1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 46 #include <asm/pgtable.h> 47 #include <asm/io.h> 48 #include <asm/processor.h> 49 #include <asm/mmu.h> 50 #include <asm/prom.h> 51 #include <asm/machdep.h> 52 #include <asm/time.h> 53 #include <asm/runlatch.h> 54 #include <asm/syscalls.h> 55 #include <asm/switch_to.h> 56 #include <asm/tm.h> 57 #include <asm/debug.h> 58 #ifdef CONFIG_PPC64 59 #include <asm/firmware.h> 60 #endif 61 #include <asm/code-patching.h> 62 #include <asm/exec.h> 63 #include <asm/livepatch.h> 64 #include <asm/cpu_has_feature.h> 65 #include <asm/asm-prototypes.h> 66 67 #include <linux/kprobes.h> 68 #include <linux/kdebug.h> 69 70 /* Transactional Memory debug */ 71 #ifdef TM_DEBUG_SW 72 #define TM_DEBUG(x...) printk(KERN_INFO x) 73 #else 74 #define TM_DEBUG(x...) do { } while(0) 75 #endif 76 77 extern unsigned long _get_SP(void); 78 79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 80 static void check_if_tm_restore_required(struct task_struct *tsk) 81 { 82 /* 83 * If we are saving the current thread's registers, and the 84 * thread is in a transactional state, set the TIF_RESTORE_TM 85 * bit so that we know to restore the registers before 86 * returning to userspace. 87 */ 88 if (tsk == current && tsk->thread.regs && 89 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 90 !test_thread_flag(TIF_RESTORE_TM)) { 91 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 92 set_thread_flag(TIF_RESTORE_TM); 93 } 94 } 95 96 static inline bool msr_tm_active(unsigned long msr) 97 { 98 return MSR_TM_ACTIVE(msr); 99 } 100 #else 101 static inline bool msr_tm_active(unsigned long msr) { return false; } 102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 104 105 bool strict_msr_control; 106 EXPORT_SYMBOL(strict_msr_control); 107 108 static int __init enable_strict_msr_control(char *str) 109 { 110 strict_msr_control = true; 111 pr_info("Enabling strict facility control\n"); 112 113 return 0; 114 } 115 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 116 117 unsigned long msr_check_and_set(unsigned long bits) 118 { 119 unsigned long oldmsr = mfmsr(); 120 unsigned long newmsr; 121 122 newmsr = oldmsr | bits; 123 124 #ifdef CONFIG_VSX 125 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 126 newmsr |= MSR_VSX; 127 #endif 128 129 if (oldmsr != newmsr) 130 mtmsr_isync(newmsr); 131 132 return newmsr; 133 } 134 135 void __msr_check_and_clear(unsigned long bits) 136 { 137 unsigned long oldmsr = mfmsr(); 138 unsigned long newmsr; 139 140 newmsr = oldmsr & ~bits; 141 142 #ifdef CONFIG_VSX 143 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 144 newmsr &= ~MSR_VSX; 145 #endif 146 147 if (oldmsr != newmsr) 148 mtmsr_isync(newmsr); 149 } 150 EXPORT_SYMBOL(__msr_check_and_clear); 151 152 #ifdef CONFIG_PPC_FPU 153 void __giveup_fpu(struct task_struct *tsk) 154 { 155 unsigned long msr; 156 157 save_fpu(tsk); 158 msr = tsk->thread.regs->msr; 159 msr &= ~MSR_FP; 160 #ifdef CONFIG_VSX 161 if (cpu_has_feature(CPU_FTR_VSX)) 162 msr &= ~MSR_VSX; 163 #endif 164 tsk->thread.regs->msr = msr; 165 } 166 167 void giveup_fpu(struct task_struct *tsk) 168 { 169 check_if_tm_restore_required(tsk); 170 171 msr_check_and_set(MSR_FP); 172 __giveup_fpu(tsk); 173 msr_check_and_clear(MSR_FP); 174 } 175 EXPORT_SYMBOL(giveup_fpu); 176 177 /* 178 * Make sure the floating-point register state in the 179 * the thread_struct is up to date for task tsk. 180 */ 181 void flush_fp_to_thread(struct task_struct *tsk) 182 { 183 if (tsk->thread.regs) { 184 /* 185 * We need to disable preemption here because if we didn't, 186 * another process could get scheduled after the regs->msr 187 * test but before we have finished saving the FP registers 188 * to the thread_struct. That process could take over the 189 * FPU, and then when we get scheduled again we would store 190 * bogus values for the remaining FP registers. 191 */ 192 preempt_disable(); 193 if (tsk->thread.regs->msr & MSR_FP) { 194 /* 195 * This should only ever be called for current or 196 * for a stopped child process. Since we save away 197 * the FP register state on context switch, 198 * there is something wrong if a stopped child appears 199 * to still have its FP state in the CPU registers. 200 */ 201 BUG_ON(tsk != current); 202 giveup_fpu(tsk); 203 } 204 preempt_enable(); 205 } 206 } 207 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 208 209 void enable_kernel_fp(void) 210 { 211 unsigned long cpumsr; 212 213 WARN_ON(preemptible()); 214 215 cpumsr = msr_check_and_set(MSR_FP); 216 217 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 218 check_if_tm_restore_required(current); 219 /* 220 * If a thread has already been reclaimed then the 221 * checkpointed registers are on the CPU but have definitely 222 * been saved by the reclaim code. Don't need to and *cannot* 223 * giveup as this would save to the 'live' structure not the 224 * checkpointed structure. 225 */ 226 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 227 return; 228 __giveup_fpu(current); 229 } 230 } 231 EXPORT_SYMBOL(enable_kernel_fp); 232 233 static int restore_fp(struct task_struct *tsk) { 234 if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) { 235 load_fp_state(¤t->thread.fp_state); 236 current->thread.load_fp++; 237 return 1; 238 } 239 return 0; 240 } 241 #else 242 static int restore_fp(struct task_struct *tsk) { return 0; } 243 #endif /* CONFIG_PPC_FPU */ 244 245 #ifdef CONFIG_ALTIVEC 246 #define loadvec(thr) ((thr).load_vec) 247 248 static void __giveup_altivec(struct task_struct *tsk) 249 { 250 unsigned long msr; 251 252 save_altivec(tsk); 253 msr = tsk->thread.regs->msr; 254 msr &= ~MSR_VEC; 255 #ifdef CONFIG_VSX 256 if (cpu_has_feature(CPU_FTR_VSX)) 257 msr &= ~MSR_VSX; 258 #endif 259 tsk->thread.regs->msr = msr; 260 } 261 262 void giveup_altivec(struct task_struct *tsk) 263 { 264 check_if_tm_restore_required(tsk); 265 266 msr_check_and_set(MSR_VEC); 267 __giveup_altivec(tsk); 268 msr_check_and_clear(MSR_VEC); 269 } 270 EXPORT_SYMBOL(giveup_altivec); 271 272 void enable_kernel_altivec(void) 273 { 274 unsigned long cpumsr; 275 276 WARN_ON(preemptible()); 277 278 cpumsr = msr_check_and_set(MSR_VEC); 279 280 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 281 check_if_tm_restore_required(current); 282 /* 283 * If a thread has already been reclaimed then the 284 * checkpointed registers are on the CPU but have definitely 285 * been saved by the reclaim code. Don't need to and *cannot* 286 * giveup as this would save to the 'live' structure not the 287 * checkpointed structure. 288 */ 289 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 290 return; 291 __giveup_altivec(current); 292 } 293 } 294 EXPORT_SYMBOL(enable_kernel_altivec); 295 296 /* 297 * Make sure the VMX/Altivec register state in the 298 * the thread_struct is up to date for task tsk. 299 */ 300 void flush_altivec_to_thread(struct task_struct *tsk) 301 { 302 if (tsk->thread.regs) { 303 preempt_disable(); 304 if (tsk->thread.regs->msr & MSR_VEC) { 305 BUG_ON(tsk != current); 306 giveup_altivec(tsk); 307 } 308 preempt_enable(); 309 } 310 } 311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 312 313 static int restore_altivec(struct task_struct *tsk) 314 { 315 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 316 (tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) { 317 load_vr_state(&tsk->thread.vr_state); 318 tsk->thread.used_vr = 1; 319 tsk->thread.load_vec++; 320 321 return 1; 322 } 323 return 0; 324 } 325 #else 326 #define loadvec(thr) 0 327 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 328 #endif /* CONFIG_ALTIVEC */ 329 330 #ifdef CONFIG_VSX 331 static void __giveup_vsx(struct task_struct *tsk) 332 { 333 if (tsk->thread.regs->msr & MSR_FP) 334 __giveup_fpu(tsk); 335 if (tsk->thread.regs->msr & MSR_VEC) 336 __giveup_altivec(tsk); 337 tsk->thread.regs->msr &= ~MSR_VSX; 338 } 339 340 static void giveup_vsx(struct task_struct *tsk) 341 { 342 check_if_tm_restore_required(tsk); 343 344 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 345 __giveup_vsx(tsk); 346 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 347 } 348 349 static void save_vsx(struct task_struct *tsk) 350 { 351 if (tsk->thread.regs->msr & MSR_FP) 352 save_fpu(tsk); 353 if (tsk->thread.regs->msr & MSR_VEC) 354 save_altivec(tsk); 355 } 356 357 void enable_kernel_vsx(void) 358 { 359 unsigned long cpumsr; 360 361 WARN_ON(preemptible()); 362 363 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 364 365 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) { 366 check_if_tm_restore_required(current); 367 /* 368 * If a thread has already been reclaimed then the 369 * checkpointed registers are on the CPU but have definitely 370 * been saved by the reclaim code. Don't need to and *cannot* 371 * giveup as this would save to the 'live' structure not the 372 * checkpointed structure. 373 */ 374 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 375 return; 376 if (current->thread.regs->msr & MSR_FP) 377 __giveup_fpu(current); 378 if (current->thread.regs->msr & MSR_VEC) 379 __giveup_altivec(current); 380 __giveup_vsx(current); 381 } 382 } 383 EXPORT_SYMBOL(enable_kernel_vsx); 384 385 void flush_vsx_to_thread(struct task_struct *tsk) 386 { 387 if (tsk->thread.regs) { 388 preempt_disable(); 389 if (tsk->thread.regs->msr & MSR_VSX) { 390 BUG_ON(tsk != current); 391 giveup_vsx(tsk); 392 } 393 preempt_enable(); 394 } 395 } 396 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 397 398 static int restore_vsx(struct task_struct *tsk) 399 { 400 if (cpu_has_feature(CPU_FTR_VSX)) { 401 tsk->thread.used_vsr = 1; 402 return 1; 403 } 404 405 return 0; 406 } 407 #else 408 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 409 static inline void save_vsx(struct task_struct *tsk) { } 410 #endif /* CONFIG_VSX */ 411 412 #ifdef CONFIG_SPE 413 void giveup_spe(struct task_struct *tsk) 414 { 415 check_if_tm_restore_required(tsk); 416 417 msr_check_and_set(MSR_SPE); 418 __giveup_spe(tsk); 419 msr_check_and_clear(MSR_SPE); 420 } 421 EXPORT_SYMBOL(giveup_spe); 422 423 void enable_kernel_spe(void) 424 { 425 WARN_ON(preemptible()); 426 427 msr_check_and_set(MSR_SPE); 428 429 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 430 check_if_tm_restore_required(current); 431 __giveup_spe(current); 432 } 433 } 434 EXPORT_SYMBOL(enable_kernel_spe); 435 436 void flush_spe_to_thread(struct task_struct *tsk) 437 { 438 if (tsk->thread.regs) { 439 preempt_disable(); 440 if (tsk->thread.regs->msr & MSR_SPE) { 441 BUG_ON(tsk != current); 442 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 443 giveup_spe(tsk); 444 } 445 preempt_enable(); 446 } 447 } 448 #endif /* CONFIG_SPE */ 449 450 static unsigned long msr_all_available; 451 452 static int __init init_msr_all_available(void) 453 { 454 #ifdef CONFIG_PPC_FPU 455 msr_all_available |= MSR_FP; 456 #endif 457 #ifdef CONFIG_ALTIVEC 458 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 459 msr_all_available |= MSR_VEC; 460 #endif 461 #ifdef CONFIG_VSX 462 if (cpu_has_feature(CPU_FTR_VSX)) 463 msr_all_available |= MSR_VSX; 464 #endif 465 #ifdef CONFIG_SPE 466 if (cpu_has_feature(CPU_FTR_SPE)) 467 msr_all_available |= MSR_SPE; 468 #endif 469 470 return 0; 471 } 472 early_initcall(init_msr_all_available); 473 474 void giveup_all(struct task_struct *tsk) 475 { 476 unsigned long usermsr; 477 478 if (!tsk->thread.regs) 479 return; 480 481 usermsr = tsk->thread.regs->msr; 482 483 if ((usermsr & msr_all_available) == 0) 484 return; 485 486 msr_check_and_set(msr_all_available); 487 check_if_tm_restore_required(tsk); 488 489 #ifdef CONFIG_PPC_FPU 490 if (usermsr & MSR_FP) 491 __giveup_fpu(tsk); 492 #endif 493 #ifdef CONFIG_ALTIVEC 494 if (usermsr & MSR_VEC) 495 __giveup_altivec(tsk); 496 #endif 497 #ifdef CONFIG_VSX 498 if (usermsr & MSR_VSX) 499 __giveup_vsx(tsk); 500 #endif 501 #ifdef CONFIG_SPE 502 if (usermsr & MSR_SPE) 503 __giveup_spe(tsk); 504 #endif 505 506 msr_check_and_clear(msr_all_available); 507 } 508 EXPORT_SYMBOL(giveup_all); 509 510 void restore_math(struct pt_regs *regs) 511 { 512 unsigned long msr; 513 514 if (!msr_tm_active(regs->msr) && 515 !current->thread.load_fp && !loadvec(current->thread)) 516 return; 517 518 msr = regs->msr; 519 msr_check_and_set(msr_all_available); 520 521 /* 522 * Only reload if the bit is not set in the user MSR, the bit BEING set 523 * indicates that the registers are hot 524 */ 525 if ((!(msr & MSR_FP)) && restore_fp(current)) 526 msr |= MSR_FP | current->thread.fpexc_mode; 527 528 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 529 msr |= MSR_VEC; 530 531 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 532 restore_vsx(current)) { 533 msr |= MSR_VSX; 534 } 535 536 msr_check_and_clear(msr_all_available); 537 538 regs->msr = msr; 539 } 540 541 void save_all(struct task_struct *tsk) 542 { 543 unsigned long usermsr; 544 545 if (!tsk->thread.regs) 546 return; 547 548 usermsr = tsk->thread.regs->msr; 549 550 if ((usermsr & msr_all_available) == 0) 551 return; 552 553 msr_check_and_set(msr_all_available); 554 555 /* 556 * Saving the way the register space is in hardware, save_vsx boils 557 * down to a save_fpu() and save_altivec() 558 */ 559 if (usermsr & MSR_VSX) { 560 save_vsx(tsk); 561 } else { 562 if (usermsr & MSR_FP) 563 save_fpu(tsk); 564 565 if (usermsr & MSR_VEC) 566 save_altivec(tsk); 567 } 568 569 if (usermsr & MSR_SPE) 570 __giveup_spe(tsk); 571 572 msr_check_and_clear(msr_all_available); 573 } 574 575 void flush_all_to_thread(struct task_struct *tsk) 576 { 577 if (tsk->thread.regs) { 578 preempt_disable(); 579 BUG_ON(tsk != current); 580 save_all(tsk); 581 582 #ifdef CONFIG_SPE 583 if (tsk->thread.regs->msr & MSR_SPE) 584 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 585 #endif 586 587 preempt_enable(); 588 } 589 } 590 EXPORT_SYMBOL(flush_all_to_thread); 591 592 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 593 void do_send_trap(struct pt_regs *regs, unsigned long address, 594 unsigned long error_code, int signal_code, int breakpt) 595 { 596 siginfo_t info; 597 598 current->thread.trap_nr = signal_code; 599 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 600 11, SIGSEGV) == NOTIFY_STOP) 601 return; 602 603 /* Deliver the signal to userspace */ 604 info.si_signo = SIGTRAP; 605 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 606 info.si_code = signal_code; 607 info.si_addr = (void __user *)address; 608 force_sig_info(SIGTRAP, &info, current); 609 } 610 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 611 void do_break (struct pt_regs *regs, unsigned long address, 612 unsigned long error_code) 613 { 614 siginfo_t info; 615 616 current->thread.trap_nr = TRAP_HWBKPT; 617 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 618 11, SIGSEGV) == NOTIFY_STOP) 619 return; 620 621 if (debugger_break_match(regs)) 622 return; 623 624 /* Clear the breakpoint */ 625 hw_breakpoint_disable(); 626 627 /* Deliver the signal to userspace */ 628 info.si_signo = SIGTRAP; 629 info.si_errno = 0; 630 info.si_code = TRAP_HWBKPT; 631 info.si_addr = (void __user *)address; 632 force_sig_info(SIGTRAP, &info, current); 633 } 634 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 635 636 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 637 638 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 639 /* 640 * Set the debug registers back to their default "safe" values. 641 */ 642 static void set_debug_reg_defaults(struct thread_struct *thread) 643 { 644 thread->debug.iac1 = thread->debug.iac2 = 0; 645 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 646 thread->debug.iac3 = thread->debug.iac4 = 0; 647 #endif 648 thread->debug.dac1 = thread->debug.dac2 = 0; 649 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 650 thread->debug.dvc1 = thread->debug.dvc2 = 0; 651 #endif 652 thread->debug.dbcr0 = 0; 653 #ifdef CONFIG_BOOKE 654 /* 655 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 656 */ 657 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 658 DBCR1_IAC3US | DBCR1_IAC4US; 659 /* 660 * Force Data Address Compare User/Supervisor bits to be User-only 661 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 662 */ 663 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 664 #else 665 thread->debug.dbcr1 = 0; 666 #endif 667 } 668 669 static void prime_debug_regs(struct debug_reg *debug) 670 { 671 /* 672 * We could have inherited MSR_DE from userspace, since 673 * it doesn't get cleared on exception entry. Make sure 674 * MSR_DE is clear before we enable any debug events. 675 */ 676 mtmsr(mfmsr() & ~MSR_DE); 677 678 mtspr(SPRN_IAC1, debug->iac1); 679 mtspr(SPRN_IAC2, debug->iac2); 680 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 681 mtspr(SPRN_IAC3, debug->iac3); 682 mtspr(SPRN_IAC4, debug->iac4); 683 #endif 684 mtspr(SPRN_DAC1, debug->dac1); 685 mtspr(SPRN_DAC2, debug->dac2); 686 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 687 mtspr(SPRN_DVC1, debug->dvc1); 688 mtspr(SPRN_DVC2, debug->dvc2); 689 #endif 690 mtspr(SPRN_DBCR0, debug->dbcr0); 691 mtspr(SPRN_DBCR1, debug->dbcr1); 692 #ifdef CONFIG_BOOKE 693 mtspr(SPRN_DBCR2, debug->dbcr2); 694 #endif 695 } 696 /* 697 * Unless neither the old or new thread are making use of the 698 * debug registers, set the debug registers from the values 699 * stored in the new thread. 700 */ 701 void switch_booke_debug_regs(struct debug_reg *new_debug) 702 { 703 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 704 || (new_debug->dbcr0 & DBCR0_IDM)) 705 prime_debug_regs(new_debug); 706 } 707 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 708 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 709 #ifndef CONFIG_HAVE_HW_BREAKPOINT 710 static void set_debug_reg_defaults(struct thread_struct *thread) 711 { 712 thread->hw_brk.address = 0; 713 thread->hw_brk.type = 0; 714 set_breakpoint(&thread->hw_brk); 715 } 716 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 717 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 718 719 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 720 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 721 { 722 mtspr(SPRN_DAC1, dabr); 723 #ifdef CONFIG_PPC_47x 724 isync(); 725 #endif 726 return 0; 727 } 728 #elif defined(CONFIG_PPC_BOOK3S) 729 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 730 { 731 mtspr(SPRN_DABR, dabr); 732 if (cpu_has_feature(CPU_FTR_DABRX)) 733 mtspr(SPRN_DABRX, dabrx); 734 return 0; 735 } 736 #elif defined(CONFIG_PPC_8xx) 737 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 738 { 739 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 740 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 741 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 742 743 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 744 lctrl1 |= 0xa0000; 745 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 746 lctrl1 |= 0xf0000; 747 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 748 lctrl2 = 0; 749 750 mtspr(SPRN_LCTRL2, 0); 751 mtspr(SPRN_CMPE, addr); 752 mtspr(SPRN_CMPF, addr + 4); 753 mtspr(SPRN_LCTRL1, lctrl1); 754 mtspr(SPRN_LCTRL2, lctrl2); 755 756 return 0; 757 } 758 #else 759 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 760 { 761 return -EINVAL; 762 } 763 #endif 764 765 static inline int set_dabr(struct arch_hw_breakpoint *brk) 766 { 767 unsigned long dabr, dabrx; 768 769 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 770 dabrx = ((brk->type >> 3) & 0x7); 771 772 if (ppc_md.set_dabr) 773 return ppc_md.set_dabr(dabr, dabrx); 774 775 return __set_dabr(dabr, dabrx); 776 } 777 778 static inline int set_dawr(struct arch_hw_breakpoint *brk) 779 { 780 unsigned long dawr, dawrx, mrd; 781 782 dawr = brk->address; 783 784 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 785 << (63 - 58); //* read/write bits */ 786 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 787 << (63 - 59); //* translate */ 788 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 789 >> 3; //* PRIM bits */ 790 /* dawr length is stored in field MDR bits 48:53. Matches range in 791 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 792 0b111111=64DW. 793 brk->len is in bytes. 794 This aligns up to double word size, shifts and does the bias. 795 */ 796 mrd = ((brk->len + 7) >> 3) - 1; 797 dawrx |= (mrd & 0x3f) << (63 - 53); 798 799 if (ppc_md.set_dawr) 800 return ppc_md.set_dawr(dawr, dawrx); 801 mtspr(SPRN_DAWR, dawr); 802 mtspr(SPRN_DAWRX, dawrx); 803 return 0; 804 } 805 806 void __set_breakpoint(struct arch_hw_breakpoint *brk) 807 { 808 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 809 810 if (cpu_has_feature(CPU_FTR_DAWR)) 811 set_dawr(brk); 812 else 813 set_dabr(brk); 814 } 815 816 void set_breakpoint(struct arch_hw_breakpoint *brk) 817 { 818 preempt_disable(); 819 __set_breakpoint(brk); 820 preempt_enable(); 821 } 822 823 #ifdef CONFIG_PPC64 824 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 825 #endif 826 827 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 828 struct arch_hw_breakpoint *b) 829 { 830 if (a->address != b->address) 831 return false; 832 if (a->type != b->type) 833 return false; 834 if (a->len != b->len) 835 return false; 836 return true; 837 } 838 839 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 840 841 static inline bool tm_enabled(struct task_struct *tsk) 842 { 843 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 844 } 845 846 static void tm_reclaim_thread(struct thread_struct *thr, 847 struct thread_info *ti, uint8_t cause) 848 { 849 /* 850 * Use the current MSR TM suspended bit to track if we have 851 * checkpointed state outstanding. 852 * On signal delivery, we'd normally reclaim the checkpointed 853 * state to obtain stack pointer (see:get_tm_stackpointer()). 854 * This will then directly return to userspace without going 855 * through __switch_to(). However, if the stack frame is bad, 856 * we need to exit this thread which calls __switch_to() which 857 * will again attempt to reclaim the already saved tm state. 858 * Hence we need to check that we've not already reclaimed 859 * this state. 860 * We do this using the current MSR, rather tracking it in 861 * some specific thread_struct bit, as it has the additional 862 * benefit of checking for a potential TM bad thing exception. 863 */ 864 if (!MSR_TM_SUSPENDED(mfmsr())) 865 return; 866 867 /* 868 * If we are in a transaction and FP is off then we can't have 869 * used FP inside that transaction. Hence the checkpointed 870 * state is the same as the live state. We need to copy the 871 * live state to the checkpointed state so that when the 872 * transaction is restored, the checkpointed state is correct 873 * and the aborted transaction sees the correct state. We use 874 * ckpt_regs.msr here as that's what tm_reclaim will use to 875 * determine if it's going to write the checkpointed state or 876 * not. So either this will write the checkpointed registers, 877 * or reclaim will. Similarly for VMX. 878 */ 879 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 880 memcpy(&thr->ckfp_state, &thr->fp_state, 881 sizeof(struct thread_fp_state)); 882 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 883 memcpy(&thr->ckvr_state, &thr->vr_state, 884 sizeof(struct thread_vr_state)); 885 886 giveup_all(container_of(thr, struct task_struct, thread)); 887 888 tm_reclaim(thr, thr->ckpt_regs.msr, cause); 889 } 890 891 void tm_reclaim_current(uint8_t cause) 892 { 893 tm_enable(); 894 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 895 } 896 897 static inline void tm_reclaim_task(struct task_struct *tsk) 898 { 899 /* We have to work out if we're switching from/to a task that's in the 900 * middle of a transaction. 901 * 902 * In switching we need to maintain a 2nd register state as 903 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 904 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 905 * ckvr_state 906 * 907 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 908 */ 909 struct thread_struct *thr = &tsk->thread; 910 911 if (!thr->regs) 912 return; 913 914 if (!MSR_TM_ACTIVE(thr->regs->msr)) 915 goto out_and_saveregs; 916 917 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 918 "ccr=%lx, msr=%lx, trap=%lx)\n", 919 tsk->pid, thr->regs->nip, 920 thr->regs->ccr, thr->regs->msr, 921 thr->regs->trap); 922 923 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 924 925 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 926 tsk->pid); 927 928 out_and_saveregs: 929 /* Always save the regs here, even if a transaction's not active. 930 * This context-switches a thread's TM info SPRs. We do it here to 931 * be consistent with the restore path (in recheckpoint) which 932 * cannot happen later in _switch(). 933 */ 934 tm_save_sprs(thr); 935 } 936 937 extern void __tm_recheckpoint(struct thread_struct *thread, 938 unsigned long orig_msr); 939 940 void tm_recheckpoint(struct thread_struct *thread, 941 unsigned long orig_msr) 942 { 943 unsigned long flags; 944 945 if (!(thread->regs->msr & MSR_TM)) 946 return; 947 948 /* We really can't be interrupted here as the TEXASR registers can't 949 * change and later in the trecheckpoint code, we have a userspace R1. 950 * So let's hard disable over this region. 951 */ 952 local_irq_save(flags); 953 hard_irq_disable(); 954 955 /* The TM SPRs are restored here, so that TEXASR.FS can be set 956 * before the trecheckpoint and no explosion occurs. 957 */ 958 tm_restore_sprs(thread); 959 960 __tm_recheckpoint(thread, orig_msr); 961 962 local_irq_restore(flags); 963 } 964 965 static inline void tm_recheckpoint_new_task(struct task_struct *new) 966 { 967 unsigned long msr; 968 969 if (!cpu_has_feature(CPU_FTR_TM)) 970 return; 971 972 /* Recheckpoint the registers of the thread we're about to switch to. 973 * 974 * If the task was using FP, we non-lazily reload both the original and 975 * the speculative FP register states. This is because the kernel 976 * doesn't see if/when a TM rollback occurs, so if we take an FP 977 * unavailable later, we are unable to determine which set of FP regs 978 * need to be restored. 979 */ 980 if (!tm_enabled(new)) 981 return; 982 983 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 984 tm_restore_sprs(&new->thread); 985 return; 986 } 987 msr = new->thread.ckpt_regs.msr; 988 /* Recheckpoint to restore original checkpointed register state. */ 989 TM_DEBUG("*** tm_recheckpoint of pid %d " 990 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 991 new->pid, new->thread.regs->msr, msr); 992 993 tm_recheckpoint(&new->thread, msr); 994 995 /* 996 * The checkpointed state has been restored but the live state has 997 * not, ensure all the math functionality is turned off to trigger 998 * restore_math() to reload. 999 */ 1000 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1001 1002 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1003 "(kernel msr 0x%lx)\n", 1004 new->pid, mfmsr()); 1005 } 1006 1007 static inline void __switch_to_tm(struct task_struct *prev, 1008 struct task_struct *new) 1009 { 1010 if (cpu_has_feature(CPU_FTR_TM)) { 1011 if (tm_enabled(prev) || tm_enabled(new)) 1012 tm_enable(); 1013 1014 if (tm_enabled(prev)) { 1015 prev->thread.load_tm++; 1016 tm_reclaim_task(prev); 1017 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1018 prev->thread.regs->msr &= ~MSR_TM; 1019 } 1020 1021 tm_recheckpoint_new_task(new); 1022 } 1023 } 1024 1025 /* 1026 * This is called if we are on the way out to userspace and the 1027 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1028 * FP and/or vector state and does so if necessary. 1029 * If userspace is inside a transaction (whether active or 1030 * suspended) and FP/VMX/VSX instructions have ever been enabled 1031 * inside that transaction, then we have to keep them enabled 1032 * and keep the FP/VMX/VSX state loaded while ever the transaction 1033 * continues. The reason is that if we didn't, and subsequently 1034 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1035 * we don't know whether it's the same transaction, and thus we 1036 * don't know which of the checkpointed state and the transactional 1037 * state to use. 1038 */ 1039 void restore_tm_state(struct pt_regs *regs) 1040 { 1041 unsigned long msr_diff; 1042 1043 /* 1044 * This is the only moment we should clear TIF_RESTORE_TM as 1045 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1046 * again, anything else could lead to an incorrect ckpt_msr being 1047 * saved and therefore incorrect signal contexts. 1048 */ 1049 clear_thread_flag(TIF_RESTORE_TM); 1050 if (!MSR_TM_ACTIVE(regs->msr)) 1051 return; 1052 1053 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1054 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1055 1056 /* Ensure that restore_math() will restore */ 1057 if (msr_diff & MSR_FP) 1058 current->thread.load_fp = 1; 1059 #ifdef CONFIG_ALTIVEC 1060 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1061 current->thread.load_vec = 1; 1062 #endif 1063 restore_math(regs); 1064 1065 regs->msr |= msr_diff; 1066 } 1067 1068 #else 1069 #define tm_recheckpoint_new_task(new) 1070 #define __switch_to_tm(prev, new) 1071 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1072 1073 static inline void save_sprs(struct thread_struct *t) 1074 { 1075 #ifdef CONFIG_ALTIVEC 1076 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1077 t->vrsave = mfspr(SPRN_VRSAVE); 1078 #endif 1079 #ifdef CONFIG_PPC_BOOK3S_64 1080 if (cpu_has_feature(CPU_FTR_DSCR)) 1081 t->dscr = mfspr(SPRN_DSCR); 1082 1083 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1084 t->bescr = mfspr(SPRN_BESCR); 1085 t->ebbhr = mfspr(SPRN_EBBHR); 1086 t->ebbrr = mfspr(SPRN_EBBRR); 1087 1088 t->fscr = mfspr(SPRN_FSCR); 1089 1090 /* 1091 * Note that the TAR is not available for use in the kernel. 1092 * (To provide this, the TAR should be backed up/restored on 1093 * exception entry/exit instead, and be in pt_regs. FIXME, 1094 * this should be in pt_regs anyway (for debug).) 1095 */ 1096 t->tar = mfspr(SPRN_TAR); 1097 } 1098 #endif 1099 } 1100 1101 static inline void restore_sprs(struct thread_struct *old_thread, 1102 struct thread_struct *new_thread) 1103 { 1104 #ifdef CONFIG_ALTIVEC 1105 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1106 old_thread->vrsave != new_thread->vrsave) 1107 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1108 #endif 1109 #ifdef CONFIG_PPC_BOOK3S_64 1110 if (cpu_has_feature(CPU_FTR_DSCR)) { 1111 u64 dscr = get_paca()->dscr_default; 1112 if (new_thread->dscr_inherit) 1113 dscr = new_thread->dscr; 1114 1115 if (old_thread->dscr != dscr) 1116 mtspr(SPRN_DSCR, dscr); 1117 } 1118 1119 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1120 if (old_thread->bescr != new_thread->bescr) 1121 mtspr(SPRN_BESCR, new_thread->bescr); 1122 if (old_thread->ebbhr != new_thread->ebbhr) 1123 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1124 if (old_thread->ebbrr != new_thread->ebbrr) 1125 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1126 1127 if (old_thread->fscr != new_thread->fscr) 1128 mtspr(SPRN_FSCR, new_thread->fscr); 1129 1130 if (old_thread->tar != new_thread->tar) 1131 mtspr(SPRN_TAR, new_thread->tar); 1132 } 1133 #endif 1134 } 1135 1136 #ifdef CONFIG_PPC_BOOK3S_64 1137 #define CP_SIZE 128 1138 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1139 #endif 1140 1141 struct task_struct *__switch_to(struct task_struct *prev, 1142 struct task_struct *new) 1143 { 1144 struct thread_struct *new_thread, *old_thread; 1145 struct task_struct *last; 1146 #ifdef CONFIG_PPC_BOOK3S_64 1147 struct ppc64_tlb_batch *batch; 1148 #endif 1149 1150 new_thread = &new->thread; 1151 old_thread = ¤t->thread; 1152 1153 WARN_ON(!irqs_disabled()); 1154 1155 #ifdef CONFIG_PPC64 1156 /* 1157 * Collect processor utilization data per process 1158 */ 1159 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1160 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1161 long unsigned start_tb, current_tb; 1162 start_tb = old_thread->start_tb; 1163 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1164 old_thread->accum_tb += (current_tb - start_tb); 1165 new_thread->start_tb = current_tb; 1166 } 1167 #endif /* CONFIG_PPC64 */ 1168 1169 #ifdef CONFIG_PPC_STD_MMU_64 1170 batch = this_cpu_ptr(&ppc64_tlb_batch); 1171 if (batch->active) { 1172 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1173 if (batch->index) 1174 __flush_tlb_pending(batch); 1175 batch->active = 0; 1176 } 1177 #endif /* CONFIG_PPC_STD_MMU_64 */ 1178 1179 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1180 switch_booke_debug_regs(&new->thread.debug); 1181 #else 1182 /* 1183 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1184 * schedule DABR 1185 */ 1186 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1187 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1188 __set_breakpoint(&new->thread.hw_brk); 1189 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1190 #endif 1191 1192 /* 1193 * We need to save SPRs before treclaim/trecheckpoint as these will 1194 * change a number of them. 1195 */ 1196 save_sprs(&prev->thread); 1197 1198 /* Save FPU, Altivec, VSX and SPE state */ 1199 giveup_all(prev); 1200 1201 __switch_to_tm(prev, new); 1202 1203 if (!radix_enabled()) { 1204 /* 1205 * We can't take a PMU exception inside _switch() since there 1206 * is a window where the kernel stack SLB and the kernel stack 1207 * are out of sync. Hard disable here. 1208 */ 1209 hard_irq_disable(); 1210 } 1211 1212 /* 1213 * Call restore_sprs() before calling _switch(). If we move it after 1214 * _switch() then we miss out on calling it for new tasks. The reason 1215 * for this is we manually create a stack frame for new tasks that 1216 * directly returns through ret_from_fork() or 1217 * ret_from_kernel_thread(). See copy_thread() for details. 1218 */ 1219 restore_sprs(old_thread, new_thread); 1220 1221 last = _switch(old_thread, new_thread); 1222 1223 #ifdef CONFIG_PPC_STD_MMU_64 1224 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1225 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1226 batch = this_cpu_ptr(&ppc64_tlb_batch); 1227 batch->active = 1; 1228 } 1229 1230 if (current_thread_info()->task->thread.regs) { 1231 restore_math(current_thread_info()->task->thread.regs); 1232 1233 /* 1234 * The copy-paste buffer can only store into foreign real 1235 * addresses, so unprivileged processes can not see the 1236 * data or use it in any way unless they have foreign real 1237 * mappings. We don't have a VAS driver that allocates those 1238 * yet, so no cpabort is required. 1239 */ 1240 if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { 1241 /* 1242 * DD1 allows paste into normal system memory, so we 1243 * do an unpaired copy here to clear the buffer and 1244 * prevent a covert channel being set up. 1245 * 1246 * cpabort is not used because it is quite expensive. 1247 */ 1248 asm volatile(PPC_COPY(%0, %1) 1249 : : "r"(dummy_copy_buffer), "r"(0)); 1250 } 1251 } 1252 #endif /* CONFIG_PPC_STD_MMU_64 */ 1253 1254 return last; 1255 } 1256 1257 static int instructions_to_print = 16; 1258 1259 static void show_instructions(struct pt_regs *regs) 1260 { 1261 int i; 1262 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1263 sizeof(int)); 1264 1265 printk("Instruction dump:"); 1266 1267 for (i = 0; i < instructions_to_print; i++) { 1268 int instr; 1269 1270 if (!(i % 8)) 1271 pr_cont("\n"); 1272 1273 #if !defined(CONFIG_BOOKE) 1274 /* If executing with the IMMU off, adjust pc rather 1275 * than print XXXXXXXX. 1276 */ 1277 if (!(regs->msr & MSR_IR)) 1278 pc = (unsigned long)phys_to_virt(pc); 1279 #endif 1280 1281 if (!__kernel_text_address(pc) || 1282 probe_kernel_address((unsigned int __user *)pc, instr)) { 1283 pr_cont("XXXXXXXX "); 1284 } else { 1285 if (regs->nip == pc) 1286 pr_cont("<%08x> ", instr); 1287 else 1288 pr_cont("%08x ", instr); 1289 } 1290 1291 pc += sizeof(int); 1292 } 1293 1294 pr_cont("\n"); 1295 } 1296 1297 struct regbit { 1298 unsigned long bit; 1299 const char *name; 1300 }; 1301 1302 static struct regbit msr_bits[] = { 1303 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1304 {MSR_SF, "SF"}, 1305 {MSR_HV, "HV"}, 1306 #endif 1307 {MSR_VEC, "VEC"}, 1308 {MSR_VSX, "VSX"}, 1309 #ifdef CONFIG_BOOKE 1310 {MSR_CE, "CE"}, 1311 #endif 1312 {MSR_EE, "EE"}, 1313 {MSR_PR, "PR"}, 1314 {MSR_FP, "FP"}, 1315 {MSR_ME, "ME"}, 1316 #ifdef CONFIG_BOOKE 1317 {MSR_DE, "DE"}, 1318 #else 1319 {MSR_SE, "SE"}, 1320 {MSR_BE, "BE"}, 1321 #endif 1322 {MSR_IR, "IR"}, 1323 {MSR_DR, "DR"}, 1324 {MSR_PMM, "PMM"}, 1325 #ifndef CONFIG_BOOKE 1326 {MSR_RI, "RI"}, 1327 {MSR_LE, "LE"}, 1328 #endif 1329 {0, NULL} 1330 }; 1331 1332 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1333 { 1334 const char *s = ""; 1335 1336 for (; bits->bit; ++bits) 1337 if (val & bits->bit) { 1338 pr_cont("%s%s", s, bits->name); 1339 s = sep; 1340 } 1341 } 1342 1343 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1344 static struct regbit msr_tm_bits[] = { 1345 {MSR_TS_T, "T"}, 1346 {MSR_TS_S, "S"}, 1347 {MSR_TM, "E"}, 1348 {0, NULL} 1349 }; 1350 1351 static void print_tm_bits(unsigned long val) 1352 { 1353 /* 1354 * This only prints something if at least one of the TM bit is set. 1355 * Inside the TM[], the output means: 1356 * E: Enabled (bit 32) 1357 * S: Suspended (bit 33) 1358 * T: Transactional (bit 34) 1359 */ 1360 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1361 pr_cont(",TM["); 1362 print_bits(val, msr_tm_bits, ""); 1363 pr_cont("]"); 1364 } 1365 } 1366 #else 1367 static void print_tm_bits(unsigned long val) {} 1368 #endif 1369 1370 static void print_msr_bits(unsigned long val) 1371 { 1372 pr_cont("<"); 1373 print_bits(val, msr_bits, ","); 1374 print_tm_bits(val); 1375 pr_cont(">"); 1376 } 1377 1378 #ifdef CONFIG_PPC64 1379 #define REG "%016lx" 1380 #define REGS_PER_LINE 4 1381 #define LAST_VOLATILE 13 1382 #else 1383 #define REG "%08lx" 1384 #define REGS_PER_LINE 8 1385 #define LAST_VOLATILE 12 1386 #endif 1387 1388 void show_regs(struct pt_regs * regs) 1389 { 1390 int i, trap; 1391 1392 show_regs_print_info(KERN_DEFAULT); 1393 1394 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1395 regs->nip, regs->link, regs->ctr); 1396 printk("REGS: %p TRAP: %04lx %s (%s)\n", 1397 regs, regs->trap, print_tainted(), init_utsname()->release); 1398 printk("MSR: "REG" ", regs->msr); 1399 print_msr_bits(regs->msr); 1400 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1401 trap = TRAP(regs); 1402 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1403 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1404 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1405 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1406 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1407 #else 1408 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1409 #endif 1410 #ifdef CONFIG_PPC64 1411 pr_cont("SOFTE: %ld ", regs->softe); 1412 #endif 1413 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1414 if (MSR_TM_ACTIVE(regs->msr)) 1415 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1416 #endif 1417 1418 for (i = 0; i < 32; i++) { 1419 if ((i % REGS_PER_LINE) == 0) 1420 pr_cont("\nGPR%02d: ", i); 1421 pr_cont(REG " ", regs->gpr[i]); 1422 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1423 break; 1424 } 1425 pr_cont("\n"); 1426 #ifdef CONFIG_KALLSYMS 1427 /* 1428 * Lookup NIP late so we have the best change of getting the 1429 * above info out without failing 1430 */ 1431 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1432 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1433 #endif 1434 show_stack(current, (unsigned long *) regs->gpr[1]); 1435 if (!user_mode(regs)) 1436 show_instructions(regs); 1437 } 1438 1439 void flush_thread(void) 1440 { 1441 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1442 flush_ptrace_hw_breakpoint(current); 1443 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1444 set_debug_reg_defaults(¤t->thread); 1445 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1446 } 1447 1448 void 1449 release_thread(struct task_struct *t) 1450 { 1451 } 1452 1453 /* 1454 * this gets called so that we can store coprocessor state into memory and 1455 * copy the current task into the new thread. 1456 */ 1457 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1458 { 1459 flush_all_to_thread(src); 1460 /* 1461 * Flush TM state out so we can copy it. __switch_to_tm() does this 1462 * flush but it removes the checkpointed state from the current CPU and 1463 * transitions the CPU out of TM mode. Hence we need to call 1464 * tm_recheckpoint_new_task() (on the same task) to restore the 1465 * checkpointed state back and the TM mode. 1466 * 1467 * Can't pass dst because it isn't ready. Doesn't matter, passing 1468 * dst is only important for __switch_to() 1469 */ 1470 __switch_to_tm(src, src); 1471 1472 *dst = *src; 1473 1474 clear_task_ebb(dst); 1475 1476 return 0; 1477 } 1478 1479 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1480 { 1481 #ifdef CONFIG_PPC_STD_MMU_64 1482 unsigned long sp_vsid; 1483 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1484 1485 if (radix_enabled()) 1486 return; 1487 1488 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1489 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1490 << SLB_VSID_SHIFT_1T; 1491 else 1492 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1493 << SLB_VSID_SHIFT; 1494 sp_vsid |= SLB_VSID_KERNEL | llp; 1495 p->thread.ksp_vsid = sp_vsid; 1496 #endif 1497 } 1498 1499 /* 1500 * Copy a thread.. 1501 */ 1502 1503 /* 1504 * Copy architecture-specific thread state 1505 */ 1506 int copy_thread(unsigned long clone_flags, unsigned long usp, 1507 unsigned long kthread_arg, struct task_struct *p) 1508 { 1509 struct pt_regs *childregs, *kregs; 1510 extern void ret_from_fork(void); 1511 extern void ret_from_kernel_thread(void); 1512 void (*f)(void); 1513 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1514 struct thread_info *ti = task_thread_info(p); 1515 1516 klp_init_thread_info(ti); 1517 1518 /* Copy registers */ 1519 sp -= sizeof(struct pt_regs); 1520 childregs = (struct pt_regs *) sp; 1521 if (unlikely(p->flags & PF_KTHREAD)) { 1522 /* kernel thread */ 1523 memset(childregs, 0, sizeof(struct pt_regs)); 1524 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1525 /* function */ 1526 if (usp) 1527 childregs->gpr[14] = ppc_function_entry((void *)usp); 1528 #ifdef CONFIG_PPC64 1529 clear_tsk_thread_flag(p, TIF_32BIT); 1530 childregs->softe = 1; 1531 #endif 1532 childregs->gpr[15] = kthread_arg; 1533 p->thread.regs = NULL; /* no user register state */ 1534 ti->flags |= _TIF_RESTOREALL; 1535 f = ret_from_kernel_thread; 1536 } else { 1537 /* user thread */ 1538 struct pt_regs *regs = current_pt_regs(); 1539 CHECK_FULL_REGS(regs); 1540 *childregs = *regs; 1541 if (usp) 1542 childregs->gpr[1] = usp; 1543 p->thread.regs = childregs; 1544 childregs->gpr[3] = 0; /* Result from fork() */ 1545 if (clone_flags & CLONE_SETTLS) { 1546 #ifdef CONFIG_PPC64 1547 if (!is_32bit_task()) 1548 childregs->gpr[13] = childregs->gpr[6]; 1549 else 1550 #endif 1551 childregs->gpr[2] = childregs->gpr[6]; 1552 } 1553 1554 f = ret_from_fork; 1555 } 1556 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1557 sp -= STACK_FRAME_OVERHEAD; 1558 1559 /* 1560 * The way this works is that at some point in the future 1561 * some task will call _switch to switch to the new task. 1562 * That will pop off the stack frame created below and start 1563 * the new task running at ret_from_fork. The new task will 1564 * do some house keeping and then return from the fork or clone 1565 * system call, using the stack frame created above. 1566 */ 1567 ((unsigned long *)sp)[0] = 0; 1568 sp -= sizeof(struct pt_regs); 1569 kregs = (struct pt_regs *) sp; 1570 sp -= STACK_FRAME_OVERHEAD; 1571 p->thread.ksp = sp; 1572 #ifdef CONFIG_PPC32 1573 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1574 _ALIGN_UP(sizeof(struct thread_info), 16); 1575 #endif 1576 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1577 p->thread.ptrace_bps[0] = NULL; 1578 #endif 1579 1580 p->thread.fp_save_area = NULL; 1581 #ifdef CONFIG_ALTIVEC 1582 p->thread.vr_save_area = NULL; 1583 #endif 1584 1585 setup_ksp_vsid(p, sp); 1586 1587 #ifdef CONFIG_PPC64 1588 if (cpu_has_feature(CPU_FTR_DSCR)) { 1589 p->thread.dscr_inherit = current->thread.dscr_inherit; 1590 p->thread.dscr = mfspr(SPRN_DSCR); 1591 } 1592 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1593 p->thread.ppr = INIT_PPR; 1594 #endif 1595 kregs->nip = ppc_function_entry(f); 1596 return 0; 1597 } 1598 1599 /* 1600 * Set up a thread for executing a new program 1601 */ 1602 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1603 { 1604 #ifdef CONFIG_PPC64 1605 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1606 #endif 1607 1608 /* 1609 * If we exec out of a kernel thread then thread.regs will not be 1610 * set. Do it now. 1611 */ 1612 if (!current->thread.regs) { 1613 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1614 current->thread.regs = regs - 1; 1615 } 1616 1617 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1618 /* 1619 * Clear any transactional state, we're exec()ing. The cause is 1620 * not important as there will never be a recheckpoint so it's not 1621 * user visible. 1622 */ 1623 if (MSR_TM_SUSPENDED(mfmsr())) 1624 tm_reclaim_current(0); 1625 #endif 1626 1627 memset(regs->gpr, 0, sizeof(regs->gpr)); 1628 regs->ctr = 0; 1629 regs->link = 0; 1630 regs->xer = 0; 1631 regs->ccr = 0; 1632 regs->gpr[1] = sp; 1633 1634 /* 1635 * We have just cleared all the nonvolatile GPRs, so make 1636 * FULL_REGS(regs) return true. This is necessary to allow 1637 * ptrace to examine the thread immediately after exec. 1638 */ 1639 regs->trap &= ~1UL; 1640 1641 #ifdef CONFIG_PPC32 1642 regs->mq = 0; 1643 regs->nip = start; 1644 regs->msr = MSR_USER; 1645 #else 1646 if (!is_32bit_task()) { 1647 unsigned long entry; 1648 1649 if (is_elf2_task()) { 1650 /* Look ma, no function descriptors! */ 1651 entry = start; 1652 1653 /* 1654 * Ulrich says: 1655 * The latest iteration of the ABI requires that when 1656 * calling a function (at its global entry point), 1657 * the caller must ensure r12 holds the entry point 1658 * address (so that the function can quickly 1659 * establish addressability). 1660 */ 1661 regs->gpr[12] = start; 1662 /* Make sure that's restored on entry to userspace. */ 1663 set_thread_flag(TIF_RESTOREALL); 1664 } else { 1665 unsigned long toc; 1666 1667 /* start is a relocated pointer to the function 1668 * descriptor for the elf _start routine. The first 1669 * entry in the function descriptor is the entry 1670 * address of _start and the second entry is the TOC 1671 * value we need to use. 1672 */ 1673 __get_user(entry, (unsigned long __user *)start); 1674 __get_user(toc, (unsigned long __user *)start+1); 1675 1676 /* Check whether the e_entry function descriptor entries 1677 * need to be relocated before we can use them. 1678 */ 1679 if (load_addr != 0) { 1680 entry += load_addr; 1681 toc += load_addr; 1682 } 1683 regs->gpr[2] = toc; 1684 } 1685 regs->nip = entry; 1686 regs->msr = MSR_USER64; 1687 } else { 1688 regs->nip = start; 1689 regs->gpr[2] = 0; 1690 regs->msr = MSR_USER32; 1691 } 1692 #endif 1693 #ifdef CONFIG_VSX 1694 current->thread.used_vsr = 0; 1695 #endif 1696 current->thread.load_fp = 0; 1697 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1698 current->thread.fp_save_area = NULL; 1699 #ifdef CONFIG_ALTIVEC 1700 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1701 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1702 current->thread.vr_save_area = NULL; 1703 current->thread.vrsave = 0; 1704 current->thread.used_vr = 0; 1705 current->thread.load_vec = 0; 1706 #endif /* CONFIG_ALTIVEC */ 1707 #ifdef CONFIG_SPE 1708 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1709 current->thread.acc = 0; 1710 current->thread.spefscr = 0; 1711 current->thread.used_spe = 0; 1712 #endif /* CONFIG_SPE */ 1713 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1714 current->thread.tm_tfhar = 0; 1715 current->thread.tm_texasr = 0; 1716 current->thread.tm_tfiar = 0; 1717 current->thread.load_tm = 0; 1718 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1719 } 1720 EXPORT_SYMBOL(start_thread); 1721 1722 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1723 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1724 1725 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1726 { 1727 struct pt_regs *regs = tsk->thread.regs; 1728 1729 /* This is a bit hairy. If we are an SPE enabled processor 1730 * (have embedded fp) we store the IEEE exception enable flags in 1731 * fpexc_mode. fpexc_mode is also used for setting FP exception 1732 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1733 if (val & PR_FP_EXC_SW_ENABLE) { 1734 #ifdef CONFIG_SPE 1735 if (cpu_has_feature(CPU_FTR_SPE)) { 1736 /* 1737 * When the sticky exception bits are set 1738 * directly by userspace, it must call prctl 1739 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1740 * in the existing prctl settings) or 1741 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1742 * the bits being set). <fenv.h> functions 1743 * saving and restoring the whole 1744 * floating-point environment need to do so 1745 * anyway to restore the prctl settings from 1746 * the saved environment. 1747 */ 1748 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1749 tsk->thread.fpexc_mode = val & 1750 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1751 return 0; 1752 } else { 1753 return -EINVAL; 1754 } 1755 #else 1756 return -EINVAL; 1757 #endif 1758 } 1759 1760 /* on a CONFIG_SPE this does not hurt us. The bits that 1761 * __pack_fe01 use do not overlap with bits used for 1762 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1763 * on CONFIG_SPE implementations are reserved so writing to 1764 * them does not change anything */ 1765 if (val > PR_FP_EXC_PRECISE) 1766 return -EINVAL; 1767 tsk->thread.fpexc_mode = __pack_fe01(val); 1768 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1769 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1770 | tsk->thread.fpexc_mode; 1771 return 0; 1772 } 1773 1774 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1775 { 1776 unsigned int val; 1777 1778 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1779 #ifdef CONFIG_SPE 1780 if (cpu_has_feature(CPU_FTR_SPE)) { 1781 /* 1782 * When the sticky exception bits are set 1783 * directly by userspace, it must call prctl 1784 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1785 * in the existing prctl settings) or 1786 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1787 * the bits being set). <fenv.h> functions 1788 * saving and restoring the whole 1789 * floating-point environment need to do so 1790 * anyway to restore the prctl settings from 1791 * the saved environment. 1792 */ 1793 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1794 val = tsk->thread.fpexc_mode; 1795 } else 1796 return -EINVAL; 1797 #else 1798 return -EINVAL; 1799 #endif 1800 else 1801 val = __unpack_fe01(tsk->thread.fpexc_mode); 1802 return put_user(val, (unsigned int __user *) adr); 1803 } 1804 1805 int set_endian(struct task_struct *tsk, unsigned int val) 1806 { 1807 struct pt_regs *regs = tsk->thread.regs; 1808 1809 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1810 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1811 return -EINVAL; 1812 1813 if (regs == NULL) 1814 return -EINVAL; 1815 1816 if (val == PR_ENDIAN_BIG) 1817 regs->msr &= ~MSR_LE; 1818 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1819 regs->msr |= MSR_LE; 1820 else 1821 return -EINVAL; 1822 1823 return 0; 1824 } 1825 1826 int get_endian(struct task_struct *tsk, unsigned long adr) 1827 { 1828 struct pt_regs *regs = tsk->thread.regs; 1829 unsigned int val; 1830 1831 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1832 !cpu_has_feature(CPU_FTR_REAL_LE)) 1833 return -EINVAL; 1834 1835 if (regs == NULL) 1836 return -EINVAL; 1837 1838 if (regs->msr & MSR_LE) { 1839 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1840 val = PR_ENDIAN_LITTLE; 1841 else 1842 val = PR_ENDIAN_PPC_LITTLE; 1843 } else 1844 val = PR_ENDIAN_BIG; 1845 1846 return put_user(val, (unsigned int __user *)adr); 1847 } 1848 1849 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1850 { 1851 tsk->thread.align_ctl = val; 1852 return 0; 1853 } 1854 1855 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1856 { 1857 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1858 } 1859 1860 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1861 unsigned long nbytes) 1862 { 1863 unsigned long stack_page; 1864 unsigned long cpu = task_cpu(p); 1865 1866 /* 1867 * Avoid crashing if the stack has overflowed and corrupted 1868 * task_cpu(p), which is in the thread_info struct. 1869 */ 1870 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1871 stack_page = (unsigned long) hardirq_ctx[cpu]; 1872 if (sp >= stack_page + sizeof(struct thread_struct) 1873 && sp <= stack_page + THREAD_SIZE - nbytes) 1874 return 1; 1875 1876 stack_page = (unsigned long) softirq_ctx[cpu]; 1877 if (sp >= stack_page + sizeof(struct thread_struct) 1878 && sp <= stack_page + THREAD_SIZE - nbytes) 1879 return 1; 1880 } 1881 return 0; 1882 } 1883 1884 int validate_sp(unsigned long sp, struct task_struct *p, 1885 unsigned long nbytes) 1886 { 1887 unsigned long stack_page = (unsigned long)task_stack_page(p); 1888 1889 if (sp >= stack_page + sizeof(struct thread_struct) 1890 && sp <= stack_page + THREAD_SIZE - nbytes) 1891 return 1; 1892 1893 return valid_irq_stack(sp, p, nbytes); 1894 } 1895 1896 EXPORT_SYMBOL(validate_sp); 1897 1898 unsigned long get_wchan(struct task_struct *p) 1899 { 1900 unsigned long ip, sp; 1901 int count = 0; 1902 1903 if (!p || p == current || p->state == TASK_RUNNING) 1904 return 0; 1905 1906 sp = p->thread.ksp; 1907 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1908 return 0; 1909 1910 do { 1911 sp = *(unsigned long *)sp; 1912 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1913 return 0; 1914 if (count > 0) { 1915 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1916 if (!in_sched_functions(ip)) 1917 return ip; 1918 } 1919 } while (count++ < 16); 1920 return 0; 1921 } 1922 1923 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1924 1925 void show_stack(struct task_struct *tsk, unsigned long *stack) 1926 { 1927 unsigned long sp, ip, lr, newsp; 1928 int count = 0; 1929 int firstframe = 1; 1930 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1931 int curr_frame = current->curr_ret_stack; 1932 extern void return_to_handler(void); 1933 unsigned long rth = (unsigned long)return_to_handler; 1934 #endif 1935 1936 sp = (unsigned long) stack; 1937 if (tsk == NULL) 1938 tsk = current; 1939 if (sp == 0) { 1940 if (tsk == current) 1941 sp = current_stack_pointer(); 1942 else 1943 sp = tsk->thread.ksp; 1944 } 1945 1946 lr = 0; 1947 printk("Call Trace:\n"); 1948 do { 1949 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1950 return; 1951 1952 stack = (unsigned long *) sp; 1953 newsp = stack[0]; 1954 ip = stack[STACK_FRAME_LR_SAVE]; 1955 if (!firstframe || ip != lr) { 1956 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1957 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1958 if ((ip == rth) && curr_frame >= 0) { 1959 pr_cont(" (%pS)", 1960 (void *)current->ret_stack[curr_frame].ret); 1961 curr_frame--; 1962 } 1963 #endif 1964 if (firstframe) 1965 pr_cont(" (unreliable)"); 1966 pr_cont("\n"); 1967 } 1968 firstframe = 0; 1969 1970 /* 1971 * See if this is an exception frame. 1972 * We look for the "regshere" marker in the current frame. 1973 */ 1974 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1975 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1976 struct pt_regs *regs = (struct pt_regs *) 1977 (sp + STACK_FRAME_OVERHEAD); 1978 lr = regs->link; 1979 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 1980 regs->trap, (void *)regs->nip, (void *)lr); 1981 firstframe = 1; 1982 } 1983 1984 sp = newsp; 1985 } while (count++ < kstack_depth_to_print); 1986 } 1987 1988 #ifdef CONFIG_PPC64 1989 /* Called with hard IRQs off */ 1990 void notrace __ppc64_runlatch_on(void) 1991 { 1992 struct thread_info *ti = current_thread_info(); 1993 unsigned long ctrl; 1994 1995 ctrl = mfspr(SPRN_CTRLF); 1996 ctrl |= CTRL_RUNLATCH; 1997 mtspr(SPRN_CTRLT, ctrl); 1998 1999 ti->local_flags |= _TLF_RUNLATCH; 2000 } 2001 2002 /* Called with hard IRQs off */ 2003 void notrace __ppc64_runlatch_off(void) 2004 { 2005 struct thread_info *ti = current_thread_info(); 2006 unsigned long ctrl; 2007 2008 ti->local_flags &= ~_TLF_RUNLATCH; 2009 2010 ctrl = mfspr(SPRN_CTRLF); 2011 ctrl &= ~CTRL_RUNLATCH; 2012 mtspr(SPRN_CTRLT, ctrl); 2013 } 2014 #endif /* CONFIG_PPC64 */ 2015 2016 unsigned long arch_align_stack(unsigned long sp) 2017 { 2018 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2019 sp -= get_random_int() & ~PAGE_MASK; 2020 return sp & ~0xf; 2021 } 2022 2023 static inline unsigned long brk_rnd(void) 2024 { 2025 unsigned long rnd = 0; 2026 2027 /* 8MB for 32bit, 1GB for 64bit */ 2028 if (is_32bit_task()) 2029 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2030 else 2031 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2032 2033 return rnd << PAGE_SHIFT; 2034 } 2035 2036 unsigned long arch_randomize_brk(struct mm_struct *mm) 2037 { 2038 unsigned long base = mm->brk; 2039 unsigned long ret; 2040 2041 #ifdef CONFIG_PPC_STD_MMU_64 2042 /* 2043 * If we are using 1TB segments and we are allowed to randomise 2044 * the heap, we can put it above 1TB so it is backed by a 1TB 2045 * segment. Otherwise the heap will be in the bottom 1TB 2046 * which always uses 256MB segments and this may result in a 2047 * performance penalty. We don't need to worry about radix. For 2048 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2049 */ 2050 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2051 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2052 #endif 2053 2054 ret = PAGE_ALIGN(base + brk_rnd()); 2055 2056 if (ret < mm->brk) 2057 return mm->brk; 2058 2059 return ret; 2060 } 2061 2062