xref: /linux/arch/powerpc/kernel/rtas-proc.c (revision e532c37858fdcc18e9a91d24c2e22cd21aa22561)
1 /*
2  *   arch/ppc64/kernel/rtas-proc.c
3  *   Copyright (C) 2000 Tilmann Bitterberg
4  *   (tilmann@bitterberg.de)
5  *
6  *   RTAS (Runtime Abstraction Services) stuff
7  *   Intention is to provide a clean user interface
8  *   to use the RTAS.
9  *
10  *   TODO:
11  *   Split off a header file and maybe move it to a different
12  *   location. Write Documentation on what the /proc/rtas/ entries
13  *   actually do.
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/proc_fs.h>
19 #include <linux/stat.h>
20 #include <linux/ctype.h>
21 #include <linux/time.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/seq_file.h>
25 #include <linux/bitops.h>
26 #include <linux/rtc.h>
27 
28 #include <asm/uaccess.h>
29 #include <asm/processor.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/rtas.h>
33 #include <asm/machdep.h> /* for ppc_md */
34 #include <asm/time.h>
35 #include <asm/systemcfg.h>
36 
37 /* Token for Sensors */
38 #define KEY_SWITCH		0x0001
39 #define ENCLOSURE_SWITCH	0x0002
40 #define THERMAL_SENSOR		0x0003
41 #define LID_STATUS		0x0004
42 #define POWER_SOURCE		0x0005
43 #define BATTERY_VOLTAGE		0x0006
44 #define BATTERY_REMAINING	0x0007
45 #define BATTERY_PERCENTAGE	0x0008
46 #define EPOW_SENSOR		0x0009
47 #define BATTERY_CYCLESTATE	0x000a
48 #define BATTERY_CHARGING	0x000b
49 
50 /* IBM specific sensors */
51 #define IBM_SURVEILLANCE	0x2328 /* 9000 */
52 #define IBM_FANRPM		0x2329 /* 9001 */
53 #define IBM_VOLTAGE		0x232a /* 9002 */
54 #define IBM_DRCONNECTOR		0x232b /* 9003 */
55 #define IBM_POWERSUPPLY		0x232c /* 9004 */
56 
57 /* Status return values */
58 #define SENSOR_CRITICAL_HIGH	13
59 #define SENSOR_WARNING_HIGH	12
60 #define SENSOR_NORMAL		11
61 #define SENSOR_WARNING_LOW	10
62 #define SENSOR_CRITICAL_LOW	 9
63 #define SENSOR_SUCCESS		 0
64 #define SENSOR_HW_ERROR		-1
65 #define SENSOR_BUSY		-2
66 #define SENSOR_NOT_EXIST	-3
67 #define SENSOR_DR_ENTITY	-9000
68 
69 /* Location Codes */
70 #define LOC_SCSI_DEV_ADDR	'A'
71 #define LOC_SCSI_DEV_LOC	'B'
72 #define LOC_CPU			'C'
73 #define LOC_DISKETTE		'D'
74 #define LOC_ETHERNET		'E'
75 #define LOC_FAN			'F'
76 #define LOC_GRAPHICS		'G'
77 /* reserved / not used		'H' */
78 #define LOC_IO_ADAPTER		'I'
79 /* reserved / not used		'J' */
80 #define LOC_KEYBOARD		'K'
81 #define LOC_LCD			'L'
82 #define LOC_MEMORY		'M'
83 #define LOC_NV_MEMORY		'N'
84 #define LOC_MOUSE		'O'
85 #define LOC_PLANAR		'P'
86 #define LOC_OTHER_IO		'Q'
87 #define LOC_PARALLEL		'R'
88 #define LOC_SERIAL		'S'
89 #define LOC_DEAD_RING		'T'
90 #define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
91 #define LOC_VOLTAGE		'V'
92 #define LOC_SWITCH_ADAPTER	'W'
93 #define LOC_OTHER		'X'
94 #define LOC_FIRMWARE		'Y'
95 #define LOC_SCSI		'Z'
96 
97 /* Tokens for indicators */
98 #define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
99 #define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
100 #define SYSTEM_POWER_STATE	0x0003
101 #define WARNING_LIGHT		0x0004
102 #define DISK_ACTIVITY_LIGHT	0x0005
103 #define HEX_DISPLAY_UNIT	0x0006
104 #define BATTERY_WARNING_TIME	0x0007
105 #define CONDITION_CYCLE_REQUEST	0x0008
106 #define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
107 #define DR_ACTION		0x2329 /* 9001 */
108 #define DR_INDICATOR		0x232a /* 9002 */
109 /* 9003 - 9004: Vendor specific */
110 /* 9006 - 9999: Vendor specific */
111 
112 /* other */
113 #define MAX_SENSORS		 17  /* I only know of 17 sensors */
114 #define MAX_LINELENGTH          256
115 #define SENSOR_PREFIX		"ibm,sensor-"
116 #define cel_to_fahr(x)		((x*9/5)+32)
117 
118 
119 /* Globals */
120 static struct rtas_sensors sensors;
121 static struct device_node *rtas_node = NULL;
122 static unsigned long power_on_time = 0; /* Save the time the user set */
123 static char progress_led[MAX_LINELENGTH];
124 
125 static unsigned long rtas_tone_frequency = 1000;
126 static unsigned long rtas_tone_volume = 0;
127 
128 /* ****************STRUCTS******************************************* */
129 struct individual_sensor {
130 	unsigned int token;
131 	unsigned int quant;
132 };
133 
134 struct rtas_sensors {
135         struct individual_sensor sensor[MAX_SENSORS];
136 	unsigned int quant;
137 };
138 
139 /* ****************************************************************** */
140 /* Declarations */
141 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
142 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
143 static ssize_t ppc_rtas_clock_write(struct file *file,
144 		const char __user *buf, size_t count, loff_t *ppos);
145 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
146 static ssize_t ppc_rtas_progress_write(struct file *file,
147 		const char __user *buf, size_t count, loff_t *ppos);
148 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
149 static ssize_t ppc_rtas_poweron_write(struct file *file,
150 		const char __user *buf, size_t count, loff_t *ppos);
151 
152 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
153 		const char __user *buf, size_t count, loff_t *ppos);
154 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
155 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
156 		const char __user *buf, size_t count, loff_t *ppos);
157 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
158 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
159 
160 static int sensors_open(struct inode *inode, struct file *file)
161 {
162 	return single_open(file, ppc_rtas_sensors_show, NULL);
163 }
164 
165 struct file_operations ppc_rtas_sensors_operations = {
166 	.open		= sensors_open,
167 	.read		= seq_read,
168 	.llseek		= seq_lseek,
169 	.release	= single_release,
170 };
171 
172 static int poweron_open(struct inode *inode, struct file *file)
173 {
174 	return single_open(file, ppc_rtas_poweron_show, NULL);
175 }
176 
177 struct file_operations ppc_rtas_poweron_operations = {
178 	.open		= poweron_open,
179 	.read		= seq_read,
180 	.llseek		= seq_lseek,
181 	.write		= ppc_rtas_poweron_write,
182 	.release	= single_release,
183 };
184 
185 static int progress_open(struct inode *inode, struct file *file)
186 {
187 	return single_open(file, ppc_rtas_progress_show, NULL);
188 }
189 
190 struct file_operations ppc_rtas_progress_operations = {
191 	.open		= progress_open,
192 	.read		= seq_read,
193 	.llseek		= seq_lseek,
194 	.write		= ppc_rtas_progress_write,
195 	.release	= single_release,
196 };
197 
198 static int clock_open(struct inode *inode, struct file *file)
199 {
200 	return single_open(file, ppc_rtas_clock_show, NULL);
201 }
202 
203 struct file_operations ppc_rtas_clock_operations = {
204 	.open		= clock_open,
205 	.read		= seq_read,
206 	.llseek		= seq_lseek,
207 	.write		= ppc_rtas_clock_write,
208 	.release	= single_release,
209 };
210 
211 static int tone_freq_open(struct inode *inode, struct file *file)
212 {
213 	return single_open(file, ppc_rtas_tone_freq_show, NULL);
214 }
215 
216 struct file_operations ppc_rtas_tone_freq_operations = {
217 	.open		= tone_freq_open,
218 	.read		= seq_read,
219 	.llseek		= seq_lseek,
220 	.write		= ppc_rtas_tone_freq_write,
221 	.release	= single_release,
222 };
223 
224 static int tone_volume_open(struct inode *inode, struct file *file)
225 {
226 	return single_open(file, ppc_rtas_tone_volume_show, NULL);
227 }
228 
229 struct file_operations ppc_rtas_tone_volume_operations = {
230 	.open		= tone_volume_open,
231 	.read		= seq_read,
232 	.llseek		= seq_lseek,
233 	.write		= ppc_rtas_tone_volume_write,
234 	.release	= single_release,
235 };
236 
237 static int rmo_buf_open(struct inode *inode, struct file *file)
238 {
239 	return single_open(file, ppc_rtas_rmo_buf_show, NULL);
240 }
241 
242 struct file_operations ppc_rtas_rmo_buf_ops = {
243 	.open		= rmo_buf_open,
244 	.read		= seq_read,
245 	.llseek		= seq_lseek,
246 	.release	= single_release,
247 };
248 
249 static int ppc_rtas_find_all_sensors(void);
250 static void ppc_rtas_process_sensor(struct seq_file *m,
251 	struct individual_sensor *s, int state, int error, char *loc);
252 static char *ppc_rtas_process_error(int error);
253 static void get_location_code(struct seq_file *m,
254 	struct individual_sensor *s, char *loc);
255 static void check_location_string(struct seq_file *m, char *c);
256 static void check_location(struct seq_file *m, char *c);
257 
258 static int __init proc_rtas_init(void)
259 {
260 	struct proc_dir_entry *entry;
261 
262 	if (_machine != PLATFORM_PSERIES && _machine != PLATFORM_PSERIES_LPAR)
263 		return 1;
264 
265 	rtas_node = of_find_node_by_name(NULL, "rtas");
266 	if (rtas_node == NULL)
267 		return 1;
268 
269 	entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL);
270 	if (entry)
271 		entry->proc_fops = &ppc_rtas_progress_operations;
272 
273 	entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL);
274 	if (entry)
275 		entry->proc_fops = &ppc_rtas_clock_operations;
276 
277 	entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL);
278 	if (entry)
279 		entry->proc_fops = &ppc_rtas_poweron_operations;
280 
281 	entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL);
282 	if (entry)
283 		entry->proc_fops = &ppc_rtas_sensors_operations;
284 
285 	entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO,
286 				  NULL);
287 	if (entry)
288 		entry->proc_fops = &ppc_rtas_tone_freq_operations;
289 
290 	entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL);
291 	if (entry)
292 		entry->proc_fops = &ppc_rtas_tone_volume_operations;
293 
294 	entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL);
295 	if (entry)
296 		entry->proc_fops = &ppc_rtas_rmo_buf_ops;
297 
298 	return 0;
299 }
300 
301 __initcall(proc_rtas_init);
302 
303 static int parse_number(const char __user *p, size_t count, unsigned long *val)
304 {
305 	char buf[40];
306 	char *end;
307 
308 	if (count > 39)
309 		return -EINVAL;
310 
311 	if (copy_from_user(buf, p, count))
312 		return -EFAULT;
313 
314 	buf[count] = 0;
315 
316 	*val = simple_strtoul(buf, &end, 10);
317 	if (*end && *end != '\n')
318 		return -EINVAL;
319 
320 	return 0;
321 }
322 
323 /* ****************************************************************** */
324 /* POWER-ON-TIME                                                      */
325 /* ****************************************************************** */
326 static ssize_t ppc_rtas_poweron_write(struct file *file,
327 		const char __user *buf, size_t count, loff_t *ppos)
328 {
329 	struct rtc_time tm;
330 	unsigned long nowtime;
331 	int error = parse_number(buf, count, &nowtime);
332 	if (error)
333 		return error;
334 
335 	power_on_time = nowtime; /* save the time */
336 
337 	to_tm(nowtime, &tm);
338 
339 	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
340 			tm.tm_year, tm.tm_mon, tm.tm_mday,
341 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
342 	if (error)
343 		printk(KERN_WARNING "error: setting poweron time returned: %s\n",
344 				ppc_rtas_process_error(error));
345 	return count;
346 }
347 /* ****************************************************************** */
348 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
349 {
350 	if (power_on_time == 0)
351 		seq_printf(m, "Power on time not set\n");
352 	else
353 		seq_printf(m, "%lu\n",power_on_time);
354 	return 0;
355 }
356 
357 /* ****************************************************************** */
358 /* PROGRESS                                                           */
359 /* ****************************************************************** */
360 static ssize_t ppc_rtas_progress_write(struct file *file,
361 		const char __user *buf, size_t count, loff_t *ppos)
362 {
363 	unsigned long hex;
364 
365 	if (count >= MAX_LINELENGTH)
366 		count = MAX_LINELENGTH -1;
367 	if (copy_from_user(progress_led, buf, count)) { /* save the string */
368 		return -EFAULT;
369 	}
370 	progress_led[count] = 0;
371 
372 	/* Lets see if the user passed hexdigits */
373 	hex = simple_strtoul(progress_led, NULL, 10);
374 
375 	rtas_progress ((char *)progress_led, hex);
376 	return count;
377 
378 	/* clear the line */
379 	/* rtas_progress("                   ", 0xffff);*/
380 }
381 /* ****************************************************************** */
382 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
383 {
384 	if (progress_led)
385 		seq_printf(m, "%s\n", progress_led);
386 	return 0;
387 }
388 
389 /* ****************************************************************** */
390 /* CLOCK                                                              */
391 /* ****************************************************************** */
392 static ssize_t ppc_rtas_clock_write(struct file *file,
393 		const char __user *buf, size_t count, loff_t *ppos)
394 {
395 	struct rtc_time tm;
396 	unsigned long nowtime;
397 	int error = parse_number(buf, count, &nowtime);
398 	if (error)
399 		return error;
400 
401 	to_tm(nowtime, &tm);
402 	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
403 			tm.tm_year, tm.tm_mon, tm.tm_mday,
404 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
405 	if (error)
406 		printk(KERN_WARNING "error: setting the clock returned: %s\n",
407 				ppc_rtas_process_error(error));
408 	return count;
409 }
410 /* ****************************************************************** */
411 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
412 {
413 	int ret[8];
414 	int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
415 
416 	if (error) {
417 		printk(KERN_WARNING "error: reading the clock returned: %s\n",
418 				ppc_rtas_process_error(error));
419 		seq_printf(m, "0");
420 	} else {
421 		unsigned int year, mon, day, hour, min, sec;
422 		year = ret[0]; mon  = ret[1]; day  = ret[2];
423 		hour = ret[3]; min  = ret[4]; sec  = ret[5];
424 		seq_printf(m, "%lu\n",
425 				mktime(year, mon, day, hour, min, sec));
426 	}
427 	return 0;
428 }
429 
430 /* ****************************************************************** */
431 /* SENSOR STUFF                                                       */
432 /* ****************************************************************** */
433 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
434 {
435 	int i,j;
436 	int state, error;
437 	int get_sensor_state = rtas_token("get-sensor-state");
438 
439 	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
440 	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
441 	seq_printf(m, "********************************************************\n");
442 
443 	if (ppc_rtas_find_all_sensors() != 0) {
444 		seq_printf(m, "\nNo sensors are available\n");
445 		return 0;
446 	}
447 
448 	for (i=0; i<sensors.quant; i++) {
449 		struct individual_sensor *p = &sensors.sensor[i];
450 		char rstr[64];
451 		char *loc;
452 		int llen, offs;
453 
454 		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
455 		loc = (char *) get_property(rtas_node, rstr, &llen);
456 
457 		/* A sensor may have multiple instances */
458 		for (j = 0, offs = 0; j <= p->quant; j++) {
459 			error =	rtas_call(get_sensor_state, 2, 2, &state,
460 				  	  p->token, j);
461 
462 			ppc_rtas_process_sensor(m, p, state, error, loc);
463 			seq_putc(m, '\n');
464 			if (loc) {
465 				offs += strlen(loc) + 1;
466 				loc += strlen(loc) + 1;
467 				if (offs >= llen)
468 					loc = NULL;
469 			}
470 		}
471 	}
472 	return 0;
473 }
474 
475 /* ****************************************************************** */
476 
477 static int ppc_rtas_find_all_sensors(void)
478 {
479 	unsigned int *utmp;
480 	int len, i;
481 
482 	utmp = (unsigned int *) get_property(rtas_node, "rtas-sensors", &len);
483 	if (utmp == NULL) {
484 		printk (KERN_ERR "error: could not get rtas-sensors\n");
485 		return 1;
486 	}
487 
488 	sensors.quant = len / 8;      /* int + int */
489 
490 	for (i=0; i<sensors.quant; i++) {
491 		sensors.sensor[i].token = *utmp++;
492 		sensors.sensor[i].quant = *utmp++;
493 	}
494 	return 0;
495 }
496 
497 /* ****************************************************************** */
498 /*
499  * Builds a string of what rtas returned
500  */
501 static char *ppc_rtas_process_error(int error)
502 {
503 	switch (error) {
504 		case SENSOR_CRITICAL_HIGH:
505 			return "(critical high)";
506 		case SENSOR_WARNING_HIGH:
507 			return "(warning high)";
508 		case SENSOR_NORMAL:
509 			return "(normal)";
510 		case SENSOR_WARNING_LOW:
511 			return "(warning low)";
512 		case SENSOR_CRITICAL_LOW:
513 			return "(critical low)";
514 		case SENSOR_SUCCESS:
515 			return "(read ok)";
516 		case SENSOR_HW_ERROR:
517 			return "(hardware error)";
518 		case SENSOR_BUSY:
519 			return "(busy)";
520 		case SENSOR_NOT_EXIST:
521 			return "(non existent)";
522 		case SENSOR_DR_ENTITY:
523 			return "(dr entity removed)";
524 		default:
525 			return "(UNKNOWN)";
526 	}
527 }
528 
529 /* ****************************************************************** */
530 /*
531  * Builds a string out of what the sensor said
532  */
533 
534 static void ppc_rtas_process_sensor(struct seq_file *m,
535 	struct individual_sensor *s, int state, int error, char *loc)
536 {
537 	/* Defined return vales */
538 	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t",
539 						"Maintenance" };
540 	const char * enclosure_switch[]  = { "Closed", "Open" };
541 	const char * lid_status[]        = { " ", "Open", "Closed" };
542 	const char * power_source[]      = { "AC\t", "Battery",
543 		  				"AC & Battery" };
544 	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
545 	const char * epow_sensor[]       = {
546 		"EPOW Reset", "Cooling warning", "Power warning",
547 		"System shutdown", "System halt", "EPOW main enclosure",
548 		"EPOW power off" };
549 	const char * battery_cyclestate[]  = { "None", "In progress",
550 						"Requested" };
551 	const char * battery_charging[]    = { "Charging", "Discharching",
552 						"No current flow" };
553 	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable",
554 						"Exchange" };
555 
556 	int have_strings = 0;
557 	int num_states = 0;
558 	int temperature = 0;
559 	int unknown = 0;
560 
561 	/* What kind of sensor do we have here? */
562 
563 	switch (s->token) {
564 		case KEY_SWITCH:
565 			seq_printf(m, "Key switch:\t");
566 			num_states = sizeof(key_switch) / sizeof(char *);
567 			if (state < num_states) {
568 				seq_printf(m, "%s\t", key_switch[state]);
569 				have_strings = 1;
570 			}
571 			break;
572 		case ENCLOSURE_SWITCH:
573 			seq_printf(m, "Enclosure switch:\t");
574 			num_states = sizeof(enclosure_switch) / sizeof(char *);
575 			if (state < num_states) {
576 				seq_printf(m, "%s\t",
577 						enclosure_switch[state]);
578 				have_strings = 1;
579 			}
580 			break;
581 		case THERMAL_SENSOR:
582 			seq_printf(m, "Temp. (C/F):\t");
583 			temperature = 1;
584 			break;
585 		case LID_STATUS:
586 			seq_printf(m, "Lid status:\t");
587 			num_states = sizeof(lid_status) / sizeof(char *);
588 			if (state < num_states) {
589 				seq_printf(m, "%s\t", lid_status[state]);
590 				have_strings = 1;
591 			}
592 			break;
593 		case POWER_SOURCE:
594 			seq_printf(m, "Power source:\t");
595 			num_states = sizeof(power_source) / sizeof(char *);
596 			if (state < num_states) {
597 				seq_printf(m, "%s\t",
598 						power_source[state]);
599 				have_strings = 1;
600 			}
601 			break;
602 		case BATTERY_VOLTAGE:
603 			seq_printf(m, "Battery voltage:\t");
604 			break;
605 		case BATTERY_REMAINING:
606 			seq_printf(m, "Battery remaining:\t");
607 			num_states = sizeof(battery_remaining) / sizeof(char *);
608 			if (state < num_states)
609 			{
610 				seq_printf(m, "%s\t",
611 						battery_remaining[state]);
612 				have_strings = 1;
613 			}
614 			break;
615 		case BATTERY_PERCENTAGE:
616 			seq_printf(m, "Battery percentage:\t");
617 			break;
618 		case EPOW_SENSOR:
619 			seq_printf(m, "EPOW Sensor:\t");
620 			num_states = sizeof(epow_sensor) / sizeof(char *);
621 			if (state < num_states) {
622 				seq_printf(m, "%s\t", epow_sensor[state]);
623 				have_strings = 1;
624 			}
625 			break;
626 		case BATTERY_CYCLESTATE:
627 			seq_printf(m, "Battery cyclestate:\t");
628 			num_states = sizeof(battery_cyclestate) /
629 				     	sizeof(char *);
630 			if (state < num_states) {
631 				seq_printf(m, "%s\t",
632 						battery_cyclestate[state]);
633 				have_strings = 1;
634 			}
635 			break;
636 		case BATTERY_CHARGING:
637 			seq_printf(m, "Battery Charging:\t");
638 			num_states = sizeof(battery_charging) / sizeof(char *);
639 			if (state < num_states) {
640 				seq_printf(m, "%s\t",
641 						battery_charging[state]);
642 				have_strings = 1;
643 			}
644 			break;
645 		case IBM_SURVEILLANCE:
646 			seq_printf(m, "Surveillance:\t");
647 			break;
648 		case IBM_FANRPM:
649 			seq_printf(m, "Fan (rpm):\t");
650 			break;
651 		case IBM_VOLTAGE:
652 			seq_printf(m, "Voltage (mv):\t");
653 			break;
654 		case IBM_DRCONNECTOR:
655 			seq_printf(m, "DR connector:\t");
656 			num_states = sizeof(ibm_drconnector) / sizeof(char *);
657 			if (state < num_states) {
658 				seq_printf(m, "%s\t",
659 						ibm_drconnector[state]);
660 				have_strings = 1;
661 			}
662 			break;
663 		case IBM_POWERSUPPLY:
664 			seq_printf(m, "Powersupply:\t");
665 			break;
666 		default:
667 			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
668 					s->token);
669 			unknown = 1;
670 			have_strings = 1;
671 			break;
672 	}
673 	if (have_strings == 0) {
674 		if (temperature) {
675 			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
676 		} else
677 			seq_printf(m, "%10d\t", state);
678 	}
679 	if (unknown == 0) {
680 		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
681 		get_location_code(m, s, loc);
682 	}
683 }
684 
685 /* ****************************************************************** */
686 
687 static void check_location(struct seq_file *m, char *c)
688 {
689 	switch (c[0]) {
690 		case LOC_PLANAR:
691 			seq_printf(m, "Planar #%c", c[1]);
692 			break;
693 		case LOC_CPU:
694 			seq_printf(m, "CPU #%c", c[1]);
695 			break;
696 		case LOC_FAN:
697 			seq_printf(m, "Fan #%c", c[1]);
698 			break;
699 		case LOC_RACKMOUNTED:
700 			seq_printf(m, "Rack #%c", c[1]);
701 			break;
702 		case LOC_VOLTAGE:
703 			seq_printf(m, "Voltage #%c", c[1]);
704 			break;
705 		case LOC_LCD:
706 			seq_printf(m, "LCD #%c", c[1]);
707 			break;
708 		case '.':
709 			seq_printf(m, "- %c", c[1]);
710 			break;
711 		default:
712 			seq_printf(m, "Unknown location");
713 			break;
714 	}
715 }
716 
717 
718 /* ****************************************************************** */
719 /*
720  * Format:
721  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
722  * the '.' may be an abbrevation
723  */
724 static void check_location_string(struct seq_file *m, char *c)
725 {
726 	while (*c) {
727 		if (isalpha(*c) || *c == '.')
728 			check_location(m, c);
729 		else if (*c == '/' || *c == '-')
730 			seq_printf(m, " at ");
731 		c++;
732 	}
733 }
734 
735 
736 /* ****************************************************************** */
737 
738 static void get_location_code(struct seq_file *m, struct individual_sensor *s, char *loc)
739 {
740 	if (!loc || !*loc) {
741 		seq_printf(m, "---");/* does not have a location */
742 	} else {
743 		check_location_string(m, loc);
744 	}
745 	seq_putc(m, ' ');
746 }
747 /* ****************************************************************** */
748 /* INDICATORS - Tone Frequency                                        */
749 /* ****************************************************************** */
750 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
751 		const char __user *buf, size_t count, loff_t *ppos)
752 {
753 	unsigned long freq;
754 	int error = parse_number(buf, count, &freq);
755 	if (error)
756 		return error;
757 
758 	rtas_tone_frequency = freq; /* save it for later */
759 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
760 			TONE_FREQUENCY, 0, freq);
761 	if (error)
762 		printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
763 				ppc_rtas_process_error(error));
764 	return count;
765 }
766 /* ****************************************************************** */
767 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
768 {
769 	seq_printf(m, "%lu\n", rtas_tone_frequency);
770 	return 0;
771 }
772 /* ****************************************************************** */
773 /* INDICATORS - Tone Volume                                           */
774 /* ****************************************************************** */
775 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
776 		const char __user *buf, size_t count, loff_t *ppos)
777 {
778 	unsigned long volume;
779 	int error = parse_number(buf, count, &volume);
780 	if (error)
781 		return error;
782 
783 	if (volume > 100)
784 		volume = 100;
785 
786         rtas_tone_volume = volume; /* save it for later */
787 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
788 			TONE_VOLUME, 0, volume);
789 	if (error)
790 		printk(KERN_WARNING "error: setting tone volume returned: %s\n",
791 				ppc_rtas_process_error(error));
792 	return count;
793 }
794 /* ****************************************************************** */
795 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
796 {
797 	seq_printf(m, "%lu\n", rtas_tone_volume);
798 	return 0;
799 }
800 
801 #define RMO_READ_BUF_MAX 30
802 
803 /* RTAS Userspace access */
804 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
805 {
806 	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
807 	return 0;
808 }
809