xref: /linux/arch/powerpc/kernel/process.c (revision db4e83957f961f9053282409c5062c6baef857a4)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/syscalls.h>
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #endif
55 #include <linux/kprobes.h>
56 #include <linux/kdebug.h>
57 
58 extern unsigned long _get_SP(void);
59 
60 #ifndef CONFIG_SMP
61 struct task_struct *last_task_used_math = NULL;
62 struct task_struct *last_task_used_altivec = NULL;
63 struct task_struct *last_task_used_vsx = NULL;
64 struct task_struct *last_task_used_spe = NULL;
65 #endif
66 
67 /*
68  * Make sure the floating-point register state in the
69  * the thread_struct is up to date for task tsk.
70  */
71 void flush_fp_to_thread(struct task_struct *tsk)
72 {
73 	if (tsk->thread.regs) {
74 		/*
75 		 * We need to disable preemption here because if we didn't,
76 		 * another process could get scheduled after the regs->msr
77 		 * test but before we have finished saving the FP registers
78 		 * to the thread_struct.  That process could take over the
79 		 * FPU, and then when we get scheduled again we would store
80 		 * bogus values for the remaining FP registers.
81 		 */
82 		preempt_disable();
83 		if (tsk->thread.regs->msr & MSR_FP) {
84 #ifdef CONFIG_SMP
85 			/*
86 			 * This should only ever be called for current or
87 			 * for a stopped child process.  Since we save away
88 			 * the FP register state on context switch on SMP,
89 			 * there is something wrong if a stopped child appears
90 			 * to still have its FP state in the CPU registers.
91 			 */
92 			BUG_ON(tsk != current);
93 #endif
94 			giveup_fpu(tsk);
95 		}
96 		preempt_enable();
97 	}
98 }
99 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
100 
101 void enable_kernel_fp(void)
102 {
103 	WARN_ON(preemptible());
104 
105 #ifdef CONFIG_SMP
106 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
107 		giveup_fpu(current);
108 	else
109 		giveup_fpu(NULL);	/* just enables FP for kernel */
110 #else
111 	giveup_fpu(last_task_used_math);
112 #endif /* CONFIG_SMP */
113 }
114 EXPORT_SYMBOL(enable_kernel_fp);
115 
116 #ifdef CONFIG_ALTIVEC
117 void enable_kernel_altivec(void)
118 {
119 	WARN_ON(preemptible());
120 
121 #ifdef CONFIG_SMP
122 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
123 		giveup_altivec(current);
124 	else
125 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
126 #else
127 	giveup_altivec(last_task_used_altivec);
128 #endif /* CONFIG_SMP */
129 }
130 EXPORT_SYMBOL(enable_kernel_altivec);
131 
132 /*
133  * Make sure the VMX/Altivec register state in the
134  * the thread_struct is up to date for task tsk.
135  */
136 void flush_altivec_to_thread(struct task_struct *tsk)
137 {
138 	if (tsk->thread.regs) {
139 		preempt_disable();
140 		if (tsk->thread.regs->msr & MSR_VEC) {
141 #ifdef CONFIG_SMP
142 			BUG_ON(tsk != current);
143 #endif
144 			giveup_altivec(tsk);
145 		}
146 		preempt_enable();
147 	}
148 }
149 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
150 #endif /* CONFIG_ALTIVEC */
151 
152 #ifdef CONFIG_VSX
153 #if 0
154 /* not currently used, but some crazy RAID module might want to later */
155 void enable_kernel_vsx(void)
156 {
157 	WARN_ON(preemptible());
158 
159 #ifdef CONFIG_SMP
160 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
161 		giveup_vsx(current);
162 	else
163 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
164 #else
165 	giveup_vsx(last_task_used_vsx);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_vsx);
169 #endif
170 
171 void giveup_vsx(struct task_struct *tsk)
172 {
173 	giveup_fpu(tsk);
174 	giveup_altivec(tsk);
175 	__giveup_vsx(tsk);
176 }
177 
178 void flush_vsx_to_thread(struct task_struct *tsk)
179 {
180 	if (tsk->thread.regs) {
181 		preempt_disable();
182 		if (tsk->thread.regs->msr & MSR_VSX) {
183 #ifdef CONFIG_SMP
184 			BUG_ON(tsk != current);
185 #endif
186 			giveup_vsx(tsk);
187 		}
188 		preempt_enable();
189 	}
190 }
191 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
192 #endif /* CONFIG_VSX */
193 
194 #ifdef CONFIG_SPE
195 
196 void enable_kernel_spe(void)
197 {
198 	WARN_ON(preemptible());
199 
200 #ifdef CONFIG_SMP
201 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
202 		giveup_spe(current);
203 	else
204 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
205 #else
206 	giveup_spe(last_task_used_spe);
207 #endif /* __SMP __ */
208 }
209 EXPORT_SYMBOL(enable_kernel_spe);
210 
211 void flush_spe_to_thread(struct task_struct *tsk)
212 {
213 	if (tsk->thread.regs) {
214 		preempt_disable();
215 		if (tsk->thread.regs->msr & MSR_SPE) {
216 #ifdef CONFIG_SMP
217 			BUG_ON(tsk != current);
218 #endif
219 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
220 			giveup_spe(tsk);
221 		}
222 		preempt_enable();
223 	}
224 }
225 #endif /* CONFIG_SPE */
226 
227 #ifndef CONFIG_SMP
228 /*
229  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
230  * and the current task has some state, discard it.
231  */
232 void discard_lazy_cpu_state(void)
233 {
234 	preempt_disable();
235 	if (last_task_used_math == current)
236 		last_task_used_math = NULL;
237 #ifdef CONFIG_ALTIVEC
238 	if (last_task_used_altivec == current)
239 		last_task_used_altivec = NULL;
240 #endif /* CONFIG_ALTIVEC */
241 #ifdef CONFIG_VSX
242 	if (last_task_used_vsx == current)
243 		last_task_used_vsx = NULL;
244 #endif /* CONFIG_VSX */
245 #ifdef CONFIG_SPE
246 	if (last_task_used_spe == current)
247 		last_task_used_spe = NULL;
248 #endif
249 	preempt_enable();
250 }
251 #endif /* CONFIG_SMP */
252 
253 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
254 void do_send_trap(struct pt_regs *regs, unsigned long address,
255 		  unsigned long error_code, int signal_code, int breakpt)
256 {
257 	siginfo_t info;
258 
259 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
260 			11, SIGSEGV) == NOTIFY_STOP)
261 		return;
262 
263 	/* Deliver the signal to userspace */
264 	info.si_signo = SIGTRAP;
265 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
266 	info.si_code = signal_code;
267 	info.si_addr = (void __user *)address;
268 	force_sig_info(SIGTRAP, &info, current);
269 }
270 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
271 void do_dabr(struct pt_regs *regs, unsigned long address,
272 		    unsigned long error_code)
273 {
274 	siginfo_t info;
275 
276 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
277 			11, SIGSEGV) == NOTIFY_STOP)
278 		return;
279 
280 	if (debugger_dabr_match(regs))
281 		return;
282 
283 	/* Clear the DABR */
284 	set_dabr(0);
285 
286 	/* Deliver the signal to userspace */
287 	info.si_signo = SIGTRAP;
288 	info.si_errno = 0;
289 	info.si_code = TRAP_HWBKPT;
290 	info.si_addr = (void __user *)address;
291 	force_sig_info(SIGTRAP, &info, current);
292 }
293 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
294 
295 static DEFINE_PER_CPU(unsigned long, current_dabr);
296 
297 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
298 /*
299  * Set the debug registers back to their default "safe" values.
300  */
301 static void set_debug_reg_defaults(struct thread_struct *thread)
302 {
303 	thread->iac1 = thread->iac2 = 0;
304 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
305 	thread->iac3 = thread->iac4 = 0;
306 #endif
307 	thread->dac1 = thread->dac2 = 0;
308 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
309 	thread->dvc1 = thread->dvc2 = 0;
310 #endif
311 	thread->dbcr0 = 0;
312 #ifdef CONFIG_BOOKE
313 	/*
314 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
315 	 */
316 	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
317 			DBCR1_IAC3US | DBCR1_IAC4US;
318 	/*
319 	 * Force Data Address Compare User/Supervisor bits to be User-only
320 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
321 	 */
322 	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
323 #else
324 	thread->dbcr1 = 0;
325 #endif
326 }
327 
328 static void prime_debug_regs(struct thread_struct *thread)
329 {
330 	mtspr(SPRN_IAC1, thread->iac1);
331 	mtspr(SPRN_IAC2, thread->iac2);
332 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
333 	mtspr(SPRN_IAC3, thread->iac3);
334 	mtspr(SPRN_IAC4, thread->iac4);
335 #endif
336 	mtspr(SPRN_DAC1, thread->dac1);
337 	mtspr(SPRN_DAC2, thread->dac2);
338 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
339 	mtspr(SPRN_DVC1, thread->dvc1);
340 	mtspr(SPRN_DVC2, thread->dvc2);
341 #endif
342 	mtspr(SPRN_DBCR0, thread->dbcr0);
343 	mtspr(SPRN_DBCR1, thread->dbcr1);
344 #ifdef CONFIG_BOOKE
345 	mtspr(SPRN_DBCR2, thread->dbcr2);
346 #endif
347 }
348 /*
349  * Unless neither the old or new thread are making use of the
350  * debug registers, set the debug registers from the values
351  * stored in the new thread.
352  */
353 static void switch_booke_debug_regs(struct thread_struct *new_thread)
354 {
355 	if ((current->thread.dbcr0 & DBCR0_IDM)
356 		|| (new_thread->dbcr0 & DBCR0_IDM))
357 			prime_debug_regs(new_thread);
358 }
359 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
360 #ifndef CONFIG_HAVE_HW_BREAKPOINT
361 static void set_debug_reg_defaults(struct thread_struct *thread)
362 {
363 	if (thread->dabr) {
364 		thread->dabr = 0;
365 		set_dabr(0);
366 	}
367 }
368 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
369 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
370 
371 int set_dabr(unsigned long dabr)
372 {
373 	__get_cpu_var(current_dabr) = dabr;
374 
375 	if (ppc_md.set_dabr)
376 		return ppc_md.set_dabr(dabr);
377 
378 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
379 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
380 	mtspr(SPRN_DAC1, dabr);
381 #ifdef CONFIG_PPC_47x
382 	isync();
383 #endif
384 #elif defined(CONFIG_PPC_BOOK3S)
385 	mtspr(SPRN_DABR, dabr);
386 #endif
387 
388 
389 	return 0;
390 }
391 
392 #ifdef CONFIG_PPC64
393 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
394 #endif
395 
396 struct task_struct *__switch_to(struct task_struct *prev,
397 	struct task_struct *new)
398 {
399 	struct thread_struct *new_thread, *old_thread;
400 	unsigned long flags;
401 	struct task_struct *last;
402 #ifdef CONFIG_PPC_BOOK3S_64
403 	struct ppc64_tlb_batch *batch;
404 #endif
405 
406 #ifdef CONFIG_SMP
407 	/* avoid complexity of lazy save/restore of fpu
408 	 * by just saving it every time we switch out if
409 	 * this task used the fpu during the last quantum.
410 	 *
411 	 * If it tries to use the fpu again, it'll trap and
412 	 * reload its fp regs.  So we don't have to do a restore
413 	 * every switch, just a save.
414 	 *  -- Cort
415 	 */
416 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
417 		giveup_fpu(prev);
418 #ifdef CONFIG_ALTIVEC
419 	/*
420 	 * If the previous thread used altivec in the last quantum
421 	 * (thus changing altivec regs) then save them.
422 	 * We used to check the VRSAVE register but not all apps
423 	 * set it, so we don't rely on it now (and in fact we need
424 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
425 	 *
426 	 * On SMP we always save/restore altivec regs just to avoid the
427 	 * complexity of changing processors.
428 	 *  -- Cort
429 	 */
430 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
431 		giveup_altivec(prev);
432 #endif /* CONFIG_ALTIVEC */
433 #ifdef CONFIG_VSX
434 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
435 		/* VMX and FPU registers are already save here */
436 		__giveup_vsx(prev);
437 #endif /* CONFIG_VSX */
438 #ifdef CONFIG_SPE
439 	/*
440 	 * If the previous thread used spe in the last quantum
441 	 * (thus changing spe regs) then save them.
442 	 *
443 	 * On SMP we always save/restore spe regs just to avoid the
444 	 * complexity of changing processors.
445 	 */
446 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
447 		giveup_spe(prev);
448 #endif /* CONFIG_SPE */
449 
450 #else  /* CONFIG_SMP */
451 #ifdef CONFIG_ALTIVEC
452 	/* Avoid the trap.  On smp this this never happens since
453 	 * we don't set last_task_used_altivec -- Cort
454 	 */
455 	if (new->thread.regs && last_task_used_altivec == new)
456 		new->thread.regs->msr |= MSR_VEC;
457 #endif /* CONFIG_ALTIVEC */
458 #ifdef CONFIG_VSX
459 	if (new->thread.regs && last_task_used_vsx == new)
460 		new->thread.regs->msr |= MSR_VSX;
461 #endif /* CONFIG_VSX */
462 #ifdef CONFIG_SPE
463 	/* Avoid the trap.  On smp this this never happens since
464 	 * we don't set last_task_used_spe
465 	 */
466 	if (new->thread.regs && last_task_used_spe == new)
467 		new->thread.regs->msr |= MSR_SPE;
468 #endif /* CONFIG_SPE */
469 
470 #endif /* CONFIG_SMP */
471 
472 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
473 	switch_booke_debug_regs(&new->thread);
474 #else
475 /*
476  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
477  * schedule DABR
478  */
479 #ifndef CONFIG_HAVE_HW_BREAKPOINT
480 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
481 		set_dabr(new->thread.dabr);
482 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
483 #endif
484 
485 
486 	new_thread = &new->thread;
487 	old_thread = &current->thread;
488 
489 #if defined(CONFIG_PPC_BOOK3E_64)
490 	/* XXX Current Book3E code doesn't deal with kernel side DBCR0,
491 	 * we always hold the user values, so we set it now.
492 	 *
493 	 * However, we ensure the kernel MSR:DE is appropriately cleared too
494 	 * to avoid spurrious single step exceptions in the kernel.
495 	 *
496 	 * This will have to change to merge with the ppc32 code at some point,
497 	 * but I don't like much what ppc32 is doing today so there's some
498 	 * thinking needed there
499 	 */
500 	if ((new_thread->dbcr0 | old_thread->dbcr0) & DBCR0_IDM) {
501 		u32 dbcr0;
502 
503 		mtmsr(mfmsr() & ~MSR_DE);
504 		isync();
505 		dbcr0 = mfspr(SPRN_DBCR0);
506 		dbcr0 = (dbcr0 & DBCR0_EDM) | new_thread->dbcr0;
507 		mtspr(SPRN_DBCR0, dbcr0);
508 	}
509 #endif /* CONFIG_PPC64_BOOK3E */
510 
511 #ifdef CONFIG_PPC64
512 	/*
513 	 * Collect processor utilization data per process
514 	 */
515 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
516 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
517 		long unsigned start_tb, current_tb;
518 		start_tb = old_thread->start_tb;
519 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
520 		old_thread->accum_tb += (current_tb - start_tb);
521 		new_thread->start_tb = current_tb;
522 	}
523 #endif /* CONFIG_PPC64 */
524 
525 #ifdef CONFIG_PPC_BOOK3S_64
526 	batch = &__get_cpu_var(ppc64_tlb_batch);
527 	if (batch->active) {
528 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
529 		if (batch->index)
530 			__flush_tlb_pending(batch);
531 		batch->active = 0;
532 	}
533 #endif /* CONFIG_PPC_BOOK3S_64 */
534 
535 	local_irq_save(flags);
536 
537 	account_system_vtime(current);
538 	account_process_vtime(current);
539 
540 	/*
541 	 * We can't take a PMU exception inside _switch() since there is a
542 	 * window where the kernel stack SLB and the kernel stack are out
543 	 * of sync. Hard disable here.
544 	 */
545 	hard_irq_disable();
546 	last = _switch(old_thread, new_thread);
547 
548 #ifdef CONFIG_PPC_BOOK3S_64
549 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
550 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
551 		batch = &__get_cpu_var(ppc64_tlb_batch);
552 		batch->active = 1;
553 	}
554 #endif /* CONFIG_PPC_BOOK3S_64 */
555 
556 	local_irq_restore(flags);
557 
558 	return last;
559 }
560 
561 static int instructions_to_print = 16;
562 
563 static void show_instructions(struct pt_regs *regs)
564 {
565 	int i;
566 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
567 			sizeof(int));
568 
569 	printk("Instruction dump:");
570 
571 	for (i = 0; i < instructions_to_print; i++) {
572 		int instr;
573 
574 		if (!(i % 8))
575 			printk("\n");
576 
577 #if !defined(CONFIG_BOOKE)
578 		/* If executing with the IMMU off, adjust pc rather
579 		 * than print XXXXXXXX.
580 		 */
581 		if (!(regs->msr & MSR_IR))
582 			pc = (unsigned long)phys_to_virt(pc);
583 #endif
584 
585 		/* We use __get_user here *only* to avoid an OOPS on a
586 		 * bad address because the pc *should* only be a
587 		 * kernel address.
588 		 */
589 		if (!__kernel_text_address(pc) ||
590 		     __get_user(instr, (unsigned int __user *)pc)) {
591 			printk("XXXXXXXX ");
592 		} else {
593 			if (regs->nip == pc)
594 				printk("<%08x> ", instr);
595 			else
596 				printk("%08x ", instr);
597 		}
598 
599 		pc += sizeof(int);
600 	}
601 
602 	printk("\n");
603 }
604 
605 static struct regbit {
606 	unsigned long bit;
607 	const char *name;
608 } msr_bits[] = {
609 	{MSR_EE,	"EE"},
610 	{MSR_PR,	"PR"},
611 	{MSR_FP,	"FP"},
612 	{MSR_VEC,	"VEC"},
613 	{MSR_VSX,	"VSX"},
614 	{MSR_ME,	"ME"},
615 	{MSR_CE,	"CE"},
616 	{MSR_DE,	"DE"},
617 	{MSR_IR,	"IR"},
618 	{MSR_DR,	"DR"},
619 	{0,		NULL}
620 };
621 
622 static void printbits(unsigned long val, struct regbit *bits)
623 {
624 	const char *sep = "";
625 
626 	printk("<");
627 	for (; bits->bit; ++bits)
628 		if (val & bits->bit) {
629 			printk("%s%s", sep, bits->name);
630 			sep = ",";
631 		}
632 	printk(">");
633 }
634 
635 #ifdef CONFIG_PPC64
636 #define REG		"%016lx"
637 #define REGS_PER_LINE	4
638 #define LAST_VOLATILE	13
639 #else
640 #define REG		"%08lx"
641 #define REGS_PER_LINE	8
642 #define LAST_VOLATILE	12
643 #endif
644 
645 void show_regs(struct pt_regs * regs)
646 {
647 	int i, trap;
648 
649 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
650 	       regs->nip, regs->link, regs->ctr);
651 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
652 	       regs, regs->trap, print_tainted(), init_utsname()->release);
653 	printk("MSR: "REG" ", regs->msr);
654 	printbits(regs->msr, msr_bits);
655 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
656 	trap = TRAP(regs);
657 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
658 		printk("CFAR: "REG"\n", regs->orig_gpr3);
659 	if (trap == 0x300 || trap == 0x600)
660 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
661 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
662 #else
663 		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
664 #endif
665 	printk("TASK = %p[%d] '%s' THREAD: %p",
666 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
667 
668 #ifdef CONFIG_SMP
669 	printk(" CPU: %d", raw_smp_processor_id());
670 #endif /* CONFIG_SMP */
671 
672 	for (i = 0;  i < 32;  i++) {
673 		if ((i % REGS_PER_LINE) == 0)
674 			printk("\nGPR%02d: ", i);
675 		printk(REG " ", regs->gpr[i]);
676 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
677 			break;
678 	}
679 	printk("\n");
680 #ifdef CONFIG_KALLSYMS
681 	/*
682 	 * Lookup NIP late so we have the best change of getting the
683 	 * above info out without failing
684 	 */
685 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
686 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
687 #endif
688 	show_stack(current, (unsigned long *) regs->gpr[1]);
689 	if (!user_mode(regs))
690 		show_instructions(regs);
691 }
692 
693 void exit_thread(void)
694 {
695 	discard_lazy_cpu_state();
696 }
697 
698 void flush_thread(void)
699 {
700 	discard_lazy_cpu_state();
701 
702 #ifdef CONFIG_HAVE_HW_BREAKPOINT
703 	flush_ptrace_hw_breakpoint(current);
704 #else /* CONFIG_HAVE_HW_BREAKPOINT */
705 	set_debug_reg_defaults(&current->thread);
706 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
707 }
708 
709 void
710 release_thread(struct task_struct *t)
711 {
712 }
713 
714 /*
715  * This gets called before we allocate a new thread and copy
716  * the current task into it.
717  */
718 void prepare_to_copy(struct task_struct *tsk)
719 {
720 	flush_fp_to_thread(current);
721 	flush_altivec_to_thread(current);
722 	flush_vsx_to_thread(current);
723 	flush_spe_to_thread(current);
724 #ifdef CONFIG_HAVE_HW_BREAKPOINT
725 	flush_ptrace_hw_breakpoint(tsk);
726 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
727 }
728 
729 /*
730  * Copy a thread..
731  */
732 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
733 
734 int copy_thread(unsigned long clone_flags, unsigned long usp,
735 		unsigned long unused, struct task_struct *p,
736 		struct pt_regs *regs)
737 {
738 	struct pt_regs *childregs, *kregs;
739 	extern void ret_from_fork(void);
740 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
741 
742 	CHECK_FULL_REGS(regs);
743 	/* Copy registers */
744 	sp -= sizeof(struct pt_regs);
745 	childregs = (struct pt_regs *) sp;
746 	*childregs = *regs;
747 	if ((childregs->msr & MSR_PR) == 0) {
748 		/* for kernel thread, set `current' and stackptr in new task */
749 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
750 #ifdef CONFIG_PPC32
751 		childregs->gpr[2] = (unsigned long) p;
752 #else
753 		clear_tsk_thread_flag(p, TIF_32BIT);
754 #endif
755 		p->thread.regs = NULL;	/* no user register state */
756 	} else {
757 		childregs->gpr[1] = usp;
758 		p->thread.regs = childregs;
759 		if (clone_flags & CLONE_SETTLS) {
760 #ifdef CONFIG_PPC64
761 			if (!is_32bit_task())
762 				childregs->gpr[13] = childregs->gpr[6];
763 			else
764 #endif
765 				childregs->gpr[2] = childregs->gpr[6];
766 		}
767 	}
768 	childregs->gpr[3] = 0;  /* Result from fork() */
769 	sp -= STACK_FRAME_OVERHEAD;
770 
771 	/*
772 	 * The way this works is that at some point in the future
773 	 * some task will call _switch to switch to the new task.
774 	 * That will pop off the stack frame created below and start
775 	 * the new task running at ret_from_fork.  The new task will
776 	 * do some house keeping and then return from the fork or clone
777 	 * system call, using the stack frame created above.
778 	 */
779 	sp -= sizeof(struct pt_regs);
780 	kregs = (struct pt_regs *) sp;
781 	sp -= STACK_FRAME_OVERHEAD;
782 	p->thread.ksp = sp;
783 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
784 				_ALIGN_UP(sizeof(struct thread_info), 16);
785 
786 #ifdef CONFIG_PPC_STD_MMU_64
787 	if (mmu_has_feature(MMU_FTR_SLB)) {
788 		unsigned long sp_vsid;
789 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
790 
791 		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
792 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
793 				<< SLB_VSID_SHIFT_1T;
794 		else
795 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
796 				<< SLB_VSID_SHIFT;
797 		sp_vsid |= SLB_VSID_KERNEL | llp;
798 		p->thread.ksp_vsid = sp_vsid;
799 	}
800 #endif /* CONFIG_PPC_STD_MMU_64 */
801 #ifdef CONFIG_PPC64
802 	if (cpu_has_feature(CPU_FTR_DSCR)) {
803 		if (current->thread.dscr_inherit) {
804 			p->thread.dscr_inherit = 1;
805 			p->thread.dscr = current->thread.dscr;
806 		} else if (0 != dscr_default) {
807 			p->thread.dscr_inherit = 1;
808 			p->thread.dscr = dscr_default;
809 		} else {
810 			p->thread.dscr_inherit = 0;
811 			p->thread.dscr = 0;
812 		}
813 	}
814 #endif
815 
816 	/*
817 	 * The PPC64 ABI makes use of a TOC to contain function
818 	 * pointers.  The function (ret_from_except) is actually a pointer
819 	 * to the TOC entry.  The first entry is a pointer to the actual
820 	 * function.
821  	 */
822 #ifdef CONFIG_PPC64
823 	kregs->nip = *((unsigned long *)ret_from_fork);
824 #else
825 	kregs->nip = (unsigned long)ret_from_fork;
826 #endif
827 
828 	return 0;
829 }
830 
831 /*
832  * Set up a thread for executing a new program
833  */
834 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
835 {
836 #ifdef CONFIG_PPC64
837 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
838 #endif
839 
840 	/*
841 	 * If we exec out of a kernel thread then thread.regs will not be
842 	 * set.  Do it now.
843 	 */
844 	if (!current->thread.regs) {
845 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
846 		current->thread.regs = regs - 1;
847 	}
848 
849 	memset(regs->gpr, 0, sizeof(regs->gpr));
850 	regs->ctr = 0;
851 	regs->link = 0;
852 	regs->xer = 0;
853 	regs->ccr = 0;
854 	regs->gpr[1] = sp;
855 
856 	/*
857 	 * We have just cleared all the nonvolatile GPRs, so make
858 	 * FULL_REGS(regs) return true.  This is necessary to allow
859 	 * ptrace to examine the thread immediately after exec.
860 	 */
861 	regs->trap &= ~1UL;
862 
863 #ifdef CONFIG_PPC32
864 	regs->mq = 0;
865 	regs->nip = start;
866 	regs->msr = MSR_USER;
867 #else
868 	if (!is_32bit_task()) {
869 		unsigned long entry, toc;
870 
871 		/* start is a relocated pointer to the function descriptor for
872 		 * the elf _start routine.  The first entry in the function
873 		 * descriptor is the entry address of _start and the second
874 		 * entry is the TOC value we need to use.
875 		 */
876 		__get_user(entry, (unsigned long __user *)start);
877 		__get_user(toc, (unsigned long __user *)start+1);
878 
879 		/* Check whether the e_entry function descriptor entries
880 		 * need to be relocated before we can use them.
881 		 */
882 		if (load_addr != 0) {
883 			entry += load_addr;
884 			toc   += load_addr;
885 		}
886 		regs->nip = entry;
887 		regs->gpr[2] = toc;
888 		regs->msr = MSR_USER64;
889 	} else {
890 		regs->nip = start;
891 		regs->gpr[2] = 0;
892 		regs->msr = MSR_USER32;
893 	}
894 #endif
895 
896 	discard_lazy_cpu_state();
897 #ifdef CONFIG_VSX
898 	current->thread.used_vsr = 0;
899 #endif
900 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
901 	current->thread.fpscr.val = 0;
902 #ifdef CONFIG_ALTIVEC
903 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
904 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
905 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
906 	current->thread.vrsave = 0;
907 	current->thread.used_vr = 0;
908 #endif /* CONFIG_ALTIVEC */
909 #ifdef CONFIG_SPE
910 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
911 	current->thread.acc = 0;
912 	current->thread.spefscr = 0;
913 	current->thread.used_spe = 0;
914 #endif /* CONFIG_SPE */
915 }
916 
917 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
918 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
919 
920 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
921 {
922 	struct pt_regs *regs = tsk->thread.regs;
923 
924 	/* This is a bit hairy.  If we are an SPE enabled  processor
925 	 * (have embedded fp) we store the IEEE exception enable flags in
926 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
927 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
928 	if (val & PR_FP_EXC_SW_ENABLE) {
929 #ifdef CONFIG_SPE
930 		if (cpu_has_feature(CPU_FTR_SPE)) {
931 			tsk->thread.fpexc_mode = val &
932 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
933 			return 0;
934 		} else {
935 			return -EINVAL;
936 		}
937 #else
938 		return -EINVAL;
939 #endif
940 	}
941 
942 	/* on a CONFIG_SPE this does not hurt us.  The bits that
943 	 * __pack_fe01 use do not overlap with bits used for
944 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
945 	 * on CONFIG_SPE implementations are reserved so writing to
946 	 * them does not change anything */
947 	if (val > PR_FP_EXC_PRECISE)
948 		return -EINVAL;
949 	tsk->thread.fpexc_mode = __pack_fe01(val);
950 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
951 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
952 			| tsk->thread.fpexc_mode;
953 	return 0;
954 }
955 
956 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
957 {
958 	unsigned int val;
959 
960 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
961 #ifdef CONFIG_SPE
962 		if (cpu_has_feature(CPU_FTR_SPE))
963 			val = tsk->thread.fpexc_mode;
964 		else
965 			return -EINVAL;
966 #else
967 		return -EINVAL;
968 #endif
969 	else
970 		val = __unpack_fe01(tsk->thread.fpexc_mode);
971 	return put_user(val, (unsigned int __user *) adr);
972 }
973 
974 int set_endian(struct task_struct *tsk, unsigned int val)
975 {
976 	struct pt_regs *regs = tsk->thread.regs;
977 
978 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
979 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
980 		return -EINVAL;
981 
982 	if (regs == NULL)
983 		return -EINVAL;
984 
985 	if (val == PR_ENDIAN_BIG)
986 		regs->msr &= ~MSR_LE;
987 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
988 		regs->msr |= MSR_LE;
989 	else
990 		return -EINVAL;
991 
992 	return 0;
993 }
994 
995 int get_endian(struct task_struct *tsk, unsigned long adr)
996 {
997 	struct pt_regs *regs = tsk->thread.regs;
998 	unsigned int val;
999 
1000 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1001 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1002 		return -EINVAL;
1003 
1004 	if (regs == NULL)
1005 		return -EINVAL;
1006 
1007 	if (regs->msr & MSR_LE) {
1008 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1009 			val = PR_ENDIAN_LITTLE;
1010 		else
1011 			val = PR_ENDIAN_PPC_LITTLE;
1012 	} else
1013 		val = PR_ENDIAN_BIG;
1014 
1015 	return put_user(val, (unsigned int __user *)adr);
1016 }
1017 
1018 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1019 {
1020 	tsk->thread.align_ctl = val;
1021 	return 0;
1022 }
1023 
1024 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1025 {
1026 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1027 }
1028 
1029 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
1030 
1031 int sys_clone(unsigned long clone_flags, unsigned long usp,
1032 	      int __user *parent_tidp, void __user *child_threadptr,
1033 	      int __user *child_tidp, int p6,
1034 	      struct pt_regs *regs)
1035 {
1036 	CHECK_FULL_REGS(regs);
1037 	if (usp == 0)
1038 		usp = regs->gpr[1];	/* stack pointer for child */
1039 #ifdef CONFIG_PPC64
1040 	if (is_32bit_task()) {
1041 		parent_tidp = TRUNC_PTR(parent_tidp);
1042 		child_tidp = TRUNC_PTR(child_tidp);
1043 	}
1044 #endif
1045  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1046 }
1047 
1048 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1049 	     unsigned long p4, unsigned long p5, unsigned long p6,
1050 	     struct pt_regs *regs)
1051 {
1052 	CHECK_FULL_REGS(regs);
1053 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1054 }
1055 
1056 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1057 	      unsigned long p4, unsigned long p5, unsigned long p6,
1058 	      struct pt_regs *regs)
1059 {
1060 	CHECK_FULL_REGS(regs);
1061 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1062 			regs, 0, NULL, NULL);
1063 }
1064 
1065 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
1066 	       unsigned long a3, unsigned long a4, unsigned long a5,
1067 	       struct pt_regs *regs)
1068 {
1069 	int error;
1070 	char *filename;
1071 
1072 	filename = getname((const char __user *) a0);
1073 	error = PTR_ERR(filename);
1074 	if (IS_ERR(filename))
1075 		goto out;
1076 	flush_fp_to_thread(current);
1077 	flush_altivec_to_thread(current);
1078 	flush_spe_to_thread(current);
1079 	error = do_execve(filename,
1080 			  (const char __user *const __user *) a1,
1081 			  (const char __user *const __user *) a2, regs);
1082 	putname(filename);
1083 out:
1084 	return error;
1085 }
1086 
1087 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1088 				  unsigned long nbytes)
1089 {
1090 	unsigned long stack_page;
1091 	unsigned long cpu = task_cpu(p);
1092 
1093 	/*
1094 	 * Avoid crashing if the stack has overflowed and corrupted
1095 	 * task_cpu(p), which is in the thread_info struct.
1096 	 */
1097 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1098 		stack_page = (unsigned long) hardirq_ctx[cpu];
1099 		if (sp >= stack_page + sizeof(struct thread_struct)
1100 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1101 			return 1;
1102 
1103 		stack_page = (unsigned long) softirq_ctx[cpu];
1104 		if (sp >= stack_page + sizeof(struct thread_struct)
1105 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1106 			return 1;
1107 	}
1108 	return 0;
1109 }
1110 
1111 int validate_sp(unsigned long sp, struct task_struct *p,
1112 		       unsigned long nbytes)
1113 {
1114 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1115 
1116 	if (sp >= stack_page + sizeof(struct thread_struct)
1117 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1118 		return 1;
1119 
1120 	return valid_irq_stack(sp, p, nbytes);
1121 }
1122 
1123 EXPORT_SYMBOL(validate_sp);
1124 
1125 unsigned long get_wchan(struct task_struct *p)
1126 {
1127 	unsigned long ip, sp;
1128 	int count = 0;
1129 
1130 	if (!p || p == current || p->state == TASK_RUNNING)
1131 		return 0;
1132 
1133 	sp = p->thread.ksp;
1134 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1135 		return 0;
1136 
1137 	do {
1138 		sp = *(unsigned long *)sp;
1139 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1140 			return 0;
1141 		if (count > 0) {
1142 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1143 			if (!in_sched_functions(ip))
1144 				return ip;
1145 		}
1146 	} while (count++ < 16);
1147 	return 0;
1148 }
1149 
1150 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1151 
1152 void show_stack(struct task_struct *tsk, unsigned long *stack)
1153 {
1154 	unsigned long sp, ip, lr, newsp;
1155 	int count = 0;
1156 	int firstframe = 1;
1157 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1158 	int curr_frame = current->curr_ret_stack;
1159 	extern void return_to_handler(void);
1160 	unsigned long rth = (unsigned long)return_to_handler;
1161 	unsigned long mrth = -1;
1162 #ifdef CONFIG_PPC64
1163 	extern void mod_return_to_handler(void);
1164 	rth = *(unsigned long *)rth;
1165 	mrth = (unsigned long)mod_return_to_handler;
1166 	mrth = *(unsigned long *)mrth;
1167 #endif
1168 #endif
1169 
1170 	sp = (unsigned long) stack;
1171 	if (tsk == NULL)
1172 		tsk = current;
1173 	if (sp == 0) {
1174 		if (tsk == current)
1175 			asm("mr %0,1" : "=r" (sp));
1176 		else
1177 			sp = tsk->thread.ksp;
1178 	}
1179 
1180 	lr = 0;
1181 	printk("Call Trace:\n");
1182 	do {
1183 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1184 			return;
1185 
1186 		stack = (unsigned long *) sp;
1187 		newsp = stack[0];
1188 		ip = stack[STACK_FRAME_LR_SAVE];
1189 		if (!firstframe || ip != lr) {
1190 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1191 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1192 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1193 				printk(" (%pS)",
1194 				       (void *)current->ret_stack[curr_frame].ret);
1195 				curr_frame--;
1196 			}
1197 #endif
1198 			if (firstframe)
1199 				printk(" (unreliable)");
1200 			printk("\n");
1201 		}
1202 		firstframe = 0;
1203 
1204 		/*
1205 		 * See if this is an exception frame.
1206 		 * We look for the "regshere" marker in the current frame.
1207 		 */
1208 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1209 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1210 			struct pt_regs *regs = (struct pt_regs *)
1211 				(sp + STACK_FRAME_OVERHEAD);
1212 			lr = regs->link;
1213 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1214 			       regs->trap, (void *)regs->nip, (void *)lr);
1215 			firstframe = 1;
1216 		}
1217 
1218 		sp = newsp;
1219 	} while (count++ < kstack_depth_to_print);
1220 }
1221 
1222 void dump_stack(void)
1223 {
1224 	show_stack(current, NULL);
1225 }
1226 EXPORT_SYMBOL(dump_stack);
1227 
1228 #ifdef CONFIG_PPC64
1229 void ppc64_runlatch_on(void)
1230 {
1231 	unsigned long ctrl;
1232 
1233 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1234 		HMT_medium();
1235 
1236 		ctrl = mfspr(SPRN_CTRLF);
1237 		ctrl |= CTRL_RUNLATCH;
1238 		mtspr(SPRN_CTRLT, ctrl);
1239 
1240 		set_thread_flag(TIF_RUNLATCH);
1241 	}
1242 }
1243 
1244 void __ppc64_runlatch_off(void)
1245 {
1246 	unsigned long ctrl;
1247 
1248 	HMT_medium();
1249 
1250 	clear_thread_flag(TIF_RUNLATCH);
1251 
1252 	ctrl = mfspr(SPRN_CTRLF);
1253 	ctrl &= ~CTRL_RUNLATCH;
1254 	mtspr(SPRN_CTRLT, ctrl);
1255 }
1256 #endif
1257 
1258 #if THREAD_SHIFT < PAGE_SHIFT
1259 
1260 static struct kmem_cache *thread_info_cache;
1261 
1262 struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node)
1263 {
1264 	struct thread_info *ti;
1265 
1266 	ti = kmem_cache_alloc_node(thread_info_cache, GFP_KERNEL, node);
1267 	if (unlikely(ti == NULL))
1268 		return NULL;
1269 #ifdef CONFIG_DEBUG_STACK_USAGE
1270 	memset(ti, 0, THREAD_SIZE);
1271 #endif
1272 	return ti;
1273 }
1274 
1275 void free_thread_info(struct thread_info *ti)
1276 {
1277 	kmem_cache_free(thread_info_cache, ti);
1278 }
1279 
1280 void thread_info_cache_init(void)
1281 {
1282 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1283 					      THREAD_SIZE, 0, NULL);
1284 	BUG_ON(thread_info_cache == NULL);
1285 }
1286 
1287 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1288 
1289 unsigned long arch_align_stack(unsigned long sp)
1290 {
1291 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1292 		sp -= get_random_int() & ~PAGE_MASK;
1293 	return sp & ~0xf;
1294 }
1295 
1296 static inline unsigned long brk_rnd(void)
1297 {
1298         unsigned long rnd = 0;
1299 
1300 	/* 8MB for 32bit, 1GB for 64bit */
1301 	if (is_32bit_task())
1302 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1303 	else
1304 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1305 
1306 	return rnd << PAGE_SHIFT;
1307 }
1308 
1309 unsigned long arch_randomize_brk(struct mm_struct *mm)
1310 {
1311 	unsigned long base = mm->brk;
1312 	unsigned long ret;
1313 
1314 #ifdef CONFIG_PPC_STD_MMU_64
1315 	/*
1316 	 * If we are using 1TB segments and we are allowed to randomise
1317 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1318 	 * segment. Otherwise the heap will be in the bottom 1TB
1319 	 * which always uses 256MB segments and this may result in a
1320 	 * performance penalty.
1321 	 */
1322 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1323 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1324 #endif
1325 
1326 	ret = PAGE_ALIGN(base + brk_rnd());
1327 
1328 	if (ret < mm->brk)
1329 		return mm->brk;
1330 
1331 	return ret;
1332 }
1333 
1334 unsigned long randomize_et_dyn(unsigned long base)
1335 {
1336 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1337 
1338 	if (ret < base)
1339 		return base;
1340 
1341 	return ret;
1342 }
1343