xref: /linux/arch/powerpc/kernel/rtas-proc.c (revision a7f290dad32ee34d931561b7943c858fe2aae503)
1 /*
2  *   arch/ppc64/kernel/rtas-proc.c
3  *   Copyright (C) 2000 Tilmann Bitterberg
4  *   (tilmann@bitterberg.de)
5  *
6  *   RTAS (Runtime Abstraction Services) stuff
7  *   Intention is to provide a clean user interface
8  *   to use the RTAS.
9  *
10  *   TODO:
11  *   Split off a header file and maybe move it to a different
12  *   location. Write Documentation on what the /proc/rtas/ entries
13  *   actually do.
14  */
15 
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/proc_fs.h>
19 #include <linux/stat.h>
20 #include <linux/ctype.h>
21 #include <linux/time.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/seq_file.h>
25 #include <linux/bitops.h>
26 #include <linux/rtc.h>
27 
28 #include <asm/uaccess.h>
29 #include <asm/processor.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/rtas.h>
33 #include <asm/machdep.h> /* for ppc_md */
34 #include <asm/time.h>
35 
36 /* Token for Sensors */
37 #define KEY_SWITCH		0x0001
38 #define ENCLOSURE_SWITCH	0x0002
39 #define THERMAL_SENSOR		0x0003
40 #define LID_STATUS		0x0004
41 #define POWER_SOURCE		0x0005
42 #define BATTERY_VOLTAGE		0x0006
43 #define BATTERY_REMAINING	0x0007
44 #define BATTERY_PERCENTAGE	0x0008
45 #define EPOW_SENSOR		0x0009
46 #define BATTERY_CYCLESTATE	0x000a
47 #define BATTERY_CHARGING	0x000b
48 
49 /* IBM specific sensors */
50 #define IBM_SURVEILLANCE	0x2328 /* 9000 */
51 #define IBM_FANRPM		0x2329 /* 9001 */
52 #define IBM_VOLTAGE		0x232a /* 9002 */
53 #define IBM_DRCONNECTOR		0x232b /* 9003 */
54 #define IBM_POWERSUPPLY		0x232c /* 9004 */
55 
56 /* Status return values */
57 #define SENSOR_CRITICAL_HIGH	13
58 #define SENSOR_WARNING_HIGH	12
59 #define SENSOR_NORMAL		11
60 #define SENSOR_WARNING_LOW	10
61 #define SENSOR_CRITICAL_LOW	 9
62 #define SENSOR_SUCCESS		 0
63 #define SENSOR_HW_ERROR		-1
64 #define SENSOR_BUSY		-2
65 #define SENSOR_NOT_EXIST	-3
66 #define SENSOR_DR_ENTITY	-9000
67 
68 /* Location Codes */
69 #define LOC_SCSI_DEV_ADDR	'A'
70 #define LOC_SCSI_DEV_LOC	'B'
71 #define LOC_CPU			'C'
72 #define LOC_DISKETTE		'D'
73 #define LOC_ETHERNET		'E'
74 #define LOC_FAN			'F'
75 #define LOC_GRAPHICS		'G'
76 /* reserved / not used		'H' */
77 #define LOC_IO_ADAPTER		'I'
78 /* reserved / not used		'J' */
79 #define LOC_KEYBOARD		'K'
80 #define LOC_LCD			'L'
81 #define LOC_MEMORY		'M'
82 #define LOC_NV_MEMORY		'N'
83 #define LOC_MOUSE		'O'
84 #define LOC_PLANAR		'P'
85 #define LOC_OTHER_IO		'Q'
86 #define LOC_PARALLEL		'R'
87 #define LOC_SERIAL		'S'
88 #define LOC_DEAD_RING		'T'
89 #define LOC_RACKMOUNTED		'U' /* for _u_nit is rack mounted */
90 #define LOC_VOLTAGE		'V'
91 #define LOC_SWITCH_ADAPTER	'W'
92 #define LOC_OTHER		'X'
93 #define LOC_FIRMWARE		'Y'
94 #define LOC_SCSI		'Z'
95 
96 /* Tokens for indicators */
97 #define TONE_FREQUENCY		0x0001 /* 0 - 1000 (HZ)*/
98 #define TONE_VOLUME		0x0002 /* 0 - 100 (%) */
99 #define SYSTEM_POWER_STATE	0x0003
100 #define WARNING_LIGHT		0x0004
101 #define DISK_ACTIVITY_LIGHT	0x0005
102 #define HEX_DISPLAY_UNIT	0x0006
103 #define BATTERY_WARNING_TIME	0x0007
104 #define CONDITION_CYCLE_REQUEST	0x0008
105 #define SURVEILLANCE_INDICATOR	0x2328 /* 9000 */
106 #define DR_ACTION		0x2329 /* 9001 */
107 #define DR_INDICATOR		0x232a /* 9002 */
108 /* 9003 - 9004: Vendor specific */
109 /* 9006 - 9999: Vendor specific */
110 
111 /* other */
112 #define MAX_SENSORS		 17  /* I only know of 17 sensors */
113 #define MAX_LINELENGTH          256
114 #define SENSOR_PREFIX		"ibm,sensor-"
115 #define cel_to_fahr(x)		((x*9/5)+32)
116 
117 
118 /* Globals */
119 static struct rtas_sensors sensors;
120 static struct device_node *rtas_node = NULL;
121 static unsigned long power_on_time = 0; /* Save the time the user set */
122 static char progress_led[MAX_LINELENGTH];
123 
124 static unsigned long rtas_tone_frequency = 1000;
125 static unsigned long rtas_tone_volume = 0;
126 
127 /* ****************STRUCTS******************************************* */
128 struct individual_sensor {
129 	unsigned int token;
130 	unsigned int quant;
131 };
132 
133 struct rtas_sensors {
134         struct individual_sensor sensor[MAX_SENSORS];
135 	unsigned int quant;
136 };
137 
138 /* ****************************************************************** */
139 /* Declarations */
140 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
141 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
142 static ssize_t ppc_rtas_clock_write(struct file *file,
143 		const char __user *buf, size_t count, loff_t *ppos);
144 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
145 static ssize_t ppc_rtas_progress_write(struct file *file,
146 		const char __user *buf, size_t count, loff_t *ppos);
147 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
148 static ssize_t ppc_rtas_poweron_write(struct file *file,
149 		const char __user *buf, size_t count, loff_t *ppos);
150 
151 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
152 		const char __user *buf, size_t count, loff_t *ppos);
153 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
154 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
155 		const char __user *buf, size_t count, loff_t *ppos);
156 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
157 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
158 
159 static int sensors_open(struct inode *inode, struct file *file)
160 {
161 	return single_open(file, ppc_rtas_sensors_show, NULL);
162 }
163 
164 struct file_operations ppc_rtas_sensors_operations = {
165 	.open		= sensors_open,
166 	.read		= seq_read,
167 	.llseek		= seq_lseek,
168 	.release	= single_release,
169 };
170 
171 static int poweron_open(struct inode *inode, struct file *file)
172 {
173 	return single_open(file, ppc_rtas_poweron_show, NULL);
174 }
175 
176 struct file_operations ppc_rtas_poweron_operations = {
177 	.open		= poweron_open,
178 	.read		= seq_read,
179 	.llseek		= seq_lseek,
180 	.write		= ppc_rtas_poweron_write,
181 	.release	= single_release,
182 };
183 
184 static int progress_open(struct inode *inode, struct file *file)
185 {
186 	return single_open(file, ppc_rtas_progress_show, NULL);
187 }
188 
189 struct file_operations ppc_rtas_progress_operations = {
190 	.open		= progress_open,
191 	.read		= seq_read,
192 	.llseek		= seq_lseek,
193 	.write		= ppc_rtas_progress_write,
194 	.release	= single_release,
195 };
196 
197 static int clock_open(struct inode *inode, struct file *file)
198 {
199 	return single_open(file, ppc_rtas_clock_show, NULL);
200 }
201 
202 struct file_operations ppc_rtas_clock_operations = {
203 	.open		= clock_open,
204 	.read		= seq_read,
205 	.llseek		= seq_lseek,
206 	.write		= ppc_rtas_clock_write,
207 	.release	= single_release,
208 };
209 
210 static int tone_freq_open(struct inode *inode, struct file *file)
211 {
212 	return single_open(file, ppc_rtas_tone_freq_show, NULL);
213 }
214 
215 struct file_operations ppc_rtas_tone_freq_operations = {
216 	.open		= tone_freq_open,
217 	.read		= seq_read,
218 	.llseek		= seq_lseek,
219 	.write		= ppc_rtas_tone_freq_write,
220 	.release	= single_release,
221 };
222 
223 static int tone_volume_open(struct inode *inode, struct file *file)
224 {
225 	return single_open(file, ppc_rtas_tone_volume_show, NULL);
226 }
227 
228 struct file_operations ppc_rtas_tone_volume_operations = {
229 	.open		= tone_volume_open,
230 	.read		= seq_read,
231 	.llseek		= seq_lseek,
232 	.write		= ppc_rtas_tone_volume_write,
233 	.release	= single_release,
234 };
235 
236 static int rmo_buf_open(struct inode *inode, struct file *file)
237 {
238 	return single_open(file, ppc_rtas_rmo_buf_show, NULL);
239 }
240 
241 struct file_operations ppc_rtas_rmo_buf_ops = {
242 	.open		= rmo_buf_open,
243 	.read		= seq_read,
244 	.llseek		= seq_lseek,
245 	.release	= single_release,
246 };
247 
248 static int ppc_rtas_find_all_sensors(void);
249 static void ppc_rtas_process_sensor(struct seq_file *m,
250 	struct individual_sensor *s, int state, int error, char *loc);
251 static char *ppc_rtas_process_error(int error);
252 static void get_location_code(struct seq_file *m,
253 	struct individual_sensor *s, char *loc);
254 static void check_location_string(struct seq_file *m, char *c);
255 static void check_location(struct seq_file *m, char *c);
256 
257 static int __init proc_rtas_init(void)
258 {
259 	struct proc_dir_entry *entry;
260 
261 	if (_machine != PLATFORM_PSERIES && _machine != PLATFORM_PSERIES_LPAR)
262 		return 1;
263 
264 	rtas_node = of_find_node_by_name(NULL, "rtas");
265 	if (rtas_node == NULL)
266 		return 1;
267 
268 	entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL);
269 	if (entry)
270 		entry->proc_fops = &ppc_rtas_progress_operations;
271 
272 	entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL);
273 	if (entry)
274 		entry->proc_fops = &ppc_rtas_clock_operations;
275 
276 	entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL);
277 	if (entry)
278 		entry->proc_fops = &ppc_rtas_poweron_operations;
279 
280 	entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL);
281 	if (entry)
282 		entry->proc_fops = &ppc_rtas_sensors_operations;
283 
284 	entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO,
285 				  NULL);
286 	if (entry)
287 		entry->proc_fops = &ppc_rtas_tone_freq_operations;
288 
289 	entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL);
290 	if (entry)
291 		entry->proc_fops = &ppc_rtas_tone_volume_operations;
292 
293 	entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL);
294 	if (entry)
295 		entry->proc_fops = &ppc_rtas_rmo_buf_ops;
296 
297 	return 0;
298 }
299 
300 __initcall(proc_rtas_init);
301 
302 static int parse_number(const char __user *p, size_t count, unsigned long *val)
303 {
304 	char buf[40];
305 	char *end;
306 
307 	if (count > 39)
308 		return -EINVAL;
309 
310 	if (copy_from_user(buf, p, count))
311 		return -EFAULT;
312 
313 	buf[count] = 0;
314 
315 	*val = simple_strtoul(buf, &end, 10);
316 	if (*end && *end != '\n')
317 		return -EINVAL;
318 
319 	return 0;
320 }
321 
322 /* ****************************************************************** */
323 /* POWER-ON-TIME                                                      */
324 /* ****************************************************************** */
325 static ssize_t ppc_rtas_poweron_write(struct file *file,
326 		const char __user *buf, size_t count, loff_t *ppos)
327 {
328 	struct rtc_time tm;
329 	unsigned long nowtime;
330 	int error = parse_number(buf, count, &nowtime);
331 	if (error)
332 		return error;
333 
334 	power_on_time = nowtime; /* save the time */
335 
336 	to_tm(nowtime, &tm);
337 
338 	error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
339 			tm.tm_year, tm.tm_mon, tm.tm_mday,
340 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
341 	if (error)
342 		printk(KERN_WARNING "error: setting poweron time returned: %s\n",
343 				ppc_rtas_process_error(error));
344 	return count;
345 }
346 /* ****************************************************************** */
347 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
348 {
349 	if (power_on_time == 0)
350 		seq_printf(m, "Power on time not set\n");
351 	else
352 		seq_printf(m, "%lu\n",power_on_time);
353 	return 0;
354 }
355 
356 /* ****************************************************************** */
357 /* PROGRESS                                                           */
358 /* ****************************************************************** */
359 static ssize_t ppc_rtas_progress_write(struct file *file,
360 		const char __user *buf, size_t count, loff_t *ppos)
361 {
362 	unsigned long hex;
363 
364 	if (count >= MAX_LINELENGTH)
365 		count = MAX_LINELENGTH -1;
366 	if (copy_from_user(progress_led, buf, count)) { /* save the string */
367 		return -EFAULT;
368 	}
369 	progress_led[count] = 0;
370 
371 	/* Lets see if the user passed hexdigits */
372 	hex = simple_strtoul(progress_led, NULL, 10);
373 
374 	rtas_progress ((char *)progress_led, hex);
375 	return count;
376 
377 	/* clear the line */
378 	/* rtas_progress("                   ", 0xffff);*/
379 }
380 /* ****************************************************************** */
381 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
382 {
383 	if (progress_led)
384 		seq_printf(m, "%s\n", progress_led);
385 	return 0;
386 }
387 
388 /* ****************************************************************** */
389 /* CLOCK                                                              */
390 /* ****************************************************************** */
391 static ssize_t ppc_rtas_clock_write(struct file *file,
392 		const char __user *buf, size_t count, loff_t *ppos)
393 {
394 	struct rtc_time tm;
395 	unsigned long nowtime;
396 	int error = parse_number(buf, count, &nowtime);
397 	if (error)
398 		return error;
399 
400 	to_tm(nowtime, &tm);
401 	error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
402 			tm.tm_year, tm.tm_mon, tm.tm_mday,
403 			tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
404 	if (error)
405 		printk(KERN_WARNING "error: setting the clock returned: %s\n",
406 				ppc_rtas_process_error(error));
407 	return count;
408 }
409 /* ****************************************************************** */
410 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
411 {
412 	int ret[8];
413 	int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
414 
415 	if (error) {
416 		printk(KERN_WARNING "error: reading the clock returned: %s\n",
417 				ppc_rtas_process_error(error));
418 		seq_printf(m, "0");
419 	} else {
420 		unsigned int year, mon, day, hour, min, sec;
421 		year = ret[0]; mon  = ret[1]; day  = ret[2];
422 		hour = ret[3]; min  = ret[4]; sec  = ret[5];
423 		seq_printf(m, "%lu\n",
424 				mktime(year, mon, day, hour, min, sec));
425 	}
426 	return 0;
427 }
428 
429 /* ****************************************************************** */
430 /* SENSOR STUFF                                                       */
431 /* ****************************************************************** */
432 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
433 {
434 	int i,j;
435 	int state, error;
436 	int get_sensor_state = rtas_token("get-sensor-state");
437 
438 	seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
439 	seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
440 	seq_printf(m, "********************************************************\n");
441 
442 	if (ppc_rtas_find_all_sensors() != 0) {
443 		seq_printf(m, "\nNo sensors are available\n");
444 		return 0;
445 	}
446 
447 	for (i=0; i<sensors.quant; i++) {
448 		struct individual_sensor *p = &sensors.sensor[i];
449 		char rstr[64];
450 		char *loc;
451 		int llen, offs;
452 
453 		sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
454 		loc = (char *) get_property(rtas_node, rstr, &llen);
455 
456 		/* A sensor may have multiple instances */
457 		for (j = 0, offs = 0; j <= p->quant; j++) {
458 			error =	rtas_call(get_sensor_state, 2, 2, &state,
459 				  	  p->token, j);
460 
461 			ppc_rtas_process_sensor(m, p, state, error, loc);
462 			seq_putc(m, '\n');
463 			if (loc) {
464 				offs += strlen(loc) + 1;
465 				loc += strlen(loc) + 1;
466 				if (offs >= llen)
467 					loc = NULL;
468 			}
469 		}
470 	}
471 	return 0;
472 }
473 
474 /* ****************************************************************** */
475 
476 static int ppc_rtas_find_all_sensors(void)
477 {
478 	unsigned int *utmp;
479 	int len, i;
480 
481 	utmp = (unsigned int *) get_property(rtas_node, "rtas-sensors", &len);
482 	if (utmp == NULL) {
483 		printk (KERN_ERR "error: could not get rtas-sensors\n");
484 		return 1;
485 	}
486 
487 	sensors.quant = len / 8;      /* int + int */
488 
489 	for (i=0; i<sensors.quant; i++) {
490 		sensors.sensor[i].token = *utmp++;
491 		sensors.sensor[i].quant = *utmp++;
492 	}
493 	return 0;
494 }
495 
496 /* ****************************************************************** */
497 /*
498  * Builds a string of what rtas returned
499  */
500 static char *ppc_rtas_process_error(int error)
501 {
502 	switch (error) {
503 		case SENSOR_CRITICAL_HIGH:
504 			return "(critical high)";
505 		case SENSOR_WARNING_HIGH:
506 			return "(warning high)";
507 		case SENSOR_NORMAL:
508 			return "(normal)";
509 		case SENSOR_WARNING_LOW:
510 			return "(warning low)";
511 		case SENSOR_CRITICAL_LOW:
512 			return "(critical low)";
513 		case SENSOR_SUCCESS:
514 			return "(read ok)";
515 		case SENSOR_HW_ERROR:
516 			return "(hardware error)";
517 		case SENSOR_BUSY:
518 			return "(busy)";
519 		case SENSOR_NOT_EXIST:
520 			return "(non existent)";
521 		case SENSOR_DR_ENTITY:
522 			return "(dr entity removed)";
523 		default:
524 			return "(UNKNOWN)";
525 	}
526 }
527 
528 /* ****************************************************************** */
529 /*
530  * Builds a string out of what the sensor said
531  */
532 
533 static void ppc_rtas_process_sensor(struct seq_file *m,
534 	struct individual_sensor *s, int state, int error, char *loc)
535 {
536 	/* Defined return vales */
537 	const char * key_switch[]        = { "Off\t", "Normal\t", "Secure\t",
538 						"Maintenance" };
539 	const char * enclosure_switch[]  = { "Closed", "Open" };
540 	const char * lid_status[]        = { " ", "Open", "Closed" };
541 	const char * power_source[]      = { "AC\t", "Battery",
542 		  				"AC & Battery" };
543 	const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
544 	const char * epow_sensor[]       = {
545 		"EPOW Reset", "Cooling warning", "Power warning",
546 		"System shutdown", "System halt", "EPOW main enclosure",
547 		"EPOW power off" };
548 	const char * battery_cyclestate[]  = { "None", "In progress",
549 						"Requested" };
550 	const char * battery_charging[]    = { "Charging", "Discharching",
551 						"No current flow" };
552 	const char * ibm_drconnector[]     = { "Empty", "Present", "Unusable",
553 						"Exchange" };
554 
555 	int have_strings = 0;
556 	int num_states = 0;
557 	int temperature = 0;
558 	int unknown = 0;
559 
560 	/* What kind of sensor do we have here? */
561 
562 	switch (s->token) {
563 		case KEY_SWITCH:
564 			seq_printf(m, "Key switch:\t");
565 			num_states = sizeof(key_switch) / sizeof(char *);
566 			if (state < num_states) {
567 				seq_printf(m, "%s\t", key_switch[state]);
568 				have_strings = 1;
569 			}
570 			break;
571 		case ENCLOSURE_SWITCH:
572 			seq_printf(m, "Enclosure switch:\t");
573 			num_states = sizeof(enclosure_switch) / sizeof(char *);
574 			if (state < num_states) {
575 				seq_printf(m, "%s\t",
576 						enclosure_switch[state]);
577 				have_strings = 1;
578 			}
579 			break;
580 		case THERMAL_SENSOR:
581 			seq_printf(m, "Temp. (C/F):\t");
582 			temperature = 1;
583 			break;
584 		case LID_STATUS:
585 			seq_printf(m, "Lid status:\t");
586 			num_states = sizeof(lid_status) / sizeof(char *);
587 			if (state < num_states) {
588 				seq_printf(m, "%s\t", lid_status[state]);
589 				have_strings = 1;
590 			}
591 			break;
592 		case POWER_SOURCE:
593 			seq_printf(m, "Power source:\t");
594 			num_states = sizeof(power_source) / sizeof(char *);
595 			if (state < num_states) {
596 				seq_printf(m, "%s\t",
597 						power_source[state]);
598 				have_strings = 1;
599 			}
600 			break;
601 		case BATTERY_VOLTAGE:
602 			seq_printf(m, "Battery voltage:\t");
603 			break;
604 		case BATTERY_REMAINING:
605 			seq_printf(m, "Battery remaining:\t");
606 			num_states = sizeof(battery_remaining) / sizeof(char *);
607 			if (state < num_states)
608 			{
609 				seq_printf(m, "%s\t",
610 						battery_remaining[state]);
611 				have_strings = 1;
612 			}
613 			break;
614 		case BATTERY_PERCENTAGE:
615 			seq_printf(m, "Battery percentage:\t");
616 			break;
617 		case EPOW_SENSOR:
618 			seq_printf(m, "EPOW Sensor:\t");
619 			num_states = sizeof(epow_sensor) / sizeof(char *);
620 			if (state < num_states) {
621 				seq_printf(m, "%s\t", epow_sensor[state]);
622 				have_strings = 1;
623 			}
624 			break;
625 		case BATTERY_CYCLESTATE:
626 			seq_printf(m, "Battery cyclestate:\t");
627 			num_states = sizeof(battery_cyclestate) /
628 				     	sizeof(char *);
629 			if (state < num_states) {
630 				seq_printf(m, "%s\t",
631 						battery_cyclestate[state]);
632 				have_strings = 1;
633 			}
634 			break;
635 		case BATTERY_CHARGING:
636 			seq_printf(m, "Battery Charging:\t");
637 			num_states = sizeof(battery_charging) / sizeof(char *);
638 			if (state < num_states) {
639 				seq_printf(m, "%s\t",
640 						battery_charging[state]);
641 				have_strings = 1;
642 			}
643 			break;
644 		case IBM_SURVEILLANCE:
645 			seq_printf(m, "Surveillance:\t");
646 			break;
647 		case IBM_FANRPM:
648 			seq_printf(m, "Fan (rpm):\t");
649 			break;
650 		case IBM_VOLTAGE:
651 			seq_printf(m, "Voltage (mv):\t");
652 			break;
653 		case IBM_DRCONNECTOR:
654 			seq_printf(m, "DR connector:\t");
655 			num_states = sizeof(ibm_drconnector) / sizeof(char *);
656 			if (state < num_states) {
657 				seq_printf(m, "%s\t",
658 						ibm_drconnector[state]);
659 				have_strings = 1;
660 			}
661 			break;
662 		case IBM_POWERSUPPLY:
663 			seq_printf(m, "Powersupply:\t");
664 			break;
665 		default:
666 			seq_printf(m,  "Unknown sensor (type %d), ignoring it\n",
667 					s->token);
668 			unknown = 1;
669 			have_strings = 1;
670 			break;
671 	}
672 	if (have_strings == 0) {
673 		if (temperature) {
674 			seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
675 		} else
676 			seq_printf(m, "%10d\t", state);
677 	}
678 	if (unknown == 0) {
679 		seq_printf(m, "%s\t", ppc_rtas_process_error(error));
680 		get_location_code(m, s, loc);
681 	}
682 }
683 
684 /* ****************************************************************** */
685 
686 static void check_location(struct seq_file *m, char *c)
687 {
688 	switch (c[0]) {
689 		case LOC_PLANAR:
690 			seq_printf(m, "Planar #%c", c[1]);
691 			break;
692 		case LOC_CPU:
693 			seq_printf(m, "CPU #%c", c[1]);
694 			break;
695 		case LOC_FAN:
696 			seq_printf(m, "Fan #%c", c[1]);
697 			break;
698 		case LOC_RACKMOUNTED:
699 			seq_printf(m, "Rack #%c", c[1]);
700 			break;
701 		case LOC_VOLTAGE:
702 			seq_printf(m, "Voltage #%c", c[1]);
703 			break;
704 		case LOC_LCD:
705 			seq_printf(m, "LCD #%c", c[1]);
706 			break;
707 		case '.':
708 			seq_printf(m, "- %c", c[1]);
709 			break;
710 		default:
711 			seq_printf(m, "Unknown location");
712 			break;
713 	}
714 }
715 
716 
717 /* ****************************************************************** */
718 /*
719  * Format:
720  * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
721  * the '.' may be an abbrevation
722  */
723 static void check_location_string(struct seq_file *m, char *c)
724 {
725 	while (*c) {
726 		if (isalpha(*c) || *c == '.')
727 			check_location(m, c);
728 		else if (*c == '/' || *c == '-')
729 			seq_printf(m, " at ");
730 		c++;
731 	}
732 }
733 
734 
735 /* ****************************************************************** */
736 
737 static void get_location_code(struct seq_file *m, struct individual_sensor *s, char *loc)
738 {
739 	if (!loc || !*loc) {
740 		seq_printf(m, "---");/* does not have a location */
741 	} else {
742 		check_location_string(m, loc);
743 	}
744 	seq_putc(m, ' ');
745 }
746 /* ****************************************************************** */
747 /* INDICATORS - Tone Frequency                                        */
748 /* ****************************************************************** */
749 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
750 		const char __user *buf, size_t count, loff_t *ppos)
751 {
752 	unsigned long freq;
753 	int error = parse_number(buf, count, &freq);
754 	if (error)
755 		return error;
756 
757 	rtas_tone_frequency = freq; /* save it for later */
758 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
759 			TONE_FREQUENCY, 0, freq);
760 	if (error)
761 		printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
762 				ppc_rtas_process_error(error));
763 	return count;
764 }
765 /* ****************************************************************** */
766 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
767 {
768 	seq_printf(m, "%lu\n", rtas_tone_frequency);
769 	return 0;
770 }
771 /* ****************************************************************** */
772 /* INDICATORS - Tone Volume                                           */
773 /* ****************************************************************** */
774 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
775 		const char __user *buf, size_t count, loff_t *ppos)
776 {
777 	unsigned long volume;
778 	int error = parse_number(buf, count, &volume);
779 	if (error)
780 		return error;
781 
782 	if (volume > 100)
783 		volume = 100;
784 
785         rtas_tone_volume = volume; /* save it for later */
786 	error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
787 			TONE_VOLUME, 0, volume);
788 	if (error)
789 		printk(KERN_WARNING "error: setting tone volume returned: %s\n",
790 				ppc_rtas_process_error(error));
791 	return count;
792 }
793 /* ****************************************************************** */
794 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
795 {
796 	seq_printf(m, "%lu\n", rtas_tone_volume);
797 	return 0;
798 }
799 
800 #define RMO_READ_BUF_MAX 30
801 
802 /* RTAS Userspace access */
803 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
804 {
805 	seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
806 	return 0;
807 }
808