1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 #include <linux/pkeys.h> 46 #include <linux/seq_buf.h> 47 48 #include <asm/pgtable.h> 49 #include <asm/io.h> 50 #include <asm/processor.h> 51 #include <asm/mmu.h> 52 #include <asm/prom.h> 53 #include <asm/machdep.h> 54 #include <asm/time.h> 55 #include <asm/runlatch.h> 56 #include <asm/syscalls.h> 57 #include <asm/switch_to.h> 58 #include <asm/tm.h> 59 #include <asm/debug.h> 60 #ifdef CONFIG_PPC64 61 #include <asm/firmware.h> 62 #include <asm/hw_irq.h> 63 #endif 64 #include <asm/code-patching.h> 65 #include <asm/exec.h> 66 #include <asm/livepatch.h> 67 #include <asm/cpu_has_feature.h> 68 #include <asm/asm-prototypes.h> 69 #include <asm/stacktrace.h> 70 71 #include <linux/kprobes.h> 72 #include <linux/kdebug.h> 73 74 /* Transactional Memory debug */ 75 #ifdef TM_DEBUG_SW 76 #define TM_DEBUG(x...) printk(KERN_INFO x) 77 #else 78 #define TM_DEBUG(x...) do { } while(0) 79 #endif 80 81 extern unsigned long _get_SP(void); 82 83 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 84 /* 85 * Are we running in "Suspend disabled" mode? If so we have to block any 86 * sigreturn that would get us into suspended state, and we also warn in some 87 * other paths that we should never reach with suspend disabled. 88 */ 89 bool tm_suspend_disabled __ro_after_init = false; 90 91 static void check_if_tm_restore_required(struct task_struct *tsk) 92 { 93 /* 94 * If we are saving the current thread's registers, and the 95 * thread is in a transactional state, set the TIF_RESTORE_TM 96 * bit so that we know to restore the registers before 97 * returning to userspace. 98 */ 99 if (tsk == current && tsk->thread.regs && 100 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 101 !test_thread_flag(TIF_RESTORE_TM)) { 102 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 103 set_thread_flag(TIF_RESTORE_TM); 104 } 105 } 106 107 static bool tm_active_with_fp(struct task_struct *tsk) 108 { 109 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 110 (tsk->thread.ckpt_regs.msr & MSR_FP); 111 } 112 113 static bool tm_active_with_altivec(struct task_struct *tsk) 114 { 115 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 116 (tsk->thread.ckpt_regs.msr & MSR_VEC); 117 } 118 #else 119 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 120 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 121 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 122 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 123 124 bool strict_msr_control; 125 EXPORT_SYMBOL(strict_msr_control); 126 127 static int __init enable_strict_msr_control(char *str) 128 { 129 strict_msr_control = true; 130 pr_info("Enabling strict facility control\n"); 131 132 return 0; 133 } 134 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 135 136 unsigned long msr_check_and_set(unsigned long bits) 137 { 138 unsigned long oldmsr = mfmsr(); 139 unsigned long newmsr; 140 141 newmsr = oldmsr | bits; 142 143 #ifdef CONFIG_VSX 144 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 145 newmsr |= MSR_VSX; 146 #endif 147 148 if (oldmsr != newmsr) 149 mtmsr_isync(newmsr); 150 151 return newmsr; 152 } 153 EXPORT_SYMBOL_GPL(msr_check_and_set); 154 155 void __msr_check_and_clear(unsigned long bits) 156 { 157 unsigned long oldmsr = mfmsr(); 158 unsigned long newmsr; 159 160 newmsr = oldmsr & ~bits; 161 162 #ifdef CONFIG_VSX 163 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 164 newmsr &= ~MSR_VSX; 165 #endif 166 167 if (oldmsr != newmsr) 168 mtmsr_isync(newmsr); 169 } 170 EXPORT_SYMBOL(__msr_check_and_clear); 171 172 #ifdef CONFIG_PPC_FPU 173 static void __giveup_fpu(struct task_struct *tsk) 174 { 175 unsigned long msr; 176 177 save_fpu(tsk); 178 msr = tsk->thread.regs->msr; 179 msr &= ~MSR_FP; 180 #ifdef CONFIG_VSX 181 if (cpu_has_feature(CPU_FTR_VSX)) 182 msr &= ~MSR_VSX; 183 #endif 184 tsk->thread.regs->msr = msr; 185 } 186 187 void giveup_fpu(struct task_struct *tsk) 188 { 189 check_if_tm_restore_required(tsk); 190 191 msr_check_and_set(MSR_FP); 192 __giveup_fpu(tsk); 193 msr_check_and_clear(MSR_FP); 194 } 195 EXPORT_SYMBOL(giveup_fpu); 196 197 /* 198 * Make sure the floating-point register state in the 199 * the thread_struct is up to date for task tsk. 200 */ 201 void flush_fp_to_thread(struct task_struct *tsk) 202 { 203 if (tsk->thread.regs) { 204 /* 205 * We need to disable preemption here because if we didn't, 206 * another process could get scheduled after the regs->msr 207 * test but before we have finished saving the FP registers 208 * to the thread_struct. That process could take over the 209 * FPU, and then when we get scheduled again we would store 210 * bogus values for the remaining FP registers. 211 */ 212 preempt_disable(); 213 if (tsk->thread.regs->msr & MSR_FP) { 214 /* 215 * This should only ever be called for current or 216 * for a stopped child process. Since we save away 217 * the FP register state on context switch, 218 * there is something wrong if a stopped child appears 219 * to still have its FP state in the CPU registers. 220 */ 221 BUG_ON(tsk != current); 222 giveup_fpu(tsk); 223 } 224 preempt_enable(); 225 } 226 } 227 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 228 229 void enable_kernel_fp(void) 230 { 231 unsigned long cpumsr; 232 233 WARN_ON(preemptible()); 234 235 cpumsr = msr_check_and_set(MSR_FP); 236 237 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 238 check_if_tm_restore_required(current); 239 /* 240 * If a thread has already been reclaimed then the 241 * checkpointed registers are on the CPU but have definitely 242 * been saved by the reclaim code. Don't need to and *cannot* 243 * giveup as this would save to the 'live' structure not the 244 * checkpointed structure. 245 */ 246 if (!MSR_TM_ACTIVE(cpumsr) && 247 MSR_TM_ACTIVE(current->thread.regs->msr)) 248 return; 249 __giveup_fpu(current); 250 } 251 } 252 EXPORT_SYMBOL(enable_kernel_fp); 253 254 static int restore_fp(struct task_struct *tsk) 255 { 256 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 257 load_fp_state(¤t->thread.fp_state); 258 current->thread.load_fp++; 259 return 1; 260 } 261 return 0; 262 } 263 #else 264 static int restore_fp(struct task_struct *tsk) { return 0; } 265 #endif /* CONFIG_PPC_FPU */ 266 267 #ifdef CONFIG_ALTIVEC 268 #define loadvec(thr) ((thr).load_vec) 269 270 static void __giveup_altivec(struct task_struct *tsk) 271 { 272 unsigned long msr; 273 274 save_altivec(tsk); 275 msr = tsk->thread.regs->msr; 276 msr &= ~MSR_VEC; 277 #ifdef CONFIG_VSX 278 if (cpu_has_feature(CPU_FTR_VSX)) 279 msr &= ~MSR_VSX; 280 #endif 281 tsk->thread.regs->msr = msr; 282 } 283 284 void giveup_altivec(struct task_struct *tsk) 285 { 286 check_if_tm_restore_required(tsk); 287 288 msr_check_and_set(MSR_VEC); 289 __giveup_altivec(tsk); 290 msr_check_and_clear(MSR_VEC); 291 } 292 EXPORT_SYMBOL(giveup_altivec); 293 294 void enable_kernel_altivec(void) 295 { 296 unsigned long cpumsr; 297 298 WARN_ON(preemptible()); 299 300 cpumsr = msr_check_and_set(MSR_VEC); 301 302 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 303 check_if_tm_restore_required(current); 304 /* 305 * If a thread has already been reclaimed then the 306 * checkpointed registers are on the CPU but have definitely 307 * been saved by the reclaim code. Don't need to and *cannot* 308 * giveup as this would save to the 'live' structure not the 309 * checkpointed structure. 310 */ 311 if (!MSR_TM_ACTIVE(cpumsr) && 312 MSR_TM_ACTIVE(current->thread.regs->msr)) 313 return; 314 __giveup_altivec(current); 315 } 316 } 317 EXPORT_SYMBOL(enable_kernel_altivec); 318 319 /* 320 * Make sure the VMX/Altivec register state in the 321 * the thread_struct is up to date for task tsk. 322 */ 323 void flush_altivec_to_thread(struct task_struct *tsk) 324 { 325 if (tsk->thread.regs) { 326 preempt_disable(); 327 if (tsk->thread.regs->msr & MSR_VEC) { 328 BUG_ON(tsk != current); 329 giveup_altivec(tsk); 330 } 331 preempt_enable(); 332 } 333 } 334 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 335 336 static int restore_altivec(struct task_struct *tsk) 337 { 338 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 339 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 340 load_vr_state(&tsk->thread.vr_state); 341 tsk->thread.used_vr = 1; 342 tsk->thread.load_vec++; 343 344 return 1; 345 } 346 return 0; 347 } 348 #else 349 #define loadvec(thr) 0 350 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 351 #endif /* CONFIG_ALTIVEC */ 352 353 #ifdef CONFIG_VSX 354 static void __giveup_vsx(struct task_struct *tsk) 355 { 356 unsigned long msr = tsk->thread.regs->msr; 357 358 /* 359 * We should never be ssetting MSR_VSX without also setting 360 * MSR_FP and MSR_VEC 361 */ 362 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 363 364 /* __giveup_fpu will clear MSR_VSX */ 365 if (msr & MSR_FP) 366 __giveup_fpu(tsk); 367 if (msr & MSR_VEC) 368 __giveup_altivec(tsk); 369 } 370 371 static void giveup_vsx(struct task_struct *tsk) 372 { 373 check_if_tm_restore_required(tsk); 374 375 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 376 __giveup_vsx(tsk); 377 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 378 } 379 380 void enable_kernel_vsx(void) 381 { 382 unsigned long cpumsr; 383 384 WARN_ON(preemptible()); 385 386 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 387 388 if (current->thread.regs && 389 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 390 check_if_tm_restore_required(current); 391 /* 392 * If a thread has already been reclaimed then the 393 * checkpointed registers are on the CPU but have definitely 394 * been saved by the reclaim code. Don't need to and *cannot* 395 * giveup as this would save to the 'live' structure not the 396 * checkpointed structure. 397 */ 398 if (!MSR_TM_ACTIVE(cpumsr) && 399 MSR_TM_ACTIVE(current->thread.regs->msr)) 400 return; 401 __giveup_vsx(current); 402 } 403 } 404 EXPORT_SYMBOL(enable_kernel_vsx); 405 406 void flush_vsx_to_thread(struct task_struct *tsk) 407 { 408 if (tsk->thread.regs) { 409 preempt_disable(); 410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 411 BUG_ON(tsk != current); 412 giveup_vsx(tsk); 413 } 414 preempt_enable(); 415 } 416 } 417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 418 419 static int restore_vsx(struct task_struct *tsk) 420 { 421 if (cpu_has_feature(CPU_FTR_VSX)) { 422 tsk->thread.used_vsr = 1; 423 return 1; 424 } 425 426 return 0; 427 } 428 #else 429 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 430 #endif /* CONFIG_VSX */ 431 432 #ifdef CONFIG_SPE 433 void giveup_spe(struct task_struct *tsk) 434 { 435 check_if_tm_restore_required(tsk); 436 437 msr_check_and_set(MSR_SPE); 438 __giveup_spe(tsk); 439 msr_check_and_clear(MSR_SPE); 440 } 441 EXPORT_SYMBOL(giveup_spe); 442 443 void enable_kernel_spe(void) 444 { 445 WARN_ON(preemptible()); 446 447 msr_check_and_set(MSR_SPE); 448 449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 450 check_if_tm_restore_required(current); 451 __giveup_spe(current); 452 } 453 } 454 EXPORT_SYMBOL(enable_kernel_spe); 455 456 void flush_spe_to_thread(struct task_struct *tsk) 457 { 458 if (tsk->thread.regs) { 459 preempt_disable(); 460 if (tsk->thread.regs->msr & MSR_SPE) { 461 BUG_ON(tsk != current); 462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 463 giveup_spe(tsk); 464 } 465 preempt_enable(); 466 } 467 } 468 #endif /* CONFIG_SPE */ 469 470 static unsigned long msr_all_available; 471 472 static int __init init_msr_all_available(void) 473 { 474 #ifdef CONFIG_PPC_FPU 475 msr_all_available |= MSR_FP; 476 #endif 477 #ifdef CONFIG_ALTIVEC 478 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 479 msr_all_available |= MSR_VEC; 480 #endif 481 #ifdef CONFIG_VSX 482 if (cpu_has_feature(CPU_FTR_VSX)) 483 msr_all_available |= MSR_VSX; 484 #endif 485 #ifdef CONFIG_SPE 486 if (cpu_has_feature(CPU_FTR_SPE)) 487 msr_all_available |= MSR_SPE; 488 #endif 489 490 return 0; 491 } 492 early_initcall(init_msr_all_available); 493 494 void giveup_all(struct task_struct *tsk) 495 { 496 unsigned long usermsr; 497 498 if (!tsk->thread.regs) 499 return; 500 501 usermsr = tsk->thread.regs->msr; 502 503 if ((usermsr & msr_all_available) == 0) 504 return; 505 506 msr_check_and_set(msr_all_available); 507 check_if_tm_restore_required(tsk); 508 509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 510 511 #ifdef CONFIG_PPC_FPU 512 if (usermsr & MSR_FP) 513 __giveup_fpu(tsk); 514 #endif 515 #ifdef CONFIG_ALTIVEC 516 if (usermsr & MSR_VEC) 517 __giveup_altivec(tsk); 518 #endif 519 #ifdef CONFIG_SPE 520 if (usermsr & MSR_SPE) 521 __giveup_spe(tsk); 522 #endif 523 524 msr_check_and_clear(msr_all_available); 525 } 526 EXPORT_SYMBOL(giveup_all); 527 528 void restore_math(struct pt_regs *regs) 529 { 530 unsigned long msr; 531 532 if (!MSR_TM_ACTIVE(regs->msr) && 533 !current->thread.load_fp && !loadvec(current->thread)) 534 return; 535 536 msr = regs->msr; 537 msr_check_and_set(msr_all_available); 538 539 /* 540 * Only reload if the bit is not set in the user MSR, the bit BEING set 541 * indicates that the registers are hot 542 */ 543 if ((!(msr & MSR_FP)) && restore_fp(current)) 544 msr |= MSR_FP | current->thread.fpexc_mode; 545 546 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 547 msr |= MSR_VEC; 548 549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 550 restore_vsx(current)) { 551 msr |= MSR_VSX; 552 } 553 554 msr_check_and_clear(msr_all_available); 555 556 regs->msr = msr; 557 } 558 559 static void save_all(struct task_struct *tsk) 560 { 561 unsigned long usermsr; 562 563 if (!tsk->thread.regs) 564 return; 565 566 usermsr = tsk->thread.regs->msr; 567 568 if ((usermsr & msr_all_available) == 0) 569 return; 570 571 msr_check_and_set(msr_all_available); 572 573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 574 575 if (usermsr & MSR_FP) 576 save_fpu(tsk); 577 578 if (usermsr & MSR_VEC) 579 save_altivec(tsk); 580 581 if (usermsr & MSR_SPE) 582 __giveup_spe(tsk); 583 584 msr_check_and_clear(msr_all_available); 585 thread_pkey_regs_save(&tsk->thread); 586 } 587 588 void flush_all_to_thread(struct task_struct *tsk) 589 { 590 if (tsk->thread.regs) { 591 preempt_disable(); 592 BUG_ON(tsk != current); 593 save_all(tsk); 594 595 #ifdef CONFIG_SPE 596 if (tsk->thread.regs->msr & MSR_SPE) 597 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 598 #endif 599 600 preempt_enable(); 601 } 602 } 603 EXPORT_SYMBOL(flush_all_to_thread); 604 605 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 606 void do_send_trap(struct pt_regs *regs, unsigned long address, 607 unsigned long error_code, int breakpt) 608 { 609 current->thread.trap_nr = TRAP_HWBKPT; 610 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 611 11, SIGSEGV) == NOTIFY_STOP) 612 return; 613 614 /* Deliver the signal to userspace */ 615 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 616 (void __user *)address); 617 } 618 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 619 void do_break (struct pt_regs *regs, unsigned long address, 620 unsigned long error_code) 621 { 622 current->thread.trap_nr = TRAP_HWBKPT; 623 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 624 11, SIGSEGV) == NOTIFY_STOP) 625 return; 626 627 if (debugger_break_match(regs)) 628 return; 629 630 /* Clear the breakpoint */ 631 hw_breakpoint_disable(); 632 633 /* Deliver the signal to userspace */ 634 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current); 635 } 636 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 637 638 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 639 640 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 641 /* 642 * Set the debug registers back to their default "safe" values. 643 */ 644 static void set_debug_reg_defaults(struct thread_struct *thread) 645 { 646 thread->debug.iac1 = thread->debug.iac2 = 0; 647 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 648 thread->debug.iac3 = thread->debug.iac4 = 0; 649 #endif 650 thread->debug.dac1 = thread->debug.dac2 = 0; 651 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 652 thread->debug.dvc1 = thread->debug.dvc2 = 0; 653 #endif 654 thread->debug.dbcr0 = 0; 655 #ifdef CONFIG_BOOKE 656 /* 657 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 658 */ 659 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 660 DBCR1_IAC3US | DBCR1_IAC4US; 661 /* 662 * Force Data Address Compare User/Supervisor bits to be User-only 663 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 664 */ 665 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 666 #else 667 thread->debug.dbcr1 = 0; 668 #endif 669 } 670 671 static void prime_debug_regs(struct debug_reg *debug) 672 { 673 /* 674 * We could have inherited MSR_DE from userspace, since 675 * it doesn't get cleared on exception entry. Make sure 676 * MSR_DE is clear before we enable any debug events. 677 */ 678 mtmsr(mfmsr() & ~MSR_DE); 679 680 mtspr(SPRN_IAC1, debug->iac1); 681 mtspr(SPRN_IAC2, debug->iac2); 682 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 683 mtspr(SPRN_IAC3, debug->iac3); 684 mtspr(SPRN_IAC4, debug->iac4); 685 #endif 686 mtspr(SPRN_DAC1, debug->dac1); 687 mtspr(SPRN_DAC2, debug->dac2); 688 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 689 mtspr(SPRN_DVC1, debug->dvc1); 690 mtspr(SPRN_DVC2, debug->dvc2); 691 #endif 692 mtspr(SPRN_DBCR0, debug->dbcr0); 693 mtspr(SPRN_DBCR1, debug->dbcr1); 694 #ifdef CONFIG_BOOKE 695 mtspr(SPRN_DBCR2, debug->dbcr2); 696 #endif 697 } 698 /* 699 * Unless neither the old or new thread are making use of the 700 * debug registers, set the debug registers from the values 701 * stored in the new thread. 702 */ 703 void switch_booke_debug_regs(struct debug_reg *new_debug) 704 { 705 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 706 || (new_debug->dbcr0 & DBCR0_IDM)) 707 prime_debug_regs(new_debug); 708 } 709 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 710 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 711 #ifndef CONFIG_HAVE_HW_BREAKPOINT 712 static void set_breakpoint(struct arch_hw_breakpoint *brk) 713 { 714 preempt_disable(); 715 __set_breakpoint(brk); 716 preempt_enable(); 717 } 718 719 static void set_debug_reg_defaults(struct thread_struct *thread) 720 { 721 thread->hw_brk.address = 0; 722 thread->hw_brk.type = 0; 723 if (ppc_breakpoint_available()) 724 set_breakpoint(&thread->hw_brk); 725 } 726 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 727 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 728 729 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 730 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 731 { 732 mtspr(SPRN_DAC1, dabr); 733 #ifdef CONFIG_PPC_47x 734 isync(); 735 #endif 736 return 0; 737 } 738 #elif defined(CONFIG_PPC_BOOK3S) 739 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 740 { 741 mtspr(SPRN_DABR, dabr); 742 if (cpu_has_feature(CPU_FTR_DABRX)) 743 mtspr(SPRN_DABRX, dabrx); 744 return 0; 745 } 746 #elif defined(CONFIG_PPC_8xx) 747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 748 { 749 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 750 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 751 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 752 753 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 754 lctrl1 |= 0xa0000; 755 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 756 lctrl1 |= 0xf0000; 757 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 758 lctrl2 = 0; 759 760 mtspr(SPRN_LCTRL2, 0); 761 mtspr(SPRN_CMPE, addr); 762 mtspr(SPRN_CMPF, addr + 4); 763 mtspr(SPRN_LCTRL1, lctrl1); 764 mtspr(SPRN_LCTRL2, lctrl2); 765 766 return 0; 767 } 768 #else 769 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 770 { 771 return -EINVAL; 772 } 773 #endif 774 775 static inline int set_dabr(struct arch_hw_breakpoint *brk) 776 { 777 unsigned long dabr, dabrx; 778 779 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 780 dabrx = ((brk->type >> 3) & 0x7); 781 782 if (ppc_md.set_dabr) 783 return ppc_md.set_dabr(dabr, dabrx); 784 785 return __set_dabr(dabr, dabrx); 786 } 787 788 static inline int set_dawr(struct arch_hw_breakpoint *brk) 789 { 790 unsigned long dawr, dawrx, mrd; 791 792 dawr = brk->address; 793 794 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 795 << (63 - 58); //* read/write bits */ 796 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 797 << (63 - 59); //* translate */ 798 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 799 >> 3; //* PRIM bits */ 800 /* dawr length is stored in field MDR bits 48:53. Matches range in 801 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 802 0b111111=64DW. 803 brk->len is in bytes. 804 This aligns up to double word size, shifts and does the bias. 805 */ 806 mrd = ((brk->len + 7) >> 3) - 1; 807 dawrx |= (mrd & 0x3f) << (63 - 53); 808 809 if (ppc_md.set_dawr) 810 return ppc_md.set_dawr(dawr, dawrx); 811 mtspr(SPRN_DAWR, dawr); 812 mtspr(SPRN_DAWRX, dawrx); 813 return 0; 814 } 815 816 void __set_breakpoint(struct arch_hw_breakpoint *brk) 817 { 818 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 819 820 if (cpu_has_feature(CPU_FTR_DAWR)) 821 // Power8 or later 822 set_dawr(brk); 823 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 824 // Power7 or earlier 825 set_dabr(brk); 826 else 827 // Shouldn't happen due to higher level checks 828 WARN_ON_ONCE(1); 829 } 830 831 /* Check if we have DAWR or DABR hardware */ 832 bool ppc_breakpoint_available(void) 833 { 834 if (cpu_has_feature(CPU_FTR_DAWR)) 835 return true; /* POWER8 DAWR */ 836 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 837 return false; /* POWER9 with DAWR disabled */ 838 /* DABR: Everything but POWER8 and POWER9 */ 839 return true; 840 } 841 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 842 843 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 844 struct arch_hw_breakpoint *b) 845 { 846 if (a->address != b->address) 847 return false; 848 if (a->type != b->type) 849 return false; 850 if (a->len != b->len) 851 return false; 852 return true; 853 } 854 855 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 856 857 static inline bool tm_enabled(struct task_struct *tsk) 858 { 859 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 860 } 861 862 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 863 { 864 /* 865 * Use the current MSR TM suspended bit to track if we have 866 * checkpointed state outstanding. 867 * On signal delivery, we'd normally reclaim the checkpointed 868 * state to obtain stack pointer (see:get_tm_stackpointer()). 869 * This will then directly return to userspace without going 870 * through __switch_to(). However, if the stack frame is bad, 871 * we need to exit this thread which calls __switch_to() which 872 * will again attempt to reclaim the already saved tm state. 873 * Hence we need to check that we've not already reclaimed 874 * this state. 875 * We do this using the current MSR, rather tracking it in 876 * some specific thread_struct bit, as it has the additional 877 * benefit of checking for a potential TM bad thing exception. 878 */ 879 if (!MSR_TM_SUSPENDED(mfmsr())) 880 return; 881 882 giveup_all(container_of(thr, struct task_struct, thread)); 883 884 tm_reclaim(thr, cause); 885 886 /* 887 * If we are in a transaction and FP is off then we can't have 888 * used FP inside that transaction. Hence the checkpointed 889 * state is the same as the live state. We need to copy the 890 * live state to the checkpointed state so that when the 891 * transaction is restored, the checkpointed state is correct 892 * and the aborted transaction sees the correct state. We use 893 * ckpt_regs.msr here as that's what tm_reclaim will use to 894 * determine if it's going to write the checkpointed state or 895 * not. So either this will write the checkpointed registers, 896 * or reclaim will. Similarly for VMX. 897 */ 898 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 899 memcpy(&thr->ckfp_state, &thr->fp_state, 900 sizeof(struct thread_fp_state)); 901 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 902 memcpy(&thr->ckvr_state, &thr->vr_state, 903 sizeof(struct thread_vr_state)); 904 } 905 906 void tm_reclaim_current(uint8_t cause) 907 { 908 tm_enable(); 909 tm_reclaim_thread(¤t->thread, cause); 910 } 911 912 static inline void tm_reclaim_task(struct task_struct *tsk) 913 { 914 /* We have to work out if we're switching from/to a task that's in the 915 * middle of a transaction. 916 * 917 * In switching we need to maintain a 2nd register state as 918 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 919 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 920 * ckvr_state 921 * 922 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 923 */ 924 struct thread_struct *thr = &tsk->thread; 925 926 if (!thr->regs) 927 return; 928 929 if (!MSR_TM_ACTIVE(thr->regs->msr)) 930 goto out_and_saveregs; 931 932 WARN_ON(tm_suspend_disabled); 933 934 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 935 "ccr=%lx, msr=%lx, trap=%lx)\n", 936 tsk->pid, thr->regs->nip, 937 thr->regs->ccr, thr->regs->msr, 938 thr->regs->trap); 939 940 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 941 942 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 943 tsk->pid); 944 945 out_and_saveregs: 946 /* Always save the regs here, even if a transaction's not active. 947 * This context-switches a thread's TM info SPRs. We do it here to 948 * be consistent with the restore path (in recheckpoint) which 949 * cannot happen later in _switch(). 950 */ 951 tm_save_sprs(thr); 952 } 953 954 extern void __tm_recheckpoint(struct thread_struct *thread); 955 956 void tm_recheckpoint(struct thread_struct *thread) 957 { 958 unsigned long flags; 959 960 if (!(thread->regs->msr & MSR_TM)) 961 return; 962 963 /* We really can't be interrupted here as the TEXASR registers can't 964 * change and later in the trecheckpoint code, we have a userspace R1. 965 * So let's hard disable over this region. 966 */ 967 local_irq_save(flags); 968 hard_irq_disable(); 969 970 /* The TM SPRs are restored here, so that TEXASR.FS can be set 971 * before the trecheckpoint and no explosion occurs. 972 */ 973 tm_restore_sprs(thread); 974 975 __tm_recheckpoint(thread); 976 977 local_irq_restore(flags); 978 } 979 980 static inline void tm_recheckpoint_new_task(struct task_struct *new) 981 { 982 if (!cpu_has_feature(CPU_FTR_TM)) 983 return; 984 985 /* Recheckpoint the registers of the thread we're about to switch to. 986 * 987 * If the task was using FP, we non-lazily reload both the original and 988 * the speculative FP register states. This is because the kernel 989 * doesn't see if/when a TM rollback occurs, so if we take an FP 990 * unavailable later, we are unable to determine which set of FP regs 991 * need to be restored. 992 */ 993 if (!tm_enabled(new)) 994 return; 995 996 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 997 tm_restore_sprs(&new->thread); 998 return; 999 } 1000 /* Recheckpoint to restore original checkpointed register state. */ 1001 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1002 new->pid, new->thread.regs->msr); 1003 1004 tm_recheckpoint(&new->thread); 1005 1006 /* 1007 * The checkpointed state has been restored but the live state has 1008 * not, ensure all the math functionality is turned off to trigger 1009 * restore_math() to reload. 1010 */ 1011 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1012 1013 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1014 "(kernel msr 0x%lx)\n", 1015 new->pid, mfmsr()); 1016 } 1017 1018 static inline void __switch_to_tm(struct task_struct *prev, 1019 struct task_struct *new) 1020 { 1021 if (cpu_has_feature(CPU_FTR_TM)) { 1022 if (tm_enabled(prev) || tm_enabled(new)) 1023 tm_enable(); 1024 1025 if (tm_enabled(prev)) { 1026 prev->thread.load_tm++; 1027 tm_reclaim_task(prev); 1028 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1029 prev->thread.regs->msr &= ~MSR_TM; 1030 } 1031 1032 tm_recheckpoint_new_task(new); 1033 } 1034 } 1035 1036 /* 1037 * This is called if we are on the way out to userspace and the 1038 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1039 * FP and/or vector state and does so if necessary. 1040 * If userspace is inside a transaction (whether active or 1041 * suspended) and FP/VMX/VSX instructions have ever been enabled 1042 * inside that transaction, then we have to keep them enabled 1043 * and keep the FP/VMX/VSX state loaded while ever the transaction 1044 * continues. The reason is that if we didn't, and subsequently 1045 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1046 * we don't know whether it's the same transaction, and thus we 1047 * don't know which of the checkpointed state and the transactional 1048 * state to use. 1049 */ 1050 void restore_tm_state(struct pt_regs *regs) 1051 { 1052 unsigned long msr_diff; 1053 1054 /* 1055 * This is the only moment we should clear TIF_RESTORE_TM as 1056 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1057 * again, anything else could lead to an incorrect ckpt_msr being 1058 * saved and therefore incorrect signal contexts. 1059 */ 1060 clear_thread_flag(TIF_RESTORE_TM); 1061 if (!MSR_TM_ACTIVE(regs->msr)) 1062 return; 1063 1064 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1065 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1066 1067 /* Ensure that restore_math() will restore */ 1068 if (msr_diff & MSR_FP) 1069 current->thread.load_fp = 1; 1070 #ifdef CONFIG_ALTIVEC 1071 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1072 current->thread.load_vec = 1; 1073 #endif 1074 restore_math(regs); 1075 1076 regs->msr |= msr_diff; 1077 } 1078 1079 #else 1080 #define tm_recheckpoint_new_task(new) 1081 #define __switch_to_tm(prev, new) 1082 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1083 1084 static inline void save_sprs(struct thread_struct *t) 1085 { 1086 #ifdef CONFIG_ALTIVEC 1087 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1088 t->vrsave = mfspr(SPRN_VRSAVE); 1089 #endif 1090 #ifdef CONFIG_PPC_BOOK3S_64 1091 if (cpu_has_feature(CPU_FTR_DSCR)) 1092 t->dscr = mfspr(SPRN_DSCR); 1093 1094 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1095 t->bescr = mfspr(SPRN_BESCR); 1096 t->ebbhr = mfspr(SPRN_EBBHR); 1097 t->ebbrr = mfspr(SPRN_EBBRR); 1098 1099 t->fscr = mfspr(SPRN_FSCR); 1100 1101 /* 1102 * Note that the TAR is not available for use in the kernel. 1103 * (To provide this, the TAR should be backed up/restored on 1104 * exception entry/exit instead, and be in pt_regs. FIXME, 1105 * this should be in pt_regs anyway (for debug).) 1106 */ 1107 t->tar = mfspr(SPRN_TAR); 1108 } 1109 #endif 1110 1111 thread_pkey_regs_save(t); 1112 } 1113 1114 static inline void restore_sprs(struct thread_struct *old_thread, 1115 struct thread_struct *new_thread) 1116 { 1117 #ifdef CONFIG_ALTIVEC 1118 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1119 old_thread->vrsave != new_thread->vrsave) 1120 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1121 #endif 1122 #ifdef CONFIG_PPC_BOOK3S_64 1123 if (cpu_has_feature(CPU_FTR_DSCR)) { 1124 u64 dscr = get_paca()->dscr_default; 1125 if (new_thread->dscr_inherit) 1126 dscr = new_thread->dscr; 1127 1128 if (old_thread->dscr != dscr) 1129 mtspr(SPRN_DSCR, dscr); 1130 } 1131 1132 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1133 if (old_thread->bescr != new_thread->bescr) 1134 mtspr(SPRN_BESCR, new_thread->bescr); 1135 if (old_thread->ebbhr != new_thread->ebbhr) 1136 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1137 if (old_thread->ebbrr != new_thread->ebbrr) 1138 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1139 1140 if (old_thread->fscr != new_thread->fscr) 1141 mtspr(SPRN_FSCR, new_thread->fscr); 1142 1143 if (old_thread->tar != new_thread->tar) 1144 mtspr(SPRN_TAR, new_thread->tar); 1145 } 1146 1147 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1148 old_thread->tidr != new_thread->tidr) 1149 mtspr(SPRN_TIDR, new_thread->tidr); 1150 #endif 1151 1152 thread_pkey_regs_restore(new_thread, old_thread); 1153 } 1154 1155 #ifdef CONFIG_PPC_BOOK3S_64 1156 #define CP_SIZE 128 1157 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1158 #endif 1159 1160 struct task_struct *__switch_to(struct task_struct *prev, 1161 struct task_struct *new) 1162 { 1163 struct thread_struct *new_thread, *old_thread; 1164 struct task_struct *last; 1165 #ifdef CONFIG_PPC_BOOK3S_64 1166 struct ppc64_tlb_batch *batch; 1167 #endif 1168 1169 new_thread = &new->thread; 1170 old_thread = ¤t->thread; 1171 1172 WARN_ON(!irqs_disabled()); 1173 1174 #ifdef CONFIG_PPC_BOOK3S_64 1175 batch = this_cpu_ptr(&ppc64_tlb_batch); 1176 if (batch->active) { 1177 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1178 if (batch->index) 1179 __flush_tlb_pending(batch); 1180 batch->active = 0; 1181 } 1182 #endif /* CONFIG_PPC_BOOK3S_64 */ 1183 1184 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1185 switch_booke_debug_regs(&new->thread.debug); 1186 #else 1187 /* 1188 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1189 * schedule DABR 1190 */ 1191 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1192 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1193 __set_breakpoint(&new->thread.hw_brk); 1194 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1195 #endif 1196 1197 /* 1198 * We need to save SPRs before treclaim/trecheckpoint as these will 1199 * change a number of them. 1200 */ 1201 save_sprs(&prev->thread); 1202 1203 /* Save FPU, Altivec, VSX and SPE state */ 1204 giveup_all(prev); 1205 1206 __switch_to_tm(prev, new); 1207 1208 if (!radix_enabled()) { 1209 /* 1210 * We can't take a PMU exception inside _switch() since there 1211 * is a window where the kernel stack SLB and the kernel stack 1212 * are out of sync. Hard disable here. 1213 */ 1214 hard_irq_disable(); 1215 } 1216 1217 /* 1218 * Call restore_sprs() before calling _switch(). If we move it after 1219 * _switch() then we miss out on calling it for new tasks. The reason 1220 * for this is we manually create a stack frame for new tasks that 1221 * directly returns through ret_from_fork() or 1222 * ret_from_kernel_thread(). See copy_thread() for details. 1223 */ 1224 restore_sprs(old_thread, new_thread); 1225 1226 last = _switch(old_thread, new_thread); 1227 1228 #ifdef CONFIG_PPC_BOOK3S_64 1229 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1230 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1231 batch = this_cpu_ptr(&ppc64_tlb_batch); 1232 batch->active = 1; 1233 } 1234 1235 if (current_thread_info()->task->thread.regs) { 1236 restore_math(current_thread_info()->task->thread.regs); 1237 1238 /* 1239 * The copy-paste buffer can only store into foreign real 1240 * addresses, so unprivileged processes can not see the 1241 * data or use it in any way unless they have foreign real 1242 * mappings. If the new process has the foreign real address 1243 * mappings, we must issue a cp_abort to clear any state and 1244 * prevent snooping, corruption or a covert channel. 1245 */ 1246 if (current_thread_info()->task->thread.used_vas) 1247 asm volatile(PPC_CP_ABORT); 1248 } 1249 #endif /* CONFIG_PPC_BOOK3S_64 */ 1250 1251 return last; 1252 } 1253 1254 #define NR_INSN_TO_PRINT 16 1255 1256 static void show_instructions(struct pt_regs *regs) 1257 { 1258 int i; 1259 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1260 1261 printk("Instruction dump:"); 1262 1263 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1264 int instr; 1265 1266 if (!(i % 8)) 1267 pr_cont("\n"); 1268 1269 #if !defined(CONFIG_BOOKE) 1270 /* If executing with the IMMU off, adjust pc rather 1271 * than print XXXXXXXX. 1272 */ 1273 if (!(regs->msr & MSR_IR)) 1274 pc = (unsigned long)phys_to_virt(pc); 1275 #endif 1276 1277 if (!__kernel_text_address(pc) || 1278 probe_kernel_address((const void *)pc, instr)) { 1279 pr_cont("XXXXXXXX "); 1280 } else { 1281 if (regs->nip == pc) 1282 pr_cont("<%08x> ", instr); 1283 else 1284 pr_cont("%08x ", instr); 1285 } 1286 1287 pc += sizeof(int); 1288 } 1289 1290 pr_cont("\n"); 1291 } 1292 1293 void show_user_instructions(struct pt_regs *regs) 1294 { 1295 unsigned long pc; 1296 int n = NR_INSN_TO_PRINT; 1297 struct seq_buf s; 1298 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1299 1300 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1301 1302 /* 1303 * Make sure the NIP points at userspace, not kernel text/data or 1304 * elsewhere. 1305 */ 1306 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { 1307 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1308 current->comm, current->pid); 1309 return; 1310 } 1311 1312 seq_buf_init(&s, buf, sizeof(buf)); 1313 1314 while (n) { 1315 int i; 1316 1317 seq_buf_clear(&s); 1318 1319 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1320 int instr; 1321 1322 if (probe_kernel_address((const void *)pc, instr)) { 1323 seq_buf_printf(&s, "XXXXXXXX "); 1324 continue; 1325 } 1326 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1327 } 1328 1329 if (!seq_buf_has_overflowed(&s)) 1330 pr_info("%s[%d]: code: %s\n", current->comm, 1331 current->pid, s.buffer); 1332 } 1333 } 1334 1335 struct regbit { 1336 unsigned long bit; 1337 const char *name; 1338 }; 1339 1340 static struct regbit msr_bits[] = { 1341 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1342 {MSR_SF, "SF"}, 1343 {MSR_HV, "HV"}, 1344 #endif 1345 {MSR_VEC, "VEC"}, 1346 {MSR_VSX, "VSX"}, 1347 #ifdef CONFIG_BOOKE 1348 {MSR_CE, "CE"}, 1349 #endif 1350 {MSR_EE, "EE"}, 1351 {MSR_PR, "PR"}, 1352 {MSR_FP, "FP"}, 1353 {MSR_ME, "ME"}, 1354 #ifdef CONFIG_BOOKE 1355 {MSR_DE, "DE"}, 1356 #else 1357 {MSR_SE, "SE"}, 1358 {MSR_BE, "BE"}, 1359 #endif 1360 {MSR_IR, "IR"}, 1361 {MSR_DR, "DR"}, 1362 {MSR_PMM, "PMM"}, 1363 #ifndef CONFIG_BOOKE 1364 {MSR_RI, "RI"}, 1365 {MSR_LE, "LE"}, 1366 #endif 1367 {0, NULL} 1368 }; 1369 1370 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1371 { 1372 const char *s = ""; 1373 1374 for (; bits->bit; ++bits) 1375 if (val & bits->bit) { 1376 pr_cont("%s%s", s, bits->name); 1377 s = sep; 1378 } 1379 } 1380 1381 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1382 static struct regbit msr_tm_bits[] = { 1383 {MSR_TS_T, "T"}, 1384 {MSR_TS_S, "S"}, 1385 {MSR_TM, "E"}, 1386 {0, NULL} 1387 }; 1388 1389 static void print_tm_bits(unsigned long val) 1390 { 1391 /* 1392 * This only prints something if at least one of the TM bit is set. 1393 * Inside the TM[], the output means: 1394 * E: Enabled (bit 32) 1395 * S: Suspended (bit 33) 1396 * T: Transactional (bit 34) 1397 */ 1398 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1399 pr_cont(",TM["); 1400 print_bits(val, msr_tm_bits, ""); 1401 pr_cont("]"); 1402 } 1403 } 1404 #else 1405 static void print_tm_bits(unsigned long val) {} 1406 #endif 1407 1408 static void print_msr_bits(unsigned long val) 1409 { 1410 pr_cont("<"); 1411 print_bits(val, msr_bits, ","); 1412 print_tm_bits(val); 1413 pr_cont(">"); 1414 } 1415 1416 #ifdef CONFIG_PPC64 1417 #define REG "%016lx" 1418 #define REGS_PER_LINE 4 1419 #define LAST_VOLATILE 13 1420 #else 1421 #define REG "%08lx" 1422 #define REGS_PER_LINE 8 1423 #define LAST_VOLATILE 12 1424 #endif 1425 1426 void show_regs(struct pt_regs * regs) 1427 { 1428 int i, trap; 1429 1430 show_regs_print_info(KERN_DEFAULT); 1431 1432 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1433 regs->nip, regs->link, regs->ctr); 1434 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1435 regs, regs->trap, print_tainted(), init_utsname()->release); 1436 printk("MSR: "REG" ", regs->msr); 1437 print_msr_bits(regs->msr); 1438 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1439 trap = TRAP(regs); 1440 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1441 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1442 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1443 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1444 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1445 #else 1446 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1447 #endif 1448 #ifdef CONFIG_PPC64 1449 pr_cont("IRQMASK: %lx ", regs->softe); 1450 #endif 1451 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1452 if (MSR_TM_ACTIVE(regs->msr)) 1453 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1454 #endif 1455 1456 for (i = 0; i < 32; i++) { 1457 if ((i % REGS_PER_LINE) == 0) 1458 pr_cont("\nGPR%02d: ", i); 1459 pr_cont(REG " ", regs->gpr[i]); 1460 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1461 break; 1462 } 1463 pr_cont("\n"); 1464 #ifdef CONFIG_KALLSYMS 1465 /* 1466 * Lookup NIP late so we have the best change of getting the 1467 * above info out without failing 1468 */ 1469 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1470 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1471 #endif 1472 show_stack(current, (unsigned long *) regs->gpr[1]); 1473 if (!user_mode(regs)) 1474 show_instructions(regs); 1475 } 1476 1477 void flush_thread(void) 1478 { 1479 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1480 flush_ptrace_hw_breakpoint(current); 1481 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1482 set_debug_reg_defaults(¤t->thread); 1483 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1484 } 1485 1486 #ifdef CONFIG_PPC_BOOK3S_64 1487 void arch_setup_new_exec(void) 1488 { 1489 if (radix_enabled()) 1490 return; 1491 hash__setup_new_exec(); 1492 } 1493 #endif 1494 1495 int set_thread_uses_vas(void) 1496 { 1497 #ifdef CONFIG_PPC_BOOK3S_64 1498 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1499 return -EINVAL; 1500 1501 current->thread.used_vas = 1; 1502 1503 /* 1504 * Even a process that has no foreign real address mapping can use 1505 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1506 * to clear any pending COPY and prevent a covert channel. 1507 * 1508 * __switch_to() will issue CP_ABORT on future context switches. 1509 */ 1510 asm volatile(PPC_CP_ABORT); 1511 1512 #endif /* CONFIG_PPC_BOOK3S_64 */ 1513 return 0; 1514 } 1515 1516 #ifdef CONFIG_PPC64 1517 /** 1518 * Assign a TIDR (thread ID) for task @t and set it in the thread 1519 * structure. For now, we only support setting TIDR for 'current' task. 1520 * 1521 * Since the TID value is a truncated form of it PID, it is possible 1522 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1523 * that 2 threads share the same TID and are waiting, one of the following 1524 * cases will happen: 1525 * 1526 * 1. The correct thread is running, the wrong thread is not 1527 * In this situation, the correct thread is woken and proceeds to pass it's 1528 * condition check. 1529 * 1530 * 2. Neither threads are running 1531 * In this situation, neither thread will be woken. When scheduled, the waiting 1532 * threads will execute either a wait, which will return immediately, followed 1533 * by a condition check, which will pass for the correct thread and fail 1534 * for the wrong thread, or they will execute the condition check immediately. 1535 * 1536 * 3. The wrong thread is running, the correct thread is not 1537 * The wrong thread will be woken, but will fail it's condition check and 1538 * re-execute wait. The correct thread, when scheduled, will execute either 1539 * it's condition check (which will pass), or wait, which returns immediately 1540 * when called the first time after the thread is scheduled, followed by it's 1541 * condition check (which will pass). 1542 * 1543 * 4. Both threads are running 1544 * Both threads will be woken. The wrong thread will fail it's condition check 1545 * and execute another wait, while the correct thread will pass it's condition 1546 * check. 1547 * 1548 * @t: the task to set the thread ID for 1549 */ 1550 int set_thread_tidr(struct task_struct *t) 1551 { 1552 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1553 return -EINVAL; 1554 1555 if (t != current) 1556 return -EINVAL; 1557 1558 if (t->thread.tidr) 1559 return 0; 1560 1561 t->thread.tidr = (u16)task_pid_nr(t); 1562 mtspr(SPRN_TIDR, t->thread.tidr); 1563 1564 return 0; 1565 } 1566 EXPORT_SYMBOL_GPL(set_thread_tidr); 1567 1568 #endif /* CONFIG_PPC64 */ 1569 1570 void 1571 release_thread(struct task_struct *t) 1572 { 1573 } 1574 1575 /* 1576 * this gets called so that we can store coprocessor state into memory and 1577 * copy the current task into the new thread. 1578 */ 1579 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1580 { 1581 flush_all_to_thread(src); 1582 /* 1583 * Flush TM state out so we can copy it. __switch_to_tm() does this 1584 * flush but it removes the checkpointed state from the current CPU and 1585 * transitions the CPU out of TM mode. Hence we need to call 1586 * tm_recheckpoint_new_task() (on the same task) to restore the 1587 * checkpointed state back and the TM mode. 1588 * 1589 * Can't pass dst because it isn't ready. Doesn't matter, passing 1590 * dst is only important for __switch_to() 1591 */ 1592 __switch_to_tm(src, src); 1593 1594 *dst = *src; 1595 1596 clear_task_ebb(dst); 1597 1598 return 0; 1599 } 1600 1601 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1602 { 1603 #ifdef CONFIG_PPC_BOOK3S_64 1604 unsigned long sp_vsid; 1605 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1606 1607 if (radix_enabled()) 1608 return; 1609 1610 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1611 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1612 << SLB_VSID_SHIFT_1T; 1613 else 1614 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1615 << SLB_VSID_SHIFT; 1616 sp_vsid |= SLB_VSID_KERNEL | llp; 1617 p->thread.ksp_vsid = sp_vsid; 1618 #endif 1619 } 1620 1621 /* 1622 * Copy a thread.. 1623 */ 1624 1625 /* 1626 * Copy architecture-specific thread state 1627 */ 1628 int copy_thread(unsigned long clone_flags, unsigned long usp, 1629 unsigned long kthread_arg, struct task_struct *p) 1630 { 1631 struct pt_regs *childregs, *kregs; 1632 extern void ret_from_fork(void); 1633 extern void ret_from_kernel_thread(void); 1634 void (*f)(void); 1635 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1636 struct thread_info *ti = task_thread_info(p); 1637 1638 klp_init_thread_info(ti); 1639 1640 /* Copy registers */ 1641 sp -= sizeof(struct pt_regs); 1642 childregs = (struct pt_regs *) sp; 1643 if (unlikely(p->flags & PF_KTHREAD)) { 1644 /* kernel thread */ 1645 memset(childregs, 0, sizeof(struct pt_regs)); 1646 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1647 /* function */ 1648 if (usp) 1649 childregs->gpr[14] = ppc_function_entry((void *)usp); 1650 #ifdef CONFIG_PPC64 1651 clear_tsk_thread_flag(p, TIF_32BIT); 1652 childregs->softe = IRQS_ENABLED; 1653 #endif 1654 childregs->gpr[15] = kthread_arg; 1655 p->thread.regs = NULL; /* no user register state */ 1656 ti->flags |= _TIF_RESTOREALL; 1657 f = ret_from_kernel_thread; 1658 } else { 1659 /* user thread */ 1660 struct pt_regs *regs = current_pt_regs(); 1661 CHECK_FULL_REGS(regs); 1662 *childregs = *regs; 1663 if (usp) 1664 childregs->gpr[1] = usp; 1665 p->thread.regs = childregs; 1666 childregs->gpr[3] = 0; /* Result from fork() */ 1667 if (clone_flags & CLONE_SETTLS) { 1668 #ifdef CONFIG_PPC64 1669 if (!is_32bit_task()) 1670 childregs->gpr[13] = childregs->gpr[6]; 1671 else 1672 #endif 1673 childregs->gpr[2] = childregs->gpr[6]; 1674 } 1675 1676 f = ret_from_fork; 1677 } 1678 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1679 sp -= STACK_FRAME_OVERHEAD; 1680 1681 /* 1682 * The way this works is that at some point in the future 1683 * some task will call _switch to switch to the new task. 1684 * That will pop off the stack frame created below and start 1685 * the new task running at ret_from_fork. The new task will 1686 * do some house keeping and then return from the fork or clone 1687 * system call, using the stack frame created above. 1688 */ 1689 ((unsigned long *)sp)[0] = 0; 1690 sp -= sizeof(struct pt_regs); 1691 kregs = (struct pt_regs *) sp; 1692 sp -= STACK_FRAME_OVERHEAD; 1693 p->thread.ksp = sp; 1694 #ifdef CONFIG_PPC32 1695 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1696 _ALIGN_UP(sizeof(struct thread_info), 16); 1697 #endif 1698 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1699 p->thread.ptrace_bps[0] = NULL; 1700 #endif 1701 1702 p->thread.fp_save_area = NULL; 1703 #ifdef CONFIG_ALTIVEC 1704 p->thread.vr_save_area = NULL; 1705 #endif 1706 1707 setup_ksp_vsid(p, sp); 1708 1709 #ifdef CONFIG_PPC64 1710 if (cpu_has_feature(CPU_FTR_DSCR)) { 1711 p->thread.dscr_inherit = current->thread.dscr_inherit; 1712 p->thread.dscr = mfspr(SPRN_DSCR); 1713 } 1714 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1715 childregs->ppr = DEFAULT_PPR; 1716 1717 p->thread.tidr = 0; 1718 #endif 1719 kregs->nip = ppc_function_entry(f); 1720 return 0; 1721 } 1722 1723 void preload_new_slb_context(unsigned long start, unsigned long sp); 1724 1725 /* 1726 * Set up a thread for executing a new program 1727 */ 1728 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1729 { 1730 #ifdef CONFIG_PPC64 1731 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1732 1733 #ifdef CONFIG_PPC_BOOK3S_64 1734 preload_new_slb_context(start, sp); 1735 #endif 1736 #endif 1737 1738 /* 1739 * If we exec out of a kernel thread then thread.regs will not be 1740 * set. Do it now. 1741 */ 1742 if (!current->thread.regs) { 1743 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1744 current->thread.regs = regs - 1; 1745 } 1746 1747 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1748 /* 1749 * Clear any transactional state, we're exec()ing. The cause is 1750 * not important as there will never be a recheckpoint so it's not 1751 * user visible. 1752 */ 1753 if (MSR_TM_SUSPENDED(mfmsr())) 1754 tm_reclaim_current(0); 1755 #endif 1756 1757 memset(regs->gpr, 0, sizeof(regs->gpr)); 1758 regs->ctr = 0; 1759 regs->link = 0; 1760 regs->xer = 0; 1761 regs->ccr = 0; 1762 regs->gpr[1] = sp; 1763 1764 /* 1765 * We have just cleared all the nonvolatile GPRs, so make 1766 * FULL_REGS(regs) return true. This is necessary to allow 1767 * ptrace to examine the thread immediately after exec. 1768 */ 1769 regs->trap &= ~1UL; 1770 1771 #ifdef CONFIG_PPC32 1772 regs->mq = 0; 1773 regs->nip = start; 1774 regs->msr = MSR_USER; 1775 #else 1776 if (!is_32bit_task()) { 1777 unsigned long entry; 1778 1779 if (is_elf2_task()) { 1780 /* Look ma, no function descriptors! */ 1781 entry = start; 1782 1783 /* 1784 * Ulrich says: 1785 * The latest iteration of the ABI requires that when 1786 * calling a function (at its global entry point), 1787 * the caller must ensure r12 holds the entry point 1788 * address (so that the function can quickly 1789 * establish addressability). 1790 */ 1791 regs->gpr[12] = start; 1792 /* Make sure that's restored on entry to userspace. */ 1793 set_thread_flag(TIF_RESTOREALL); 1794 } else { 1795 unsigned long toc; 1796 1797 /* start is a relocated pointer to the function 1798 * descriptor for the elf _start routine. The first 1799 * entry in the function descriptor is the entry 1800 * address of _start and the second entry is the TOC 1801 * value we need to use. 1802 */ 1803 __get_user(entry, (unsigned long __user *)start); 1804 __get_user(toc, (unsigned long __user *)start+1); 1805 1806 /* Check whether the e_entry function descriptor entries 1807 * need to be relocated before we can use them. 1808 */ 1809 if (load_addr != 0) { 1810 entry += load_addr; 1811 toc += load_addr; 1812 } 1813 regs->gpr[2] = toc; 1814 } 1815 regs->nip = entry; 1816 regs->msr = MSR_USER64; 1817 } else { 1818 regs->nip = start; 1819 regs->gpr[2] = 0; 1820 regs->msr = MSR_USER32; 1821 } 1822 #endif 1823 #ifdef CONFIG_VSX 1824 current->thread.used_vsr = 0; 1825 #endif 1826 current->thread.load_slb = 0; 1827 current->thread.load_fp = 0; 1828 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1829 current->thread.fp_save_area = NULL; 1830 #ifdef CONFIG_ALTIVEC 1831 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1832 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1833 current->thread.vr_save_area = NULL; 1834 current->thread.vrsave = 0; 1835 current->thread.used_vr = 0; 1836 current->thread.load_vec = 0; 1837 #endif /* CONFIG_ALTIVEC */ 1838 #ifdef CONFIG_SPE 1839 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1840 current->thread.acc = 0; 1841 current->thread.spefscr = 0; 1842 current->thread.used_spe = 0; 1843 #endif /* CONFIG_SPE */ 1844 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1845 current->thread.tm_tfhar = 0; 1846 current->thread.tm_texasr = 0; 1847 current->thread.tm_tfiar = 0; 1848 current->thread.load_tm = 0; 1849 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1850 1851 thread_pkey_regs_init(¤t->thread); 1852 } 1853 EXPORT_SYMBOL(start_thread); 1854 1855 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1856 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1857 1858 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1859 { 1860 struct pt_regs *regs = tsk->thread.regs; 1861 1862 /* This is a bit hairy. If we are an SPE enabled processor 1863 * (have embedded fp) we store the IEEE exception enable flags in 1864 * fpexc_mode. fpexc_mode is also used for setting FP exception 1865 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1866 if (val & PR_FP_EXC_SW_ENABLE) { 1867 #ifdef CONFIG_SPE 1868 if (cpu_has_feature(CPU_FTR_SPE)) { 1869 /* 1870 * When the sticky exception bits are set 1871 * directly by userspace, it must call prctl 1872 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1873 * in the existing prctl settings) or 1874 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1875 * the bits being set). <fenv.h> functions 1876 * saving and restoring the whole 1877 * floating-point environment need to do so 1878 * anyway to restore the prctl settings from 1879 * the saved environment. 1880 */ 1881 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1882 tsk->thread.fpexc_mode = val & 1883 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1884 return 0; 1885 } else { 1886 return -EINVAL; 1887 } 1888 #else 1889 return -EINVAL; 1890 #endif 1891 } 1892 1893 /* on a CONFIG_SPE this does not hurt us. The bits that 1894 * __pack_fe01 use do not overlap with bits used for 1895 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1896 * on CONFIG_SPE implementations are reserved so writing to 1897 * them does not change anything */ 1898 if (val > PR_FP_EXC_PRECISE) 1899 return -EINVAL; 1900 tsk->thread.fpexc_mode = __pack_fe01(val); 1901 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1902 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1903 | tsk->thread.fpexc_mode; 1904 return 0; 1905 } 1906 1907 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1908 { 1909 unsigned int val; 1910 1911 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1912 #ifdef CONFIG_SPE 1913 if (cpu_has_feature(CPU_FTR_SPE)) { 1914 /* 1915 * When the sticky exception bits are set 1916 * directly by userspace, it must call prctl 1917 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1918 * in the existing prctl settings) or 1919 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1920 * the bits being set). <fenv.h> functions 1921 * saving and restoring the whole 1922 * floating-point environment need to do so 1923 * anyway to restore the prctl settings from 1924 * the saved environment. 1925 */ 1926 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1927 val = tsk->thread.fpexc_mode; 1928 } else 1929 return -EINVAL; 1930 #else 1931 return -EINVAL; 1932 #endif 1933 else 1934 val = __unpack_fe01(tsk->thread.fpexc_mode); 1935 return put_user(val, (unsigned int __user *) adr); 1936 } 1937 1938 int set_endian(struct task_struct *tsk, unsigned int val) 1939 { 1940 struct pt_regs *regs = tsk->thread.regs; 1941 1942 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1943 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1944 return -EINVAL; 1945 1946 if (regs == NULL) 1947 return -EINVAL; 1948 1949 if (val == PR_ENDIAN_BIG) 1950 regs->msr &= ~MSR_LE; 1951 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1952 regs->msr |= MSR_LE; 1953 else 1954 return -EINVAL; 1955 1956 return 0; 1957 } 1958 1959 int get_endian(struct task_struct *tsk, unsigned long adr) 1960 { 1961 struct pt_regs *regs = tsk->thread.regs; 1962 unsigned int val; 1963 1964 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1965 !cpu_has_feature(CPU_FTR_REAL_LE)) 1966 return -EINVAL; 1967 1968 if (regs == NULL) 1969 return -EINVAL; 1970 1971 if (regs->msr & MSR_LE) { 1972 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1973 val = PR_ENDIAN_LITTLE; 1974 else 1975 val = PR_ENDIAN_PPC_LITTLE; 1976 } else 1977 val = PR_ENDIAN_BIG; 1978 1979 return put_user(val, (unsigned int __user *)adr); 1980 } 1981 1982 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1983 { 1984 tsk->thread.align_ctl = val; 1985 return 0; 1986 } 1987 1988 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1989 { 1990 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1991 } 1992 1993 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1994 unsigned long nbytes) 1995 { 1996 unsigned long stack_page; 1997 unsigned long cpu = task_cpu(p); 1998 1999 /* 2000 * Avoid crashing if the stack has overflowed and corrupted 2001 * task_cpu(p), which is in the thread_info struct. 2002 */ 2003 if (cpu < NR_CPUS && cpu_possible(cpu)) { 2004 stack_page = (unsigned long) hardirq_ctx[cpu]; 2005 if (sp >= stack_page + sizeof(struct thread_struct) 2006 && sp <= stack_page + THREAD_SIZE - nbytes) 2007 return 1; 2008 2009 stack_page = (unsigned long) softirq_ctx[cpu]; 2010 if (sp >= stack_page + sizeof(struct thread_struct) 2011 && sp <= stack_page + THREAD_SIZE - nbytes) 2012 return 1; 2013 } 2014 return 0; 2015 } 2016 2017 int validate_sp(unsigned long sp, struct task_struct *p, 2018 unsigned long nbytes) 2019 { 2020 unsigned long stack_page = (unsigned long)task_stack_page(p); 2021 2022 if (sp >= stack_page + sizeof(struct thread_struct) 2023 && sp <= stack_page + THREAD_SIZE - nbytes) 2024 return 1; 2025 2026 return valid_irq_stack(sp, p, nbytes); 2027 } 2028 2029 EXPORT_SYMBOL(validate_sp); 2030 2031 unsigned long get_wchan(struct task_struct *p) 2032 { 2033 unsigned long ip, sp; 2034 int count = 0; 2035 2036 if (!p || p == current || p->state == TASK_RUNNING) 2037 return 0; 2038 2039 sp = p->thread.ksp; 2040 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2041 return 0; 2042 2043 do { 2044 sp = *(unsigned long *)sp; 2045 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2046 p->state == TASK_RUNNING) 2047 return 0; 2048 if (count > 0) { 2049 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2050 if (!in_sched_functions(ip)) 2051 return ip; 2052 } 2053 } while (count++ < 16); 2054 return 0; 2055 } 2056 2057 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2058 2059 void show_stack(struct task_struct *tsk, unsigned long *stack) 2060 { 2061 unsigned long sp, ip, lr, newsp; 2062 int count = 0; 2063 int firstframe = 1; 2064 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2065 int curr_frame = current->curr_ret_stack; 2066 extern void return_to_handler(void); 2067 unsigned long rth = (unsigned long)return_to_handler; 2068 #endif 2069 2070 sp = (unsigned long) stack; 2071 if (tsk == NULL) 2072 tsk = current; 2073 if (sp == 0) { 2074 if (tsk == current) 2075 sp = current_stack_pointer(); 2076 else 2077 sp = tsk->thread.ksp; 2078 } 2079 2080 lr = 0; 2081 printk("Call Trace:\n"); 2082 do { 2083 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2084 return; 2085 2086 stack = (unsigned long *) sp; 2087 newsp = stack[0]; 2088 ip = stack[STACK_FRAME_LR_SAVE]; 2089 if (!firstframe || ip != lr) { 2090 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2091 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2092 if ((ip == rth) && curr_frame >= 0) { 2093 pr_cont(" (%pS)", 2094 (void *)current->ret_stack[curr_frame].ret); 2095 curr_frame--; 2096 } 2097 #endif 2098 if (firstframe) 2099 pr_cont(" (unreliable)"); 2100 pr_cont("\n"); 2101 } 2102 firstframe = 0; 2103 2104 /* 2105 * See if this is an exception frame. 2106 * We look for the "regshere" marker in the current frame. 2107 */ 2108 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2109 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2110 struct pt_regs *regs = (struct pt_regs *) 2111 (sp + STACK_FRAME_OVERHEAD); 2112 lr = regs->link; 2113 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2114 regs->trap, (void *)regs->nip, (void *)lr); 2115 firstframe = 1; 2116 } 2117 2118 sp = newsp; 2119 } while (count++ < kstack_depth_to_print); 2120 } 2121 2122 #ifdef CONFIG_PPC64 2123 /* Called with hard IRQs off */ 2124 void notrace __ppc64_runlatch_on(void) 2125 { 2126 struct thread_info *ti = current_thread_info(); 2127 2128 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2129 /* 2130 * Least significant bit (RUN) is the only writable bit of 2131 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2132 * earliest ISA where this is the case, but it's convenient. 2133 */ 2134 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2135 } else { 2136 unsigned long ctrl; 2137 2138 /* 2139 * Some architectures (e.g., Cell) have writable fields other 2140 * than RUN, so do the read-modify-write. 2141 */ 2142 ctrl = mfspr(SPRN_CTRLF); 2143 ctrl |= CTRL_RUNLATCH; 2144 mtspr(SPRN_CTRLT, ctrl); 2145 } 2146 2147 ti->local_flags |= _TLF_RUNLATCH; 2148 } 2149 2150 /* Called with hard IRQs off */ 2151 void notrace __ppc64_runlatch_off(void) 2152 { 2153 struct thread_info *ti = current_thread_info(); 2154 2155 ti->local_flags &= ~_TLF_RUNLATCH; 2156 2157 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2158 mtspr(SPRN_CTRLT, 0); 2159 } else { 2160 unsigned long ctrl; 2161 2162 ctrl = mfspr(SPRN_CTRLF); 2163 ctrl &= ~CTRL_RUNLATCH; 2164 mtspr(SPRN_CTRLT, ctrl); 2165 } 2166 } 2167 #endif /* CONFIG_PPC64 */ 2168 2169 unsigned long arch_align_stack(unsigned long sp) 2170 { 2171 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2172 sp -= get_random_int() & ~PAGE_MASK; 2173 return sp & ~0xf; 2174 } 2175 2176 static inline unsigned long brk_rnd(void) 2177 { 2178 unsigned long rnd = 0; 2179 2180 /* 8MB for 32bit, 1GB for 64bit */ 2181 if (is_32bit_task()) 2182 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2183 else 2184 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2185 2186 return rnd << PAGE_SHIFT; 2187 } 2188 2189 unsigned long arch_randomize_brk(struct mm_struct *mm) 2190 { 2191 unsigned long base = mm->brk; 2192 unsigned long ret; 2193 2194 #ifdef CONFIG_PPC_BOOK3S_64 2195 /* 2196 * If we are using 1TB segments and we are allowed to randomise 2197 * the heap, we can put it above 1TB so it is backed by a 1TB 2198 * segment. Otherwise the heap will be in the bottom 1TB 2199 * which always uses 256MB segments and this may result in a 2200 * performance penalty. We don't need to worry about radix. For 2201 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2202 */ 2203 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2204 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2205 #endif 2206 2207 ret = PAGE_ALIGN(base + brk_rnd()); 2208 2209 if (ret < mm->brk) 2210 return mm->brk; 2211 2212 return ret; 2213 } 2214 2215