress_led, buf, count)) { /* save the string */
319 		return -EFAULT;
320 	}
321 	progress_led[count] = 0;
322 
323 	/* Lets see if the user passed hexdigits */
324 	hex = simple_strtoul(progress_led, NULL, 10);
325 
326 	rtas_progress ((char *)progress_led, hex);
327 	return count;
328 
329 	/* clear the line */
330 	/* rtas_progress("                   ", 0xffff);*/
331 }
332 /* ****************************************************************** */
333 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
334 {
335 	if (progress_led[0])
336 		seq_printf(m, "%s\n", progress_led);
337 	return 0;
338 }
339 
340 /* ****************************************************************** */
341 /* CLOCK                                                              */
342 /* ****************************************************************** */
343 static ssize_t ppc_rtas_clock_write(struct file *file,
344 		const char __user *buf, size_t count, loff_t *ppos)
345 {
346 	struct rtc_time tm;
347 	time64_t nowtime;
348 	int error = parse_number(buf, count, &nowtime);
349 	if (error)
350 		return error;
351 
352 	rtc_time64_to_tm(nowtime, &tm);
353 	error = rtas_call(rtas_function_token(RTAS_FN_SET_TIME_OF_DAY), 7, 1, NULL,
354 			  tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday,
355 			  tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
356 	if (error)
357 		printk(KERN_WARNING "error: setting the clock returned: %s\n",
358 				ppc_rtas_process_error(error));
359 	return count;
360 }
361 /* ****************************************************************** */
362 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
363 {
364 	int ret[8];
365 	int error = rtas_call(rtas_function_token(RTAS_FN_GET_TIME_OF_DAY), 0, 8, ret);
366 
367 	if (error) {
368 		printk(KERN_WARNING "error: reading the clock returned: %s\n",
369 				ppc_rtas_process_error(error));
370 		seq_printf(m, "0");
371 	} else {
372 		unsigned int year, mon, day, hour, min, sec;
373 		year = ret[0]; mon  = ret[1]; day  = ret[2];
374 		hour = ret[3]; min  = ret[4]; sec  = ret[5];
375 		seq_printf(m, "%lld\n",
376 				mktime64(year, mon, day, hour, min, sec));
377 	}
378 	return 0;
379 }
380 
381 /* ****************************************************************** */
382 /* SENSOR STUFF                                                       */
383 /* ****************************************************************** */
384 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
385 {
386 	int i,j;
387 	int state, error;
388 	int get_sensor_state = rtas_function_token(RTAS_FN_GET_SENSOR_STATE);
389 
390 	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
391 	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
392 	seq_printf(m, "********************************************************\n");
393 
394 	if (ppc_rtas_find_all_sensors() != 0) {
395 		seq_printf(m, "\nNo sensors are available\n");
396 		return 0;
397 	}
398 
399 	for (i=0; i<sensors.quant; i++) {
400 		struct individual_sensor *p = &sensors.sensor[i];
401 		char rstr[64];
402 		const char *loc;
403 		int llen, offs;
404 
405 		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
406 		loc = of_get_property(rtas_node, rstr, &llen);
407 
408 		/* A sensor may have multiple instances */
409 		for (j = 0, offs = 0; j <= p->quant; j++) {
410 			error =	rtas_call(get_sensor_state, 2, 2, &state,
411 				  	  p->token, j);
412 
413 			ppc_rtas_process_sensor(m, p, state, error, loc);
414 			seq_putc(m, '\n');
415 			if (loc) {
416 				offs += strlen(loc) + 1;
417 				loc += strlen(loc) + 1;
418 				if (offs >= llen)
419 					loc = NULL;
420 			}
421 		}
422 	}
423 	return 0;
424 }
425 
426 /* ****************************************************************** */
427 
428 static int ppc_rtas_find_all_sensors(void)
429 {
430 	const unsigned int *utmp;
431 	int len, i;
432 
433 	utmp = of_get_property(rtas_node, "rtas-sensors", &len);
434 	if (utmp == NULL) {
435 		printk (KERN_ERR "error: could not get rtas-sensors\n");
436 		return 1;
437 	}
438 
439 	sensors.quant = len / 8;      /* int + int */
440 
441 	for (i=0; i<sensors.quant; i++) {
442 		sensors.sensor[i].token = *utmp++;
443 		sensors.sensor[i].quant = *utmp++;
444 	}
445 	return 0;
446 }
447 
448 /* ****************************************************************** */
449 /*
450  * Builds a string of what rtas returned
451  */
452 static char *ppc_rtas_process_error(int error)
453 {
454 	switch (error) {
455 		case SENSOR_CRITICAL_HIGH:
456 			return "(critical high)";
457 		case SENSOR_WARNING_HIGH:
458 			return "(warning high)";
459 		case SENSOR_NORMAL:
460 			return "(normal)";
461 		case SENSOR_WARNING_LOW:
462 			return "(warning low)";
463 		case SENSOR_CRITICAL_LOW:
464 			return "(critical low)";
465 		case SENSOR_SUCCESS:
466 			return "(read ok)";
467 		case SENSOR_HW_ERROR:
468 			return "(hardware error)";
469 		case SENSOR_BUSY:
470 			return "(busy)";
471 		case SENSOR_NOT_EXIST:
472 			return "(non existent)";
473 		case SENSOR_DR_ENTITY:
474 			return "(dr entity removed)";
475 		default:
476 			return "(UNKNOWN)";
477 	}
478 }
479 
480 /* ****************************************************************** */
481 /*
482  * Builds a string out of what the sensor said
483  */
484 
485 static void ppc_rtas_process_sensor(struct seq_file *m,
486 	struct individual_sensor *s, int state, int error, const char *loc)
487 {
488 	/* Defined return vales */
489 	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t",
490 						"Maintenance" };
491 	const char * enclosure_switch[]  = { "Closed", "Open" };
492 	const char * lid_status[]        = { " ", "Open", "Closed" };
493 	const char * power_source[]      = { "AC\t", "Battery",
494 		  				"AC & Battery" };
495 	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
496 	const char * epow_sensor[]       = {
497 		"EPOW Reset", "Cooling warning", "Power warning",
498 		"System shutdown", "System halt", "EPOW main enclosure",
499 		"EPOW power off" };
500 	const char * battery_cyclestate[]  = { "None", "In progress",
501 						"Requested" };
502 	const char * battery_charging[]    = { "Charging", "Discharging",
503 						"No current flow" };
504 	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable",
505 						"Exchange" };
506 
507 	int have_strings = 0;
508 	int num_states = 0;
509 	int temperature = 0;
510 	int unknown = 0;
511 
512 	/* What kind of sensor do we have here? */
513 
514 	switch (s->token) {
515 		case KEY_SWITCH:
516 			seq_printf(m, "Key switch:\t");
517 			num_states = sizeof(key_switch) / sizeof(char *);
518 			if (state < num_states) {
519 				seq_printf(m, "%s\t", key_switch[state]);
520 				have_strings = 1;
521 			}
522 			break;
523 		case ENCLOSURE_SWITCH:
524 			seq_printf(m, "Enclosure switch:\t");
525 			num_states = sizeof(enclosure_switch) / sizeof(char *);
526 			if (state < num_states) {
527 				seq_printf(m, "%s\t",
528 						enclosure_switch[state]);
529 				have_strings = 1;
530 			}
531 			break;
532 		case THERMAL_SENSOR:
533 			seq_printf(m, "Temp. (C/F):\t");
534 			temperature = 1;
535 			break;
536 		case LID_STATUS:
537 			seq_printf(m, "Lid status:\t");
538 			num_states = sizeof(lid_status) / sizeof(char *);
539 			if (state < num_states) {
540 				seq_printf(m, "%s\t", lid_status[state]);
541 				have_strings = 1;
542 			}
543 			break;
544 		case POWER_SOURCE:
545 			seq_printf(m, "Power source:\t");
546 			num_states = sizeof(power_source) / sizeof(char *);
547 			if (state < num_states) {
548 				seq_printf(m, "%s\t",
549 						power_source[state]);
550 				have_strings = 1;
551 			}
552 			break;
553 		case BATTERY_VOLTAGE:
554 			seq_printf(m, "Battery voltage:\t");
555 			break;
556 		case BATTERY_REMAINING:
557 			seq_printf(m, "Battery remaining:\t");
558 			num_states = sizeof(battery_remaining) / sizeof(char *);
559 			if (state < num_states)
560 			{
561 				seq_printf(m, "%s\t",
562 						battery_remaining[state]);
563 				have_strings = 1;
564 			}
565 			break;
566 		case BATTERY_PERCENTAGE:
567 			seq_printf(m, "Battery percentage:\t");
568 			break;
569 		case EPOW_SENSOR:
570 			seq_printf(m, "EPOW Sensor:\t");
571 			num_states = sizeof(epow_sensor) / sizeof(char *);
572 			if (state < num_states) {
573 				seq_printf(m, "%s\t", epow_sensor[state]);
574 				have_strings = 1;
575 			}
576 			break;
577 		case BATTERY_CYCLESTATE:
578 			seq_printf(m, "Battery cyclestate:\t");
579 			num_states = sizeof(battery_cyclestate) /
580 				     	sizeof(char *);
581 			if (state < num_states) {
582 				seq_printf(m, "%s\t",
583 						battery_cyclestate[state]);
584 				have_strings = 1;
585 			}
586 			break;
587 		case BATTERY_CHARGING:
588 			seq_printf(m, "Battery Charging:\t");
589 			num_states = sizeof(battery_charging) / sizeof(char *);
590 			if (state < num_states) {
591 				seq_printf(m, "%s\t",
592 						battery_charging[state]);
593 				have_strings = 1;
594 			}
595 			break;
596 		case IBM_SURVEILLANCE:
597 			seq_printf(m, "Surveillance:\t");
598 			break;
599 		case IBM_FANRPM:
600 			seq_printf(m, "Fan (rpm):\t");
601 			break;
602 		case IBM_VOLTAGE:
603 			seq_printf(m, "Voltage (mv):\t");
604 			break;
605 		case IBM_DRCONNECTOR:
606 			seq_printf(m, "DR connector:\t");
607 			num_states = sizeof(ibm_drconnector) / sizeof(char *);
608 			if (state < num_states) {
609 				seq_printf(m, "%s\t",
610 						ibm_drconnector[state]);
611 				have_strings = 1;
612 			}
613 			break;
614 		case IBM_POWERSUPPLY:
615 			seq_printf(m, "Powersupply:\t");
616 			break;
617 		default:
618 			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
619 					s->token);
620 			unknown = 1;
621 			have_strings = 1;
622 			break;
623 	}
624 	if (have_strings == 0) {
625 		if (temperature) {
626 			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
627 		} else
628 			seq_printf(m, "%10d\t", state);
629 	}
630 	if (unknown == 0) {
631 		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
632 		get_location_code(m, s, loc);
633 	}
634 }
635 
636 /* ****************************************************************** */
637 
638 static void check_location(struct seq_file *m, const char *c)
639 {
640 	switch (c[0]) {
641 		case LOC_PLANAR:
642 			seq_printf(m, "Planar #%c", c[1]);
643 			break;
644 		case LOC_CPU:
645 			seq_printf(m, "CPU #%c", c[1]);
646 			break;
647 		case LOC_FAN:
648 			seq_printf(m, "Fan #%c", c[1]);
649 			break;
650 		case LOC_RACKMOUNTED:
651 			seq_printf(m, "Rack #%c", c[1]);
652 			break;
653 		case LOC_VOLTAGE:
654 			seq_printf(m, "Voltage #%c", c[1]);
655 			break;
656 		case LOC_LCD:
657 			seq_printf(m, "LCD #%c", c[1]);
658 			break;
659 		case '.':
660 			seq_printf(m, "- %c", c[1]);
661 			break;
662 		default:
663 			seq_printf(m, "Unknown location");
664 			break;
665 	}
666 }
667 
668 
669 /* ****************************************************************** */
670 /*
671  * Format:
672  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
673  * the '.' may be an abbreviation
674  */
675 static void check_location_string(struct seq_file *m, const char *c)
676 {
677 	while (*c) {
678 		if (isalpha(*c) || *c == '.')
679 			check_location(m, c);
680 		else if (*c == '/' || *c == '-')
681 			seq_printf(m, " at ");
682 		c++;
683 	}
684 }
685 
686 
687 /* ****************************************************************** */
688 
689 static void get_location_code(struct seq_file *m, struct individual_sensor *s,
690 		const char *loc)
691 {
692 	if (!loc || !*loc) {
693 		seq_printf(m, "---");/* does not have a location */
694 	} else {
695 		check_location_string(m, loc);
696 	}
697 	seq_putc(m, ' ');
698 }
699 /* ****************************************************************** */
700 /* INDICATORS - Tone Frequency                                        */
701 /* ****************************************************************** */
702 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
703 		const char __user *buf, size_t count, loff_t *ppos)
704 {
705 	u64 freq;
706 	int error = parse_number(buf, count, &freq);
707 	if (error)
708 		return error;
709 
710 	rtas_tone_frequency = freq; /* save it for later */
711 	error = rtas_call(rtas_function_token(RTAS_FN_SET_INDICATOR), 3, 1, NULL,
712 			  TONE_FREQUENCY, 0, freq);
713 	if (error)
714 		printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
715 				ppc_rtas_process_error(error));
716 	return count;
717 }
718 /* ****************************************************************** */
719 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
720 {
721 	seq_printf(m, "%lu\n", rtas_tone_frequency);
722 	return 0;
723 }
724 /* ****************************************************************** */
725 /* INDICATORS - Tone Volume                                           */
726 /* ****************************************************************** */
727 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
728 		const char __user *buf, size_t count, loff_t *ppos)
729 {
730 	u64 volume;
731 	int error = parse_number(buf, count, &volume);
732 	if (error)
733 		return error;
734 
735 	if (volume > 100)
736 		volume = 100;
737 
738         rtas_tone_volume = volume; /* save it for later */
739 	error = rtas_call(rtas_function_token(RTAS_FN_SET_INDICATOR), 3, 1, NULL,
740 			  TONE_VOLUME, 0, volume);
741 	if (error)
742 		printk(KERN_WARNING "error: setting tone volume returned: %s\n",
743 				ppc_rtas_process_error(error));
744 	return count;
745 }
746 /* ****************************************************************** */
747 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
748 {
749 	seq_printf(m, "%lu\n", rtas_tone_volume);
750 	return 0;
751 }
752 
753 /**
754  * ppc_rtas_rmo_buf_show() - Describe RTAS-addressable region for user space.
755  * @m: seq_file output target.
756  * @v: Unused.
757  *
758  * Base + size description of a range of RTAS-addressable memory set
759  * aside for user space to use as work area(s) for certain RTAS
760  * functions. User space accesses this region via /dev/mem. Apart from
761  * security policies, the kernel does not arbitrate or serialize
762  * access to this region, and user space must ensure that concurrent
763  * users do not interfere with each other.
764  */
765 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
766 {
767 	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_USER_REGION_SIZE);
768 	return 0;
769 }
770