1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for interfacing to Open Firmware. 4 * 5 * Paul Mackerras August 1996. 6 * Copyright (C) 1996-2005 Paul Mackerras. 7 * 8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner. 9 * {engebret|bergner}@us.ibm.com 10 */ 11 12 #undef DEBUG_PROM 13 14 /* we cannot use FORTIFY as it brings in new symbols */ 15 #define __NO_FORTIFY 16 17 #include <linux/stdarg.h> 18 #include <linux/kernel.h> 19 #include <linux/string.h> 20 #include <linux/init.h> 21 #include <linux/threads.h> 22 #include <linux/spinlock.h> 23 #include <linux/types.h> 24 #include <linux/pci.h> 25 #include <linux/proc_fs.h> 26 #include <linux/delay.h> 27 #include <linux/initrd.h> 28 #include <linux/bitops.h> 29 #include <linux/pgtable.h> 30 #include <linux/printk.h> 31 #include <linux/of.h> 32 #include <linux/of_fdt.h> 33 #include <asm/prom.h> 34 #include <asm/rtas.h> 35 #include <asm/page.h> 36 #include <asm/processor.h> 37 #include <asm/interrupt.h> 38 #include <asm/irq.h> 39 #include <asm/io.h> 40 #include <asm/smp.h> 41 #include <asm/mmu.h> 42 #include <asm/iommu.h> 43 #include <asm/btext.h> 44 #include <asm/sections.h> 45 #include <asm/setup.h> 46 #include <asm/asm-prototypes.h> 47 #include <asm/ultravisor-api.h> 48 49 #include <linux/linux_logo.h> 50 51 /* All of prom_init bss lives here */ 52 #define __prombss __section(".bss.prominit") 53 54 /* 55 * Eventually bump that one up 56 */ 57 #define DEVTREE_CHUNK_SIZE 0x100000 58 59 /* 60 * This is the size of the local memory reserve map that gets copied 61 * into the boot params passed to the kernel. That size is totally 62 * flexible as the kernel just reads the list until it encounters an 63 * entry with size 0, so it can be changed without breaking binary 64 * compatibility 65 */ 66 #define MEM_RESERVE_MAP_SIZE 8 67 68 /* 69 * prom_init() is called very early on, before the kernel text 70 * and data have been mapped to KERNELBASE. At this point the code 71 * is running at whatever address it has been loaded at. 72 * On ppc32 we compile with -mrelocatable, which means that references 73 * to extern and static variables get relocated automatically. 74 * ppc64 objects are always relocatable, we just need to relocate the 75 * TOC. 76 * 77 * Because OF may have mapped I/O devices into the area starting at 78 * KERNELBASE, particularly on CHRP machines, we can't safely call 79 * OF once the kernel has been mapped to KERNELBASE. Therefore all 80 * OF calls must be done within prom_init(). 81 * 82 * ADDR is used in calls to call_prom. The 4th and following 83 * arguments to call_prom should be 32-bit values. 84 * On ppc64, 64 bit values are truncated to 32 bits (and 85 * fortunately don't get interpreted as two arguments). 86 */ 87 #define ADDR(x) (u32)(unsigned long)(x) 88 89 #ifdef CONFIG_PPC64 90 #define OF_WORKAROUNDS 0 91 #else 92 #define OF_WORKAROUNDS of_workarounds 93 static int of_workarounds __prombss; 94 #endif 95 96 #define OF_WA_CLAIM 1 /* do phys/virt claim separately, then map */ 97 #define OF_WA_LONGTRAIL 2 /* work around longtrail bugs */ 98 99 #ifdef DEBUG_PROM 100 #define prom_debug(x...) prom_printf(x) 101 #else 102 #define prom_debug(x...) do { } while (0) 103 #endif 104 105 106 typedef u32 prom_arg_t; 107 108 struct prom_args { 109 __be32 service; 110 __be32 nargs; 111 __be32 nret; 112 __be32 args[10]; 113 }; 114 115 struct prom_t { 116 ihandle root; 117 phandle chosen; 118 int cpu; 119 ihandle stdout; 120 ihandle mmumap; 121 ihandle memory; 122 }; 123 124 struct mem_map_entry { 125 __be64 base; 126 __be64 size; 127 }; 128 129 typedef __be32 cell_t; 130 131 extern void __start(unsigned long r3, unsigned long r4, unsigned long r5, 132 unsigned long r6, unsigned long r7, unsigned long r8, 133 unsigned long r9); 134 135 #ifdef CONFIG_PPC64 136 extern int enter_prom(struct prom_args *args, unsigned long entry); 137 #else 138 static inline int enter_prom(struct prom_args *args, unsigned long entry) 139 { 140 return ((int (*)(struct prom_args *))entry)(args); 141 } 142 #endif 143 144 extern void copy_and_flush(unsigned long dest, unsigned long src, 145 unsigned long size, unsigned long offset); 146 147 /* prom structure */ 148 static struct prom_t __prombss prom; 149 150 static unsigned long __prombss prom_entry; 151 152 static char __prombss of_stdout_device[256]; 153 static char __prombss prom_scratch[256]; 154 155 static unsigned long __prombss dt_header_start; 156 static unsigned long __prombss dt_struct_start, dt_struct_end; 157 static unsigned long __prombss dt_string_start, dt_string_end; 158 159 static unsigned long __prombss prom_initrd_start, prom_initrd_end; 160 161 #ifdef CONFIG_PPC64 162 static int __prombss prom_iommu_force_on; 163 static int __prombss prom_iommu_off; 164 static unsigned long __prombss prom_tce_alloc_start; 165 static unsigned long __prombss prom_tce_alloc_end; 166 #endif 167 168 #ifdef CONFIG_PPC_PSERIES 169 static bool __prombss prom_radix_disable; 170 static bool __prombss prom_radix_gtse_disable; 171 static bool __prombss prom_xive_disable; 172 #endif 173 174 #ifdef CONFIG_PPC_SVM 175 static bool __prombss prom_svm_enable; 176 #endif 177 178 struct platform_support { 179 bool hash_mmu; 180 bool radix_mmu; 181 bool radix_gtse; 182 bool xive; 183 }; 184 185 /* Platforms codes are now obsolete in the kernel. Now only used within this 186 * file and ultimately gone too. Feel free to change them if you need, they 187 * are not shared with anything outside of this file anymore 188 */ 189 #define PLATFORM_PSERIES 0x0100 190 #define PLATFORM_PSERIES_LPAR 0x0101 191 #define PLATFORM_LPAR 0x0001 192 #define PLATFORM_POWERMAC 0x0400 193 #define PLATFORM_GENERIC 0x0500 194 195 static int __prombss of_platform; 196 197 static char __prombss prom_cmd_line[COMMAND_LINE_SIZE]; 198 199 static unsigned long __prombss prom_memory_limit; 200 201 static unsigned long __prombss alloc_top; 202 static unsigned long __prombss alloc_top_high; 203 static unsigned long __prombss alloc_bottom; 204 static unsigned long __prombss rmo_top; 205 static unsigned long __prombss ram_top; 206 207 static struct mem_map_entry __prombss mem_reserve_map[MEM_RESERVE_MAP_SIZE]; 208 static int __prombss mem_reserve_cnt; 209 210 static cell_t __prombss regbuf[1024]; 211 212 static bool __prombss rtas_has_query_cpu_stopped; 213 214 215 /* 216 * Error results ... some OF calls will return "-1" on error, some 217 * will return 0, some will return either. To simplify, here are 218 * macros to use with any ihandle or phandle return value to check if 219 * it is valid 220 */ 221 222 #define PROM_ERROR (-1u) 223 #define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR) 224 #define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR) 225 226 /* Copied from lib/string.c and lib/kstrtox.c */ 227 228 static int __init prom_strcmp(const char *cs, const char *ct) 229 { 230 unsigned char c1, c2; 231 232 while (1) { 233 c1 = *cs++; 234 c2 = *ct++; 235 if (c1 != c2) 236 return c1 < c2 ? -1 : 1; 237 if (!c1) 238 break; 239 } 240 return 0; 241 } 242 243 static ssize_t __init prom_strscpy_pad(char *dest, const char *src, size_t n) 244 { 245 ssize_t rc; 246 size_t i; 247 248 if (n == 0 || n > INT_MAX) 249 return -E2BIG; 250 251 // Copy up to n bytes 252 for (i = 0; i < n && src[i] != '\0'; i++) 253 dest[i] = src[i]; 254 255 rc = i; 256 257 // If we copied all n then we have run out of space for the nul 258 if (rc == n) { 259 // Rewind by one character to ensure nul termination 260 i--; 261 rc = -E2BIG; 262 } 263 264 for (; i < n; i++) 265 dest[i] = '\0'; 266 267 return rc; 268 } 269 270 static int __init prom_strncmp(const char *cs, const char *ct, size_t count) 271 { 272 unsigned char c1, c2; 273 274 while (count) { 275 c1 = *cs++; 276 c2 = *ct++; 277 if (c1 != c2) 278 return c1 < c2 ? -1 : 1; 279 if (!c1) 280 break; 281 count--; 282 } 283 return 0; 284 } 285 286 static size_t __init prom_strlen(const char *s) 287 { 288 const char *sc; 289 290 for (sc = s; *sc != '\0'; ++sc) 291 /* nothing */; 292 return sc - s; 293 } 294 295 static int __init prom_memcmp(const void *cs, const void *ct, size_t count) 296 { 297 const unsigned char *su1, *su2; 298 int res = 0; 299 300 for (su1 = cs, su2 = ct; 0 < count; ++su1, ++su2, count--) 301 if ((res = *su1 - *su2) != 0) 302 break; 303 return res; 304 } 305 306 static char __init *prom_strstr(const char *s1, const char *s2) 307 { 308 size_t l1, l2; 309 310 l2 = prom_strlen(s2); 311 if (!l2) 312 return (char *)s1; 313 l1 = prom_strlen(s1); 314 while (l1 >= l2) { 315 l1--; 316 if (!prom_memcmp(s1, s2, l2)) 317 return (char *)s1; 318 s1++; 319 } 320 return NULL; 321 } 322 323 static size_t __init prom_strlcat(char *dest, const char *src, size_t count) 324 { 325 size_t dsize = prom_strlen(dest); 326 size_t len = prom_strlen(src); 327 size_t res = dsize + len; 328 329 /* This would be a bug */ 330 if (dsize >= count) 331 return count; 332 333 dest += dsize; 334 count -= dsize; 335 if (len >= count) 336 len = count-1; 337 memcpy(dest, src, len); 338 dest[len] = 0; 339 return res; 340 341 } 342 343 #ifdef CONFIG_PPC_PSERIES 344 static int __init prom_strtobool(const char *s, bool *res) 345 { 346 if (!s) 347 return -EINVAL; 348 349 switch (s[0]) { 350 case 'y': 351 case 'Y': 352 case '1': 353 *res = true; 354 return 0; 355 case 'n': 356 case 'N': 357 case '0': 358 *res = false; 359 return 0; 360 case 'o': 361 case 'O': 362 switch (s[1]) { 363 case 'n': 364 case 'N': 365 *res = true; 366 return 0; 367 case 'f': 368 case 'F': 369 *res = false; 370 return 0; 371 default: 372 break; 373 } 374 break; 375 default: 376 break; 377 } 378 379 return -EINVAL; 380 } 381 #endif 382 383 /* This is the one and *ONLY* place where we actually call open 384 * firmware. 385 */ 386 387 static int __init call_prom(const char *service, int nargs, int nret, ...) 388 { 389 int i; 390 struct prom_args args; 391 va_list list; 392 393 args.service = cpu_to_be32(ADDR(service)); 394 args.nargs = cpu_to_be32(nargs); 395 args.nret = cpu_to_be32(nret); 396 397 va_start(list, nret); 398 for (i = 0; i < nargs; i++) 399 args.args[i] = cpu_to_be32(va_arg(list, prom_arg_t)); 400 va_end(list); 401 402 for (i = 0; i < nret; i++) 403 args.args[nargs+i] = 0; 404 405 if (enter_prom(&args, prom_entry) < 0) 406 return PROM_ERROR; 407 408 return (nret > 0) ? be32_to_cpu(args.args[nargs]) : 0; 409 } 410 411 static int __init call_prom_ret(const char *service, int nargs, int nret, 412 prom_arg_t *rets, ...) 413 { 414 int i; 415 struct prom_args args; 416 va_list list; 417 418 args.service = cpu_to_be32(ADDR(service)); 419 args.nargs = cpu_to_be32(nargs); 420 args.nret = cpu_to_be32(nret); 421 422 va_start(list, rets); 423 for (i = 0; i < nargs; i++) 424 args.args[i] = cpu_to_be32(va_arg(list, prom_arg_t)); 425 va_end(list); 426 427 for (i = 0; i < nret; i++) 428 args.args[nargs+i] = 0; 429 430 if (enter_prom(&args, prom_entry) < 0) 431 return PROM_ERROR; 432 433 if (rets != NULL) 434 for (i = 1; i < nret; ++i) 435 rets[i-1] = be32_to_cpu(args.args[nargs+i]); 436 437 return (nret > 0) ? be32_to_cpu(args.args[nargs]) : 0; 438 } 439 440 441 static void __init prom_print(const char *msg) 442 { 443 const char *p, *q; 444 445 if (prom.stdout == 0) 446 return; 447 448 for (p = msg; *p != 0; p = q) { 449 for (q = p; *q != 0 && *q != '\n'; ++q) 450 ; 451 if (q > p) 452 call_prom("write", 3, 1, prom.stdout, p, q - p); 453 if (*q == 0) 454 break; 455 ++q; 456 call_prom("write", 3, 1, prom.stdout, ADDR("\r\n"), 2); 457 } 458 } 459 460 461 /* 462 * Both prom_print_hex & prom_print_dec takes an unsigned long as input so that 463 * we do not need __udivdi3 or __umoddi3 on 32bits. 464 */ 465 static void __init prom_print_hex(unsigned long val) 466 { 467 int i, nibbles = sizeof(val)*2; 468 char buf[sizeof(val)*2+1]; 469 470 for (i = nibbles-1; i >= 0; i--) { 471 buf[i] = (val & 0xf) + '0'; 472 if (buf[i] > '9') 473 buf[i] += ('a'-'0'-10); 474 val >>= 4; 475 } 476 buf[nibbles] = '\0'; 477 call_prom("write", 3, 1, prom.stdout, buf, nibbles); 478 } 479 480 /* max number of decimal digits in an unsigned long */ 481 #define UL_DIGITS 21 482 static void __init prom_print_dec(unsigned long val) 483 { 484 int i, size; 485 char buf[UL_DIGITS+1]; 486 487 for (i = UL_DIGITS-1; i >= 0; i--) { 488 buf[i] = (val % 10) + '0'; 489 val = val/10; 490 if (val == 0) 491 break; 492 } 493 /* shift stuff down */ 494 size = UL_DIGITS - i; 495 call_prom("write", 3, 1, prom.stdout, buf+i, size); 496 } 497 498 __printf(1, 2) 499 static void __init prom_printf(const char *format, ...) 500 { 501 const char *p, *q, *s; 502 va_list args; 503 unsigned long v; 504 long vs; 505 int n = 0; 506 507 va_start(args, format); 508 for (p = format; *p != 0; p = q) { 509 for (q = p; *q != 0 && *q != '\n' && *q != '%'; ++q) 510 ; 511 if (q > p) 512 call_prom("write", 3, 1, prom.stdout, p, q - p); 513 if (*q == 0) 514 break; 515 if (*q == '\n') { 516 ++q; 517 call_prom("write", 3, 1, prom.stdout, 518 ADDR("\r\n"), 2); 519 continue; 520 } 521 ++q; 522 if (*q == 0) 523 break; 524 while (*q == 'l') { 525 ++q; 526 ++n; 527 } 528 switch (*q) { 529 case 's': 530 ++q; 531 s = va_arg(args, const char *); 532 prom_print(s); 533 break; 534 case 'x': 535 ++q; 536 switch (n) { 537 case 0: 538 v = va_arg(args, unsigned int); 539 break; 540 case 1: 541 v = va_arg(args, unsigned long); 542 break; 543 case 2: 544 default: 545 v = va_arg(args, unsigned long long); 546 break; 547 } 548 prom_print_hex(v); 549 break; 550 case 'u': 551 ++q; 552 switch (n) { 553 case 0: 554 v = va_arg(args, unsigned int); 555 break; 556 case 1: 557 v = va_arg(args, unsigned long); 558 break; 559 case 2: 560 default: 561 v = va_arg(args, unsigned long long); 562 break; 563 } 564 prom_print_dec(v); 565 break; 566 case 'd': 567 ++q; 568 switch (n) { 569 case 0: 570 vs = va_arg(args, int); 571 break; 572 case 1: 573 vs = va_arg(args, long); 574 break; 575 case 2: 576 default: 577 vs = va_arg(args, long long); 578 break; 579 } 580 if (vs < 0) { 581 prom_print("-"); 582 vs = -vs; 583 } 584 prom_print_dec(vs); 585 break; 586 } 587 } 588 va_end(args); 589 } 590 591 592 static unsigned int __init prom_claim(unsigned long virt, unsigned long size, 593 unsigned long align) 594 { 595 596 if (align == 0 && (OF_WORKAROUNDS & OF_WA_CLAIM)) { 597 /* 598 * Old OF requires we claim physical and virtual separately 599 * and then map explicitly (assuming virtual mode) 600 */ 601 int ret; 602 prom_arg_t result; 603 604 ret = call_prom_ret("call-method", 5, 2, &result, 605 ADDR("claim"), prom.memory, 606 align, size, virt); 607 if (ret != 0 || result == -1) 608 return -1; 609 ret = call_prom_ret("call-method", 5, 2, &result, 610 ADDR("claim"), prom.mmumap, 611 align, size, virt); 612 if (ret != 0) { 613 call_prom("call-method", 4, 1, ADDR("release"), 614 prom.memory, size, virt); 615 return -1; 616 } 617 /* the 0x12 is M (coherence) + PP == read/write */ 618 call_prom("call-method", 6, 1, 619 ADDR("map"), prom.mmumap, 0x12, size, virt, virt); 620 return virt; 621 } 622 return call_prom("claim", 3, 1, (prom_arg_t)virt, (prom_arg_t)size, 623 (prom_arg_t)align); 624 } 625 626 static void __init __attribute__((noreturn)) prom_panic(const char *reason) 627 { 628 prom_print(reason); 629 /* Do not call exit because it clears the screen on pmac 630 * it also causes some sort of double-fault on early pmacs */ 631 if (of_platform == PLATFORM_POWERMAC) 632 asm("trap\n"); 633 634 /* ToDo: should put up an SRC here on pSeries */ 635 call_prom("exit", 0, 0); 636 637 for (;;) /* should never get here */ 638 ; 639 } 640 641 642 static int __init prom_next_node(phandle *nodep) 643 { 644 phandle node; 645 646 if ((node = *nodep) != 0 647 && (*nodep = call_prom("child", 1, 1, node)) != 0) 648 return 1; 649 if ((*nodep = call_prom("peer", 1, 1, node)) != 0) 650 return 1; 651 for (;;) { 652 if ((node = call_prom("parent", 1, 1, node)) == 0) 653 return 0; 654 if ((*nodep = call_prom("peer", 1, 1, node)) != 0) 655 return 1; 656 } 657 } 658 659 static inline int __init prom_getprop(phandle node, const char *pname, 660 void *value, size_t valuelen) 661 { 662 return call_prom("getprop", 4, 1, node, ADDR(pname), 663 (u32)(unsigned long) value, (u32) valuelen); 664 } 665 666 static inline int __init prom_getproplen(phandle node, const char *pname) 667 { 668 return call_prom("getproplen", 2, 1, node, ADDR(pname)); 669 } 670 671 static void __init add_string(char **str, const char *q) 672 { 673 char *p = *str; 674 675 while (*q) 676 *p++ = *q++; 677 *p++ = ' '; 678 *str = p; 679 } 680 681 static char *__init tohex(unsigned int x) 682 { 683 static const char digits[] __initconst = "0123456789abcdef"; 684 static char result[9] __prombss; 685 int i; 686 687 result[8] = 0; 688 i = 8; 689 do { 690 --i; 691 result[i] = digits[x & 0xf]; 692 x >>= 4; 693 } while (x != 0 && i > 0); 694 return &result[i]; 695 } 696 697 static int __init prom_setprop(phandle node, const char *nodename, 698 const char *pname, void *value, size_t valuelen) 699 { 700 char cmd[256], *p; 701 702 if (!(OF_WORKAROUNDS & OF_WA_LONGTRAIL)) 703 return call_prom("setprop", 4, 1, node, ADDR(pname), 704 (u32)(unsigned long) value, (u32) valuelen); 705 706 /* gah... setprop doesn't work on longtrail, have to use interpret */ 707 p = cmd; 708 add_string(&p, "dev"); 709 add_string(&p, nodename); 710 add_string(&p, tohex((u32)(unsigned long) value)); 711 add_string(&p, tohex(valuelen)); 712 add_string(&p, tohex(ADDR(pname))); 713 add_string(&p, tohex(prom_strlen(pname))); 714 add_string(&p, "property"); 715 *p = 0; 716 return call_prom("interpret", 1, 1, (u32)(unsigned long) cmd); 717 } 718 719 /* We can't use the standard versions because of relocation headaches. */ 720 #define prom_isxdigit(c) \ 721 (('0' <= (c) && (c) <= '9') || ('a' <= (c) && (c) <= 'f') || ('A' <= (c) && (c) <= 'F')) 722 723 #define prom_isdigit(c) ('0' <= (c) && (c) <= '9') 724 #define prom_islower(c) ('a' <= (c) && (c) <= 'z') 725 #define prom_toupper(c) (prom_islower(c) ? ((c) - 'a' + 'A') : (c)) 726 727 static unsigned long __init prom_strtoul(const char *cp, const char **endp) 728 { 729 unsigned long result = 0, base = 10, value; 730 731 if (*cp == '0') { 732 base = 8; 733 cp++; 734 if (prom_toupper(*cp) == 'X') { 735 cp++; 736 base = 16; 737 } 738 } 739 740 while (prom_isxdigit(*cp) && 741 (value = prom_isdigit(*cp) ? *cp - '0' : prom_toupper(*cp) - 'A' + 10) < base) { 742 result = result * base + value; 743 cp++; 744 } 745 746 if (endp) 747 *endp = cp; 748 749 return result; 750 } 751 752 static unsigned long __init prom_memparse(const char *ptr, const char **retptr) 753 { 754 unsigned long ret = prom_strtoul(ptr, retptr); 755 int shift = 0; 756 757 /* 758 * We can't use a switch here because GCC *may* generate a 759 * jump table which won't work, because we're not running at 760 * the address we're linked at. 761 */ 762 if ('G' == **retptr || 'g' == **retptr) 763 shift = 30; 764 765 if ('M' == **retptr || 'm' == **retptr) 766 shift = 20; 767 768 if ('K' == **retptr || 'k' == **retptr) 769 shift = 10; 770 771 if (shift) { 772 ret <<= shift; 773 (*retptr)++; 774 } 775 776 return ret; 777 } 778 779 /* 780 * Early parsing of the command line passed to the kernel, used for 781 * "mem=x" and the options that affect the iommu 782 */ 783 static void __init early_cmdline_parse(void) 784 { 785 const char *opt; 786 787 char *p; 788 int l = 0; 789 790 prom_cmd_line[0] = 0; 791 p = prom_cmd_line; 792 793 if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && (long)prom.chosen > 0) 794 l = prom_getprop(prom.chosen, "bootargs", p, COMMAND_LINE_SIZE-1); 795 796 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) || l <= 0 || p[0] == '\0') 797 prom_strlcat(prom_cmd_line, " " CONFIG_CMDLINE, 798 sizeof(prom_cmd_line)); 799 800 prom_printf("command line: %s\n", prom_cmd_line); 801 802 #ifdef CONFIG_PPC64 803 opt = prom_strstr(prom_cmd_line, "iommu="); 804 if (opt) { 805 prom_printf("iommu opt is: %s\n", opt); 806 opt += 6; 807 while (*opt && *opt == ' ') 808 opt++; 809 if (!prom_strncmp(opt, "off", 3)) 810 prom_iommu_off = 1; 811 else if (!prom_strncmp(opt, "force", 5)) 812 prom_iommu_force_on = 1; 813 } 814 #endif 815 opt = prom_strstr(prom_cmd_line, "mem="); 816 if (opt) { 817 opt += 4; 818 prom_memory_limit = prom_memparse(opt, (const char **)&opt); 819 #ifdef CONFIG_PPC64 820 /* Align down to 16 MB which is large page size with hash page translation */ 821 prom_memory_limit = ALIGN_DOWN(prom_memory_limit, SZ_16M); 822 #endif 823 } 824 825 #ifdef CONFIG_PPC_PSERIES 826 prom_radix_disable = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT); 827 opt = prom_strstr(prom_cmd_line, "disable_radix"); 828 if (opt) { 829 opt += 13; 830 if (*opt && *opt == '=') { 831 bool val; 832 833 if (prom_strtobool(++opt, &val)) 834 prom_radix_disable = false; 835 else 836 prom_radix_disable = val; 837 } else 838 prom_radix_disable = true; 839 } 840 if (prom_radix_disable) 841 prom_debug("Radix disabled from cmdline\n"); 842 843 opt = prom_strstr(prom_cmd_line, "radix_hcall_invalidate=on"); 844 if (opt) { 845 prom_radix_gtse_disable = true; 846 prom_debug("Radix GTSE disabled from cmdline\n"); 847 } 848 849 opt = prom_strstr(prom_cmd_line, "xive=off"); 850 if (opt) { 851 prom_xive_disable = true; 852 prom_debug("XIVE disabled from cmdline\n"); 853 } 854 #endif /* CONFIG_PPC_PSERIES */ 855 856 #ifdef CONFIG_PPC_SVM 857 opt = prom_strstr(prom_cmd_line, "svm="); 858 if (opt) { 859 bool val; 860 861 opt += sizeof("svm=") - 1; 862 if (!prom_strtobool(opt, &val)) 863 prom_svm_enable = val; 864 } 865 #endif /* CONFIG_PPC_SVM */ 866 } 867 868 #ifdef CONFIG_PPC_PSERIES 869 /* 870 * The architecture vector has an array of PVR mask/value pairs, 871 * followed by # option vectors - 1, followed by the option vectors. 872 * 873 * See prom.h for the definition of the bits specified in the 874 * architecture vector. 875 */ 876 877 /* Firmware expects the value to be n - 1, where n is the # of vectors */ 878 #define NUM_VECTORS(n) ((n) - 1) 879 880 /* 881 * Firmware expects 1 + n - 2, where n is the length of the option vector in 882 * bytes. The 1 accounts for the length byte itself, the - 2 .. ? 883 */ 884 #define VECTOR_LENGTH(n) (1 + (n) - 2) 885 886 struct option_vector1 { 887 u8 byte1; 888 u8 arch_versions; 889 u8 arch_versions3; 890 } __packed; 891 892 struct option_vector2 { 893 u8 byte1; 894 __be16 reserved; 895 __be32 real_base; 896 __be32 real_size; 897 __be32 virt_base; 898 __be32 virt_size; 899 __be32 load_base; 900 __be32 min_rma; 901 __be32 min_load; 902 u8 min_rma_percent; 903 u8 max_pft_size; 904 } __packed; 905 906 struct option_vector3 { 907 u8 byte1; 908 u8 byte2; 909 } __packed; 910 911 struct option_vector4 { 912 u8 byte1; 913 u8 min_vp_cap; 914 } __packed; 915 916 struct option_vector5 { 917 u8 byte1; 918 u8 byte2; 919 u8 byte3; 920 u8 cmo; 921 u8 associativity; 922 u8 bin_opts; 923 u8 micro_checkpoint; 924 u8 reserved0; 925 __be32 max_cpus; 926 __be16 papr_level; 927 __be16 reserved1; 928 u8 platform_facilities; 929 u8 reserved2; 930 __be16 reserved3; 931 u8 subprocessors; 932 u8 byte22; 933 u8 intarch; 934 u8 mmu; 935 u8 hash_ext; 936 u8 radix_ext; 937 } __packed; 938 939 struct option_vector6 { 940 u8 reserved; 941 u8 secondary_pteg; 942 u8 os_name; 943 } __packed; 944 945 struct option_vector7 { 946 u8 os_id[256]; 947 } __packed; 948 949 struct ibm_arch_vec { 950 struct { __be32 mask, val; } pvrs[16]; 951 952 u8 num_vectors; 953 954 u8 vec1_len; 955 struct option_vector1 vec1; 956 957 u8 vec2_len; 958 struct option_vector2 vec2; 959 960 u8 vec3_len; 961 struct option_vector3 vec3; 962 963 u8 vec4_len; 964 struct option_vector4 vec4; 965 966 u8 vec5_len; 967 struct option_vector5 vec5; 968 969 u8 vec6_len; 970 struct option_vector6 vec6; 971 972 u8 vec7_len; 973 struct option_vector7 vec7; 974 } __packed; 975 976 static const struct ibm_arch_vec ibm_architecture_vec_template __initconst = { 977 .pvrs = { 978 { 979 .mask = cpu_to_be32(0xfffe0000), /* POWER5/POWER5+ */ 980 .val = cpu_to_be32(0x003a0000), 981 }, 982 { 983 .mask = cpu_to_be32(0xffff0000), /* POWER6 */ 984 .val = cpu_to_be32(0x003e0000), 985 }, 986 { 987 .mask = cpu_to_be32(0xffff0000), /* POWER7 */ 988 .val = cpu_to_be32(0x003f0000), 989 }, 990 { 991 .mask = cpu_to_be32(0xffff0000), /* POWER8E */ 992 .val = cpu_to_be32(0x004b0000), 993 }, 994 { 995 .mask = cpu_to_be32(0xffff0000), /* POWER8NVL */ 996 .val = cpu_to_be32(0x004c0000), 997 }, 998 { 999 .mask = cpu_to_be32(0xffff0000), /* POWER8 */ 1000 .val = cpu_to_be32(0x004d0000), 1001 }, 1002 { 1003 .mask = cpu_to_be32(0xffff0000), /* POWER9 */ 1004 .val = cpu_to_be32(0x004e0000), 1005 }, 1006 { 1007 .mask = cpu_to_be32(0xffff0000), /* POWER10 */ 1008 .val = cpu_to_be32(0x00800000), 1009 }, 1010 { 1011 .mask = cpu_to_be32(0xffff0000), /* POWER11 */ 1012 .val = cpu_to_be32(0x00820000), 1013 }, 1014 { 1015 .mask = cpu_to_be32(0xffffffff), /* P11 compliant */ 1016 .val = cpu_to_be32(0x0f000007), 1017 }, 1018 { 1019 .mask = cpu_to_be32(0xffffffff), /* all 3.1-compliant */ 1020 .val = cpu_to_be32(0x0f000006), 1021 }, 1022 { 1023 .mask = cpu_to_be32(0xffffffff), /* all 3.00-compliant */ 1024 .val = cpu_to_be32(0x0f000005), 1025 }, 1026 { 1027 .mask = cpu_to_be32(0xffffffff), /* all 2.07-compliant */ 1028 .val = cpu_to_be32(0x0f000004), 1029 }, 1030 { 1031 .mask = cpu_to_be32(0xffffffff), /* all 2.06-compliant */ 1032 .val = cpu_to_be32(0x0f000003), 1033 }, 1034 { 1035 .mask = cpu_to_be32(0xffffffff), /* all 2.05-compliant */ 1036 .val = cpu_to_be32(0x0f000002), 1037 }, 1038 { 1039 .mask = cpu_to_be32(0xfffffffe), /* all 2.04-compliant and earlier */ 1040 .val = cpu_to_be32(0x0f000001), 1041 }, 1042 }, 1043 1044 .num_vectors = NUM_VECTORS(6), 1045 1046 .vec1_len = VECTOR_LENGTH(sizeof(struct option_vector1)), 1047 .vec1 = { 1048 .byte1 = 0, 1049 .arch_versions = OV1_PPC_2_00 | OV1_PPC_2_01 | OV1_PPC_2_02 | OV1_PPC_2_03 | 1050 OV1_PPC_2_04 | OV1_PPC_2_05 | OV1_PPC_2_06 | OV1_PPC_2_07, 1051 .arch_versions3 = OV1_PPC_3_00 | OV1_PPC_3_1, 1052 }, 1053 1054 .vec2_len = VECTOR_LENGTH(sizeof(struct option_vector2)), 1055 /* option vector 2: Open Firmware options supported */ 1056 .vec2 = { 1057 .byte1 = OV2_REAL_MODE, 1058 .reserved = 0, 1059 .real_base = cpu_to_be32(0xffffffff), 1060 .real_size = cpu_to_be32(0xffffffff), 1061 .virt_base = cpu_to_be32(0xffffffff), 1062 .virt_size = cpu_to_be32(0xffffffff), 1063 .load_base = cpu_to_be32(0xffffffff), 1064 .min_rma = cpu_to_be32(512), /* 512MB min RMA */ 1065 .min_load = cpu_to_be32(0xffffffff), /* full client load */ 1066 .min_rma_percent = 0, /* min RMA percentage of total RAM */ 1067 .max_pft_size = 48, /* max log_2(hash table size) */ 1068 }, 1069 1070 .vec3_len = VECTOR_LENGTH(sizeof(struct option_vector3)), 1071 /* option vector 3: processor options supported */ 1072 .vec3 = { 1073 .byte1 = 0, /* don't ignore, don't halt */ 1074 .byte2 = OV3_FP | OV3_VMX | OV3_DFP, 1075 }, 1076 1077 .vec4_len = VECTOR_LENGTH(sizeof(struct option_vector4)), 1078 /* option vector 4: IBM PAPR implementation */ 1079 .vec4 = { 1080 .byte1 = 0, /* don't halt */ 1081 .min_vp_cap = OV4_MIN_ENT_CAP, /* minimum VP entitled capacity */ 1082 }, 1083 1084 .vec5_len = VECTOR_LENGTH(sizeof(struct option_vector5)), 1085 /* option vector 5: PAPR/OF options */ 1086 .vec5 = { 1087 .byte1 = 0, /* don't ignore, don't halt */ 1088 .byte2 = OV5_FEAT(OV5_LPAR) | OV5_FEAT(OV5_SPLPAR) | OV5_FEAT(OV5_LARGE_PAGES) | 1089 OV5_FEAT(OV5_DRCONF_MEMORY) | OV5_FEAT(OV5_DONATE_DEDICATE_CPU) | 1090 #ifdef CONFIG_PCI_MSI 1091 /* PCIe/MSI support. Without MSI full PCIe is not supported */ 1092 OV5_FEAT(OV5_MSI), 1093 #else 1094 0, 1095 #endif 1096 .byte3 = 0, 1097 .cmo = 1098 #ifdef CONFIG_PPC_SMLPAR 1099 OV5_FEAT(OV5_CMO) | OV5_FEAT(OV5_XCMO), 1100 #else 1101 0, 1102 #endif 1103 .associativity = OV5_FEAT(OV5_FORM1_AFFINITY) | OV5_FEAT(OV5_PRRN) | 1104 OV5_FEAT(OV5_FORM2_AFFINITY), 1105 .bin_opts = OV5_FEAT(OV5_RESIZE_HPT) | OV5_FEAT(OV5_HP_EVT), 1106 .micro_checkpoint = 0, 1107 .reserved0 = 0, 1108 .max_cpus = cpu_to_be32(NR_CPUS), /* number of cores supported */ 1109 .papr_level = 0, 1110 .reserved1 = 0, 1111 .platform_facilities = OV5_FEAT(OV5_PFO_HW_RNG) | OV5_FEAT(OV5_PFO_HW_ENCR) | OV5_FEAT(OV5_PFO_HW_842), 1112 .reserved2 = 0, 1113 .reserved3 = 0, 1114 .subprocessors = 1, 1115 .byte22 = OV5_FEAT(OV5_DRMEM_V2) | OV5_FEAT(OV5_DRC_INFO), 1116 .intarch = 0, 1117 .mmu = 0, 1118 .hash_ext = 0, 1119 .radix_ext = 0, 1120 }, 1121 1122 /* option vector 6: IBM PAPR hints */ 1123 .vec6_len = VECTOR_LENGTH(sizeof(struct option_vector6)), 1124 .vec6 = { 1125 .reserved = 0, 1126 .secondary_pteg = 0, 1127 .os_name = OV6_LINUX, 1128 }, 1129 1130 /* option vector 7: OS Identification */ 1131 .vec7_len = VECTOR_LENGTH(sizeof(struct option_vector7)), 1132 }; 1133 1134 static struct ibm_arch_vec __prombss ibm_architecture_vec ____cacheline_aligned; 1135 1136 /* Old method - ELF header with PT_NOTE sections only works on BE */ 1137 #ifdef __BIG_ENDIAN__ 1138 static const struct fake_elf { 1139 Elf32_Ehdr elfhdr; 1140 Elf32_Phdr phdr[2]; 1141 struct chrpnote { 1142 u32 namesz; 1143 u32 descsz; 1144 u32 type; 1145 char name[8]; /* "PowerPC" */ 1146 struct chrpdesc { 1147 u32 real_mode; 1148 u32 real_base; 1149 u32 real_size; 1150 u32 virt_base; 1151 u32 virt_size; 1152 u32 load_base; 1153 } chrpdesc; 1154 } chrpnote; 1155 struct rpanote { 1156 u32 namesz; 1157 u32 descsz; 1158 u32 type; 1159 char name[24]; /* "IBM,RPA-Client-Config" */ 1160 struct rpadesc { 1161 u32 lpar_affinity; 1162 u32 min_rmo_size; 1163 u32 min_rmo_percent; 1164 u32 max_pft_size; 1165 u32 splpar; 1166 u32 min_load; 1167 u32 new_mem_def; 1168 u32 ignore_me; 1169 } rpadesc; 1170 } rpanote; 1171 } fake_elf __initconst = { 1172 .elfhdr = { 1173 .e_ident = { 0x7f, 'E', 'L', 'F', 1174 ELFCLASS32, ELFDATA2MSB, EV_CURRENT }, 1175 .e_type = ET_EXEC, /* yeah right */ 1176 .e_machine = EM_PPC, 1177 .e_version = EV_CURRENT, 1178 .e_phoff = offsetof(struct fake_elf, phdr), 1179 .e_phentsize = sizeof(Elf32_Phdr), 1180 .e_phnum = 2 1181 }, 1182 .phdr = { 1183 [0] = { 1184 .p_type = PT_NOTE, 1185 .p_offset = offsetof(struct fake_elf, chrpnote), 1186 .p_filesz = sizeof(struct chrpnote) 1187 }, [1] = { 1188 .p_type = PT_NOTE, 1189 .p_offset = offsetof(struct fake_elf, rpanote), 1190 .p_filesz = sizeof(struct rpanote) 1191 } 1192 }, 1193 .chrpnote = { 1194 .namesz = sizeof("PowerPC"), 1195 .descsz = sizeof(struct chrpdesc), 1196 .type = 0x1275, 1197 .name = "PowerPC", 1198 .chrpdesc = { 1199 .real_mode = ~0U, /* ~0 means "don't care" */ 1200 .real_base = ~0U, 1201 .real_size = ~0U, 1202 .virt_base = ~0U, 1203 .virt_size = ~0U, 1204 .load_base = ~0U 1205 }, 1206 }, 1207 .rpanote = { 1208 .namesz = sizeof("IBM,RPA-Client-Config"), 1209 .descsz = sizeof(struct rpadesc), 1210 .type = 0x12759999, 1211 .name = "IBM,RPA-Client-Config", 1212 .rpadesc = { 1213 .lpar_affinity = 0, 1214 .min_rmo_size = 64, /* in megabytes */ 1215 .min_rmo_percent = 0, 1216 .max_pft_size = 48, /* 2^48 bytes max PFT size */ 1217 .splpar = 1, 1218 .min_load = ~0U, 1219 .new_mem_def = 0 1220 } 1221 } 1222 }; 1223 #endif /* __BIG_ENDIAN__ */ 1224 1225 static int __init prom_count_smt_threads(void) 1226 { 1227 phandle node; 1228 char type[64]; 1229 unsigned int plen; 1230 1231 /* Pick up th first CPU node we can find */ 1232 for (node = 0; prom_next_node(&node); ) { 1233 type[0] = 0; 1234 prom_getprop(node, "device_type", type, sizeof(type)); 1235 1236 if (prom_strcmp(type, "cpu")) 1237 continue; 1238 /* 1239 * There is an entry for each smt thread, each entry being 1240 * 4 bytes long. All cpus should have the same number of 1241 * smt threads, so return after finding the first. 1242 */ 1243 plen = prom_getproplen(node, "ibm,ppc-interrupt-server#s"); 1244 if (plen == PROM_ERROR) 1245 break; 1246 plen >>= 2; 1247 prom_debug("Found %lu smt threads per core\n", (unsigned long)plen); 1248 1249 /* Sanity check */ 1250 if (plen < 1 || plen > 64) { 1251 prom_printf("Threads per core %lu out of bounds, assuming 1\n", 1252 (unsigned long)plen); 1253 return 1; 1254 } 1255 return plen; 1256 } 1257 prom_debug("No threads found, assuming 1 per core\n"); 1258 1259 return 1; 1260 1261 } 1262 1263 static void __init prom_parse_mmu_model(u8 val, 1264 struct platform_support *support) 1265 { 1266 switch (val) { 1267 case OV5_FEAT(OV5_MMU_DYNAMIC): 1268 case OV5_FEAT(OV5_MMU_EITHER): /* Either Available */ 1269 prom_debug("MMU - either supported\n"); 1270 support->radix_mmu = !prom_radix_disable; 1271 support->hash_mmu = true; 1272 break; 1273 case OV5_FEAT(OV5_MMU_RADIX): /* Only Radix */ 1274 prom_debug("MMU - radix only\n"); 1275 if (prom_radix_disable) { 1276 /* 1277 * If we __have__ to do radix, we're better off ignoring 1278 * the command line rather than not booting. 1279 */ 1280 prom_printf("WARNING: Ignoring cmdline option disable_radix\n"); 1281 } 1282 support->radix_mmu = true; 1283 break; 1284 case OV5_FEAT(OV5_MMU_HASH): 1285 prom_debug("MMU - hash only\n"); 1286 support->hash_mmu = true; 1287 break; 1288 default: 1289 prom_debug("Unknown mmu support option: 0x%x\n", val); 1290 break; 1291 } 1292 } 1293 1294 static void __init prom_parse_xive_model(u8 val, 1295 struct platform_support *support) 1296 { 1297 switch (val) { 1298 case OV5_FEAT(OV5_XIVE_EITHER): /* Either Available */ 1299 prom_debug("XIVE - either mode supported\n"); 1300 support->xive = !prom_xive_disable; 1301 break; 1302 case OV5_FEAT(OV5_XIVE_EXPLOIT): /* Only Exploitation mode */ 1303 prom_debug("XIVE - exploitation mode supported\n"); 1304 if (prom_xive_disable) { 1305 /* 1306 * If we __have__ to do XIVE, we're better off ignoring 1307 * the command line rather than not booting. 1308 */ 1309 prom_printf("WARNING: Ignoring cmdline option xive=off\n"); 1310 } 1311 support->xive = true; 1312 break; 1313 case OV5_FEAT(OV5_XIVE_LEGACY): /* Only Legacy mode */ 1314 prom_debug("XIVE - legacy mode supported\n"); 1315 break; 1316 default: 1317 prom_debug("Unknown xive support option: 0x%x\n", val); 1318 break; 1319 } 1320 } 1321 1322 static void __init prom_parse_platform_support(u8 index, u8 val, 1323 struct platform_support *support) 1324 { 1325 switch (index) { 1326 case OV5_INDX(OV5_MMU_SUPPORT): /* MMU Model */ 1327 prom_parse_mmu_model(val & OV5_FEAT(OV5_MMU_SUPPORT), support); 1328 break; 1329 case OV5_INDX(OV5_RADIX_GTSE): /* Radix Extensions */ 1330 if (val & OV5_FEAT(OV5_RADIX_GTSE)) 1331 support->radix_gtse = !prom_radix_gtse_disable; 1332 break; 1333 case OV5_INDX(OV5_XIVE_SUPPORT): /* Interrupt mode */ 1334 prom_parse_xive_model(val & OV5_FEAT(OV5_XIVE_SUPPORT), 1335 support); 1336 break; 1337 } 1338 } 1339 1340 static void __init prom_check_platform_support(void) 1341 { 1342 struct platform_support supported = { 1343 .hash_mmu = false, 1344 .radix_mmu = false, 1345 .radix_gtse = false, 1346 .xive = false 1347 }; 1348 int prop_len = prom_getproplen(prom.chosen, 1349 "ibm,arch-vec-5-platform-support"); 1350 1351 /* 1352 * First copy the architecture vec template 1353 * 1354 * use memcpy() instead of *vec = *vec_template so that GCC replaces it 1355 * by __memcpy() when KASAN is active 1356 */ 1357 memcpy(&ibm_architecture_vec, &ibm_architecture_vec_template, 1358 sizeof(ibm_architecture_vec)); 1359 1360 prom_strscpy_pad(ibm_architecture_vec.vec7.os_id, linux_banner, 256); 1361 1362 if (prop_len > 1) { 1363 int i; 1364 u8 vec[8]; 1365 prom_debug("Found ibm,arch-vec-5-platform-support, len: %d\n", 1366 prop_len); 1367 if (prop_len > sizeof(vec)) 1368 prom_printf("WARNING: ibm,arch-vec-5-platform-support longer than expected (len: %d)\n", 1369 prop_len); 1370 prom_getprop(prom.chosen, "ibm,arch-vec-5-platform-support", &vec, sizeof(vec)); 1371 for (i = 0; i < prop_len; i += 2) { 1372 prom_debug("%d: index = 0x%x val = 0x%x\n", i / 2, vec[i], vec[i + 1]); 1373 prom_parse_platform_support(vec[i], vec[i + 1], &supported); 1374 } 1375 } 1376 1377 if (supported.radix_mmu && IS_ENABLED(CONFIG_PPC_RADIX_MMU)) { 1378 /* Radix preferred - Check if GTSE is also supported */ 1379 prom_debug("Asking for radix\n"); 1380 ibm_architecture_vec.vec5.mmu = OV5_FEAT(OV5_MMU_RADIX); 1381 if (supported.radix_gtse) 1382 ibm_architecture_vec.vec5.radix_ext = 1383 OV5_FEAT(OV5_RADIX_GTSE); 1384 else 1385 prom_debug("Radix GTSE isn't supported\n"); 1386 } else if (supported.hash_mmu) { 1387 /* Default to hash mmu (if we can) */ 1388 prom_debug("Asking for hash\n"); 1389 ibm_architecture_vec.vec5.mmu = OV5_FEAT(OV5_MMU_HASH); 1390 } else { 1391 /* We're probably on a legacy hypervisor */ 1392 prom_debug("Assuming legacy hash support\n"); 1393 } 1394 1395 if (supported.xive) { 1396 prom_debug("Asking for XIVE\n"); 1397 ibm_architecture_vec.vec5.intarch = OV5_FEAT(OV5_XIVE_EXPLOIT); 1398 } 1399 } 1400 1401 static void __init prom_send_capabilities(void) 1402 { 1403 ihandle root; 1404 prom_arg_t ret; 1405 u32 cores; 1406 1407 /* Check ibm,arch-vec-5-platform-support and fixup vec5 if required */ 1408 prom_check_platform_support(); 1409 1410 root = call_prom("open", 1, 1, ADDR("/")); 1411 if (root != 0) { 1412 /* We need to tell the FW about the number of cores we support. 1413 * 1414 * To do that, we count the number of threads on the first core 1415 * (we assume this is the same for all cores) and use it to 1416 * divide NR_CPUS. 1417 */ 1418 1419 cores = DIV_ROUND_UP(NR_CPUS, prom_count_smt_threads()); 1420 prom_printf("Max number of cores passed to firmware: %u (NR_CPUS = %d)\n", 1421 cores, NR_CPUS); 1422 1423 ibm_architecture_vec.vec5.max_cpus = cpu_to_be32(cores); 1424 1425 /* try calling the ibm,client-architecture-support method */ 1426 prom_printf("Calling ibm,client-architecture-support..."); 1427 if (call_prom_ret("call-method", 3, 2, &ret, 1428 ADDR("ibm,client-architecture-support"), 1429 root, 1430 ADDR(&ibm_architecture_vec)) == 0) { 1431 /* the call exists... */ 1432 if (ret) 1433 prom_printf("\nWARNING: ibm,client-architecture" 1434 "-support call FAILED!\n"); 1435 call_prom("close", 1, 0, root); 1436 prom_printf(" done\n"); 1437 return; 1438 } 1439 call_prom("close", 1, 0, root); 1440 prom_printf(" not implemented\n"); 1441 } 1442 1443 #ifdef __BIG_ENDIAN__ 1444 { 1445 ihandle elfloader; 1446 1447 /* no ibm,client-architecture-support call, try the old way */ 1448 elfloader = call_prom("open", 1, 1, 1449 ADDR("/packages/elf-loader")); 1450 if (elfloader == 0) { 1451 prom_printf("couldn't open /packages/elf-loader\n"); 1452 return; 1453 } 1454 call_prom("call-method", 3, 1, ADDR("process-elf-header"), 1455 elfloader, ADDR(&fake_elf)); 1456 call_prom("close", 1, 0, elfloader); 1457 } 1458 #endif /* __BIG_ENDIAN__ */ 1459 } 1460 #endif /* CONFIG_PPC_PSERIES */ 1461 1462 /* 1463 * Memory allocation strategy... our layout is normally: 1464 * 1465 * at 14Mb or more we have vmlinux, then a gap and initrd. In some 1466 * rare cases, initrd might end up being before the kernel though. 1467 * We assume this won't override the final kernel at 0, we have no 1468 * provision to handle that in this version, but it should hopefully 1469 * never happen. 1470 * 1471 * alloc_top is set to the top of RMO, eventually shrink down if the 1472 * TCEs overlap 1473 * 1474 * alloc_bottom is set to the top of kernel/initrd 1475 * 1476 * from there, allocations are done this way : rtas is allocated 1477 * topmost, and the device-tree is allocated from the bottom. We try 1478 * to grow the device-tree allocation as we progress. If we can't, 1479 * then we fail, we don't currently have a facility to restart 1480 * elsewhere, but that shouldn't be necessary. 1481 * 1482 * Note that calls to reserve_mem have to be done explicitly, memory 1483 * allocated with either alloc_up or alloc_down isn't automatically 1484 * reserved. 1485 */ 1486 1487 1488 /* 1489 * Allocates memory in the RMO upward from the kernel/initrd 1490 * 1491 * When align is 0, this is a special case, it means to allocate in place 1492 * at the current location of alloc_bottom or fail (that is basically 1493 * extending the previous allocation). Used for the device-tree flattening 1494 */ 1495 static unsigned long __init alloc_up(unsigned long size, unsigned long align) 1496 { 1497 unsigned long base = alloc_bottom; 1498 unsigned long addr = 0; 1499 1500 if (align) 1501 base = ALIGN(base, align); 1502 prom_debug("%s(%lx, %lx)\n", __func__, size, align); 1503 if (ram_top == 0) 1504 prom_panic("alloc_up() called with mem not initialized\n"); 1505 1506 if (align) 1507 base = ALIGN(alloc_bottom, align); 1508 else 1509 base = alloc_bottom; 1510 1511 for(; (base + size) <= alloc_top; 1512 base = ALIGN(base + 0x100000, align)) { 1513 prom_debug(" trying: 0x%lx\n\r", base); 1514 addr = (unsigned long)prom_claim(base, size, 0); 1515 if (addr != PROM_ERROR && addr != 0) 1516 break; 1517 addr = 0; 1518 if (align == 0) 1519 break; 1520 } 1521 if (addr == 0) 1522 return 0; 1523 alloc_bottom = addr + size; 1524 1525 prom_debug(" -> %lx\n", addr); 1526 prom_debug(" alloc_bottom : %lx\n", alloc_bottom); 1527 prom_debug(" alloc_top : %lx\n", alloc_top); 1528 prom_debug(" alloc_top_hi : %lx\n", alloc_top_high); 1529 prom_debug(" rmo_top : %lx\n", rmo_top); 1530 prom_debug(" ram_top : %lx\n", ram_top); 1531 1532 return addr; 1533 } 1534 1535 /* 1536 * Allocates memory downward, either from top of RMO, or if highmem 1537 * is set, from the top of RAM. Note that this one doesn't handle 1538 * failures. It does claim memory if highmem is not set. 1539 */ 1540 static unsigned long __init alloc_down(unsigned long size, unsigned long align, 1541 int highmem) 1542 { 1543 unsigned long base, addr = 0; 1544 1545 prom_debug("%s(%lx, %lx, %s)\n", __func__, size, align, 1546 highmem ? "(high)" : "(low)"); 1547 if (ram_top == 0) 1548 prom_panic("alloc_down() called with mem not initialized\n"); 1549 1550 if (highmem) { 1551 /* Carve out storage for the TCE table. */ 1552 addr = ALIGN_DOWN(alloc_top_high - size, align); 1553 if (addr <= alloc_bottom) 1554 return 0; 1555 /* Will we bump into the RMO ? If yes, check out that we 1556 * didn't overlap existing allocations there, if we did, 1557 * we are dead, we must be the first in town ! 1558 */ 1559 if (addr < rmo_top) { 1560 /* Good, we are first */ 1561 if (alloc_top == rmo_top) 1562 alloc_top = rmo_top = addr; 1563 else 1564 return 0; 1565 } 1566 alloc_top_high = addr; 1567 goto bail; 1568 } 1569 1570 base = ALIGN_DOWN(alloc_top - size, align); 1571 for (; base > alloc_bottom; 1572 base = ALIGN_DOWN(base - 0x100000, align)) { 1573 prom_debug(" trying: 0x%lx\n\r", base); 1574 addr = (unsigned long)prom_claim(base, size, 0); 1575 if (addr != PROM_ERROR && addr != 0) 1576 break; 1577 addr = 0; 1578 } 1579 if (addr == 0) 1580 return 0; 1581 alloc_top = addr; 1582 1583 bail: 1584 prom_debug(" -> %lx\n", addr); 1585 prom_debug(" alloc_bottom : %lx\n", alloc_bottom); 1586 prom_debug(" alloc_top : %lx\n", alloc_top); 1587 prom_debug(" alloc_top_hi : %lx\n", alloc_top_high); 1588 prom_debug(" rmo_top : %lx\n", rmo_top); 1589 prom_debug(" ram_top : %lx\n", ram_top); 1590 1591 return addr; 1592 } 1593 1594 /* 1595 * Parse a "reg" cell 1596 */ 1597 static unsigned long __init prom_next_cell(int s, cell_t **cellp) 1598 { 1599 cell_t *p = *cellp; 1600 unsigned long r = 0; 1601 1602 /* Ignore more than 2 cells */ 1603 while (s > sizeof(unsigned long) / 4) { 1604 p++; 1605 s--; 1606 } 1607 r = be32_to_cpu(*p++); 1608 #ifdef CONFIG_PPC64 1609 if (s > 1) { 1610 r <<= 32; 1611 r |= be32_to_cpu(*(p++)); 1612 } 1613 #endif 1614 *cellp = p; 1615 return r; 1616 } 1617 1618 /* 1619 * Very dumb function for adding to the memory reserve list, but 1620 * we don't need anything smarter at this point 1621 * 1622 * XXX Eventually check for collisions. They should NEVER happen. 1623 * If problems seem to show up, it would be a good start to track 1624 * them down. 1625 */ 1626 static void __init reserve_mem(u64 base, u64 size) 1627 { 1628 u64 top = base + size; 1629 unsigned long cnt = mem_reserve_cnt; 1630 1631 if (size == 0) 1632 return; 1633 1634 /* We need to always keep one empty entry so that we 1635 * have our terminator with "size" set to 0 since we are 1636 * dumb and just copy this entire array to the boot params 1637 */ 1638 base = ALIGN_DOWN(base, PAGE_SIZE); 1639 top = ALIGN(top, PAGE_SIZE); 1640 size = top - base; 1641 1642 if (cnt >= (MEM_RESERVE_MAP_SIZE - 1)) 1643 prom_panic("Memory reserve map exhausted !\n"); 1644 mem_reserve_map[cnt].base = cpu_to_be64(base); 1645 mem_reserve_map[cnt].size = cpu_to_be64(size); 1646 mem_reserve_cnt = cnt + 1; 1647 } 1648 1649 /* 1650 * Initialize memory allocation mechanism, parse "memory" nodes and 1651 * obtain that way the top of memory and RMO to setup out local allocator 1652 */ 1653 static void __init prom_init_mem(void) 1654 { 1655 phandle node; 1656 char type[64]; 1657 unsigned int plen; 1658 cell_t *p, *endp; 1659 __be32 val; 1660 u32 rac, rsc; 1661 1662 /* 1663 * We iterate the memory nodes to find 1664 * 1) top of RMO (first node) 1665 * 2) top of memory 1666 */ 1667 val = cpu_to_be32(2); 1668 prom_getprop(prom.root, "#address-cells", &val, sizeof(val)); 1669 rac = be32_to_cpu(val); 1670 val = cpu_to_be32(1); 1671 prom_getprop(prom.root, "#size-cells", &val, sizeof(rsc)); 1672 rsc = be32_to_cpu(val); 1673 prom_debug("root_addr_cells: %x\n", rac); 1674 prom_debug("root_size_cells: %x\n", rsc); 1675 1676 prom_debug("scanning memory:\n"); 1677 1678 for (node = 0; prom_next_node(&node); ) { 1679 type[0] = 0; 1680 prom_getprop(node, "device_type", type, sizeof(type)); 1681 1682 if (type[0] == 0) { 1683 /* 1684 * CHRP Longtrail machines have no device_type 1685 * on the memory node, so check the name instead... 1686 */ 1687 prom_getprop(node, "name", type, sizeof(type)); 1688 } 1689 if (prom_strcmp(type, "memory")) 1690 continue; 1691 1692 plen = prom_getprop(node, "reg", regbuf, sizeof(regbuf)); 1693 if (plen > sizeof(regbuf)) { 1694 prom_printf("memory node too large for buffer !\n"); 1695 plen = sizeof(regbuf); 1696 } 1697 p = regbuf; 1698 endp = p + (plen / sizeof(cell_t)); 1699 1700 #ifdef DEBUG_PROM 1701 memset(prom_scratch, 0, sizeof(prom_scratch)); 1702 call_prom("package-to-path", 3, 1, node, prom_scratch, 1703 sizeof(prom_scratch) - 1); 1704 prom_debug(" node %s :\n", prom_scratch); 1705 #endif /* DEBUG_PROM */ 1706 1707 while ((endp - p) >= (rac + rsc)) { 1708 unsigned long base, size; 1709 1710 base = prom_next_cell(rac, &p); 1711 size = prom_next_cell(rsc, &p); 1712 1713 if (size == 0) 1714 continue; 1715 prom_debug(" %lx %lx\n", base, size); 1716 if (base == 0 && (of_platform & PLATFORM_LPAR)) 1717 rmo_top = size; 1718 if ((base + size) > ram_top) 1719 ram_top = base + size; 1720 } 1721 } 1722 1723 alloc_bottom = PAGE_ALIGN((unsigned long)&_end + 0x4000); 1724 1725 /* 1726 * If prom_memory_limit is set we reduce the upper limits *except* for 1727 * alloc_top_high. This must be the real top of RAM so we can put 1728 * TCE's up there. 1729 */ 1730 1731 alloc_top_high = ram_top; 1732 1733 if (prom_memory_limit) { 1734 if (prom_memory_limit <= alloc_bottom) { 1735 prom_printf("Ignoring mem=%lx <= alloc_bottom.\n", 1736 prom_memory_limit); 1737 prom_memory_limit = 0; 1738 } else if (prom_memory_limit >= ram_top) { 1739 prom_printf("Ignoring mem=%lx >= ram_top.\n", 1740 prom_memory_limit); 1741 prom_memory_limit = 0; 1742 } else { 1743 ram_top = prom_memory_limit; 1744 rmo_top = min(rmo_top, prom_memory_limit); 1745 } 1746 } 1747 1748 /* 1749 * Setup our top alloc point, that is top of RMO or top of 1750 * segment 0 when running non-LPAR. 1751 * Some RS64 machines have buggy firmware where claims up at 1752 * 1GB fail. Cap at 768MB as a workaround. 1753 * Since 768MB is plenty of room, and we need to cap to something 1754 * reasonable on 32-bit, cap at 768MB on all machines. 1755 */ 1756 if (!rmo_top) 1757 rmo_top = ram_top; 1758 rmo_top = min(0x30000000ul, rmo_top); 1759 alloc_top = rmo_top; 1760 alloc_top_high = ram_top; 1761 1762 /* 1763 * Check if we have an initrd after the kernel but still inside 1764 * the RMO. If we do move our bottom point to after it. 1765 */ 1766 if (prom_initrd_start && 1767 prom_initrd_start < rmo_top && 1768 prom_initrd_end > alloc_bottom) 1769 alloc_bottom = PAGE_ALIGN(prom_initrd_end); 1770 1771 prom_printf("memory layout at init:\n"); 1772 prom_printf(" memory_limit : %lx (16 MB aligned)\n", 1773 prom_memory_limit); 1774 prom_printf(" alloc_bottom : %lx\n", alloc_bottom); 1775 prom_printf(" alloc_top : %lx\n", alloc_top); 1776 prom_printf(" alloc_top_hi : %lx\n", alloc_top_high); 1777 prom_printf(" rmo_top : %lx\n", rmo_top); 1778 prom_printf(" ram_top : %lx\n", ram_top); 1779 } 1780 1781 static void __init prom_close_stdin(void) 1782 { 1783 __be32 val; 1784 ihandle stdin; 1785 1786 if (prom_getprop(prom.chosen, "stdin", &val, sizeof(val)) > 0) { 1787 stdin = be32_to_cpu(val); 1788 call_prom("close", 1, 0, stdin); 1789 } 1790 } 1791 1792 #ifdef CONFIG_PPC_SVM 1793 static int __init prom_rtas_hcall(uint64_t args) 1794 { 1795 register uint64_t arg1 asm("r3") = H_RTAS; 1796 register uint64_t arg2 asm("r4") = args; 1797 1798 asm volatile("sc 1\n" : "=r" (arg1) : 1799 "r" (arg1), 1800 "r" (arg2) :); 1801 srr_regs_clobbered(); 1802 1803 return arg1; 1804 } 1805 1806 static struct rtas_args __prombss os_term_args; 1807 1808 static void __init prom_rtas_os_term(char *str) 1809 { 1810 phandle rtas_node; 1811 __be32 val; 1812 u32 token; 1813 1814 prom_debug("%s: start...\n", __func__); 1815 rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas")); 1816 prom_debug("rtas_node: %x\n", rtas_node); 1817 if (!PHANDLE_VALID(rtas_node)) 1818 return; 1819 1820 val = 0; 1821 prom_getprop(rtas_node, "ibm,os-term", &val, sizeof(val)); 1822 token = be32_to_cpu(val); 1823 prom_debug("ibm,os-term: %x\n", token); 1824 if (token == 0) 1825 prom_panic("Could not get token for ibm,os-term\n"); 1826 os_term_args.token = cpu_to_be32(token); 1827 os_term_args.nargs = cpu_to_be32(1); 1828 os_term_args.nret = cpu_to_be32(1); 1829 os_term_args.args[0] = cpu_to_be32(__pa(str)); 1830 prom_rtas_hcall((uint64_t)&os_term_args); 1831 } 1832 #endif /* CONFIG_PPC_SVM */ 1833 1834 /* 1835 * Allocate room for and instantiate RTAS 1836 */ 1837 static void __init prom_instantiate_rtas(void) 1838 { 1839 phandle rtas_node; 1840 ihandle rtas_inst; 1841 u32 base, entry = 0; 1842 __be32 val; 1843 u32 size = 0; 1844 1845 prom_debug("prom_instantiate_rtas: start...\n"); 1846 1847 rtas_node = call_prom("finddevice", 1, 1, ADDR("/rtas")); 1848 prom_debug("rtas_node: %x\n", rtas_node); 1849 if (!PHANDLE_VALID(rtas_node)) 1850 return; 1851 1852 val = 0; 1853 prom_getprop(rtas_node, "rtas-size", &val, sizeof(size)); 1854 size = be32_to_cpu(val); 1855 if (size == 0) 1856 return; 1857 1858 base = alloc_down(size, PAGE_SIZE, 0); 1859 if (base == 0) 1860 prom_panic("Could not allocate memory for RTAS\n"); 1861 1862 rtas_inst = call_prom("open", 1, 1, ADDR("/rtas")); 1863 if (!IHANDLE_VALID(rtas_inst)) { 1864 prom_printf("opening rtas package failed (%x)\n", rtas_inst); 1865 return; 1866 } 1867 1868 prom_printf("instantiating rtas at 0x%x...", base); 1869 1870 if (call_prom_ret("call-method", 3, 2, &entry, 1871 ADDR("instantiate-rtas"), 1872 rtas_inst, base) != 0 1873 || entry == 0) { 1874 prom_printf(" failed\n"); 1875 return; 1876 } 1877 prom_printf(" done\n"); 1878 1879 reserve_mem(base, size); 1880 1881 val = cpu_to_be32(base); 1882 prom_setprop(rtas_node, "/rtas", "linux,rtas-base", 1883 &val, sizeof(val)); 1884 val = cpu_to_be32(entry); 1885 prom_setprop(rtas_node, "/rtas", "linux,rtas-entry", 1886 &val, sizeof(val)); 1887 1888 /* Check if it supports "query-cpu-stopped-state" */ 1889 if (prom_getprop(rtas_node, "query-cpu-stopped-state", 1890 &val, sizeof(val)) != PROM_ERROR) 1891 rtas_has_query_cpu_stopped = true; 1892 1893 prom_debug("rtas base = 0x%x\n", base); 1894 prom_debug("rtas entry = 0x%x\n", entry); 1895 prom_debug("rtas size = 0x%x\n", size); 1896 1897 prom_debug("prom_instantiate_rtas: end...\n"); 1898 } 1899 1900 #ifdef CONFIG_PPC64 1901 /* 1902 * Allocate room for and instantiate Stored Measurement Log (SML) 1903 */ 1904 static void __init prom_instantiate_sml(void) 1905 { 1906 phandle ibmvtpm_node; 1907 ihandle ibmvtpm_inst; 1908 u32 entry = 0, size = 0, succ = 0; 1909 u64 base; 1910 __be32 val; 1911 1912 prom_debug("prom_instantiate_sml: start...\n"); 1913 1914 ibmvtpm_node = call_prom("finddevice", 1, 1, ADDR("/vdevice/vtpm")); 1915 prom_debug("ibmvtpm_node: %x\n", ibmvtpm_node); 1916 if (!PHANDLE_VALID(ibmvtpm_node)) 1917 return; 1918 1919 ibmvtpm_inst = call_prom("open", 1, 1, ADDR("/vdevice/vtpm")); 1920 if (!IHANDLE_VALID(ibmvtpm_inst)) { 1921 prom_printf("opening vtpm package failed (%x)\n", ibmvtpm_inst); 1922 return; 1923 } 1924 1925 if (prom_getprop(ibmvtpm_node, "ibm,sml-efi-reformat-supported", 1926 &val, sizeof(val)) != PROM_ERROR) { 1927 if (call_prom_ret("call-method", 2, 2, &succ, 1928 ADDR("reformat-sml-to-efi-alignment"), 1929 ibmvtpm_inst) != 0 || succ == 0) { 1930 prom_printf("Reformat SML to EFI alignment failed\n"); 1931 return; 1932 } 1933 1934 if (call_prom_ret("call-method", 2, 2, &size, 1935 ADDR("sml-get-allocated-size"), 1936 ibmvtpm_inst) != 0 || size == 0) { 1937 prom_printf("SML get allocated size failed\n"); 1938 return; 1939 } 1940 } else { 1941 if (call_prom_ret("call-method", 2, 2, &size, 1942 ADDR("sml-get-handover-size"), 1943 ibmvtpm_inst) != 0 || size == 0) { 1944 prom_printf("SML get handover size failed\n"); 1945 return; 1946 } 1947 } 1948 1949 base = alloc_down(size, PAGE_SIZE, 0); 1950 if (base == 0) 1951 prom_panic("Could not allocate memory for sml\n"); 1952 1953 prom_printf("instantiating sml at 0x%llx...", base); 1954 1955 memset((void *)base, 0, size); 1956 1957 if (call_prom_ret("call-method", 4, 2, &entry, 1958 ADDR("sml-handover"), 1959 ibmvtpm_inst, size, base) != 0 || entry == 0) { 1960 prom_printf("SML handover failed\n"); 1961 return; 1962 } 1963 prom_printf(" done\n"); 1964 1965 reserve_mem(base, size); 1966 1967 prom_setprop(ibmvtpm_node, "/vdevice/vtpm", "linux,sml-base", 1968 &base, sizeof(base)); 1969 prom_setprop(ibmvtpm_node, "/vdevice/vtpm", "linux,sml-size", 1970 &size, sizeof(size)); 1971 1972 prom_debug("sml base = 0x%llx\n", base); 1973 prom_debug("sml size = 0x%x\n", size); 1974 1975 prom_debug("prom_instantiate_sml: end...\n"); 1976 } 1977 1978 /* 1979 * Allocate room for and initialize TCE tables 1980 */ 1981 #ifdef __BIG_ENDIAN__ 1982 static void __init prom_initialize_tce_table(void) 1983 { 1984 phandle node; 1985 ihandle phb_node; 1986 char compatible[64], type[64], model[64]; 1987 char *path = prom_scratch; 1988 u64 base, align; 1989 u32 minalign, minsize; 1990 u64 tce_entry, *tce_entryp; 1991 u64 local_alloc_top, local_alloc_bottom; 1992 u64 i; 1993 1994 if (prom_iommu_off) 1995 return; 1996 1997 prom_debug("starting prom_initialize_tce_table\n"); 1998 1999 /* Cache current top of allocs so we reserve a single block */ 2000 local_alloc_top = alloc_top_high; 2001 local_alloc_bottom = local_alloc_top; 2002 2003 /* Search all nodes looking for PHBs. */ 2004 for (node = 0; prom_next_node(&node); ) { 2005 compatible[0] = 0; 2006 type[0] = 0; 2007 model[0] = 0; 2008 prom_getprop(node, "compatible", 2009 compatible, sizeof(compatible)); 2010 prom_getprop(node, "device_type", type, sizeof(type)); 2011 prom_getprop(node, "model", model, sizeof(model)); 2012 2013 if ((type[0] == 0) || (prom_strstr(type, "pci") == NULL)) 2014 continue; 2015 2016 /* Keep the old logic intact to avoid regression. */ 2017 if (compatible[0] != 0) { 2018 if ((prom_strstr(compatible, "python") == NULL) && 2019 (prom_strstr(compatible, "Speedwagon") == NULL) && 2020 (prom_strstr(compatible, "Winnipeg") == NULL)) 2021 continue; 2022 } else if (model[0] != 0) { 2023 if ((prom_strstr(model, "ython") == NULL) && 2024 (prom_strstr(model, "peedwagon") == NULL) && 2025 (prom_strstr(model, "innipeg") == NULL)) 2026 continue; 2027 } 2028 2029 if (prom_getprop(node, "tce-table-minalign", &minalign, 2030 sizeof(minalign)) == PROM_ERROR) 2031 minalign = 0; 2032 if (prom_getprop(node, "tce-table-minsize", &minsize, 2033 sizeof(minsize)) == PROM_ERROR) 2034 minsize = 4UL << 20; 2035 2036 /* 2037 * Even though we read what OF wants, we just set the table 2038 * size to 4 MB. This is enough to map 2GB of PCI DMA space. 2039 * By doing this, we avoid the pitfalls of trying to DMA to 2040 * MMIO space and the DMA alias hole. 2041 */ 2042 minsize = 4UL << 20; 2043 2044 /* Align to the greater of the align or size */ 2045 align = max(minalign, minsize); 2046 base = alloc_down(minsize, align, 1); 2047 if (base == 0) 2048 prom_panic("ERROR, cannot find space for TCE table.\n"); 2049 if (base < local_alloc_bottom) 2050 local_alloc_bottom = base; 2051 2052 /* It seems OF doesn't null-terminate the path :-( */ 2053 memset(path, 0, sizeof(prom_scratch)); 2054 /* Call OF to setup the TCE hardware */ 2055 if (call_prom("package-to-path", 3, 1, node, 2056 path, sizeof(prom_scratch) - 1) == PROM_ERROR) { 2057 prom_printf("package-to-path failed\n"); 2058 } 2059 2060 /* Save away the TCE table attributes for later use. */ 2061 prom_setprop(node, path, "linux,tce-base", &base, sizeof(base)); 2062 prom_setprop(node, path, "linux,tce-size", &minsize, sizeof(minsize)); 2063 2064 prom_debug("TCE table: %s\n", path); 2065 prom_debug("\tnode = 0x%x\n", node); 2066 prom_debug("\tbase = 0x%llx\n", base); 2067 prom_debug("\tsize = 0x%x\n", minsize); 2068 2069 /* Initialize the table to have a one-to-one mapping 2070 * over the allocated size. 2071 */ 2072 tce_entryp = (u64 *)base; 2073 for (i = 0; i < (minsize >> 3) ;tce_entryp++, i++) { 2074 tce_entry = (i << PAGE_SHIFT); 2075 tce_entry |= 0x3; 2076 *tce_entryp = tce_entry; 2077 } 2078 2079 prom_printf("opening PHB %s", path); 2080 phb_node = call_prom("open", 1, 1, path); 2081 if (phb_node == 0) 2082 prom_printf("... failed\n"); 2083 else 2084 prom_printf("... done\n"); 2085 2086 call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"), 2087 phb_node, -1, minsize, 2088 (u32) base, (u32) (base >> 32)); 2089 call_prom("close", 1, 0, phb_node); 2090 } 2091 2092 reserve_mem(local_alloc_bottom, local_alloc_top - local_alloc_bottom); 2093 2094 /* These are only really needed if there is a memory limit in 2095 * effect, but we don't know so export them always. */ 2096 prom_tce_alloc_start = local_alloc_bottom; 2097 prom_tce_alloc_end = local_alloc_top; 2098 2099 /* Flag the first invalid entry */ 2100 prom_debug("ending prom_initialize_tce_table\n"); 2101 } 2102 #endif /* __BIG_ENDIAN__ */ 2103 #endif /* CONFIG_PPC64 */ 2104 2105 /* 2106 * With CHRP SMP we need to use the OF to start the other processors. 2107 * We can't wait until smp_boot_cpus (the OF is trashed by then) 2108 * so we have to put the processors into a holding pattern controlled 2109 * by the kernel (not OF) before we destroy the OF. 2110 * 2111 * This uses a chunk of low memory, puts some holding pattern 2112 * code there and sends the other processors off to there until 2113 * smp_boot_cpus tells them to do something. The holding pattern 2114 * checks that address until its cpu # is there, when it is that 2115 * cpu jumps to __secondary_start(). smp_boot_cpus() takes care 2116 * of setting those values. 2117 * 2118 * We also use physical address 0x4 here to tell when a cpu 2119 * is in its holding pattern code. 2120 * 2121 * -- Cort 2122 */ 2123 /* 2124 * We want to reference the copy of __secondary_hold_* in the 2125 * 0 - 0x100 address range 2126 */ 2127 #define LOW_ADDR(x) (((unsigned long) &(x)) & 0xff) 2128 2129 static void __init prom_hold_cpus(void) 2130 { 2131 unsigned long i; 2132 phandle node; 2133 char type[64]; 2134 unsigned long *spinloop 2135 = (void *) LOW_ADDR(__secondary_hold_spinloop); 2136 unsigned long *acknowledge 2137 = (void *) LOW_ADDR(__secondary_hold_acknowledge); 2138 unsigned long secondary_hold = LOW_ADDR(__secondary_hold); 2139 2140 /* 2141 * On pseries, if RTAS supports "query-cpu-stopped-state", 2142 * we skip this stage, the CPUs will be started by the 2143 * kernel using RTAS. 2144 */ 2145 if ((of_platform == PLATFORM_PSERIES || 2146 of_platform == PLATFORM_PSERIES_LPAR) && 2147 rtas_has_query_cpu_stopped) { 2148 prom_printf("prom_hold_cpus: skipped\n"); 2149 return; 2150 } 2151 2152 prom_debug("prom_hold_cpus: start...\n"); 2153 prom_debug(" 1) spinloop = 0x%lx\n", (unsigned long)spinloop); 2154 prom_debug(" 1) *spinloop = 0x%lx\n", *spinloop); 2155 prom_debug(" 1) acknowledge = 0x%lx\n", 2156 (unsigned long)acknowledge); 2157 prom_debug(" 1) *acknowledge = 0x%lx\n", *acknowledge); 2158 prom_debug(" 1) secondary_hold = 0x%lx\n", secondary_hold); 2159 2160 /* Set the common spinloop variable, so all of the secondary cpus 2161 * will block when they are awakened from their OF spinloop. 2162 * This must occur for both SMP and non SMP kernels, since OF will 2163 * be trashed when we move the kernel. 2164 */ 2165 *spinloop = 0; 2166 2167 /* look for cpus */ 2168 for (node = 0; prom_next_node(&node); ) { 2169 unsigned int cpu_no; 2170 __be32 reg; 2171 2172 type[0] = 0; 2173 prom_getprop(node, "device_type", type, sizeof(type)); 2174 if (prom_strcmp(type, "cpu") != 0) 2175 continue; 2176 2177 /* Skip non-configured cpus. */ 2178 if (prom_getprop(node, "status", type, sizeof(type)) > 0) 2179 if (prom_strcmp(type, "okay") != 0) 2180 continue; 2181 2182 reg = cpu_to_be32(-1); /* make sparse happy */ 2183 prom_getprop(node, "reg", ®, sizeof(reg)); 2184 cpu_no = be32_to_cpu(reg); 2185 2186 prom_debug("cpu hw idx = %u\n", cpu_no); 2187 2188 /* Init the acknowledge var which will be reset by 2189 * the secondary cpu when it awakens from its OF 2190 * spinloop. 2191 */ 2192 *acknowledge = (unsigned long)-1; 2193 2194 if (cpu_no != prom.cpu) { 2195 /* Primary Thread of non-boot cpu or any thread */ 2196 prom_printf("starting cpu hw idx %u... ", cpu_no); 2197 call_prom("start-cpu", 3, 0, node, 2198 secondary_hold, cpu_no); 2199 2200 for (i = 0; (i < 100000000) && 2201 (*acknowledge == ((unsigned long)-1)); i++ ) 2202 mb(); 2203 2204 if (*acknowledge == cpu_no) 2205 prom_printf("done\n"); 2206 else 2207 prom_printf("failed: %lx\n", *acknowledge); 2208 } 2209 #ifdef CONFIG_SMP 2210 else 2211 prom_printf("boot cpu hw idx %u\n", cpu_no); 2212 #endif /* CONFIG_SMP */ 2213 } 2214 2215 prom_debug("prom_hold_cpus: end...\n"); 2216 } 2217 2218 2219 static void __init prom_init_client_services(unsigned long pp) 2220 { 2221 /* Get a handle to the prom entry point before anything else */ 2222 prom_entry = pp; 2223 2224 /* get a handle for the stdout device */ 2225 prom.chosen = call_prom("finddevice", 1, 1, ADDR("/chosen")); 2226 if (!PHANDLE_VALID(prom.chosen)) 2227 prom_panic("cannot find chosen"); /* msg won't be printed :( */ 2228 2229 /* get device tree root */ 2230 prom.root = call_prom("finddevice", 1, 1, ADDR("/")); 2231 if (!PHANDLE_VALID(prom.root)) 2232 prom_panic("cannot find device tree root"); /* msg won't be printed :( */ 2233 2234 prom.mmumap = 0; 2235 } 2236 2237 #ifdef CONFIG_PPC32 2238 /* 2239 * For really old powermacs, we need to map things we claim. 2240 * For that, we need the ihandle of the mmu. 2241 * Also, on the longtrail, we need to work around other bugs. 2242 */ 2243 static void __init prom_find_mmu(void) 2244 { 2245 phandle oprom; 2246 char version[64]; 2247 2248 oprom = call_prom("finddevice", 1, 1, ADDR("/openprom")); 2249 if (!PHANDLE_VALID(oprom)) 2250 return; 2251 if (prom_getprop(oprom, "model", version, sizeof(version)) <= 0) 2252 return; 2253 version[sizeof(version) - 1] = 0; 2254 /* XXX might need to add other versions here */ 2255 if (prom_strcmp(version, "Open Firmware, 1.0.5") == 0) 2256 of_workarounds = OF_WA_CLAIM; 2257 else if (prom_strncmp(version, "FirmWorks,3.", 12) == 0) { 2258 of_workarounds = OF_WA_CLAIM | OF_WA_LONGTRAIL; 2259 call_prom("interpret", 1, 1, "dev /memory 0 to allow-reclaim"); 2260 } else 2261 return; 2262 prom.memory = call_prom("open", 1, 1, ADDR("/memory")); 2263 prom_getprop(prom.chosen, "mmu", &prom.mmumap, 2264 sizeof(prom.mmumap)); 2265 prom.mmumap = be32_to_cpu(prom.mmumap); 2266 if (!IHANDLE_VALID(prom.memory) || !IHANDLE_VALID(prom.mmumap)) 2267 of_workarounds &= ~OF_WA_CLAIM; /* hmmm */ 2268 } 2269 #else 2270 #define prom_find_mmu() 2271 #endif 2272 2273 static void __init prom_init_stdout(void) 2274 { 2275 char *path = of_stdout_device; 2276 char type[16]; 2277 phandle stdout_node; 2278 __be32 val; 2279 2280 if (prom_getprop(prom.chosen, "stdout", &val, sizeof(val)) <= 0) 2281 prom_panic("cannot find stdout"); 2282 2283 prom.stdout = be32_to_cpu(val); 2284 2285 /* Get the full OF pathname of the stdout device */ 2286 memset(path, 0, 256); 2287 call_prom("instance-to-path", 3, 1, prom.stdout, path, 255); 2288 prom_printf("OF stdout device is: %s\n", of_stdout_device); 2289 prom_setprop(prom.chosen, "/chosen", "linux,stdout-path", 2290 path, prom_strlen(path) + 1); 2291 2292 /* instance-to-package fails on PA-Semi */ 2293 stdout_node = call_prom("instance-to-package", 1, 1, prom.stdout); 2294 if (stdout_node != PROM_ERROR) { 2295 val = cpu_to_be32(stdout_node); 2296 2297 /* If it's a display, note it */ 2298 memset(type, 0, sizeof(type)); 2299 prom_getprop(stdout_node, "device_type", type, sizeof(type)); 2300 if (prom_strcmp(type, "display") == 0) 2301 prom_setprop(stdout_node, path, "linux,boot-display", NULL, 0); 2302 } 2303 } 2304 2305 static int __init prom_find_machine_type(void) 2306 { 2307 static char compat[256] __prombss; 2308 int len, i = 0; 2309 #ifdef CONFIG_PPC64 2310 phandle rtas; 2311 int x; 2312 #endif 2313 2314 /* Look for a PowerMac or a Cell */ 2315 len = prom_getprop(prom.root, "compatible", 2316 compat, sizeof(compat)-1); 2317 if (len > 0) { 2318 compat[len] = 0; 2319 while (i < len) { 2320 char *p = &compat[i]; 2321 int sl = prom_strlen(p); 2322 if (sl == 0) 2323 break; 2324 if (prom_strstr(p, "Power Macintosh") || 2325 prom_strstr(p, "MacRISC")) 2326 return PLATFORM_POWERMAC; 2327 #ifdef CONFIG_PPC64 2328 /* We must make sure we don't detect the IBM Cell 2329 * blades as pSeries due to some firmware issues, 2330 * so we do it here. 2331 */ 2332 if (prom_strstr(p, "IBM,CBEA") || 2333 prom_strstr(p, "IBM,CPBW-1.0")) 2334 return PLATFORM_GENERIC; 2335 #endif /* CONFIG_PPC64 */ 2336 i += sl + 1; 2337 } 2338 } 2339 #ifdef CONFIG_PPC64 2340 /* Try to figure out if it's an IBM pSeries or any other 2341 * PAPR compliant platform. We assume it is if : 2342 * - /device_type is "chrp" (please, do NOT use that for future 2343 * non-IBM designs ! 2344 * - it has /rtas 2345 */ 2346 len = prom_getprop(prom.root, "device_type", 2347 compat, sizeof(compat)-1); 2348 if (len <= 0) 2349 return PLATFORM_GENERIC; 2350 if (prom_strcmp(compat, "chrp")) 2351 return PLATFORM_GENERIC; 2352 2353 /* Default to pSeries. We need to know if we are running LPAR */ 2354 rtas = call_prom("finddevice", 1, 1, ADDR("/rtas")); 2355 if (!PHANDLE_VALID(rtas)) 2356 return PLATFORM_GENERIC; 2357 x = prom_getproplen(rtas, "ibm,hypertas-functions"); 2358 if (x != PROM_ERROR) { 2359 prom_debug("Hypertas detected, assuming LPAR !\n"); 2360 return PLATFORM_PSERIES_LPAR; 2361 } 2362 return PLATFORM_PSERIES; 2363 #else 2364 return PLATFORM_GENERIC; 2365 #endif 2366 } 2367 2368 static int __init prom_set_color(ihandle ih, int i, int r, int g, int b) 2369 { 2370 return call_prom("call-method", 6, 1, ADDR("color!"), ih, i, b, g, r); 2371 } 2372 2373 /* 2374 * If we have a display that we don't know how to drive, 2375 * we will want to try to execute OF's open method for it 2376 * later. However, OF will probably fall over if we do that 2377 * we've taken over the MMU. 2378 * So we check whether we will need to open the display, 2379 * and if so, open it now. 2380 */ 2381 static void __init prom_check_displays(void) 2382 { 2383 char type[16], *path; 2384 phandle node; 2385 ihandle ih; 2386 int i; 2387 2388 static const unsigned char default_colors[] __initconst = { 2389 0x00, 0x00, 0x00, 2390 0x00, 0x00, 0xaa, 2391 0x00, 0xaa, 0x00, 2392 0x00, 0xaa, 0xaa, 2393 0xaa, 0x00, 0x00, 2394 0xaa, 0x00, 0xaa, 2395 0xaa, 0xaa, 0x00, 2396 0xaa, 0xaa, 0xaa, 2397 0x55, 0x55, 0x55, 2398 0x55, 0x55, 0xff, 2399 0x55, 0xff, 0x55, 2400 0x55, 0xff, 0xff, 2401 0xff, 0x55, 0x55, 2402 0xff, 0x55, 0xff, 2403 0xff, 0xff, 0x55, 2404 0xff, 0xff, 0xff 2405 }; 2406 const unsigned char *clut; 2407 2408 prom_debug("Looking for displays\n"); 2409 for (node = 0; prom_next_node(&node); ) { 2410 memset(type, 0, sizeof(type)); 2411 prom_getprop(node, "device_type", type, sizeof(type)); 2412 if (prom_strcmp(type, "display") != 0) 2413 continue; 2414 2415 /* It seems OF doesn't null-terminate the path :-( */ 2416 path = prom_scratch; 2417 memset(path, 0, sizeof(prom_scratch)); 2418 2419 /* 2420 * leave some room at the end of the path for appending extra 2421 * arguments 2422 */ 2423 if (call_prom("package-to-path", 3, 1, node, path, 2424 sizeof(prom_scratch) - 10) == PROM_ERROR) 2425 continue; 2426 prom_printf("found display : %s, opening... ", path); 2427 2428 ih = call_prom("open", 1, 1, path); 2429 if (ih == 0) { 2430 prom_printf("failed\n"); 2431 continue; 2432 } 2433 2434 /* Success */ 2435 prom_printf("done\n"); 2436 prom_setprop(node, path, "linux,opened", NULL, 0); 2437 2438 /* Setup a usable color table when the appropriate 2439 * method is available. Should update this to set-colors */ 2440 clut = default_colors; 2441 for (i = 0; i < 16; i++, clut += 3) 2442 if (prom_set_color(ih, i, clut[0], clut[1], 2443 clut[2]) != 0) 2444 break; 2445 2446 #ifdef CONFIG_LOGO_LINUX_CLUT224 2447 clut = PTRRELOC(logo_linux_clut224.clut); 2448 for (i = 0; i < logo_linux_clut224.clutsize; i++, clut += 3) 2449 if (prom_set_color(ih, i + 32, clut[0], clut[1], 2450 clut[2]) != 0) 2451 break; 2452 #endif /* CONFIG_LOGO_LINUX_CLUT224 */ 2453 2454 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX 2455 if (prom_getprop(node, "linux,boot-display", NULL, 0) != 2456 PROM_ERROR) { 2457 u32 width, height, pitch, addr; 2458 2459 prom_printf("Setting btext !\n"); 2460 2461 if (prom_getprop(node, "width", &width, 4) == PROM_ERROR) 2462 return; 2463 2464 if (prom_getprop(node, "height", &height, 4) == PROM_ERROR) 2465 return; 2466 2467 if (prom_getprop(node, "linebytes", &pitch, 4) == PROM_ERROR) 2468 return; 2469 2470 if (prom_getprop(node, "address", &addr, 4) == PROM_ERROR) 2471 return; 2472 2473 prom_printf("W=%d H=%d LB=%d addr=0x%x\n", 2474 width, height, pitch, addr); 2475 btext_setup_display(width, height, 8, pitch, addr); 2476 btext_prepare_BAT(); 2477 } 2478 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */ 2479 } 2480 } 2481 2482 2483 /* Return (relocated) pointer to this much memory: moves initrd if reqd. */ 2484 static void __init *make_room(unsigned long *mem_start, unsigned long *mem_end, 2485 unsigned long needed, unsigned long align) 2486 { 2487 void *ret; 2488 2489 *mem_start = ALIGN(*mem_start, align); 2490 while ((*mem_start + needed) > *mem_end) { 2491 unsigned long room, chunk; 2492 2493 prom_debug("Chunk exhausted, claiming more at %lx...\n", 2494 alloc_bottom); 2495 room = alloc_top - alloc_bottom; 2496 if (room > DEVTREE_CHUNK_SIZE) 2497 room = DEVTREE_CHUNK_SIZE; 2498 if (room < PAGE_SIZE) 2499 prom_panic("No memory for flatten_device_tree " 2500 "(no room)\n"); 2501 chunk = alloc_up(room, 0); 2502 if (chunk == 0) 2503 prom_panic("No memory for flatten_device_tree " 2504 "(claim failed)\n"); 2505 *mem_end = chunk + room; 2506 } 2507 2508 ret = (void *)*mem_start; 2509 *mem_start += needed; 2510 2511 return ret; 2512 } 2513 2514 #define dt_push_token(token, mem_start, mem_end) do { \ 2515 void *room = make_room(mem_start, mem_end, 4, 4); \ 2516 *(__be32 *)room = cpu_to_be32(token); \ 2517 } while(0) 2518 2519 static unsigned long __init dt_find_string(char *str) 2520 { 2521 char *s, *os; 2522 2523 s = os = (char *)dt_string_start; 2524 s += 4; 2525 while (s < (char *)dt_string_end) { 2526 if (prom_strcmp(s, str) == 0) 2527 return s - os; 2528 s += prom_strlen(s) + 1; 2529 } 2530 return 0; 2531 } 2532 2533 /* 2534 * The Open Firmware 1275 specification states properties must be 31 bytes or 2535 * less, however not all firmwares obey this. Make it 64 bytes to be safe. 2536 */ 2537 #define MAX_PROPERTY_NAME 64 2538 2539 static void __init scan_dt_build_strings(phandle node, 2540 unsigned long *mem_start, 2541 unsigned long *mem_end) 2542 { 2543 char *prev_name, *namep, *sstart; 2544 unsigned long soff; 2545 phandle child; 2546 2547 sstart = (char *)dt_string_start; 2548 2549 /* get and store all property names */ 2550 prev_name = ""; 2551 for (;;) { 2552 /* 64 is max len of name including nul. */ 2553 namep = make_room(mem_start, mem_end, MAX_PROPERTY_NAME, 1); 2554 if (call_prom("nextprop", 3, 1, node, prev_name, namep) != 1) { 2555 /* No more nodes: unwind alloc */ 2556 *mem_start = (unsigned long)namep; 2557 break; 2558 } 2559 2560 /* skip "name" */ 2561 if (prom_strcmp(namep, "name") == 0) { 2562 *mem_start = (unsigned long)namep; 2563 prev_name = "name"; 2564 continue; 2565 } 2566 /* get/create string entry */ 2567 soff = dt_find_string(namep); 2568 if (soff != 0) { 2569 *mem_start = (unsigned long)namep; 2570 namep = sstart + soff; 2571 } else { 2572 /* Trim off some if we can */ 2573 *mem_start = (unsigned long)namep + prom_strlen(namep) + 1; 2574 dt_string_end = *mem_start; 2575 } 2576 prev_name = namep; 2577 } 2578 2579 /* do all our children */ 2580 child = call_prom("child", 1, 1, node); 2581 while (child != 0) { 2582 scan_dt_build_strings(child, mem_start, mem_end); 2583 child = call_prom("peer", 1, 1, child); 2584 } 2585 } 2586 2587 static void __init scan_dt_build_struct(phandle node, unsigned long *mem_start, 2588 unsigned long *mem_end) 2589 { 2590 phandle child; 2591 char *namep, *prev_name, *sstart, *p, *ep, *lp, *path; 2592 unsigned long soff; 2593 unsigned char *valp; 2594 static char pname[MAX_PROPERTY_NAME] __prombss; 2595 int l, room, has_phandle = 0; 2596 2597 dt_push_token(OF_DT_BEGIN_NODE, mem_start, mem_end); 2598 2599 /* get the node's full name */ 2600 namep = (char *)*mem_start; 2601 room = *mem_end - *mem_start; 2602 if (room > 255) 2603 room = 255; 2604 l = call_prom("package-to-path", 3, 1, node, namep, room); 2605 if (l >= 0) { 2606 /* Didn't fit? Get more room. */ 2607 if (l >= room) { 2608 if (l >= *mem_end - *mem_start) 2609 namep = make_room(mem_start, mem_end, l+1, 1); 2610 call_prom("package-to-path", 3, 1, node, namep, l); 2611 } 2612 namep[l] = '\0'; 2613 2614 /* Fixup an Apple bug where they have bogus \0 chars in the 2615 * middle of the path in some properties, and extract 2616 * the unit name (everything after the last '/'). 2617 */ 2618 for (lp = p = namep, ep = namep + l; p < ep; p++) { 2619 if (*p == '/') 2620 lp = namep; 2621 else if (*p != 0) 2622 *lp++ = *p; 2623 } 2624 *lp = 0; 2625 *mem_start = ALIGN((unsigned long)lp + 1, 4); 2626 } 2627 2628 /* get it again for debugging */ 2629 path = prom_scratch; 2630 memset(path, 0, sizeof(prom_scratch)); 2631 call_prom("package-to-path", 3, 1, node, path, sizeof(prom_scratch) - 1); 2632 2633 /* get and store all properties */ 2634 prev_name = ""; 2635 sstart = (char *)dt_string_start; 2636 for (;;) { 2637 if (call_prom("nextprop", 3, 1, node, prev_name, 2638 pname) != 1) 2639 break; 2640 2641 /* skip "name" */ 2642 if (prom_strcmp(pname, "name") == 0) { 2643 prev_name = "name"; 2644 continue; 2645 } 2646 2647 /* find string offset */ 2648 soff = dt_find_string(pname); 2649 if (soff == 0) { 2650 prom_printf("WARNING: Can't find string index for" 2651 " <%s>, node %s\n", pname, path); 2652 break; 2653 } 2654 prev_name = sstart + soff; 2655 2656 /* get length */ 2657 l = call_prom("getproplen", 2, 1, node, pname); 2658 2659 /* sanity checks */ 2660 if (l == PROM_ERROR) 2661 continue; 2662 2663 /* push property head */ 2664 dt_push_token(OF_DT_PROP, mem_start, mem_end); 2665 dt_push_token(l, mem_start, mem_end); 2666 dt_push_token(soff, mem_start, mem_end); 2667 2668 /* push property content */ 2669 valp = make_room(mem_start, mem_end, l, 4); 2670 call_prom("getprop", 4, 1, node, pname, valp, l); 2671 *mem_start = ALIGN(*mem_start, 4); 2672 2673 if (!prom_strcmp(pname, "phandle")) 2674 has_phandle = 1; 2675 } 2676 2677 /* Add a "phandle" property if none already exist */ 2678 if (!has_phandle) { 2679 soff = dt_find_string("phandle"); 2680 if (soff == 0) 2681 prom_printf("WARNING: Can't find string index for <phandle> node %s\n", path); 2682 else { 2683 dt_push_token(OF_DT_PROP, mem_start, mem_end); 2684 dt_push_token(4, mem_start, mem_end); 2685 dt_push_token(soff, mem_start, mem_end); 2686 valp = make_room(mem_start, mem_end, 4, 4); 2687 *(__be32 *)valp = cpu_to_be32(node); 2688 } 2689 } 2690 2691 /* do all our children */ 2692 child = call_prom("child", 1, 1, node); 2693 while (child != 0) { 2694 scan_dt_build_struct(child, mem_start, mem_end); 2695 child = call_prom("peer", 1, 1, child); 2696 } 2697 2698 dt_push_token(OF_DT_END_NODE, mem_start, mem_end); 2699 } 2700 2701 static void __init flatten_device_tree(void) 2702 { 2703 phandle root; 2704 unsigned long mem_start, mem_end, room; 2705 struct boot_param_header *hdr; 2706 char *namep; 2707 u64 *rsvmap; 2708 2709 /* 2710 * Check how much room we have between alloc top & bottom (+/- a 2711 * few pages), crop to 1MB, as this is our "chunk" size 2712 */ 2713 room = alloc_top - alloc_bottom - 0x4000; 2714 if (room > DEVTREE_CHUNK_SIZE) 2715 room = DEVTREE_CHUNK_SIZE; 2716 prom_debug("starting device tree allocs at %lx\n", alloc_bottom); 2717 2718 /* Now try to claim that */ 2719 mem_start = (unsigned long)alloc_up(room, PAGE_SIZE); 2720 if (mem_start == 0) 2721 prom_panic("Can't allocate initial device-tree chunk\n"); 2722 mem_end = mem_start + room; 2723 2724 /* Get root of tree */ 2725 root = call_prom("peer", 1, 1, (phandle)0); 2726 if (root == (phandle)0) 2727 prom_panic ("couldn't get device tree root\n"); 2728 2729 /* Build header and make room for mem rsv map */ 2730 mem_start = ALIGN(mem_start, 4); 2731 hdr = make_room(&mem_start, &mem_end, 2732 sizeof(struct boot_param_header), 4); 2733 dt_header_start = (unsigned long)hdr; 2734 rsvmap = make_room(&mem_start, &mem_end, sizeof(mem_reserve_map), 8); 2735 2736 /* Start of strings */ 2737 mem_start = PAGE_ALIGN(mem_start); 2738 dt_string_start = mem_start; 2739 mem_start += 4; /* hole */ 2740 2741 /* Add "phandle" in there, we'll need it */ 2742 namep = make_room(&mem_start, &mem_end, 16, 1); 2743 prom_strscpy_pad(namep, "phandle", sizeof("phandle")); 2744 mem_start = (unsigned long)namep + prom_strlen(namep) + 1; 2745 2746 /* Build string array */ 2747 prom_printf("Building dt strings...\n"); 2748 scan_dt_build_strings(root, &mem_start, &mem_end); 2749 dt_string_end = mem_start; 2750 2751 /* Build structure */ 2752 mem_start = PAGE_ALIGN(mem_start); 2753 dt_struct_start = mem_start; 2754 prom_printf("Building dt structure...\n"); 2755 scan_dt_build_struct(root, &mem_start, &mem_end); 2756 dt_push_token(OF_DT_END, &mem_start, &mem_end); 2757 dt_struct_end = PAGE_ALIGN(mem_start); 2758 2759 /* Finish header */ 2760 hdr->boot_cpuid_phys = cpu_to_be32(prom.cpu); 2761 hdr->magic = cpu_to_be32(OF_DT_HEADER); 2762 hdr->totalsize = cpu_to_be32(dt_struct_end - dt_header_start); 2763 hdr->off_dt_struct = cpu_to_be32(dt_struct_start - dt_header_start); 2764 hdr->off_dt_strings = cpu_to_be32(dt_string_start - dt_header_start); 2765 hdr->dt_strings_size = cpu_to_be32(dt_string_end - dt_string_start); 2766 hdr->off_mem_rsvmap = cpu_to_be32(((unsigned long)rsvmap) - dt_header_start); 2767 hdr->version = cpu_to_be32(OF_DT_VERSION); 2768 /* Version 16 is not backward compatible */ 2769 hdr->last_comp_version = cpu_to_be32(0x10); 2770 2771 /* Copy the reserve map in */ 2772 memcpy(rsvmap, mem_reserve_map, sizeof(mem_reserve_map)); 2773 2774 #ifdef DEBUG_PROM 2775 { 2776 int i; 2777 prom_printf("reserved memory map:\n"); 2778 for (i = 0; i < mem_reserve_cnt; i++) 2779 prom_printf(" %llx - %llx\n", 2780 be64_to_cpu(mem_reserve_map[i].base), 2781 be64_to_cpu(mem_reserve_map[i].size)); 2782 } 2783 #endif 2784 /* Bump mem_reserve_cnt to cause further reservations to fail 2785 * since it's too late. 2786 */ 2787 mem_reserve_cnt = MEM_RESERVE_MAP_SIZE; 2788 2789 prom_printf("Device tree strings 0x%lx -> 0x%lx\n", 2790 dt_string_start, dt_string_end); 2791 prom_printf("Device tree struct 0x%lx -> 0x%lx\n", 2792 dt_struct_start, dt_struct_end); 2793 } 2794 2795 #ifdef CONFIG_PPC_CHRP 2796 /* 2797 * Pegasos and BriQ lacks the "ranges" property in the isa node 2798 * Pegasos needs decimal IRQ 14/15, not hexadecimal 2799 * Pegasos has the IDE configured in legacy mode, but advertised as native 2800 */ 2801 static void __init fixup_device_tree_chrp(void) 2802 { 2803 phandle ph; 2804 u32 prop[6]; 2805 u32 rloc = 0x01006000; /* IO space; PCI device = 12 */ 2806 char *name; 2807 int rc; 2808 2809 name = "/pci@80000000/isa@c"; 2810 ph = call_prom("finddevice", 1, 1, ADDR(name)); 2811 if (!PHANDLE_VALID(ph)) { 2812 name = "/pci@ff500000/isa@6"; 2813 ph = call_prom("finddevice", 1, 1, ADDR(name)); 2814 rloc = 0x01003000; /* IO space; PCI device = 6 */ 2815 } 2816 if (PHANDLE_VALID(ph)) { 2817 rc = prom_getproplen(ph, "ranges"); 2818 if (rc == 0 || rc == PROM_ERROR) { 2819 prom_printf("Fixing up missing ISA range on Pegasos...\n"); 2820 2821 prop[0] = 0x1; 2822 prop[1] = 0x0; 2823 prop[2] = rloc; 2824 prop[3] = 0x0; 2825 prop[4] = 0x0; 2826 prop[5] = 0x00010000; 2827 prom_setprop(ph, name, "ranges", prop, sizeof(prop)); 2828 } 2829 } 2830 2831 name = "/pci@80000000/ide@C,1"; 2832 ph = call_prom("finddevice", 1, 1, ADDR(name)); 2833 if (PHANDLE_VALID(ph)) { 2834 prom_printf("Fixing up IDE interrupt on Pegasos...\n"); 2835 prop[0] = 14; 2836 prop[1] = 0x0; 2837 prom_setprop(ph, name, "interrupts", prop, 2*sizeof(u32)); 2838 prom_printf("Fixing up IDE class-code on Pegasos...\n"); 2839 rc = prom_getprop(ph, "class-code", prop, sizeof(u32)); 2840 if (rc == sizeof(u32)) { 2841 prop[0] &= ~0x5; 2842 prom_setprop(ph, name, "class-code", prop, sizeof(u32)); 2843 } 2844 } 2845 } 2846 #else 2847 #define fixup_device_tree_chrp() 2848 #endif 2849 2850 #if defined(CONFIG_PPC64) && defined(CONFIG_PPC_PMAC) 2851 static void __init fixup_device_tree_pmac(void) 2852 { 2853 phandle u3, i2c, mpic; 2854 u32 u3_rev; 2855 u32 interrupts[2]; 2856 u32 parent; 2857 2858 /* Some G5s have a missing interrupt definition, fix it up here */ 2859 u3 = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000")); 2860 if (!PHANDLE_VALID(u3)) 2861 return; 2862 i2c = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000")); 2863 if (!PHANDLE_VALID(i2c)) 2864 return; 2865 mpic = call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000")); 2866 if (!PHANDLE_VALID(mpic)) 2867 return; 2868 2869 /* check if proper rev of u3 */ 2870 if (prom_getprop(u3, "device-rev", &u3_rev, sizeof(u3_rev)) 2871 == PROM_ERROR) 2872 return; 2873 if (u3_rev < 0x35 || u3_rev > 0x39) 2874 return; 2875 /* does it need fixup ? */ 2876 if (prom_getproplen(i2c, "interrupts") > 0) 2877 return; 2878 2879 prom_printf("fixing up bogus interrupts for u3 i2c...\n"); 2880 2881 /* interrupt on this revision of u3 is number 0 and level */ 2882 interrupts[0] = 0; 2883 interrupts[1] = 1; 2884 prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupts", 2885 &interrupts, sizeof(interrupts)); 2886 parent = (u32)mpic; 2887 prom_setprop(i2c, "/u3@0,f8000000/i2c@f8001000", "interrupt-parent", 2888 &parent, sizeof(parent)); 2889 } 2890 #else 2891 #define fixup_device_tree_pmac() 2892 #endif 2893 2894 #ifdef CONFIG_PPC_EFIKA 2895 /* 2896 * The MPC5200 FEC driver requires an phy-handle property to tell it how 2897 * to talk to the phy. If the phy-handle property is missing, then this 2898 * function is called to add the appropriate nodes and link it to the 2899 * ethernet node. 2900 */ 2901 static void __init fixup_device_tree_efika_add_phy(void) 2902 { 2903 u32 node; 2904 char prop[64]; 2905 int rv; 2906 2907 /* Check if /builtin/ethernet exists - bail if it doesn't */ 2908 node = call_prom("finddevice", 1, 1, ADDR("/builtin/ethernet")); 2909 if (!PHANDLE_VALID(node)) 2910 return; 2911 2912 /* Check if the phy-handle property exists - bail if it does */ 2913 rv = prom_getprop(node, "phy-handle", prop, sizeof(prop)); 2914 if (rv <= 0) 2915 return; 2916 2917 /* 2918 * At this point the ethernet device doesn't have a phy described. 2919 * Now we need to add the missing phy node and linkage 2920 */ 2921 2922 /* Check for an MDIO bus node - if missing then create one */ 2923 node = call_prom("finddevice", 1, 1, ADDR("/builtin/mdio")); 2924 if (!PHANDLE_VALID(node)) { 2925 prom_printf("Adding Ethernet MDIO node\n"); 2926 call_prom("interpret", 1, 1, 2927 " s\" /builtin\" find-device" 2928 " new-device" 2929 " 1 encode-int s\" #address-cells\" property" 2930 " 0 encode-int s\" #size-cells\" property" 2931 " s\" mdio\" device-name" 2932 " s\" fsl,mpc5200b-mdio\" encode-string" 2933 " s\" compatible\" property" 2934 " 0xf0003000 0x400 reg" 2935 " 0x2 encode-int" 2936 " 0x5 encode-int encode+" 2937 " 0x3 encode-int encode+" 2938 " s\" interrupts\" property" 2939 " finish-device"); 2940 } 2941 2942 /* Check for a PHY device node - if missing then create one and 2943 * give it's phandle to the ethernet node */ 2944 node = call_prom("finddevice", 1, 1, 2945 ADDR("/builtin/mdio/ethernet-phy")); 2946 if (!PHANDLE_VALID(node)) { 2947 prom_printf("Adding Ethernet PHY node\n"); 2948 call_prom("interpret", 1, 1, 2949 " s\" /builtin/mdio\" find-device" 2950 " new-device" 2951 " s\" ethernet-phy\" device-name" 2952 " 0x10 encode-int s\" reg\" property" 2953 " my-self" 2954 " ihandle>phandle" 2955 " finish-device" 2956 " s\" /builtin/ethernet\" find-device" 2957 " encode-int" 2958 " s\" phy-handle\" property" 2959 " device-end"); 2960 } 2961 } 2962 2963 static void __init fixup_device_tree_efika(void) 2964 { 2965 int sound_irq[3] = { 2, 2, 0 }; 2966 int bcomm_irq[3*16] = { 3,0,0, 3,1,0, 3,2,0, 3,3,0, 2967 3,4,0, 3,5,0, 3,6,0, 3,7,0, 2968 3,8,0, 3,9,0, 3,10,0, 3,11,0, 2969 3,12,0, 3,13,0, 3,14,0, 3,15,0 }; 2970 u32 node; 2971 char prop[64]; 2972 int rv, len; 2973 2974 /* Check if we're really running on a EFIKA */ 2975 node = call_prom("finddevice", 1, 1, ADDR("/")); 2976 if (!PHANDLE_VALID(node)) 2977 return; 2978 2979 rv = prom_getprop(node, "model", prop, sizeof(prop)); 2980 if (rv == PROM_ERROR) 2981 return; 2982 if (prom_strcmp(prop, "EFIKA5K2")) 2983 return; 2984 2985 prom_printf("Applying EFIKA device tree fixups\n"); 2986 2987 /* Claiming to be 'chrp' is death */ 2988 node = call_prom("finddevice", 1, 1, ADDR("/")); 2989 rv = prom_getprop(node, "device_type", prop, sizeof(prop)); 2990 if (rv != PROM_ERROR && (prom_strcmp(prop, "chrp") == 0)) 2991 prom_setprop(node, "/", "device_type", "efika", sizeof("efika")); 2992 2993 /* CODEGEN,description is exposed in /proc/cpuinfo so 2994 fix that too */ 2995 rv = prom_getprop(node, "CODEGEN,description", prop, sizeof(prop)); 2996 if (rv != PROM_ERROR && (prom_strstr(prop, "CHRP"))) 2997 prom_setprop(node, "/", "CODEGEN,description", 2998 "Efika 5200B PowerPC System", 2999 sizeof("Efika 5200B PowerPC System")); 3000 3001 /* Fixup bestcomm interrupts property */ 3002 node = call_prom("finddevice", 1, 1, ADDR("/builtin/bestcomm")); 3003 if (PHANDLE_VALID(node)) { 3004 len = prom_getproplen(node, "interrupts"); 3005 if (len == 12) { 3006 prom_printf("Fixing bestcomm interrupts property\n"); 3007 prom_setprop(node, "/builtin/bestcom", "interrupts", 3008 bcomm_irq, sizeof(bcomm_irq)); 3009 } 3010 } 3011 3012 /* Fixup sound interrupts property */ 3013 node = call_prom("finddevice", 1, 1, ADDR("/builtin/sound")); 3014 if (PHANDLE_VALID(node)) { 3015 rv = prom_getprop(node, "interrupts", prop, sizeof(prop)); 3016 if (rv == PROM_ERROR) { 3017 prom_printf("Adding sound interrupts property\n"); 3018 prom_setprop(node, "/builtin/sound", "interrupts", 3019 sound_irq, sizeof(sound_irq)); 3020 } 3021 } 3022 3023 /* Make sure ethernet phy-handle property exists */ 3024 fixup_device_tree_efika_add_phy(); 3025 } 3026 #else 3027 #define fixup_device_tree_efika() 3028 #endif 3029 3030 #ifdef CONFIG_PPC_PASEMI_NEMO 3031 /* 3032 * CFE supplied on Nemo is broken in several ways, biggest 3033 * problem is that it reassigns ISA interrupts to unused mpic ints. 3034 * Add an interrupt-controller property for the io-bridge to use 3035 * and correct the ints so we can attach them to an irq_domain 3036 */ 3037 static void __init fixup_device_tree_pasemi(void) 3038 { 3039 u32 interrupts[2], parent, rval, val = 0; 3040 char *name, *pci_name; 3041 phandle iob, node; 3042 3043 /* Find the root pci node */ 3044 name = "/pxp@0,e0000000"; 3045 iob = call_prom("finddevice", 1, 1, ADDR(name)); 3046 if (!PHANDLE_VALID(iob)) 3047 return; 3048 3049 /* check if interrupt-controller node set yet */ 3050 if (prom_getproplen(iob, "interrupt-controller") !=PROM_ERROR) 3051 return; 3052 3053 prom_printf("adding interrupt-controller property for SB600...\n"); 3054 3055 prom_setprop(iob, name, "interrupt-controller", &val, 0); 3056 3057 pci_name = "/pxp@0,e0000000/pci@11"; 3058 node = call_prom("finddevice", 1, 1, ADDR(pci_name)); 3059 parent = ADDR(iob); 3060 3061 for( ; prom_next_node(&node); ) { 3062 /* scan each node for one with an interrupt */ 3063 if (!PHANDLE_VALID(node)) 3064 continue; 3065 3066 rval = prom_getproplen(node, "interrupts"); 3067 if (rval == 0 || rval == PROM_ERROR) 3068 continue; 3069 3070 prom_getprop(node, "interrupts", &interrupts, sizeof(interrupts)); 3071 if ((interrupts[0] < 212) || (interrupts[0] > 222)) 3072 continue; 3073 3074 /* found a node, update both interrupts and interrupt-parent */ 3075 if ((interrupts[0] >= 212) && (interrupts[0] <= 215)) 3076 interrupts[0] -= 203; 3077 if ((interrupts[0] >= 216) && (interrupts[0] <= 220)) 3078 interrupts[0] -= 213; 3079 if (interrupts[0] == 221) 3080 interrupts[0] = 14; 3081 if (interrupts[0] == 222) 3082 interrupts[0] = 8; 3083 3084 prom_setprop(node, pci_name, "interrupts", interrupts, 3085 sizeof(interrupts)); 3086 prom_setprop(node, pci_name, "interrupt-parent", &parent, 3087 sizeof(parent)); 3088 } 3089 3090 /* 3091 * The io-bridge has device_type set to 'io-bridge' change it to 'isa' 3092 * so that generic isa-bridge code can add the SB600 and its on-board 3093 * peripherals. 3094 */ 3095 name = "/pxp@0,e0000000/io-bridge@0"; 3096 iob = call_prom("finddevice", 1, 1, ADDR(name)); 3097 if (!PHANDLE_VALID(iob)) 3098 return; 3099 3100 /* device_type is already set, just change it. */ 3101 3102 prom_printf("Changing device_type of SB600 node...\n"); 3103 3104 prom_setprop(iob, name, "device_type", "isa", sizeof("isa")); 3105 } 3106 #else /* !CONFIG_PPC_PASEMI_NEMO */ 3107 static inline void fixup_device_tree_pasemi(void) { } 3108 #endif 3109 3110 static void __init fixup_device_tree(void) 3111 { 3112 fixup_device_tree_chrp(); 3113 fixup_device_tree_pmac(); 3114 fixup_device_tree_efika(); 3115 fixup_device_tree_pasemi(); 3116 } 3117 3118 static void __init prom_find_boot_cpu(void) 3119 { 3120 __be32 rval; 3121 ihandle prom_cpu; 3122 phandle cpu_pkg; 3123 3124 rval = 0; 3125 if (prom_getprop(prom.chosen, "cpu", &rval, sizeof(rval)) <= 0) 3126 return; 3127 prom_cpu = be32_to_cpu(rval); 3128 3129 cpu_pkg = call_prom("instance-to-package", 1, 1, prom_cpu); 3130 3131 if (!PHANDLE_VALID(cpu_pkg)) 3132 return; 3133 3134 prom_getprop(cpu_pkg, "reg", &rval, sizeof(rval)); 3135 prom.cpu = be32_to_cpu(rval); 3136 3137 prom_debug("Booting CPU hw index = %d\n", prom.cpu); 3138 } 3139 3140 static void __init prom_check_initrd(unsigned long r3, unsigned long r4) 3141 { 3142 #ifdef CONFIG_BLK_DEV_INITRD 3143 if (r3 && r4 && r4 != 0xdeadbeef) { 3144 __be64 val; 3145 3146 prom_initrd_start = is_kernel_addr(r3) ? __pa(r3) : r3; 3147 prom_initrd_end = prom_initrd_start + r4; 3148 3149 val = cpu_to_be64(prom_initrd_start); 3150 prom_setprop(prom.chosen, "/chosen", "linux,initrd-start", 3151 &val, sizeof(val)); 3152 val = cpu_to_be64(prom_initrd_end); 3153 prom_setprop(prom.chosen, "/chosen", "linux,initrd-end", 3154 &val, sizeof(val)); 3155 3156 reserve_mem(prom_initrd_start, 3157 prom_initrd_end - prom_initrd_start); 3158 3159 prom_debug("initrd_start=0x%lx\n", prom_initrd_start); 3160 prom_debug("initrd_end=0x%lx\n", prom_initrd_end); 3161 } 3162 #endif /* CONFIG_BLK_DEV_INITRD */ 3163 } 3164 3165 #ifdef CONFIG_PPC_SVM 3166 /* 3167 * Perform the Enter Secure Mode ultracall. 3168 */ 3169 static int __init enter_secure_mode(unsigned long kbase, unsigned long fdt) 3170 { 3171 register unsigned long r3 asm("r3") = UV_ESM; 3172 register unsigned long r4 asm("r4") = kbase; 3173 register unsigned long r5 asm("r5") = fdt; 3174 3175 asm volatile("sc 2" : "+r"(r3) : "r"(r4), "r"(r5)); 3176 3177 return r3; 3178 } 3179 3180 /* 3181 * Call the Ultravisor to transfer us to secure memory if we have an ESM blob. 3182 */ 3183 static void __init setup_secure_guest(unsigned long kbase, unsigned long fdt) 3184 { 3185 int ret; 3186 3187 if (!prom_svm_enable) 3188 return; 3189 3190 /* Switch to secure mode. */ 3191 prom_printf("Switching to secure mode.\n"); 3192 3193 /* 3194 * The ultravisor will do an integrity check of the kernel image but we 3195 * relocated it so the check will fail. Restore the original image by 3196 * relocating it back to the kernel virtual base address. 3197 */ 3198 relocate(KERNELBASE); 3199 3200 ret = enter_secure_mode(kbase, fdt); 3201 3202 /* Relocate the kernel again. */ 3203 relocate(kbase); 3204 3205 if (ret != U_SUCCESS) { 3206 prom_printf("Returned %d from switching to secure mode.\n", ret); 3207 prom_rtas_os_term("Switch to secure mode failed.\n"); 3208 } 3209 } 3210 #else 3211 static void __init setup_secure_guest(unsigned long kbase, unsigned long fdt) 3212 { 3213 } 3214 #endif /* CONFIG_PPC_SVM */ 3215 3216 /* 3217 * We enter here early on, when the Open Firmware prom is still 3218 * handling exceptions and the MMU hash table for us. 3219 */ 3220 3221 unsigned long __init prom_init(unsigned long r3, unsigned long r4, 3222 unsigned long pp, 3223 unsigned long r6, unsigned long r7, 3224 unsigned long kbase) 3225 { 3226 unsigned long hdr; 3227 3228 #ifdef CONFIG_PPC32 3229 unsigned long offset = reloc_offset(); 3230 reloc_got2(offset); 3231 #endif 3232 3233 /* 3234 * First zero the BSS 3235 */ 3236 memset(&__bss_start, 0, __bss_stop - __bss_start); 3237 3238 /* 3239 * Init interface to Open Firmware, get some node references, 3240 * like /chosen 3241 */ 3242 prom_init_client_services(pp); 3243 3244 /* 3245 * See if this OF is old enough that we need to do explicit maps 3246 * and other workarounds 3247 */ 3248 prom_find_mmu(); 3249 3250 /* 3251 * Init prom stdout device 3252 */ 3253 prom_init_stdout(); 3254 3255 prom_printf("Preparing to boot %s", linux_banner); 3256 3257 /* 3258 * Get default machine type. At this point, we do not differentiate 3259 * between pSeries SMP and pSeries LPAR 3260 */ 3261 of_platform = prom_find_machine_type(); 3262 prom_printf("Detected machine type: %x\n", of_platform); 3263 3264 #ifndef CONFIG_NONSTATIC_KERNEL 3265 /* Bail if this is a kdump kernel. */ 3266 if (PHYSICAL_START > 0) 3267 prom_panic("Error: You can't boot a kdump kernel from OF!\n"); 3268 #endif 3269 3270 /* 3271 * Check for an initrd 3272 */ 3273 prom_check_initrd(r3, r4); 3274 3275 /* 3276 * Do early parsing of command line 3277 */ 3278 early_cmdline_parse(); 3279 3280 #ifdef CONFIG_PPC_PSERIES 3281 /* 3282 * On pSeries, inform the firmware about our capabilities 3283 */ 3284 if (of_platform == PLATFORM_PSERIES || 3285 of_platform == PLATFORM_PSERIES_LPAR) 3286 prom_send_capabilities(); 3287 #endif 3288 3289 /* 3290 * Copy the CPU hold code 3291 */ 3292 if (of_platform != PLATFORM_POWERMAC) 3293 copy_and_flush(0, kbase, 0x100, 0); 3294 3295 /* 3296 * Initialize memory management within prom_init 3297 */ 3298 prom_init_mem(); 3299 3300 /* 3301 * Determine which cpu is actually running right _now_ 3302 */ 3303 prom_find_boot_cpu(); 3304 3305 /* 3306 * Initialize display devices 3307 */ 3308 prom_check_displays(); 3309 3310 #if defined(CONFIG_PPC64) && defined(__BIG_ENDIAN__) 3311 /* 3312 * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else 3313 * that uses the allocator, we need to make sure we get the top of memory 3314 * available for us here... 3315 */ 3316 if (of_platform == PLATFORM_PSERIES) 3317 prom_initialize_tce_table(); 3318 #endif 3319 3320 /* 3321 * On non-powermacs, try to instantiate RTAS. PowerMacs don't 3322 * have a usable RTAS implementation. 3323 */ 3324 if (of_platform != PLATFORM_POWERMAC) 3325 prom_instantiate_rtas(); 3326 3327 #ifdef CONFIG_PPC64 3328 /* instantiate sml */ 3329 prom_instantiate_sml(); 3330 #endif 3331 3332 /* 3333 * On non-powermacs, put all CPUs in spin-loops. 3334 * 3335 * PowerMacs use a different mechanism to spin CPUs 3336 * 3337 * (This must be done after instantiating RTAS) 3338 */ 3339 if (of_platform != PLATFORM_POWERMAC) 3340 prom_hold_cpus(); 3341 3342 /* 3343 * Fill in some infos for use by the kernel later on 3344 */ 3345 if (prom_memory_limit) { 3346 __be64 val = cpu_to_be64(prom_memory_limit); 3347 prom_setprop(prom.chosen, "/chosen", "linux,memory-limit", 3348 &val, sizeof(val)); 3349 } 3350 #ifdef CONFIG_PPC64 3351 if (prom_iommu_off) 3352 prom_setprop(prom.chosen, "/chosen", "linux,iommu-off", 3353 NULL, 0); 3354 3355 if (prom_iommu_force_on) 3356 prom_setprop(prom.chosen, "/chosen", "linux,iommu-force-on", 3357 NULL, 0); 3358 3359 if (prom_tce_alloc_start) { 3360 prom_setprop(prom.chosen, "/chosen", "linux,tce-alloc-start", 3361 &prom_tce_alloc_start, 3362 sizeof(prom_tce_alloc_start)); 3363 prom_setprop(prom.chosen, "/chosen", "linux,tce-alloc-end", 3364 &prom_tce_alloc_end, 3365 sizeof(prom_tce_alloc_end)); 3366 } 3367 #endif 3368 3369 /* 3370 * Fixup any known bugs in the device-tree 3371 */ 3372 fixup_device_tree(); 3373 3374 /* 3375 * Now finally create the flattened device-tree 3376 */ 3377 prom_printf("copying OF device tree...\n"); 3378 flatten_device_tree(); 3379 3380 /* 3381 * in case stdin is USB and still active on IBM machines... 3382 * Unfortunately quiesce crashes on some powermacs if we have 3383 * closed stdin already (in particular the powerbook 101). 3384 */ 3385 if (of_platform != PLATFORM_POWERMAC) 3386 prom_close_stdin(); 3387 3388 /* 3389 * Call OF "quiesce" method to shut down pending DMA's from 3390 * devices etc... 3391 */ 3392 prom_printf("Quiescing Open Firmware ...\n"); 3393 call_prom("quiesce", 0, 0); 3394 3395 /* 3396 * And finally, call the kernel passing it the flattened device 3397 * tree and NULL as r5, thus triggering the new entry point which 3398 * is common to us and kexec 3399 */ 3400 hdr = dt_header_start; 3401 3402 prom_printf("Booting Linux via __start() @ 0x%lx ...\n", kbase); 3403 prom_debug("->dt_header_start=0x%lx\n", hdr); 3404 3405 #ifdef CONFIG_PPC32 3406 reloc_got2(-offset); 3407 #endif 3408 3409 /* Move to secure memory if we're supposed to be secure guests. */ 3410 setup_secure_guest(kbase, hdr); 3411 3412 __start(hdr, kbase, 0, 0, 0, 0, 0); 3413 3414 return 0; 3415 } 3416