xref: /linux/arch/powerpc/kernel/process.c (revision ef40b2346563aa11575446c8e3b04af44c31abb5)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 
46 #include <asm/pgtable.h>
47 #include <asm/io.h>
48 #include <asm/processor.h>
49 #include <asm/mmu.h>
50 #include <asm/prom.h>
51 #include <asm/machdep.h>
52 #include <asm/time.h>
53 #include <asm/runlatch.h>
54 #include <asm/syscalls.h>
55 #include <asm/switch_to.h>
56 #include <asm/tm.h>
57 #include <asm/debug.h>
58 #ifdef CONFIG_PPC64
59 #include <asm/firmware.h>
60 #endif
61 #include <asm/code-patching.h>
62 #include <asm/exec.h>
63 #include <asm/livepatch.h>
64 #include <asm/cpu_has_feature.h>
65 #include <asm/asm-prototypes.h>
66 
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69 
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76 
77 extern unsigned long _get_SP(void);
78 
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 static void check_if_tm_restore_required(struct task_struct *tsk)
81 {
82 	/*
83 	 * If we are saving the current thread's registers, and the
84 	 * thread is in a transactional state, set the TIF_RESTORE_TM
85 	 * bit so that we know to restore the registers before
86 	 * returning to userspace.
87 	 */
88 	if (tsk == current && tsk->thread.regs &&
89 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
90 	    !test_thread_flag(TIF_RESTORE_TM)) {
91 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
92 		set_thread_flag(TIF_RESTORE_TM);
93 	}
94 }
95 
96 static inline bool msr_tm_active(unsigned long msr)
97 {
98 	return MSR_TM_ACTIVE(msr);
99 }
100 #else
101 static inline bool msr_tm_active(unsigned long msr) { return false; }
102 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
103 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
104 
105 bool strict_msr_control;
106 EXPORT_SYMBOL(strict_msr_control);
107 
108 static int __init enable_strict_msr_control(char *str)
109 {
110 	strict_msr_control = true;
111 	pr_info("Enabling strict facility control\n");
112 
113 	return 0;
114 }
115 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
116 
117 unsigned long msr_check_and_set(unsigned long bits)
118 {
119 	unsigned long oldmsr = mfmsr();
120 	unsigned long newmsr;
121 
122 	newmsr = oldmsr | bits;
123 
124 #ifdef CONFIG_VSX
125 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
126 		newmsr |= MSR_VSX;
127 #endif
128 
129 	if (oldmsr != newmsr)
130 		mtmsr_isync(newmsr);
131 
132 	return newmsr;
133 }
134 
135 void __msr_check_and_clear(unsigned long bits)
136 {
137 	unsigned long oldmsr = mfmsr();
138 	unsigned long newmsr;
139 
140 	newmsr = oldmsr & ~bits;
141 
142 #ifdef CONFIG_VSX
143 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
144 		newmsr &= ~MSR_VSX;
145 #endif
146 
147 	if (oldmsr != newmsr)
148 		mtmsr_isync(newmsr);
149 }
150 EXPORT_SYMBOL(__msr_check_and_clear);
151 
152 #ifdef CONFIG_PPC_FPU
153 void __giveup_fpu(struct task_struct *tsk)
154 {
155 	unsigned long msr;
156 
157 	save_fpu(tsk);
158 	msr = tsk->thread.regs->msr;
159 	msr &= ~MSR_FP;
160 #ifdef CONFIG_VSX
161 	if (cpu_has_feature(CPU_FTR_VSX))
162 		msr &= ~MSR_VSX;
163 #endif
164 	tsk->thread.regs->msr = msr;
165 }
166 
167 void giveup_fpu(struct task_struct *tsk)
168 {
169 	check_if_tm_restore_required(tsk);
170 
171 	msr_check_and_set(MSR_FP);
172 	__giveup_fpu(tsk);
173 	msr_check_and_clear(MSR_FP);
174 }
175 EXPORT_SYMBOL(giveup_fpu);
176 
177 /*
178  * Make sure the floating-point register state in the
179  * the thread_struct is up to date for task tsk.
180  */
181 void flush_fp_to_thread(struct task_struct *tsk)
182 {
183 	if (tsk->thread.regs) {
184 		/*
185 		 * We need to disable preemption here because if we didn't,
186 		 * another process could get scheduled after the regs->msr
187 		 * test but before we have finished saving the FP registers
188 		 * to the thread_struct.  That process could take over the
189 		 * FPU, and then when we get scheduled again we would store
190 		 * bogus values for the remaining FP registers.
191 		 */
192 		preempt_disable();
193 		if (tsk->thread.regs->msr & MSR_FP) {
194 			/*
195 			 * This should only ever be called for current or
196 			 * for a stopped child process.  Since we save away
197 			 * the FP register state on context switch,
198 			 * there is something wrong if a stopped child appears
199 			 * to still have its FP state in the CPU registers.
200 			 */
201 			BUG_ON(tsk != current);
202 			giveup_fpu(tsk);
203 		}
204 		preempt_enable();
205 	}
206 }
207 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
208 
209 void enable_kernel_fp(void)
210 {
211 	unsigned long cpumsr;
212 
213 	WARN_ON(preemptible());
214 
215 	cpumsr = msr_check_and_set(MSR_FP);
216 
217 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
218 		check_if_tm_restore_required(current);
219 		/*
220 		 * If a thread has already been reclaimed then the
221 		 * checkpointed registers are on the CPU but have definitely
222 		 * been saved by the reclaim code. Don't need to and *cannot*
223 		 * giveup as this would save  to the 'live' structure not the
224 		 * checkpointed structure.
225 		 */
226 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
227 			return;
228 		__giveup_fpu(current);
229 	}
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232 
233 static int restore_fp(struct task_struct *tsk) {
234 	if (tsk->thread.load_fp || msr_tm_active(tsk->thread.regs->msr)) {
235 		load_fp_state(&current->thread.fp_state);
236 		current->thread.load_fp++;
237 		return 1;
238 	}
239 	return 0;
240 }
241 #else
242 static int restore_fp(struct task_struct *tsk) { return 0; }
243 #endif /* CONFIG_PPC_FPU */
244 
245 #ifdef CONFIG_ALTIVEC
246 #define loadvec(thr) ((thr).load_vec)
247 
248 static void __giveup_altivec(struct task_struct *tsk)
249 {
250 	unsigned long msr;
251 
252 	save_altivec(tsk);
253 	msr = tsk->thread.regs->msr;
254 	msr &= ~MSR_VEC;
255 #ifdef CONFIG_VSX
256 	if (cpu_has_feature(CPU_FTR_VSX))
257 		msr &= ~MSR_VSX;
258 #endif
259 	tsk->thread.regs->msr = msr;
260 }
261 
262 void giveup_altivec(struct task_struct *tsk)
263 {
264 	check_if_tm_restore_required(tsk);
265 
266 	msr_check_and_set(MSR_VEC);
267 	__giveup_altivec(tsk);
268 	msr_check_and_clear(MSR_VEC);
269 }
270 EXPORT_SYMBOL(giveup_altivec);
271 
272 void enable_kernel_altivec(void)
273 {
274 	unsigned long cpumsr;
275 
276 	WARN_ON(preemptible());
277 
278 	cpumsr = msr_check_and_set(MSR_VEC);
279 
280 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
281 		check_if_tm_restore_required(current);
282 		/*
283 		 * If a thread has already been reclaimed then the
284 		 * checkpointed registers are on the CPU but have definitely
285 		 * been saved by the reclaim code. Don't need to and *cannot*
286 		 * giveup as this would save  to the 'live' structure not the
287 		 * checkpointed structure.
288 		 */
289 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
290 			return;
291 		__giveup_altivec(current);
292 	}
293 }
294 EXPORT_SYMBOL(enable_kernel_altivec);
295 
296 /*
297  * Make sure the VMX/Altivec register state in the
298  * the thread_struct is up to date for task tsk.
299  */
300 void flush_altivec_to_thread(struct task_struct *tsk)
301 {
302 	if (tsk->thread.regs) {
303 		preempt_disable();
304 		if (tsk->thread.regs->msr & MSR_VEC) {
305 			BUG_ON(tsk != current);
306 			giveup_altivec(tsk);
307 		}
308 		preempt_enable();
309 	}
310 }
311 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
312 
313 static int restore_altivec(struct task_struct *tsk)
314 {
315 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
316 		(tsk->thread.load_vec || msr_tm_active(tsk->thread.regs->msr))) {
317 		load_vr_state(&tsk->thread.vr_state);
318 		tsk->thread.used_vr = 1;
319 		tsk->thread.load_vec++;
320 
321 		return 1;
322 	}
323 	return 0;
324 }
325 #else
326 #define loadvec(thr) 0
327 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
328 #endif /* CONFIG_ALTIVEC */
329 
330 #ifdef CONFIG_VSX
331 static void __giveup_vsx(struct task_struct *tsk)
332 {
333 	if (tsk->thread.regs->msr & MSR_FP)
334 		__giveup_fpu(tsk);
335 	if (tsk->thread.regs->msr & MSR_VEC)
336 		__giveup_altivec(tsk);
337 	tsk->thread.regs->msr &= ~MSR_VSX;
338 }
339 
340 static void giveup_vsx(struct task_struct *tsk)
341 {
342 	check_if_tm_restore_required(tsk);
343 
344 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
345 	__giveup_vsx(tsk);
346 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
347 }
348 
349 static void save_vsx(struct task_struct *tsk)
350 {
351 	if (tsk->thread.regs->msr & MSR_FP)
352 		save_fpu(tsk);
353 	if (tsk->thread.regs->msr & MSR_VEC)
354 		save_altivec(tsk);
355 }
356 
357 void enable_kernel_vsx(void)
358 {
359 	unsigned long cpumsr;
360 
361 	WARN_ON(preemptible());
362 
363 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
364 
365 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
366 		check_if_tm_restore_required(current);
367 		/*
368 		 * If a thread has already been reclaimed then the
369 		 * checkpointed registers are on the CPU but have definitely
370 		 * been saved by the reclaim code. Don't need to and *cannot*
371 		 * giveup as this would save  to the 'live' structure not the
372 		 * checkpointed structure.
373 		 */
374 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
375 			return;
376 		if (current->thread.regs->msr & MSR_FP)
377 			__giveup_fpu(current);
378 		if (current->thread.regs->msr & MSR_VEC)
379 			__giveup_altivec(current);
380 		__giveup_vsx(current);
381 	}
382 }
383 EXPORT_SYMBOL(enable_kernel_vsx);
384 
385 void flush_vsx_to_thread(struct task_struct *tsk)
386 {
387 	if (tsk->thread.regs) {
388 		preempt_disable();
389 		if (tsk->thread.regs->msr & MSR_VSX) {
390 			BUG_ON(tsk != current);
391 			giveup_vsx(tsk);
392 		}
393 		preempt_enable();
394 	}
395 }
396 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
397 
398 static int restore_vsx(struct task_struct *tsk)
399 {
400 	if (cpu_has_feature(CPU_FTR_VSX)) {
401 		tsk->thread.used_vsr = 1;
402 		return 1;
403 	}
404 
405 	return 0;
406 }
407 #else
408 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
409 static inline void save_vsx(struct task_struct *tsk) { }
410 #endif /* CONFIG_VSX */
411 
412 #ifdef CONFIG_SPE
413 void giveup_spe(struct task_struct *tsk)
414 {
415 	check_if_tm_restore_required(tsk);
416 
417 	msr_check_and_set(MSR_SPE);
418 	__giveup_spe(tsk);
419 	msr_check_and_clear(MSR_SPE);
420 }
421 EXPORT_SYMBOL(giveup_spe);
422 
423 void enable_kernel_spe(void)
424 {
425 	WARN_ON(preemptible());
426 
427 	msr_check_and_set(MSR_SPE);
428 
429 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
430 		check_if_tm_restore_required(current);
431 		__giveup_spe(current);
432 	}
433 }
434 EXPORT_SYMBOL(enable_kernel_spe);
435 
436 void flush_spe_to_thread(struct task_struct *tsk)
437 {
438 	if (tsk->thread.regs) {
439 		preempt_disable();
440 		if (tsk->thread.regs->msr & MSR_SPE) {
441 			BUG_ON(tsk != current);
442 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
443 			giveup_spe(tsk);
444 		}
445 		preempt_enable();
446 	}
447 }
448 #endif /* CONFIG_SPE */
449 
450 static unsigned long msr_all_available;
451 
452 static int __init init_msr_all_available(void)
453 {
454 #ifdef CONFIG_PPC_FPU
455 	msr_all_available |= MSR_FP;
456 #endif
457 #ifdef CONFIG_ALTIVEC
458 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
459 		msr_all_available |= MSR_VEC;
460 #endif
461 #ifdef CONFIG_VSX
462 	if (cpu_has_feature(CPU_FTR_VSX))
463 		msr_all_available |= MSR_VSX;
464 #endif
465 #ifdef CONFIG_SPE
466 	if (cpu_has_feature(CPU_FTR_SPE))
467 		msr_all_available |= MSR_SPE;
468 #endif
469 
470 	return 0;
471 }
472 early_initcall(init_msr_all_available);
473 
474 void giveup_all(struct task_struct *tsk)
475 {
476 	unsigned long usermsr;
477 
478 	if (!tsk->thread.regs)
479 		return;
480 
481 	usermsr = tsk->thread.regs->msr;
482 
483 	if ((usermsr & msr_all_available) == 0)
484 		return;
485 
486 	msr_check_and_set(msr_all_available);
487 	check_if_tm_restore_required(tsk);
488 
489 #ifdef CONFIG_PPC_FPU
490 	if (usermsr & MSR_FP)
491 		__giveup_fpu(tsk);
492 #endif
493 #ifdef CONFIG_ALTIVEC
494 	if (usermsr & MSR_VEC)
495 		__giveup_altivec(tsk);
496 #endif
497 #ifdef CONFIG_VSX
498 	if (usermsr & MSR_VSX)
499 		__giveup_vsx(tsk);
500 #endif
501 #ifdef CONFIG_SPE
502 	if (usermsr & MSR_SPE)
503 		__giveup_spe(tsk);
504 #endif
505 
506 	msr_check_and_clear(msr_all_available);
507 }
508 EXPORT_SYMBOL(giveup_all);
509 
510 void restore_math(struct pt_regs *regs)
511 {
512 	unsigned long msr;
513 
514 	if (!msr_tm_active(regs->msr) &&
515 		!current->thread.load_fp && !loadvec(current->thread))
516 		return;
517 
518 	msr = regs->msr;
519 	msr_check_and_set(msr_all_available);
520 
521 	/*
522 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
523 	 * indicates that the registers are hot
524 	 */
525 	if ((!(msr & MSR_FP)) && restore_fp(current))
526 		msr |= MSR_FP | current->thread.fpexc_mode;
527 
528 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
529 		msr |= MSR_VEC;
530 
531 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
532 			restore_vsx(current)) {
533 		msr |= MSR_VSX;
534 	}
535 
536 	msr_check_and_clear(msr_all_available);
537 
538 	regs->msr = msr;
539 }
540 
541 void save_all(struct task_struct *tsk)
542 {
543 	unsigned long usermsr;
544 
545 	if (!tsk->thread.regs)
546 		return;
547 
548 	usermsr = tsk->thread.regs->msr;
549 
550 	if ((usermsr & msr_all_available) == 0)
551 		return;
552 
553 	msr_check_and_set(msr_all_available);
554 
555 	/*
556 	 * Saving the way the register space is in hardware, save_vsx boils
557 	 * down to a save_fpu() and save_altivec()
558 	 */
559 	if (usermsr & MSR_VSX) {
560 		save_vsx(tsk);
561 	} else {
562 		if (usermsr & MSR_FP)
563 			save_fpu(tsk);
564 
565 		if (usermsr & MSR_VEC)
566 			save_altivec(tsk);
567 	}
568 
569 	if (usermsr & MSR_SPE)
570 		__giveup_spe(tsk);
571 
572 	msr_check_and_clear(msr_all_available);
573 }
574 
575 void flush_all_to_thread(struct task_struct *tsk)
576 {
577 	if (tsk->thread.regs) {
578 		preempt_disable();
579 		BUG_ON(tsk != current);
580 		save_all(tsk);
581 
582 #ifdef CONFIG_SPE
583 		if (tsk->thread.regs->msr & MSR_SPE)
584 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
585 #endif
586 
587 		preempt_enable();
588 	}
589 }
590 EXPORT_SYMBOL(flush_all_to_thread);
591 
592 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
593 void do_send_trap(struct pt_regs *regs, unsigned long address,
594 		  unsigned long error_code, int signal_code, int breakpt)
595 {
596 	siginfo_t info;
597 
598 	current->thread.trap_nr = signal_code;
599 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
600 			11, SIGSEGV) == NOTIFY_STOP)
601 		return;
602 
603 	/* Deliver the signal to userspace */
604 	info.si_signo = SIGTRAP;
605 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
606 	info.si_code = signal_code;
607 	info.si_addr = (void __user *)address;
608 	force_sig_info(SIGTRAP, &info, current);
609 }
610 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
611 void do_break (struct pt_regs *regs, unsigned long address,
612 		    unsigned long error_code)
613 {
614 	siginfo_t info;
615 
616 	current->thread.trap_nr = TRAP_HWBKPT;
617 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
618 			11, SIGSEGV) == NOTIFY_STOP)
619 		return;
620 
621 	if (debugger_break_match(regs))
622 		return;
623 
624 	/* Clear the breakpoint */
625 	hw_breakpoint_disable();
626 
627 	/* Deliver the signal to userspace */
628 	info.si_signo = SIGTRAP;
629 	info.si_errno = 0;
630 	info.si_code = TRAP_HWBKPT;
631 	info.si_addr = (void __user *)address;
632 	force_sig_info(SIGTRAP, &info, current);
633 }
634 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
635 
636 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
637 
638 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
639 /*
640  * Set the debug registers back to their default "safe" values.
641  */
642 static void set_debug_reg_defaults(struct thread_struct *thread)
643 {
644 	thread->debug.iac1 = thread->debug.iac2 = 0;
645 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
646 	thread->debug.iac3 = thread->debug.iac4 = 0;
647 #endif
648 	thread->debug.dac1 = thread->debug.dac2 = 0;
649 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
650 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
651 #endif
652 	thread->debug.dbcr0 = 0;
653 #ifdef CONFIG_BOOKE
654 	/*
655 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
656 	 */
657 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
658 			DBCR1_IAC3US | DBCR1_IAC4US;
659 	/*
660 	 * Force Data Address Compare User/Supervisor bits to be User-only
661 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
662 	 */
663 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
664 #else
665 	thread->debug.dbcr1 = 0;
666 #endif
667 }
668 
669 static void prime_debug_regs(struct debug_reg *debug)
670 {
671 	/*
672 	 * We could have inherited MSR_DE from userspace, since
673 	 * it doesn't get cleared on exception entry.  Make sure
674 	 * MSR_DE is clear before we enable any debug events.
675 	 */
676 	mtmsr(mfmsr() & ~MSR_DE);
677 
678 	mtspr(SPRN_IAC1, debug->iac1);
679 	mtspr(SPRN_IAC2, debug->iac2);
680 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
681 	mtspr(SPRN_IAC3, debug->iac3);
682 	mtspr(SPRN_IAC4, debug->iac4);
683 #endif
684 	mtspr(SPRN_DAC1, debug->dac1);
685 	mtspr(SPRN_DAC2, debug->dac2);
686 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
687 	mtspr(SPRN_DVC1, debug->dvc1);
688 	mtspr(SPRN_DVC2, debug->dvc2);
689 #endif
690 	mtspr(SPRN_DBCR0, debug->dbcr0);
691 	mtspr(SPRN_DBCR1, debug->dbcr1);
692 #ifdef CONFIG_BOOKE
693 	mtspr(SPRN_DBCR2, debug->dbcr2);
694 #endif
695 }
696 /*
697  * Unless neither the old or new thread are making use of the
698  * debug registers, set the debug registers from the values
699  * stored in the new thread.
700  */
701 void switch_booke_debug_regs(struct debug_reg *new_debug)
702 {
703 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
704 		|| (new_debug->dbcr0 & DBCR0_IDM))
705 			prime_debug_regs(new_debug);
706 }
707 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
708 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
709 #ifndef CONFIG_HAVE_HW_BREAKPOINT
710 static void set_debug_reg_defaults(struct thread_struct *thread)
711 {
712 	thread->hw_brk.address = 0;
713 	thread->hw_brk.type = 0;
714 	set_breakpoint(&thread->hw_brk);
715 }
716 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
717 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
718 
719 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
720 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
721 {
722 	mtspr(SPRN_DAC1, dabr);
723 #ifdef CONFIG_PPC_47x
724 	isync();
725 #endif
726 	return 0;
727 }
728 #elif defined(CONFIG_PPC_BOOK3S)
729 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
730 {
731 	mtspr(SPRN_DABR, dabr);
732 	if (cpu_has_feature(CPU_FTR_DABRX))
733 		mtspr(SPRN_DABRX, dabrx);
734 	return 0;
735 }
736 #elif defined(CONFIG_PPC_8xx)
737 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
738 {
739 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
740 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
741 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
742 
743 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
744 		lctrl1 |= 0xa0000;
745 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
746 		lctrl1 |= 0xf0000;
747 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
748 		lctrl2 = 0;
749 
750 	mtspr(SPRN_LCTRL2, 0);
751 	mtspr(SPRN_CMPE, addr);
752 	mtspr(SPRN_CMPF, addr + 4);
753 	mtspr(SPRN_LCTRL1, lctrl1);
754 	mtspr(SPRN_LCTRL2, lctrl2);
755 
756 	return 0;
757 }
758 #else
759 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
760 {
761 	return -EINVAL;
762 }
763 #endif
764 
765 static inline int set_dabr(struct arch_hw_breakpoint *brk)
766 {
767 	unsigned long dabr, dabrx;
768 
769 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
770 	dabrx = ((brk->type >> 3) & 0x7);
771 
772 	if (ppc_md.set_dabr)
773 		return ppc_md.set_dabr(dabr, dabrx);
774 
775 	return __set_dabr(dabr, dabrx);
776 }
777 
778 static inline int set_dawr(struct arch_hw_breakpoint *brk)
779 {
780 	unsigned long dawr, dawrx, mrd;
781 
782 	dawr = brk->address;
783 
784 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
785 		                   << (63 - 58); //* read/write bits */
786 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
787 		                   << (63 - 59); //* translate */
788 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
789 		                   >> 3; //* PRIM bits */
790 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
791 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
792 	   0b111111=64DW.
793 	   brk->len is in bytes.
794 	   This aligns up to double word size, shifts and does the bias.
795 	*/
796 	mrd = ((brk->len + 7) >> 3) - 1;
797 	dawrx |= (mrd & 0x3f) << (63 - 53);
798 
799 	if (ppc_md.set_dawr)
800 		return ppc_md.set_dawr(dawr, dawrx);
801 	mtspr(SPRN_DAWR, dawr);
802 	mtspr(SPRN_DAWRX, dawrx);
803 	return 0;
804 }
805 
806 void __set_breakpoint(struct arch_hw_breakpoint *brk)
807 {
808 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
809 
810 	if (cpu_has_feature(CPU_FTR_DAWR))
811 		set_dawr(brk);
812 	else
813 		set_dabr(brk);
814 }
815 
816 void set_breakpoint(struct arch_hw_breakpoint *brk)
817 {
818 	preempt_disable();
819 	__set_breakpoint(brk);
820 	preempt_enable();
821 }
822 
823 #ifdef CONFIG_PPC64
824 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
825 #endif
826 
827 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
828 			      struct arch_hw_breakpoint *b)
829 {
830 	if (a->address != b->address)
831 		return false;
832 	if (a->type != b->type)
833 		return false;
834 	if (a->len != b->len)
835 		return false;
836 	return true;
837 }
838 
839 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
840 
841 static inline bool tm_enabled(struct task_struct *tsk)
842 {
843 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
844 }
845 
846 static void tm_reclaim_thread(struct thread_struct *thr,
847 			      struct thread_info *ti, uint8_t cause)
848 {
849 	/*
850 	 * Use the current MSR TM suspended bit to track if we have
851 	 * checkpointed state outstanding.
852 	 * On signal delivery, we'd normally reclaim the checkpointed
853 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
854 	 * This will then directly return to userspace without going
855 	 * through __switch_to(). However, if the stack frame is bad,
856 	 * we need to exit this thread which calls __switch_to() which
857 	 * will again attempt to reclaim the already saved tm state.
858 	 * Hence we need to check that we've not already reclaimed
859 	 * this state.
860 	 * We do this using the current MSR, rather tracking it in
861 	 * some specific thread_struct bit, as it has the additional
862 	 * benefit of checking for a potential TM bad thing exception.
863 	 */
864 	if (!MSR_TM_SUSPENDED(mfmsr()))
865 		return;
866 
867 	/*
868 	 * If we are in a transaction and FP is off then we can't have
869 	 * used FP inside that transaction. Hence the checkpointed
870 	 * state is the same as the live state. We need to copy the
871 	 * live state to the checkpointed state so that when the
872 	 * transaction is restored, the checkpointed state is correct
873 	 * and the aborted transaction sees the correct state. We use
874 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
875 	 * determine if it's going to write the checkpointed state or
876 	 * not. So either this will write the checkpointed registers,
877 	 * or reclaim will. Similarly for VMX.
878 	 */
879 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
880 		memcpy(&thr->ckfp_state, &thr->fp_state,
881 		       sizeof(struct thread_fp_state));
882 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
883 		memcpy(&thr->ckvr_state, &thr->vr_state,
884 		       sizeof(struct thread_vr_state));
885 
886 	giveup_all(container_of(thr, struct task_struct, thread));
887 
888 	tm_reclaim(thr, thr->ckpt_regs.msr, cause);
889 }
890 
891 void tm_reclaim_current(uint8_t cause)
892 {
893 	tm_enable();
894 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
895 }
896 
897 static inline void tm_reclaim_task(struct task_struct *tsk)
898 {
899 	/* We have to work out if we're switching from/to a task that's in the
900 	 * middle of a transaction.
901 	 *
902 	 * In switching we need to maintain a 2nd register state as
903 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
904 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
905 	 * ckvr_state
906 	 *
907 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
908 	 */
909 	struct thread_struct *thr = &tsk->thread;
910 
911 	if (!thr->regs)
912 		return;
913 
914 	if (!MSR_TM_ACTIVE(thr->regs->msr))
915 		goto out_and_saveregs;
916 
917 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
918 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
919 		 tsk->pid, thr->regs->nip,
920 		 thr->regs->ccr, thr->regs->msr,
921 		 thr->regs->trap);
922 
923 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
924 
925 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
926 		 tsk->pid);
927 
928 out_and_saveregs:
929 	/* Always save the regs here, even if a transaction's not active.
930 	 * This context-switches a thread's TM info SPRs.  We do it here to
931 	 * be consistent with the restore path (in recheckpoint) which
932 	 * cannot happen later in _switch().
933 	 */
934 	tm_save_sprs(thr);
935 }
936 
937 extern void __tm_recheckpoint(struct thread_struct *thread,
938 			      unsigned long orig_msr);
939 
940 void tm_recheckpoint(struct thread_struct *thread,
941 		     unsigned long orig_msr)
942 {
943 	unsigned long flags;
944 
945 	if (!(thread->regs->msr & MSR_TM))
946 		return;
947 
948 	/* We really can't be interrupted here as the TEXASR registers can't
949 	 * change and later in the trecheckpoint code, we have a userspace R1.
950 	 * So let's hard disable over this region.
951 	 */
952 	local_irq_save(flags);
953 	hard_irq_disable();
954 
955 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
956 	 * before the trecheckpoint and no explosion occurs.
957 	 */
958 	tm_restore_sprs(thread);
959 
960 	__tm_recheckpoint(thread, orig_msr);
961 
962 	local_irq_restore(flags);
963 }
964 
965 static inline void tm_recheckpoint_new_task(struct task_struct *new)
966 {
967 	unsigned long msr;
968 
969 	if (!cpu_has_feature(CPU_FTR_TM))
970 		return;
971 
972 	/* Recheckpoint the registers of the thread we're about to switch to.
973 	 *
974 	 * If the task was using FP, we non-lazily reload both the original and
975 	 * the speculative FP register states.  This is because the kernel
976 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
977 	 * unavailable later, we are unable to determine which set of FP regs
978 	 * need to be restored.
979 	 */
980 	if (!tm_enabled(new))
981 		return;
982 
983 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
984 		tm_restore_sprs(&new->thread);
985 		return;
986 	}
987 	msr = new->thread.ckpt_regs.msr;
988 	/* Recheckpoint to restore original checkpointed register state. */
989 	TM_DEBUG("*** tm_recheckpoint of pid %d "
990 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
991 		 new->pid, new->thread.regs->msr, msr);
992 
993 	tm_recheckpoint(&new->thread, msr);
994 
995 	/*
996 	 * The checkpointed state has been restored but the live state has
997 	 * not, ensure all the math functionality is turned off to trigger
998 	 * restore_math() to reload.
999 	 */
1000 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1001 
1002 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1003 		 "(kernel msr 0x%lx)\n",
1004 		 new->pid, mfmsr());
1005 }
1006 
1007 static inline void __switch_to_tm(struct task_struct *prev,
1008 		struct task_struct *new)
1009 {
1010 	if (cpu_has_feature(CPU_FTR_TM)) {
1011 		if (tm_enabled(prev) || tm_enabled(new))
1012 			tm_enable();
1013 
1014 		if (tm_enabled(prev)) {
1015 			prev->thread.load_tm++;
1016 			tm_reclaim_task(prev);
1017 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1018 				prev->thread.regs->msr &= ~MSR_TM;
1019 		}
1020 
1021 		tm_recheckpoint_new_task(new);
1022 	}
1023 }
1024 
1025 /*
1026  * This is called if we are on the way out to userspace and the
1027  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1028  * FP and/or vector state and does so if necessary.
1029  * If userspace is inside a transaction (whether active or
1030  * suspended) and FP/VMX/VSX instructions have ever been enabled
1031  * inside that transaction, then we have to keep them enabled
1032  * and keep the FP/VMX/VSX state loaded while ever the transaction
1033  * continues.  The reason is that if we didn't, and subsequently
1034  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1035  * we don't know whether it's the same transaction, and thus we
1036  * don't know which of the checkpointed state and the transactional
1037  * state to use.
1038  */
1039 void restore_tm_state(struct pt_regs *regs)
1040 {
1041 	unsigned long msr_diff;
1042 
1043 	/*
1044 	 * This is the only moment we should clear TIF_RESTORE_TM as
1045 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1046 	 * again, anything else could lead to an incorrect ckpt_msr being
1047 	 * saved and therefore incorrect signal contexts.
1048 	 */
1049 	clear_thread_flag(TIF_RESTORE_TM);
1050 	if (!MSR_TM_ACTIVE(regs->msr))
1051 		return;
1052 
1053 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1054 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1055 
1056 	/* Ensure that restore_math() will restore */
1057 	if (msr_diff & MSR_FP)
1058 		current->thread.load_fp = 1;
1059 #ifdef CONFIG_ALTIVEC
1060 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1061 		current->thread.load_vec = 1;
1062 #endif
1063 	restore_math(regs);
1064 
1065 	regs->msr |= msr_diff;
1066 }
1067 
1068 #else
1069 #define tm_recheckpoint_new_task(new)
1070 #define __switch_to_tm(prev, new)
1071 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1072 
1073 static inline void save_sprs(struct thread_struct *t)
1074 {
1075 #ifdef CONFIG_ALTIVEC
1076 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1077 		t->vrsave = mfspr(SPRN_VRSAVE);
1078 #endif
1079 #ifdef CONFIG_PPC_BOOK3S_64
1080 	if (cpu_has_feature(CPU_FTR_DSCR))
1081 		t->dscr = mfspr(SPRN_DSCR);
1082 
1083 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1084 		t->bescr = mfspr(SPRN_BESCR);
1085 		t->ebbhr = mfspr(SPRN_EBBHR);
1086 		t->ebbrr = mfspr(SPRN_EBBRR);
1087 
1088 		t->fscr = mfspr(SPRN_FSCR);
1089 
1090 		/*
1091 		 * Note that the TAR is not available for use in the kernel.
1092 		 * (To provide this, the TAR should be backed up/restored on
1093 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1094 		 * this should be in pt_regs anyway (for debug).)
1095 		 */
1096 		t->tar = mfspr(SPRN_TAR);
1097 	}
1098 #endif
1099 }
1100 
1101 static inline void restore_sprs(struct thread_struct *old_thread,
1102 				struct thread_struct *new_thread)
1103 {
1104 #ifdef CONFIG_ALTIVEC
1105 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1106 	    old_thread->vrsave != new_thread->vrsave)
1107 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1108 #endif
1109 #ifdef CONFIG_PPC_BOOK3S_64
1110 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1111 		u64 dscr = get_paca()->dscr_default;
1112 		if (new_thread->dscr_inherit)
1113 			dscr = new_thread->dscr;
1114 
1115 		if (old_thread->dscr != dscr)
1116 			mtspr(SPRN_DSCR, dscr);
1117 	}
1118 
1119 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1120 		if (old_thread->bescr != new_thread->bescr)
1121 			mtspr(SPRN_BESCR, new_thread->bescr);
1122 		if (old_thread->ebbhr != new_thread->ebbhr)
1123 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1124 		if (old_thread->ebbrr != new_thread->ebbrr)
1125 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1126 
1127 		if (old_thread->fscr != new_thread->fscr)
1128 			mtspr(SPRN_FSCR, new_thread->fscr);
1129 
1130 		if (old_thread->tar != new_thread->tar)
1131 			mtspr(SPRN_TAR, new_thread->tar);
1132 	}
1133 #endif
1134 }
1135 
1136 #ifdef CONFIG_PPC_BOOK3S_64
1137 #define CP_SIZE 128
1138 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1139 #endif
1140 
1141 struct task_struct *__switch_to(struct task_struct *prev,
1142 	struct task_struct *new)
1143 {
1144 	struct thread_struct *new_thread, *old_thread;
1145 	struct task_struct *last;
1146 #ifdef CONFIG_PPC_BOOK3S_64
1147 	struct ppc64_tlb_batch *batch;
1148 #endif
1149 
1150 	new_thread = &new->thread;
1151 	old_thread = &current->thread;
1152 
1153 	WARN_ON(!irqs_disabled());
1154 
1155 #ifdef CONFIG_PPC64
1156 	/*
1157 	 * Collect processor utilization data per process
1158 	 */
1159 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
1160 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
1161 		long unsigned start_tb, current_tb;
1162 		start_tb = old_thread->start_tb;
1163 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
1164 		old_thread->accum_tb += (current_tb - start_tb);
1165 		new_thread->start_tb = current_tb;
1166 	}
1167 #endif /* CONFIG_PPC64 */
1168 
1169 #ifdef CONFIG_PPC_STD_MMU_64
1170 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1171 	if (batch->active) {
1172 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1173 		if (batch->index)
1174 			__flush_tlb_pending(batch);
1175 		batch->active = 0;
1176 	}
1177 #endif /* CONFIG_PPC_STD_MMU_64 */
1178 
1179 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1180 	switch_booke_debug_regs(&new->thread.debug);
1181 #else
1182 /*
1183  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1184  * schedule DABR
1185  */
1186 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1187 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1188 		__set_breakpoint(&new->thread.hw_brk);
1189 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1190 #endif
1191 
1192 	/*
1193 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1194 	 * change a number of them.
1195 	 */
1196 	save_sprs(&prev->thread);
1197 
1198 	/* Save FPU, Altivec, VSX and SPE state */
1199 	giveup_all(prev);
1200 
1201 	__switch_to_tm(prev, new);
1202 
1203 	if (!radix_enabled()) {
1204 		/*
1205 		 * We can't take a PMU exception inside _switch() since there
1206 		 * is a window where the kernel stack SLB and the kernel stack
1207 		 * are out of sync. Hard disable here.
1208 		 */
1209 		hard_irq_disable();
1210 	}
1211 
1212 	/*
1213 	 * Call restore_sprs() before calling _switch(). If we move it after
1214 	 * _switch() then we miss out on calling it for new tasks. The reason
1215 	 * for this is we manually create a stack frame for new tasks that
1216 	 * directly returns through ret_from_fork() or
1217 	 * ret_from_kernel_thread(). See copy_thread() for details.
1218 	 */
1219 	restore_sprs(old_thread, new_thread);
1220 
1221 	last = _switch(old_thread, new_thread);
1222 
1223 #ifdef CONFIG_PPC_STD_MMU_64
1224 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1225 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1226 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1227 		batch->active = 1;
1228 	}
1229 
1230 	if (current_thread_info()->task->thread.regs) {
1231 		restore_math(current_thread_info()->task->thread.regs);
1232 
1233 		/*
1234 		 * The copy-paste buffer can only store into foreign real
1235 		 * addresses, so unprivileged processes can not see the
1236 		 * data or use it in any way unless they have foreign real
1237 		 * mappings. We don't have a VAS driver that allocates those
1238 		 * yet, so no cpabort is required.
1239 		 */
1240 		if (cpu_has_feature(CPU_FTR_POWER9_DD1)) {
1241 			/*
1242 			 * DD1 allows paste into normal system memory, so we
1243 			 * do an unpaired copy here to clear the buffer and
1244 			 * prevent a covert channel being set up.
1245 			 *
1246 			 * cpabort is not used because it is quite expensive.
1247 			 */
1248 			asm volatile(PPC_COPY(%0, %1)
1249 					: : "r"(dummy_copy_buffer), "r"(0));
1250 		}
1251 	}
1252 #endif /* CONFIG_PPC_STD_MMU_64 */
1253 
1254 	return last;
1255 }
1256 
1257 static int instructions_to_print = 16;
1258 
1259 static void show_instructions(struct pt_regs *regs)
1260 {
1261 	int i;
1262 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1263 			sizeof(int));
1264 
1265 	printk("Instruction dump:");
1266 
1267 	for (i = 0; i < instructions_to_print; i++) {
1268 		int instr;
1269 
1270 		if (!(i % 8))
1271 			pr_cont("\n");
1272 
1273 #if !defined(CONFIG_BOOKE)
1274 		/* If executing with the IMMU off, adjust pc rather
1275 		 * than print XXXXXXXX.
1276 		 */
1277 		if (!(regs->msr & MSR_IR))
1278 			pc = (unsigned long)phys_to_virt(pc);
1279 #endif
1280 
1281 		if (!__kernel_text_address(pc) ||
1282 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1283 			pr_cont("XXXXXXXX ");
1284 		} else {
1285 			if (regs->nip == pc)
1286 				pr_cont("<%08x> ", instr);
1287 			else
1288 				pr_cont("%08x ", instr);
1289 		}
1290 
1291 		pc += sizeof(int);
1292 	}
1293 
1294 	pr_cont("\n");
1295 }
1296 
1297 struct regbit {
1298 	unsigned long bit;
1299 	const char *name;
1300 };
1301 
1302 static struct regbit msr_bits[] = {
1303 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1304 	{MSR_SF,	"SF"},
1305 	{MSR_HV,	"HV"},
1306 #endif
1307 	{MSR_VEC,	"VEC"},
1308 	{MSR_VSX,	"VSX"},
1309 #ifdef CONFIG_BOOKE
1310 	{MSR_CE,	"CE"},
1311 #endif
1312 	{MSR_EE,	"EE"},
1313 	{MSR_PR,	"PR"},
1314 	{MSR_FP,	"FP"},
1315 	{MSR_ME,	"ME"},
1316 #ifdef CONFIG_BOOKE
1317 	{MSR_DE,	"DE"},
1318 #else
1319 	{MSR_SE,	"SE"},
1320 	{MSR_BE,	"BE"},
1321 #endif
1322 	{MSR_IR,	"IR"},
1323 	{MSR_DR,	"DR"},
1324 	{MSR_PMM,	"PMM"},
1325 #ifndef CONFIG_BOOKE
1326 	{MSR_RI,	"RI"},
1327 	{MSR_LE,	"LE"},
1328 #endif
1329 	{0,		NULL}
1330 };
1331 
1332 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1333 {
1334 	const char *s = "";
1335 
1336 	for (; bits->bit; ++bits)
1337 		if (val & bits->bit) {
1338 			pr_cont("%s%s", s, bits->name);
1339 			s = sep;
1340 		}
1341 }
1342 
1343 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1344 static struct regbit msr_tm_bits[] = {
1345 	{MSR_TS_T,	"T"},
1346 	{MSR_TS_S,	"S"},
1347 	{MSR_TM,	"E"},
1348 	{0,		NULL}
1349 };
1350 
1351 static void print_tm_bits(unsigned long val)
1352 {
1353 /*
1354  * This only prints something if at least one of the TM bit is set.
1355  * Inside the TM[], the output means:
1356  *   E: Enabled		(bit 32)
1357  *   S: Suspended	(bit 33)
1358  *   T: Transactional	(bit 34)
1359  */
1360 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1361 		pr_cont(",TM[");
1362 		print_bits(val, msr_tm_bits, "");
1363 		pr_cont("]");
1364 	}
1365 }
1366 #else
1367 static void print_tm_bits(unsigned long val) {}
1368 #endif
1369 
1370 static void print_msr_bits(unsigned long val)
1371 {
1372 	pr_cont("<");
1373 	print_bits(val, msr_bits, ",");
1374 	print_tm_bits(val);
1375 	pr_cont(">");
1376 }
1377 
1378 #ifdef CONFIG_PPC64
1379 #define REG		"%016lx"
1380 #define REGS_PER_LINE	4
1381 #define LAST_VOLATILE	13
1382 #else
1383 #define REG		"%08lx"
1384 #define REGS_PER_LINE	8
1385 #define LAST_VOLATILE	12
1386 #endif
1387 
1388 void show_regs(struct pt_regs * regs)
1389 {
1390 	int i, trap;
1391 
1392 	show_regs_print_info(KERN_DEFAULT);
1393 
1394 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1395 	       regs->nip, regs->link, regs->ctr);
1396 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1397 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1398 	printk("MSR: "REG" ", regs->msr);
1399 	print_msr_bits(regs->msr);
1400 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1401 	trap = TRAP(regs);
1402 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1403 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1404 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1405 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1406 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1407 #else
1408 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1409 #endif
1410 #ifdef CONFIG_PPC64
1411 	pr_cont("SOFTE: %ld ", regs->softe);
1412 #endif
1413 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1414 	if (MSR_TM_ACTIVE(regs->msr))
1415 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1416 #endif
1417 
1418 	for (i = 0;  i < 32;  i++) {
1419 		if ((i % REGS_PER_LINE) == 0)
1420 			pr_cont("\nGPR%02d: ", i);
1421 		pr_cont(REG " ", regs->gpr[i]);
1422 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1423 			break;
1424 	}
1425 	pr_cont("\n");
1426 #ifdef CONFIG_KALLSYMS
1427 	/*
1428 	 * Lookup NIP late so we have the best change of getting the
1429 	 * above info out without failing
1430 	 */
1431 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1432 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1433 #endif
1434 	show_stack(current, (unsigned long *) regs->gpr[1]);
1435 	if (!user_mode(regs))
1436 		show_instructions(regs);
1437 }
1438 
1439 void flush_thread(void)
1440 {
1441 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1442 	flush_ptrace_hw_breakpoint(current);
1443 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1444 	set_debug_reg_defaults(&current->thread);
1445 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1446 }
1447 
1448 void
1449 release_thread(struct task_struct *t)
1450 {
1451 }
1452 
1453 /*
1454  * this gets called so that we can store coprocessor state into memory and
1455  * copy the current task into the new thread.
1456  */
1457 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1458 {
1459 	flush_all_to_thread(src);
1460 	/*
1461 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1462 	 * flush but it removes the checkpointed state from the current CPU and
1463 	 * transitions the CPU out of TM mode.  Hence we need to call
1464 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1465 	 * checkpointed state back and the TM mode.
1466 	 *
1467 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1468 	 * dst is only important for __switch_to()
1469 	 */
1470 	__switch_to_tm(src, src);
1471 
1472 	*dst = *src;
1473 
1474 	clear_task_ebb(dst);
1475 
1476 	return 0;
1477 }
1478 
1479 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1480 {
1481 #ifdef CONFIG_PPC_STD_MMU_64
1482 	unsigned long sp_vsid;
1483 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1484 
1485 	if (radix_enabled())
1486 		return;
1487 
1488 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1489 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1490 			<< SLB_VSID_SHIFT_1T;
1491 	else
1492 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1493 			<< SLB_VSID_SHIFT;
1494 	sp_vsid |= SLB_VSID_KERNEL | llp;
1495 	p->thread.ksp_vsid = sp_vsid;
1496 #endif
1497 }
1498 
1499 /*
1500  * Copy a thread..
1501  */
1502 
1503 /*
1504  * Copy architecture-specific thread state
1505  */
1506 int copy_thread(unsigned long clone_flags, unsigned long usp,
1507 		unsigned long kthread_arg, struct task_struct *p)
1508 {
1509 	struct pt_regs *childregs, *kregs;
1510 	extern void ret_from_fork(void);
1511 	extern void ret_from_kernel_thread(void);
1512 	void (*f)(void);
1513 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1514 	struct thread_info *ti = task_thread_info(p);
1515 
1516 	klp_init_thread_info(ti);
1517 
1518 	/* Copy registers */
1519 	sp -= sizeof(struct pt_regs);
1520 	childregs = (struct pt_regs *) sp;
1521 	if (unlikely(p->flags & PF_KTHREAD)) {
1522 		/* kernel thread */
1523 		memset(childregs, 0, sizeof(struct pt_regs));
1524 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1525 		/* function */
1526 		if (usp)
1527 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1528 #ifdef CONFIG_PPC64
1529 		clear_tsk_thread_flag(p, TIF_32BIT);
1530 		childregs->softe = 1;
1531 #endif
1532 		childregs->gpr[15] = kthread_arg;
1533 		p->thread.regs = NULL;	/* no user register state */
1534 		ti->flags |= _TIF_RESTOREALL;
1535 		f = ret_from_kernel_thread;
1536 	} else {
1537 		/* user thread */
1538 		struct pt_regs *regs = current_pt_regs();
1539 		CHECK_FULL_REGS(regs);
1540 		*childregs = *regs;
1541 		if (usp)
1542 			childregs->gpr[1] = usp;
1543 		p->thread.regs = childregs;
1544 		childregs->gpr[3] = 0;  /* Result from fork() */
1545 		if (clone_flags & CLONE_SETTLS) {
1546 #ifdef CONFIG_PPC64
1547 			if (!is_32bit_task())
1548 				childregs->gpr[13] = childregs->gpr[6];
1549 			else
1550 #endif
1551 				childregs->gpr[2] = childregs->gpr[6];
1552 		}
1553 
1554 		f = ret_from_fork;
1555 	}
1556 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1557 	sp -= STACK_FRAME_OVERHEAD;
1558 
1559 	/*
1560 	 * The way this works is that at some point in the future
1561 	 * some task will call _switch to switch to the new task.
1562 	 * That will pop off the stack frame created below and start
1563 	 * the new task running at ret_from_fork.  The new task will
1564 	 * do some house keeping and then return from the fork or clone
1565 	 * system call, using the stack frame created above.
1566 	 */
1567 	((unsigned long *)sp)[0] = 0;
1568 	sp -= sizeof(struct pt_regs);
1569 	kregs = (struct pt_regs *) sp;
1570 	sp -= STACK_FRAME_OVERHEAD;
1571 	p->thread.ksp = sp;
1572 #ifdef CONFIG_PPC32
1573 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1574 				_ALIGN_UP(sizeof(struct thread_info), 16);
1575 #endif
1576 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1577 	p->thread.ptrace_bps[0] = NULL;
1578 #endif
1579 
1580 	p->thread.fp_save_area = NULL;
1581 #ifdef CONFIG_ALTIVEC
1582 	p->thread.vr_save_area = NULL;
1583 #endif
1584 
1585 	setup_ksp_vsid(p, sp);
1586 
1587 #ifdef CONFIG_PPC64
1588 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1589 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1590 		p->thread.dscr = mfspr(SPRN_DSCR);
1591 	}
1592 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1593 		p->thread.ppr = INIT_PPR;
1594 #endif
1595 	kregs->nip = ppc_function_entry(f);
1596 	return 0;
1597 }
1598 
1599 /*
1600  * Set up a thread for executing a new program
1601  */
1602 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1603 {
1604 #ifdef CONFIG_PPC64
1605 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1606 #endif
1607 
1608 	/*
1609 	 * If we exec out of a kernel thread then thread.regs will not be
1610 	 * set.  Do it now.
1611 	 */
1612 	if (!current->thread.regs) {
1613 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1614 		current->thread.regs = regs - 1;
1615 	}
1616 
1617 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1618 	/*
1619 	 * Clear any transactional state, we're exec()ing. The cause is
1620 	 * not important as there will never be a recheckpoint so it's not
1621 	 * user visible.
1622 	 */
1623 	if (MSR_TM_SUSPENDED(mfmsr()))
1624 		tm_reclaim_current(0);
1625 #endif
1626 
1627 	memset(regs->gpr, 0, sizeof(regs->gpr));
1628 	regs->ctr = 0;
1629 	regs->link = 0;
1630 	regs->xer = 0;
1631 	regs->ccr = 0;
1632 	regs->gpr[1] = sp;
1633 
1634 	/*
1635 	 * We have just cleared all the nonvolatile GPRs, so make
1636 	 * FULL_REGS(regs) return true.  This is necessary to allow
1637 	 * ptrace to examine the thread immediately after exec.
1638 	 */
1639 	regs->trap &= ~1UL;
1640 
1641 #ifdef CONFIG_PPC32
1642 	regs->mq = 0;
1643 	regs->nip = start;
1644 	regs->msr = MSR_USER;
1645 #else
1646 	if (!is_32bit_task()) {
1647 		unsigned long entry;
1648 
1649 		if (is_elf2_task()) {
1650 			/* Look ma, no function descriptors! */
1651 			entry = start;
1652 
1653 			/*
1654 			 * Ulrich says:
1655 			 *   The latest iteration of the ABI requires that when
1656 			 *   calling a function (at its global entry point),
1657 			 *   the caller must ensure r12 holds the entry point
1658 			 *   address (so that the function can quickly
1659 			 *   establish addressability).
1660 			 */
1661 			regs->gpr[12] = start;
1662 			/* Make sure that's restored on entry to userspace. */
1663 			set_thread_flag(TIF_RESTOREALL);
1664 		} else {
1665 			unsigned long toc;
1666 
1667 			/* start is a relocated pointer to the function
1668 			 * descriptor for the elf _start routine.  The first
1669 			 * entry in the function descriptor is the entry
1670 			 * address of _start and the second entry is the TOC
1671 			 * value we need to use.
1672 			 */
1673 			__get_user(entry, (unsigned long __user *)start);
1674 			__get_user(toc, (unsigned long __user *)start+1);
1675 
1676 			/* Check whether the e_entry function descriptor entries
1677 			 * need to be relocated before we can use them.
1678 			 */
1679 			if (load_addr != 0) {
1680 				entry += load_addr;
1681 				toc   += load_addr;
1682 			}
1683 			regs->gpr[2] = toc;
1684 		}
1685 		regs->nip = entry;
1686 		regs->msr = MSR_USER64;
1687 	} else {
1688 		regs->nip = start;
1689 		regs->gpr[2] = 0;
1690 		regs->msr = MSR_USER32;
1691 	}
1692 #endif
1693 #ifdef CONFIG_VSX
1694 	current->thread.used_vsr = 0;
1695 #endif
1696 	current->thread.load_fp = 0;
1697 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1698 	current->thread.fp_save_area = NULL;
1699 #ifdef CONFIG_ALTIVEC
1700 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1701 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1702 	current->thread.vr_save_area = NULL;
1703 	current->thread.vrsave = 0;
1704 	current->thread.used_vr = 0;
1705 	current->thread.load_vec = 0;
1706 #endif /* CONFIG_ALTIVEC */
1707 #ifdef CONFIG_SPE
1708 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1709 	current->thread.acc = 0;
1710 	current->thread.spefscr = 0;
1711 	current->thread.used_spe = 0;
1712 #endif /* CONFIG_SPE */
1713 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1714 	current->thread.tm_tfhar = 0;
1715 	current->thread.tm_texasr = 0;
1716 	current->thread.tm_tfiar = 0;
1717 	current->thread.load_tm = 0;
1718 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1719 }
1720 EXPORT_SYMBOL(start_thread);
1721 
1722 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1723 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1724 
1725 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1726 {
1727 	struct pt_regs *regs = tsk->thread.regs;
1728 
1729 	/* This is a bit hairy.  If we are an SPE enabled  processor
1730 	 * (have embedded fp) we store the IEEE exception enable flags in
1731 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1732 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1733 	if (val & PR_FP_EXC_SW_ENABLE) {
1734 #ifdef CONFIG_SPE
1735 		if (cpu_has_feature(CPU_FTR_SPE)) {
1736 			/*
1737 			 * When the sticky exception bits are set
1738 			 * directly by userspace, it must call prctl
1739 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1740 			 * in the existing prctl settings) or
1741 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1742 			 * the bits being set).  <fenv.h> functions
1743 			 * saving and restoring the whole
1744 			 * floating-point environment need to do so
1745 			 * anyway to restore the prctl settings from
1746 			 * the saved environment.
1747 			 */
1748 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1749 			tsk->thread.fpexc_mode = val &
1750 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1751 			return 0;
1752 		} else {
1753 			return -EINVAL;
1754 		}
1755 #else
1756 		return -EINVAL;
1757 #endif
1758 	}
1759 
1760 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1761 	 * __pack_fe01 use do not overlap with bits used for
1762 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1763 	 * on CONFIG_SPE implementations are reserved so writing to
1764 	 * them does not change anything */
1765 	if (val > PR_FP_EXC_PRECISE)
1766 		return -EINVAL;
1767 	tsk->thread.fpexc_mode = __pack_fe01(val);
1768 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1769 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1770 			| tsk->thread.fpexc_mode;
1771 	return 0;
1772 }
1773 
1774 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1775 {
1776 	unsigned int val;
1777 
1778 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1779 #ifdef CONFIG_SPE
1780 		if (cpu_has_feature(CPU_FTR_SPE)) {
1781 			/*
1782 			 * When the sticky exception bits are set
1783 			 * directly by userspace, it must call prctl
1784 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1785 			 * in the existing prctl settings) or
1786 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1787 			 * the bits being set).  <fenv.h> functions
1788 			 * saving and restoring the whole
1789 			 * floating-point environment need to do so
1790 			 * anyway to restore the prctl settings from
1791 			 * the saved environment.
1792 			 */
1793 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1794 			val = tsk->thread.fpexc_mode;
1795 		} else
1796 			return -EINVAL;
1797 #else
1798 		return -EINVAL;
1799 #endif
1800 	else
1801 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1802 	return put_user(val, (unsigned int __user *) adr);
1803 }
1804 
1805 int set_endian(struct task_struct *tsk, unsigned int val)
1806 {
1807 	struct pt_regs *regs = tsk->thread.regs;
1808 
1809 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1810 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1811 		return -EINVAL;
1812 
1813 	if (regs == NULL)
1814 		return -EINVAL;
1815 
1816 	if (val == PR_ENDIAN_BIG)
1817 		regs->msr &= ~MSR_LE;
1818 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1819 		regs->msr |= MSR_LE;
1820 	else
1821 		return -EINVAL;
1822 
1823 	return 0;
1824 }
1825 
1826 int get_endian(struct task_struct *tsk, unsigned long adr)
1827 {
1828 	struct pt_regs *regs = tsk->thread.regs;
1829 	unsigned int val;
1830 
1831 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1832 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1833 		return -EINVAL;
1834 
1835 	if (regs == NULL)
1836 		return -EINVAL;
1837 
1838 	if (regs->msr & MSR_LE) {
1839 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1840 			val = PR_ENDIAN_LITTLE;
1841 		else
1842 			val = PR_ENDIAN_PPC_LITTLE;
1843 	} else
1844 		val = PR_ENDIAN_BIG;
1845 
1846 	return put_user(val, (unsigned int __user *)adr);
1847 }
1848 
1849 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1850 {
1851 	tsk->thread.align_ctl = val;
1852 	return 0;
1853 }
1854 
1855 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1856 {
1857 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1858 }
1859 
1860 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1861 				  unsigned long nbytes)
1862 {
1863 	unsigned long stack_page;
1864 	unsigned long cpu = task_cpu(p);
1865 
1866 	/*
1867 	 * Avoid crashing if the stack has overflowed and corrupted
1868 	 * task_cpu(p), which is in the thread_info struct.
1869 	 */
1870 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1871 		stack_page = (unsigned long) hardirq_ctx[cpu];
1872 		if (sp >= stack_page + sizeof(struct thread_struct)
1873 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1874 			return 1;
1875 
1876 		stack_page = (unsigned long) softirq_ctx[cpu];
1877 		if (sp >= stack_page + sizeof(struct thread_struct)
1878 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1879 			return 1;
1880 	}
1881 	return 0;
1882 }
1883 
1884 int validate_sp(unsigned long sp, struct task_struct *p,
1885 		       unsigned long nbytes)
1886 {
1887 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1888 
1889 	if (sp >= stack_page + sizeof(struct thread_struct)
1890 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1891 		return 1;
1892 
1893 	return valid_irq_stack(sp, p, nbytes);
1894 }
1895 
1896 EXPORT_SYMBOL(validate_sp);
1897 
1898 unsigned long get_wchan(struct task_struct *p)
1899 {
1900 	unsigned long ip, sp;
1901 	int count = 0;
1902 
1903 	if (!p || p == current || p->state == TASK_RUNNING)
1904 		return 0;
1905 
1906 	sp = p->thread.ksp;
1907 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1908 		return 0;
1909 
1910 	do {
1911 		sp = *(unsigned long *)sp;
1912 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1913 			return 0;
1914 		if (count > 0) {
1915 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1916 			if (!in_sched_functions(ip))
1917 				return ip;
1918 		}
1919 	} while (count++ < 16);
1920 	return 0;
1921 }
1922 
1923 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1924 
1925 void show_stack(struct task_struct *tsk, unsigned long *stack)
1926 {
1927 	unsigned long sp, ip, lr, newsp;
1928 	int count = 0;
1929 	int firstframe = 1;
1930 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1931 	int curr_frame = current->curr_ret_stack;
1932 	extern void return_to_handler(void);
1933 	unsigned long rth = (unsigned long)return_to_handler;
1934 #endif
1935 
1936 	sp = (unsigned long) stack;
1937 	if (tsk == NULL)
1938 		tsk = current;
1939 	if (sp == 0) {
1940 		if (tsk == current)
1941 			sp = current_stack_pointer();
1942 		else
1943 			sp = tsk->thread.ksp;
1944 	}
1945 
1946 	lr = 0;
1947 	printk("Call Trace:\n");
1948 	do {
1949 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1950 			return;
1951 
1952 		stack = (unsigned long *) sp;
1953 		newsp = stack[0];
1954 		ip = stack[STACK_FRAME_LR_SAVE];
1955 		if (!firstframe || ip != lr) {
1956 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1957 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1958 			if ((ip == rth) && curr_frame >= 0) {
1959 				pr_cont(" (%pS)",
1960 				       (void *)current->ret_stack[curr_frame].ret);
1961 				curr_frame--;
1962 			}
1963 #endif
1964 			if (firstframe)
1965 				pr_cont(" (unreliable)");
1966 			pr_cont("\n");
1967 		}
1968 		firstframe = 0;
1969 
1970 		/*
1971 		 * See if this is an exception frame.
1972 		 * We look for the "regshere" marker in the current frame.
1973 		 */
1974 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1975 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1976 			struct pt_regs *regs = (struct pt_regs *)
1977 				(sp + STACK_FRAME_OVERHEAD);
1978 			lr = regs->link;
1979 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1980 			       regs->trap, (void *)regs->nip, (void *)lr);
1981 			firstframe = 1;
1982 		}
1983 
1984 		sp = newsp;
1985 	} while (count++ < kstack_depth_to_print);
1986 }
1987 
1988 #ifdef CONFIG_PPC64
1989 /* Called with hard IRQs off */
1990 void notrace __ppc64_runlatch_on(void)
1991 {
1992 	struct thread_info *ti = current_thread_info();
1993 	unsigned long ctrl;
1994 
1995 	ctrl = mfspr(SPRN_CTRLF);
1996 	ctrl |= CTRL_RUNLATCH;
1997 	mtspr(SPRN_CTRLT, ctrl);
1998 
1999 	ti->local_flags |= _TLF_RUNLATCH;
2000 }
2001 
2002 /* Called with hard IRQs off */
2003 void notrace __ppc64_runlatch_off(void)
2004 {
2005 	struct thread_info *ti = current_thread_info();
2006 	unsigned long ctrl;
2007 
2008 	ti->local_flags &= ~_TLF_RUNLATCH;
2009 
2010 	ctrl = mfspr(SPRN_CTRLF);
2011 	ctrl &= ~CTRL_RUNLATCH;
2012 	mtspr(SPRN_CTRLT, ctrl);
2013 }
2014 #endif /* CONFIG_PPC64 */
2015 
2016 unsigned long arch_align_stack(unsigned long sp)
2017 {
2018 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2019 		sp -= get_random_int() & ~PAGE_MASK;
2020 	return sp & ~0xf;
2021 }
2022 
2023 static inline unsigned long brk_rnd(void)
2024 {
2025         unsigned long rnd = 0;
2026 
2027 	/* 8MB for 32bit, 1GB for 64bit */
2028 	if (is_32bit_task())
2029 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2030 	else
2031 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2032 
2033 	return rnd << PAGE_SHIFT;
2034 }
2035 
2036 unsigned long arch_randomize_brk(struct mm_struct *mm)
2037 {
2038 	unsigned long base = mm->brk;
2039 	unsigned long ret;
2040 
2041 #ifdef CONFIG_PPC_STD_MMU_64
2042 	/*
2043 	 * If we are using 1TB segments and we are allowed to randomise
2044 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2045 	 * segment. Otherwise the heap will be in the bottom 1TB
2046 	 * which always uses 256MB segments and this may result in a
2047 	 * performance penalty. We don't need to worry about radix. For
2048 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2049 	 */
2050 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2051 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2052 #endif
2053 
2054 	ret = PAGE_ALIGN(base + brk_rnd());
2055 
2056 	if (ret < mm->brk)
2057 		return mm->brk;
2058 
2059 	return ret;
2060 }
2061 
2062