xref: /linux/arch/powerpc/kernel/process.c (revision ec2212088c42ff7d1362629ec26dda4f3e8bdad3)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/syscalls.h>
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #endif
55 #include <linux/kprobes.h>
56 #include <linux/kdebug.h>
57 
58 extern unsigned long _get_SP(void);
59 
60 #ifndef CONFIG_SMP
61 struct task_struct *last_task_used_math = NULL;
62 struct task_struct *last_task_used_altivec = NULL;
63 struct task_struct *last_task_used_vsx = NULL;
64 struct task_struct *last_task_used_spe = NULL;
65 #endif
66 
67 /*
68  * Make sure the floating-point register state in the
69  * the thread_struct is up to date for task tsk.
70  */
71 void flush_fp_to_thread(struct task_struct *tsk)
72 {
73 	if (tsk->thread.regs) {
74 		/*
75 		 * We need to disable preemption here because if we didn't,
76 		 * another process could get scheduled after the regs->msr
77 		 * test but before we have finished saving the FP registers
78 		 * to the thread_struct.  That process could take over the
79 		 * FPU, and then when we get scheduled again we would store
80 		 * bogus values for the remaining FP registers.
81 		 */
82 		preempt_disable();
83 		if (tsk->thread.regs->msr & MSR_FP) {
84 #ifdef CONFIG_SMP
85 			/*
86 			 * This should only ever be called for current or
87 			 * for a stopped child process.  Since we save away
88 			 * the FP register state on context switch on SMP,
89 			 * there is something wrong if a stopped child appears
90 			 * to still have its FP state in the CPU registers.
91 			 */
92 			BUG_ON(tsk != current);
93 #endif
94 			giveup_fpu(tsk);
95 		}
96 		preempt_enable();
97 	}
98 }
99 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
100 
101 void enable_kernel_fp(void)
102 {
103 	WARN_ON(preemptible());
104 
105 #ifdef CONFIG_SMP
106 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
107 		giveup_fpu(current);
108 	else
109 		giveup_fpu(NULL);	/* just enables FP for kernel */
110 #else
111 	giveup_fpu(last_task_used_math);
112 #endif /* CONFIG_SMP */
113 }
114 EXPORT_SYMBOL(enable_kernel_fp);
115 
116 #ifdef CONFIG_ALTIVEC
117 void enable_kernel_altivec(void)
118 {
119 	WARN_ON(preemptible());
120 
121 #ifdef CONFIG_SMP
122 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
123 		giveup_altivec(current);
124 	else
125 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
126 #else
127 	giveup_altivec(last_task_used_altivec);
128 #endif /* CONFIG_SMP */
129 }
130 EXPORT_SYMBOL(enable_kernel_altivec);
131 
132 /*
133  * Make sure the VMX/Altivec register state in the
134  * the thread_struct is up to date for task tsk.
135  */
136 void flush_altivec_to_thread(struct task_struct *tsk)
137 {
138 	if (tsk->thread.regs) {
139 		preempt_disable();
140 		if (tsk->thread.regs->msr & MSR_VEC) {
141 #ifdef CONFIG_SMP
142 			BUG_ON(tsk != current);
143 #endif
144 			giveup_altivec(tsk);
145 		}
146 		preempt_enable();
147 	}
148 }
149 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
150 #endif /* CONFIG_ALTIVEC */
151 
152 #ifdef CONFIG_VSX
153 #if 0
154 /* not currently used, but some crazy RAID module might want to later */
155 void enable_kernel_vsx(void)
156 {
157 	WARN_ON(preemptible());
158 
159 #ifdef CONFIG_SMP
160 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
161 		giveup_vsx(current);
162 	else
163 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
164 #else
165 	giveup_vsx(last_task_used_vsx);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_vsx);
169 #endif
170 
171 void giveup_vsx(struct task_struct *tsk)
172 {
173 	giveup_fpu(tsk);
174 	giveup_altivec(tsk);
175 	__giveup_vsx(tsk);
176 }
177 
178 void flush_vsx_to_thread(struct task_struct *tsk)
179 {
180 	if (tsk->thread.regs) {
181 		preempt_disable();
182 		if (tsk->thread.regs->msr & MSR_VSX) {
183 #ifdef CONFIG_SMP
184 			BUG_ON(tsk != current);
185 #endif
186 			giveup_vsx(tsk);
187 		}
188 		preempt_enable();
189 	}
190 }
191 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
192 #endif /* CONFIG_VSX */
193 
194 #ifdef CONFIG_SPE
195 
196 void enable_kernel_spe(void)
197 {
198 	WARN_ON(preemptible());
199 
200 #ifdef CONFIG_SMP
201 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
202 		giveup_spe(current);
203 	else
204 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
205 #else
206 	giveup_spe(last_task_used_spe);
207 #endif /* __SMP __ */
208 }
209 EXPORT_SYMBOL(enable_kernel_spe);
210 
211 void flush_spe_to_thread(struct task_struct *tsk)
212 {
213 	if (tsk->thread.regs) {
214 		preempt_disable();
215 		if (tsk->thread.regs->msr & MSR_SPE) {
216 #ifdef CONFIG_SMP
217 			BUG_ON(tsk != current);
218 #endif
219 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
220 			giveup_spe(tsk);
221 		}
222 		preempt_enable();
223 	}
224 }
225 #endif /* CONFIG_SPE */
226 
227 #ifndef CONFIG_SMP
228 /*
229  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
230  * and the current task has some state, discard it.
231  */
232 void discard_lazy_cpu_state(void)
233 {
234 	preempt_disable();
235 	if (last_task_used_math == current)
236 		last_task_used_math = NULL;
237 #ifdef CONFIG_ALTIVEC
238 	if (last_task_used_altivec == current)
239 		last_task_used_altivec = NULL;
240 #endif /* CONFIG_ALTIVEC */
241 #ifdef CONFIG_VSX
242 	if (last_task_used_vsx == current)
243 		last_task_used_vsx = NULL;
244 #endif /* CONFIG_VSX */
245 #ifdef CONFIG_SPE
246 	if (last_task_used_spe == current)
247 		last_task_used_spe = NULL;
248 #endif
249 	preempt_enable();
250 }
251 #endif /* CONFIG_SMP */
252 
253 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
254 void do_send_trap(struct pt_regs *regs, unsigned long address,
255 		  unsigned long error_code, int signal_code, int breakpt)
256 {
257 	siginfo_t info;
258 
259 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
260 			11, SIGSEGV) == NOTIFY_STOP)
261 		return;
262 
263 	/* Deliver the signal to userspace */
264 	info.si_signo = SIGTRAP;
265 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
266 	info.si_code = signal_code;
267 	info.si_addr = (void __user *)address;
268 	force_sig_info(SIGTRAP, &info, current);
269 }
270 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
271 void do_dabr(struct pt_regs *regs, unsigned long address,
272 		    unsigned long error_code)
273 {
274 	siginfo_t info;
275 
276 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
277 			11, SIGSEGV) == NOTIFY_STOP)
278 		return;
279 
280 	if (debugger_dabr_match(regs))
281 		return;
282 
283 	/* Clear the DABR */
284 	set_dabr(0);
285 
286 	/* Deliver the signal to userspace */
287 	info.si_signo = SIGTRAP;
288 	info.si_errno = 0;
289 	info.si_code = TRAP_HWBKPT;
290 	info.si_addr = (void __user *)address;
291 	force_sig_info(SIGTRAP, &info, current);
292 }
293 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
294 
295 static DEFINE_PER_CPU(unsigned long, current_dabr);
296 
297 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
298 /*
299  * Set the debug registers back to their default "safe" values.
300  */
301 static void set_debug_reg_defaults(struct thread_struct *thread)
302 {
303 	thread->iac1 = thread->iac2 = 0;
304 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
305 	thread->iac3 = thread->iac4 = 0;
306 #endif
307 	thread->dac1 = thread->dac2 = 0;
308 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
309 	thread->dvc1 = thread->dvc2 = 0;
310 #endif
311 	thread->dbcr0 = 0;
312 #ifdef CONFIG_BOOKE
313 	/*
314 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
315 	 */
316 	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
317 			DBCR1_IAC3US | DBCR1_IAC4US;
318 	/*
319 	 * Force Data Address Compare User/Supervisor bits to be User-only
320 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
321 	 */
322 	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
323 #else
324 	thread->dbcr1 = 0;
325 #endif
326 }
327 
328 static void prime_debug_regs(struct thread_struct *thread)
329 {
330 	mtspr(SPRN_IAC1, thread->iac1);
331 	mtspr(SPRN_IAC2, thread->iac2);
332 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
333 	mtspr(SPRN_IAC3, thread->iac3);
334 	mtspr(SPRN_IAC4, thread->iac4);
335 #endif
336 	mtspr(SPRN_DAC1, thread->dac1);
337 	mtspr(SPRN_DAC2, thread->dac2);
338 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
339 	mtspr(SPRN_DVC1, thread->dvc1);
340 	mtspr(SPRN_DVC2, thread->dvc2);
341 #endif
342 	mtspr(SPRN_DBCR0, thread->dbcr0);
343 	mtspr(SPRN_DBCR1, thread->dbcr1);
344 #ifdef CONFIG_BOOKE
345 	mtspr(SPRN_DBCR2, thread->dbcr2);
346 #endif
347 }
348 /*
349  * Unless neither the old or new thread are making use of the
350  * debug registers, set the debug registers from the values
351  * stored in the new thread.
352  */
353 static void switch_booke_debug_regs(struct thread_struct *new_thread)
354 {
355 	if ((current->thread.dbcr0 & DBCR0_IDM)
356 		|| (new_thread->dbcr0 & DBCR0_IDM))
357 			prime_debug_regs(new_thread);
358 }
359 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
360 #ifndef CONFIG_HAVE_HW_BREAKPOINT
361 static void set_debug_reg_defaults(struct thread_struct *thread)
362 {
363 	if (thread->dabr) {
364 		thread->dabr = 0;
365 		set_dabr(0);
366 	}
367 }
368 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
369 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
370 
371 int set_dabr(unsigned long dabr)
372 {
373 	__get_cpu_var(current_dabr) = dabr;
374 
375 	if (ppc_md.set_dabr)
376 		return ppc_md.set_dabr(dabr);
377 
378 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
379 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
380 	mtspr(SPRN_DAC1, dabr);
381 #ifdef CONFIG_PPC_47x
382 	isync();
383 #endif
384 #elif defined(CONFIG_PPC_BOOK3S)
385 	mtspr(SPRN_DABR, dabr);
386 #endif
387 
388 
389 	return 0;
390 }
391 
392 #ifdef CONFIG_PPC64
393 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
394 #endif
395 
396 struct task_struct *__switch_to(struct task_struct *prev,
397 	struct task_struct *new)
398 {
399 	struct thread_struct *new_thread, *old_thread;
400 	unsigned long flags;
401 	struct task_struct *last;
402 #ifdef CONFIG_PPC_BOOK3S_64
403 	struct ppc64_tlb_batch *batch;
404 #endif
405 
406 #ifdef CONFIG_SMP
407 	/* avoid complexity of lazy save/restore of fpu
408 	 * by just saving it every time we switch out if
409 	 * this task used the fpu during the last quantum.
410 	 *
411 	 * If it tries to use the fpu again, it'll trap and
412 	 * reload its fp regs.  So we don't have to do a restore
413 	 * every switch, just a save.
414 	 *  -- Cort
415 	 */
416 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
417 		giveup_fpu(prev);
418 #ifdef CONFIG_ALTIVEC
419 	/*
420 	 * If the previous thread used altivec in the last quantum
421 	 * (thus changing altivec regs) then save them.
422 	 * We used to check the VRSAVE register but not all apps
423 	 * set it, so we don't rely on it now (and in fact we need
424 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
425 	 *
426 	 * On SMP we always save/restore altivec regs just to avoid the
427 	 * complexity of changing processors.
428 	 *  -- Cort
429 	 */
430 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
431 		giveup_altivec(prev);
432 #endif /* CONFIG_ALTIVEC */
433 #ifdef CONFIG_VSX
434 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
435 		/* VMX and FPU registers are already save here */
436 		__giveup_vsx(prev);
437 #endif /* CONFIG_VSX */
438 #ifdef CONFIG_SPE
439 	/*
440 	 * If the previous thread used spe in the last quantum
441 	 * (thus changing spe regs) then save them.
442 	 *
443 	 * On SMP we always save/restore spe regs just to avoid the
444 	 * complexity of changing processors.
445 	 */
446 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
447 		giveup_spe(prev);
448 #endif /* CONFIG_SPE */
449 
450 #else  /* CONFIG_SMP */
451 #ifdef CONFIG_ALTIVEC
452 	/* Avoid the trap.  On smp this this never happens since
453 	 * we don't set last_task_used_altivec -- Cort
454 	 */
455 	if (new->thread.regs && last_task_used_altivec == new)
456 		new->thread.regs->msr |= MSR_VEC;
457 #endif /* CONFIG_ALTIVEC */
458 #ifdef CONFIG_VSX
459 	if (new->thread.regs && last_task_used_vsx == new)
460 		new->thread.regs->msr |= MSR_VSX;
461 #endif /* CONFIG_VSX */
462 #ifdef CONFIG_SPE
463 	/* Avoid the trap.  On smp this this never happens since
464 	 * we don't set last_task_used_spe
465 	 */
466 	if (new->thread.regs && last_task_used_spe == new)
467 		new->thread.regs->msr |= MSR_SPE;
468 #endif /* CONFIG_SPE */
469 
470 #endif /* CONFIG_SMP */
471 
472 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
473 	switch_booke_debug_regs(&new->thread);
474 #else
475 /*
476  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
477  * schedule DABR
478  */
479 #ifndef CONFIG_HAVE_HW_BREAKPOINT
480 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
481 		set_dabr(new->thread.dabr);
482 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
483 #endif
484 
485 
486 	new_thread = &new->thread;
487 	old_thread = &current->thread;
488 
489 #ifdef CONFIG_PPC64
490 	/*
491 	 * Collect processor utilization data per process
492 	 */
493 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
494 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
495 		long unsigned start_tb, current_tb;
496 		start_tb = old_thread->start_tb;
497 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
498 		old_thread->accum_tb += (current_tb - start_tb);
499 		new_thread->start_tb = current_tb;
500 	}
501 #endif /* CONFIG_PPC64 */
502 
503 #ifdef CONFIG_PPC_BOOK3S_64
504 	batch = &__get_cpu_var(ppc64_tlb_batch);
505 	if (batch->active) {
506 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
507 		if (batch->index)
508 			__flush_tlb_pending(batch);
509 		batch->active = 0;
510 	}
511 #endif /* CONFIG_PPC_BOOK3S_64 */
512 
513 	local_irq_save(flags);
514 
515 	account_system_vtime(current);
516 	account_process_vtime(current);
517 
518 	/*
519 	 * We can't take a PMU exception inside _switch() since there is a
520 	 * window where the kernel stack SLB and the kernel stack are out
521 	 * of sync. Hard disable here.
522 	 */
523 	hard_irq_disable();
524 	last = _switch(old_thread, new_thread);
525 
526 #ifdef CONFIG_PPC_BOOK3S_64
527 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
528 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
529 		batch = &__get_cpu_var(ppc64_tlb_batch);
530 		batch->active = 1;
531 	}
532 #endif /* CONFIG_PPC_BOOK3S_64 */
533 
534 	local_irq_restore(flags);
535 
536 	return last;
537 }
538 
539 static int instructions_to_print = 16;
540 
541 static void show_instructions(struct pt_regs *regs)
542 {
543 	int i;
544 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
545 			sizeof(int));
546 
547 	printk("Instruction dump:");
548 
549 	for (i = 0; i < instructions_to_print; i++) {
550 		int instr;
551 
552 		if (!(i % 8))
553 			printk("\n");
554 
555 #if !defined(CONFIG_BOOKE)
556 		/* If executing with the IMMU off, adjust pc rather
557 		 * than print XXXXXXXX.
558 		 */
559 		if (!(regs->msr & MSR_IR))
560 			pc = (unsigned long)phys_to_virt(pc);
561 #endif
562 
563 		/* We use __get_user here *only* to avoid an OOPS on a
564 		 * bad address because the pc *should* only be a
565 		 * kernel address.
566 		 */
567 		if (!__kernel_text_address(pc) ||
568 		     __get_user(instr, (unsigned int __user *)pc)) {
569 			printk(KERN_CONT "XXXXXXXX ");
570 		} else {
571 			if (regs->nip == pc)
572 				printk(KERN_CONT "<%08x> ", instr);
573 			else
574 				printk(KERN_CONT "%08x ", instr);
575 		}
576 
577 		pc += sizeof(int);
578 	}
579 
580 	printk("\n");
581 }
582 
583 static struct regbit {
584 	unsigned long bit;
585 	const char *name;
586 } msr_bits[] = {
587 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
588 	{MSR_SF,	"SF"},
589 	{MSR_HV,	"HV"},
590 #endif
591 	{MSR_VEC,	"VEC"},
592 	{MSR_VSX,	"VSX"},
593 #ifdef CONFIG_BOOKE
594 	{MSR_CE,	"CE"},
595 #endif
596 	{MSR_EE,	"EE"},
597 	{MSR_PR,	"PR"},
598 	{MSR_FP,	"FP"},
599 	{MSR_ME,	"ME"},
600 #ifdef CONFIG_BOOKE
601 	{MSR_DE,	"DE"},
602 #else
603 	{MSR_SE,	"SE"},
604 	{MSR_BE,	"BE"},
605 #endif
606 	{MSR_IR,	"IR"},
607 	{MSR_DR,	"DR"},
608 	{MSR_PMM,	"PMM"},
609 #ifndef CONFIG_BOOKE
610 	{MSR_RI,	"RI"},
611 	{MSR_LE,	"LE"},
612 #endif
613 	{0,		NULL}
614 };
615 
616 static void printbits(unsigned long val, struct regbit *bits)
617 {
618 	const char *sep = "";
619 
620 	printk("<");
621 	for (; bits->bit; ++bits)
622 		if (val & bits->bit) {
623 			printk("%s%s", sep, bits->name);
624 			sep = ",";
625 		}
626 	printk(">");
627 }
628 
629 #ifdef CONFIG_PPC64
630 #define REG		"%016lx"
631 #define REGS_PER_LINE	4
632 #define LAST_VOLATILE	13
633 #else
634 #define REG		"%08lx"
635 #define REGS_PER_LINE	8
636 #define LAST_VOLATILE	12
637 #endif
638 
639 void show_regs(struct pt_regs * regs)
640 {
641 	int i, trap;
642 
643 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
644 	       regs->nip, regs->link, regs->ctr);
645 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
646 	       regs, regs->trap, print_tainted(), init_utsname()->release);
647 	printk("MSR: "REG" ", regs->msr);
648 	printbits(regs->msr, msr_bits);
649 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
650 #ifdef CONFIG_PPC64
651 	printk("SOFTE: %ld\n", regs->softe);
652 #endif
653 	trap = TRAP(regs);
654 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
655 		printk("CFAR: "REG"\n", regs->orig_gpr3);
656 	if (trap == 0x300 || trap == 0x600)
657 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
658 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
659 #else
660 		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
661 #endif
662 	printk("TASK = %p[%d] '%s' THREAD: %p",
663 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
664 
665 #ifdef CONFIG_SMP
666 	printk(" CPU: %d", raw_smp_processor_id());
667 #endif /* CONFIG_SMP */
668 
669 	for (i = 0;  i < 32;  i++) {
670 		if ((i % REGS_PER_LINE) == 0)
671 			printk("\nGPR%02d: ", i);
672 		printk(REG " ", regs->gpr[i]);
673 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
674 			break;
675 	}
676 	printk("\n");
677 #ifdef CONFIG_KALLSYMS
678 	/*
679 	 * Lookup NIP late so we have the best change of getting the
680 	 * above info out without failing
681 	 */
682 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
683 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
684 #endif
685 	show_stack(current, (unsigned long *) regs->gpr[1]);
686 	if (!user_mode(regs))
687 		show_instructions(regs);
688 }
689 
690 void exit_thread(void)
691 {
692 	discard_lazy_cpu_state();
693 }
694 
695 void flush_thread(void)
696 {
697 	discard_lazy_cpu_state();
698 
699 #ifdef CONFIG_HAVE_HW_BREAKPOINT
700 	flush_ptrace_hw_breakpoint(current);
701 #else /* CONFIG_HAVE_HW_BREAKPOINT */
702 	set_debug_reg_defaults(&current->thread);
703 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
704 }
705 
706 void
707 release_thread(struct task_struct *t)
708 {
709 }
710 
711 /*
712  * This gets called before we allocate a new thread and copy
713  * the current task into it.
714  */
715 void prepare_to_copy(struct task_struct *tsk)
716 {
717 	flush_fp_to_thread(current);
718 	flush_altivec_to_thread(current);
719 	flush_vsx_to_thread(current);
720 	flush_spe_to_thread(current);
721 #ifdef CONFIG_HAVE_HW_BREAKPOINT
722 	flush_ptrace_hw_breakpoint(tsk);
723 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
724 }
725 
726 /*
727  * Copy a thread..
728  */
729 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
730 
731 int copy_thread(unsigned long clone_flags, unsigned long usp,
732 		unsigned long unused, struct task_struct *p,
733 		struct pt_regs *regs)
734 {
735 	struct pt_regs *childregs, *kregs;
736 	extern void ret_from_fork(void);
737 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
738 
739 	CHECK_FULL_REGS(regs);
740 	/* Copy registers */
741 	sp -= sizeof(struct pt_regs);
742 	childregs = (struct pt_regs *) sp;
743 	*childregs = *regs;
744 	if ((childregs->msr & MSR_PR) == 0) {
745 		/* for kernel thread, set `current' and stackptr in new task */
746 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
747 #ifdef CONFIG_PPC32
748 		childregs->gpr[2] = (unsigned long) p;
749 #else
750 		clear_tsk_thread_flag(p, TIF_32BIT);
751 #endif
752 		p->thread.regs = NULL;	/* no user register state */
753 	} else {
754 		childregs->gpr[1] = usp;
755 		p->thread.regs = childregs;
756 		if (clone_flags & CLONE_SETTLS) {
757 #ifdef CONFIG_PPC64
758 			if (!is_32bit_task())
759 				childregs->gpr[13] = childregs->gpr[6];
760 			else
761 #endif
762 				childregs->gpr[2] = childregs->gpr[6];
763 		}
764 	}
765 	childregs->gpr[3] = 0;  /* Result from fork() */
766 	sp -= STACK_FRAME_OVERHEAD;
767 
768 	/*
769 	 * The way this works is that at some point in the future
770 	 * some task will call _switch to switch to the new task.
771 	 * That will pop off the stack frame created below and start
772 	 * the new task running at ret_from_fork.  The new task will
773 	 * do some house keeping and then return from the fork or clone
774 	 * system call, using the stack frame created above.
775 	 */
776 	sp -= sizeof(struct pt_regs);
777 	kregs = (struct pt_regs *) sp;
778 	sp -= STACK_FRAME_OVERHEAD;
779 	p->thread.ksp = sp;
780 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
781 				_ALIGN_UP(sizeof(struct thread_info), 16);
782 
783 #ifdef CONFIG_PPC_STD_MMU_64
784 	if (mmu_has_feature(MMU_FTR_SLB)) {
785 		unsigned long sp_vsid;
786 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
787 
788 		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
789 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
790 				<< SLB_VSID_SHIFT_1T;
791 		else
792 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
793 				<< SLB_VSID_SHIFT;
794 		sp_vsid |= SLB_VSID_KERNEL | llp;
795 		p->thread.ksp_vsid = sp_vsid;
796 	}
797 #endif /* CONFIG_PPC_STD_MMU_64 */
798 #ifdef CONFIG_PPC64
799 	if (cpu_has_feature(CPU_FTR_DSCR)) {
800 		if (current->thread.dscr_inherit) {
801 			p->thread.dscr_inherit = 1;
802 			p->thread.dscr = current->thread.dscr;
803 		} else if (0 != dscr_default) {
804 			p->thread.dscr_inherit = 1;
805 			p->thread.dscr = dscr_default;
806 		} else {
807 			p->thread.dscr_inherit = 0;
808 			p->thread.dscr = 0;
809 		}
810 	}
811 #endif
812 
813 	/*
814 	 * The PPC64 ABI makes use of a TOC to contain function
815 	 * pointers.  The function (ret_from_except) is actually a pointer
816 	 * to the TOC entry.  The first entry is a pointer to the actual
817 	 * function.
818  	 */
819 #ifdef CONFIG_PPC64
820 	kregs->nip = *((unsigned long *)ret_from_fork);
821 #else
822 	kregs->nip = (unsigned long)ret_from_fork;
823 #endif
824 
825 	return 0;
826 }
827 
828 /*
829  * Set up a thread for executing a new program
830  */
831 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
832 {
833 #ifdef CONFIG_PPC64
834 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
835 #endif
836 
837 	/*
838 	 * If we exec out of a kernel thread then thread.regs will not be
839 	 * set.  Do it now.
840 	 */
841 	if (!current->thread.regs) {
842 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
843 		current->thread.regs = regs - 1;
844 	}
845 
846 	memset(regs->gpr, 0, sizeof(regs->gpr));
847 	regs->ctr = 0;
848 	regs->link = 0;
849 	regs->xer = 0;
850 	regs->ccr = 0;
851 	regs->gpr[1] = sp;
852 
853 	/*
854 	 * We have just cleared all the nonvolatile GPRs, so make
855 	 * FULL_REGS(regs) return true.  This is necessary to allow
856 	 * ptrace to examine the thread immediately after exec.
857 	 */
858 	regs->trap &= ~1UL;
859 
860 #ifdef CONFIG_PPC32
861 	regs->mq = 0;
862 	regs->nip = start;
863 	regs->msr = MSR_USER;
864 #else
865 	if (!is_32bit_task()) {
866 		unsigned long entry, toc;
867 
868 		/* start is a relocated pointer to the function descriptor for
869 		 * the elf _start routine.  The first entry in the function
870 		 * descriptor is the entry address of _start and the second
871 		 * entry is the TOC value we need to use.
872 		 */
873 		__get_user(entry, (unsigned long __user *)start);
874 		__get_user(toc, (unsigned long __user *)start+1);
875 
876 		/* Check whether the e_entry function descriptor entries
877 		 * need to be relocated before we can use them.
878 		 */
879 		if (load_addr != 0) {
880 			entry += load_addr;
881 			toc   += load_addr;
882 		}
883 		regs->nip = entry;
884 		regs->gpr[2] = toc;
885 		regs->msr = MSR_USER64;
886 	} else {
887 		regs->nip = start;
888 		regs->gpr[2] = 0;
889 		regs->msr = MSR_USER32;
890 	}
891 #endif
892 
893 	discard_lazy_cpu_state();
894 #ifdef CONFIG_VSX
895 	current->thread.used_vsr = 0;
896 #endif
897 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
898 	current->thread.fpscr.val = 0;
899 #ifdef CONFIG_ALTIVEC
900 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
901 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
902 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
903 	current->thread.vrsave = 0;
904 	current->thread.used_vr = 0;
905 #endif /* CONFIG_ALTIVEC */
906 #ifdef CONFIG_SPE
907 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
908 	current->thread.acc = 0;
909 	current->thread.spefscr = 0;
910 	current->thread.used_spe = 0;
911 #endif /* CONFIG_SPE */
912 }
913 
914 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
915 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
916 
917 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
918 {
919 	struct pt_regs *regs = tsk->thread.regs;
920 
921 	/* This is a bit hairy.  If we are an SPE enabled  processor
922 	 * (have embedded fp) we store the IEEE exception enable flags in
923 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
924 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
925 	if (val & PR_FP_EXC_SW_ENABLE) {
926 #ifdef CONFIG_SPE
927 		if (cpu_has_feature(CPU_FTR_SPE)) {
928 			tsk->thread.fpexc_mode = val &
929 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
930 			return 0;
931 		} else {
932 			return -EINVAL;
933 		}
934 #else
935 		return -EINVAL;
936 #endif
937 	}
938 
939 	/* on a CONFIG_SPE this does not hurt us.  The bits that
940 	 * __pack_fe01 use do not overlap with bits used for
941 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
942 	 * on CONFIG_SPE implementations are reserved so writing to
943 	 * them does not change anything */
944 	if (val > PR_FP_EXC_PRECISE)
945 		return -EINVAL;
946 	tsk->thread.fpexc_mode = __pack_fe01(val);
947 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
948 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
949 			| tsk->thread.fpexc_mode;
950 	return 0;
951 }
952 
953 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
954 {
955 	unsigned int val;
956 
957 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
958 #ifdef CONFIG_SPE
959 		if (cpu_has_feature(CPU_FTR_SPE))
960 			val = tsk->thread.fpexc_mode;
961 		else
962 			return -EINVAL;
963 #else
964 		return -EINVAL;
965 #endif
966 	else
967 		val = __unpack_fe01(tsk->thread.fpexc_mode);
968 	return put_user(val, (unsigned int __user *) adr);
969 }
970 
971 int set_endian(struct task_struct *tsk, unsigned int val)
972 {
973 	struct pt_regs *regs = tsk->thread.regs;
974 
975 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
976 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
977 		return -EINVAL;
978 
979 	if (regs == NULL)
980 		return -EINVAL;
981 
982 	if (val == PR_ENDIAN_BIG)
983 		regs->msr &= ~MSR_LE;
984 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
985 		regs->msr |= MSR_LE;
986 	else
987 		return -EINVAL;
988 
989 	return 0;
990 }
991 
992 int get_endian(struct task_struct *tsk, unsigned long adr)
993 {
994 	struct pt_regs *regs = tsk->thread.regs;
995 	unsigned int val;
996 
997 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
998 	    !cpu_has_feature(CPU_FTR_REAL_LE))
999 		return -EINVAL;
1000 
1001 	if (regs == NULL)
1002 		return -EINVAL;
1003 
1004 	if (regs->msr & MSR_LE) {
1005 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1006 			val = PR_ENDIAN_LITTLE;
1007 		else
1008 			val = PR_ENDIAN_PPC_LITTLE;
1009 	} else
1010 		val = PR_ENDIAN_BIG;
1011 
1012 	return put_user(val, (unsigned int __user *)adr);
1013 }
1014 
1015 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1016 {
1017 	tsk->thread.align_ctl = val;
1018 	return 0;
1019 }
1020 
1021 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1022 {
1023 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1024 }
1025 
1026 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
1027 
1028 int sys_clone(unsigned long clone_flags, unsigned long usp,
1029 	      int __user *parent_tidp, void __user *child_threadptr,
1030 	      int __user *child_tidp, int p6,
1031 	      struct pt_regs *regs)
1032 {
1033 	CHECK_FULL_REGS(regs);
1034 	if (usp == 0)
1035 		usp = regs->gpr[1];	/* stack pointer for child */
1036 #ifdef CONFIG_PPC64
1037 	if (is_32bit_task()) {
1038 		parent_tidp = TRUNC_PTR(parent_tidp);
1039 		child_tidp = TRUNC_PTR(child_tidp);
1040 	}
1041 #endif
1042  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1043 }
1044 
1045 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1046 	     unsigned long p4, unsigned long p5, unsigned long p6,
1047 	     struct pt_regs *regs)
1048 {
1049 	CHECK_FULL_REGS(regs);
1050 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1051 }
1052 
1053 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1054 	      unsigned long p4, unsigned long p5, unsigned long p6,
1055 	      struct pt_regs *regs)
1056 {
1057 	CHECK_FULL_REGS(regs);
1058 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1059 			regs, 0, NULL, NULL);
1060 }
1061 
1062 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
1063 	       unsigned long a3, unsigned long a4, unsigned long a5,
1064 	       struct pt_regs *regs)
1065 {
1066 	int error;
1067 	char *filename;
1068 
1069 	filename = getname((const char __user *) a0);
1070 	error = PTR_ERR(filename);
1071 	if (IS_ERR(filename))
1072 		goto out;
1073 	flush_fp_to_thread(current);
1074 	flush_altivec_to_thread(current);
1075 	flush_spe_to_thread(current);
1076 	error = do_execve(filename,
1077 			  (const char __user *const __user *) a1,
1078 			  (const char __user *const __user *) a2, regs);
1079 	putname(filename);
1080 out:
1081 	return error;
1082 }
1083 
1084 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1085 				  unsigned long nbytes)
1086 {
1087 	unsigned long stack_page;
1088 	unsigned long cpu = task_cpu(p);
1089 
1090 	/*
1091 	 * Avoid crashing if the stack has overflowed and corrupted
1092 	 * task_cpu(p), which is in the thread_info struct.
1093 	 */
1094 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1095 		stack_page = (unsigned long) hardirq_ctx[cpu];
1096 		if (sp >= stack_page + sizeof(struct thread_struct)
1097 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1098 			return 1;
1099 
1100 		stack_page = (unsigned long) softirq_ctx[cpu];
1101 		if (sp >= stack_page + sizeof(struct thread_struct)
1102 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1103 			return 1;
1104 	}
1105 	return 0;
1106 }
1107 
1108 int validate_sp(unsigned long sp, struct task_struct *p,
1109 		       unsigned long nbytes)
1110 {
1111 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1112 
1113 	if (sp >= stack_page + sizeof(struct thread_struct)
1114 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1115 		return 1;
1116 
1117 	return valid_irq_stack(sp, p, nbytes);
1118 }
1119 
1120 EXPORT_SYMBOL(validate_sp);
1121 
1122 unsigned long get_wchan(struct task_struct *p)
1123 {
1124 	unsigned long ip, sp;
1125 	int count = 0;
1126 
1127 	if (!p || p == current || p->state == TASK_RUNNING)
1128 		return 0;
1129 
1130 	sp = p->thread.ksp;
1131 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1132 		return 0;
1133 
1134 	do {
1135 		sp = *(unsigned long *)sp;
1136 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1137 			return 0;
1138 		if (count > 0) {
1139 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1140 			if (!in_sched_functions(ip))
1141 				return ip;
1142 		}
1143 	} while (count++ < 16);
1144 	return 0;
1145 }
1146 
1147 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1148 
1149 void show_stack(struct task_struct *tsk, unsigned long *stack)
1150 {
1151 	unsigned long sp, ip, lr, newsp;
1152 	int count = 0;
1153 	int firstframe = 1;
1154 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1155 	int curr_frame = current->curr_ret_stack;
1156 	extern void return_to_handler(void);
1157 	unsigned long rth = (unsigned long)return_to_handler;
1158 	unsigned long mrth = -1;
1159 #ifdef CONFIG_PPC64
1160 	extern void mod_return_to_handler(void);
1161 	rth = *(unsigned long *)rth;
1162 	mrth = (unsigned long)mod_return_to_handler;
1163 	mrth = *(unsigned long *)mrth;
1164 #endif
1165 #endif
1166 
1167 	sp = (unsigned long) stack;
1168 	if (tsk == NULL)
1169 		tsk = current;
1170 	if (sp == 0) {
1171 		if (tsk == current)
1172 			asm("mr %0,1" : "=r" (sp));
1173 		else
1174 			sp = tsk->thread.ksp;
1175 	}
1176 
1177 	lr = 0;
1178 	printk("Call Trace:\n");
1179 	do {
1180 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1181 			return;
1182 
1183 		stack = (unsigned long *) sp;
1184 		newsp = stack[0];
1185 		ip = stack[STACK_FRAME_LR_SAVE];
1186 		if (!firstframe || ip != lr) {
1187 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1188 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1189 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1190 				printk(" (%pS)",
1191 				       (void *)current->ret_stack[curr_frame].ret);
1192 				curr_frame--;
1193 			}
1194 #endif
1195 			if (firstframe)
1196 				printk(" (unreliable)");
1197 			printk("\n");
1198 		}
1199 		firstframe = 0;
1200 
1201 		/*
1202 		 * See if this is an exception frame.
1203 		 * We look for the "regshere" marker in the current frame.
1204 		 */
1205 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1206 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1207 			struct pt_regs *regs = (struct pt_regs *)
1208 				(sp + STACK_FRAME_OVERHEAD);
1209 			lr = regs->link;
1210 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1211 			       regs->trap, (void *)regs->nip, (void *)lr);
1212 			firstframe = 1;
1213 		}
1214 
1215 		sp = newsp;
1216 	} while (count++ < kstack_depth_to_print);
1217 }
1218 
1219 void dump_stack(void)
1220 {
1221 	show_stack(current, NULL);
1222 }
1223 EXPORT_SYMBOL(dump_stack);
1224 
1225 #ifdef CONFIG_PPC64
1226 /* Called with hard IRQs off */
1227 void __ppc64_runlatch_on(void)
1228 {
1229 	struct thread_info *ti = current_thread_info();
1230 	unsigned long ctrl;
1231 
1232 	ctrl = mfspr(SPRN_CTRLF);
1233 	ctrl |= CTRL_RUNLATCH;
1234 	mtspr(SPRN_CTRLT, ctrl);
1235 
1236 	ti->local_flags |= TLF_RUNLATCH;
1237 }
1238 
1239 /* Called with hard IRQs off */
1240 void __ppc64_runlatch_off(void)
1241 {
1242 	struct thread_info *ti = current_thread_info();
1243 	unsigned long ctrl;
1244 
1245 	ti->local_flags &= ~TLF_RUNLATCH;
1246 
1247 	ctrl = mfspr(SPRN_CTRLF);
1248 	ctrl &= ~CTRL_RUNLATCH;
1249 	mtspr(SPRN_CTRLT, ctrl);
1250 }
1251 #endif /* CONFIG_PPC64 */
1252 
1253 #if THREAD_SHIFT < PAGE_SHIFT
1254 
1255 static struct kmem_cache *thread_info_cache;
1256 
1257 struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node)
1258 {
1259 	struct thread_info *ti;
1260 
1261 	ti = kmem_cache_alloc_node(thread_info_cache, GFP_KERNEL, node);
1262 	if (unlikely(ti == NULL))
1263 		return NULL;
1264 #ifdef CONFIG_DEBUG_STACK_USAGE
1265 	memset(ti, 0, THREAD_SIZE);
1266 #endif
1267 	return ti;
1268 }
1269 
1270 void free_thread_info(struct thread_info *ti)
1271 {
1272 	kmem_cache_free(thread_info_cache, ti);
1273 }
1274 
1275 void thread_info_cache_init(void)
1276 {
1277 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1278 					      THREAD_SIZE, 0, NULL);
1279 	BUG_ON(thread_info_cache == NULL);
1280 }
1281 
1282 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1283 
1284 unsigned long arch_align_stack(unsigned long sp)
1285 {
1286 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1287 		sp -= get_random_int() & ~PAGE_MASK;
1288 	return sp & ~0xf;
1289 }
1290 
1291 static inline unsigned long brk_rnd(void)
1292 {
1293         unsigned long rnd = 0;
1294 
1295 	/* 8MB for 32bit, 1GB for 64bit */
1296 	if (is_32bit_task())
1297 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1298 	else
1299 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1300 
1301 	return rnd << PAGE_SHIFT;
1302 }
1303 
1304 unsigned long arch_randomize_brk(struct mm_struct *mm)
1305 {
1306 	unsigned long base = mm->brk;
1307 	unsigned long ret;
1308 
1309 #ifdef CONFIG_PPC_STD_MMU_64
1310 	/*
1311 	 * If we are using 1TB segments and we are allowed to randomise
1312 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1313 	 * segment. Otherwise the heap will be in the bottom 1TB
1314 	 * which always uses 256MB segments and this may result in a
1315 	 * performance penalty.
1316 	 */
1317 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1318 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1319 #endif
1320 
1321 	ret = PAGE_ALIGN(base + brk_rnd());
1322 
1323 	if (ret < mm->brk)
1324 		return mm->brk;
1325 
1326 	return ret;
1327 }
1328 
1329 unsigned long randomize_et_dyn(unsigned long base)
1330 {
1331 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1332 
1333 	if (ret < base)
1334 		return base;
1335 
1336 	return ret;
1337 }
1338