xref: /linux/arch/powerpc/kernel/process.c (revision be69f70e6395a4ba9c178b2531433547e1955195)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/prctl.h>
29 #include <linux/init_task.h>
30 #include <linux/export.h>
31 #include <linux/kallsyms.h>
32 #include <linux/mqueue.h>
33 #include <linux/hardirq.h>
34 #include <linux/utsname.h>
35 #include <linux/ftrace.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/personality.h>
38 #include <linux/random.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/uaccess.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/mmu.h>
46 #include <asm/prom.h>
47 #include <asm/machdep.h>
48 #include <asm/time.h>
49 #include <asm/runlatch.h>
50 #include <asm/syscalls.h>
51 #include <asm/switch_to.h>
52 #include <asm/tm.h>
53 #include <asm/debug.h>
54 #ifdef CONFIG_PPC64
55 #include <asm/firmware.h>
56 #endif
57 #include <asm/code-patching.h>
58 #include <asm/livepatch.h>
59 
60 #include <linux/kprobes.h>
61 #include <linux/kdebug.h>
62 
63 /* Transactional Memory debug */
64 #ifdef TM_DEBUG_SW
65 #define TM_DEBUG(x...) printk(KERN_INFO x)
66 #else
67 #define TM_DEBUG(x...) do { } while(0)
68 #endif
69 
70 extern unsigned long _get_SP(void);
71 
72 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
73 static void check_if_tm_restore_required(struct task_struct *tsk)
74 {
75 	/*
76 	 * If we are saving the current thread's registers, and the
77 	 * thread is in a transactional state, set the TIF_RESTORE_TM
78 	 * bit so that we know to restore the registers before
79 	 * returning to userspace.
80 	 */
81 	if (tsk == current && tsk->thread.regs &&
82 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
83 	    !test_thread_flag(TIF_RESTORE_TM)) {
84 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
85 		set_thread_flag(TIF_RESTORE_TM);
86 	}
87 }
88 #else
89 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
90 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
91 
92 bool strict_msr_control;
93 EXPORT_SYMBOL(strict_msr_control);
94 
95 static int __init enable_strict_msr_control(char *str)
96 {
97 	strict_msr_control = true;
98 	pr_info("Enabling strict facility control\n");
99 
100 	return 0;
101 }
102 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
103 
104 void msr_check_and_set(unsigned long bits)
105 {
106 	unsigned long oldmsr = mfmsr();
107 	unsigned long newmsr;
108 
109 	newmsr = oldmsr | bits;
110 
111 #ifdef CONFIG_VSX
112 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
113 		newmsr |= MSR_VSX;
114 #endif
115 
116 	if (oldmsr != newmsr)
117 		mtmsr_isync(newmsr);
118 }
119 
120 void __msr_check_and_clear(unsigned long bits)
121 {
122 	unsigned long oldmsr = mfmsr();
123 	unsigned long newmsr;
124 
125 	newmsr = oldmsr & ~bits;
126 
127 #ifdef CONFIG_VSX
128 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
129 		newmsr &= ~MSR_VSX;
130 #endif
131 
132 	if (oldmsr != newmsr)
133 		mtmsr_isync(newmsr);
134 }
135 EXPORT_SYMBOL(__msr_check_and_clear);
136 
137 #ifdef CONFIG_PPC_FPU
138 void giveup_fpu(struct task_struct *tsk)
139 {
140 	check_if_tm_restore_required(tsk);
141 
142 	msr_check_and_set(MSR_FP);
143 	__giveup_fpu(tsk);
144 	msr_check_and_clear(MSR_FP);
145 }
146 EXPORT_SYMBOL(giveup_fpu);
147 
148 /*
149  * Make sure the floating-point register state in the
150  * the thread_struct is up to date for task tsk.
151  */
152 void flush_fp_to_thread(struct task_struct *tsk)
153 {
154 	if (tsk->thread.regs) {
155 		/*
156 		 * We need to disable preemption here because if we didn't,
157 		 * another process could get scheduled after the regs->msr
158 		 * test but before we have finished saving the FP registers
159 		 * to the thread_struct.  That process could take over the
160 		 * FPU, and then when we get scheduled again we would store
161 		 * bogus values for the remaining FP registers.
162 		 */
163 		preempt_disable();
164 		if (tsk->thread.regs->msr & MSR_FP) {
165 			/*
166 			 * This should only ever be called for current or
167 			 * for a stopped child process.  Since we save away
168 			 * the FP register state on context switch,
169 			 * there is something wrong if a stopped child appears
170 			 * to still have its FP state in the CPU registers.
171 			 */
172 			BUG_ON(tsk != current);
173 			giveup_fpu(tsk);
174 		}
175 		preempt_enable();
176 	}
177 }
178 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
179 
180 void enable_kernel_fp(void)
181 {
182 	WARN_ON(preemptible());
183 
184 	msr_check_and_set(MSR_FP);
185 
186 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
187 		check_if_tm_restore_required(current);
188 		__giveup_fpu(current);
189 	}
190 }
191 EXPORT_SYMBOL(enable_kernel_fp);
192 #endif /* CONFIG_PPC_FPU */
193 
194 #ifdef CONFIG_ALTIVEC
195 void giveup_altivec(struct task_struct *tsk)
196 {
197 	check_if_tm_restore_required(tsk);
198 
199 	msr_check_and_set(MSR_VEC);
200 	__giveup_altivec(tsk);
201 	msr_check_and_clear(MSR_VEC);
202 }
203 EXPORT_SYMBOL(giveup_altivec);
204 
205 void enable_kernel_altivec(void)
206 {
207 	WARN_ON(preemptible());
208 
209 	msr_check_and_set(MSR_VEC);
210 
211 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
212 		check_if_tm_restore_required(current);
213 		__giveup_altivec(current);
214 	}
215 }
216 EXPORT_SYMBOL(enable_kernel_altivec);
217 
218 /*
219  * Make sure the VMX/Altivec register state in the
220  * the thread_struct is up to date for task tsk.
221  */
222 void flush_altivec_to_thread(struct task_struct *tsk)
223 {
224 	if (tsk->thread.regs) {
225 		preempt_disable();
226 		if (tsk->thread.regs->msr & MSR_VEC) {
227 			BUG_ON(tsk != current);
228 			giveup_altivec(tsk);
229 		}
230 		preempt_enable();
231 	}
232 }
233 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
234 #endif /* CONFIG_ALTIVEC */
235 
236 #ifdef CONFIG_VSX
237 void giveup_vsx(struct task_struct *tsk)
238 {
239 	check_if_tm_restore_required(tsk);
240 
241 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
242 	if (tsk->thread.regs->msr & MSR_FP)
243 		__giveup_fpu(tsk);
244 	if (tsk->thread.regs->msr & MSR_VEC)
245 		__giveup_altivec(tsk);
246 	__giveup_vsx(tsk);
247 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
248 }
249 EXPORT_SYMBOL(giveup_vsx);
250 
251 void enable_kernel_vsx(void)
252 {
253 	WARN_ON(preemptible());
254 
255 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
256 
257 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) {
258 		check_if_tm_restore_required(current);
259 		if (current->thread.regs->msr & MSR_FP)
260 			__giveup_fpu(current);
261 		if (current->thread.regs->msr & MSR_VEC)
262 			__giveup_altivec(current);
263 		__giveup_vsx(current);
264 	}
265 }
266 EXPORT_SYMBOL(enable_kernel_vsx);
267 
268 void flush_vsx_to_thread(struct task_struct *tsk)
269 {
270 	if (tsk->thread.regs) {
271 		preempt_disable();
272 		if (tsk->thread.regs->msr & MSR_VSX) {
273 			BUG_ON(tsk != current);
274 			giveup_vsx(tsk);
275 		}
276 		preempt_enable();
277 	}
278 }
279 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
280 #endif /* CONFIG_VSX */
281 
282 #ifdef CONFIG_SPE
283 void giveup_spe(struct task_struct *tsk)
284 {
285 	check_if_tm_restore_required(tsk);
286 
287 	msr_check_and_set(MSR_SPE);
288 	__giveup_spe(tsk);
289 	msr_check_and_clear(MSR_SPE);
290 }
291 EXPORT_SYMBOL(giveup_spe);
292 
293 void enable_kernel_spe(void)
294 {
295 	WARN_ON(preemptible());
296 
297 	msr_check_and_set(MSR_SPE);
298 
299 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
300 		check_if_tm_restore_required(current);
301 		__giveup_spe(current);
302 	}
303 }
304 EXPORT_SYMBOL(enable_kernel_spe);
305 
306 void flush_spe_to_thread(struct task_struct *tsk)
307 {
308 	if (tsk->thread.regs) {
309 		preempt_disable();
310 		if (tsk->thread.regs->msr & MSR_SPE) {
311 			BUG_ON(tsk != current);
312 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
313 			giveup_spe(tsk);
314 		}
315 		preempt_enable();
316 	}
317 }
318 #endif /* CONFIG_SPE */
319 
320 static unsigned long msr_all_available;
321 
322 static int __init init_msr_all_available(void)
323 {
324 #ifdef CONFIG_PPC_FPU
325 	msr_all_available |= MSR_FP;
326 #endif
327 #ifdef CONFIG_ALTIVEC
328 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
329 		msr_all_available |= MSR_VEC;
330 #endif
331 #ifdef CONFIG_VSX
332 	if (cpu_has_feature(CPU_FTR_VSX))
333 		msr_all_available |= MSR_VSX;
334 #endif
335 #ifdef CONFIG_SPE
336 	if (cpu_has_feature(CPU_FTR_SPE))
337 		msr_all_available |= MSR_SPE;
338 #endif
339 
340 	return 0;
341 }
342 early_initcall(init_msr_all_available);
343 
344 void giveup_all(struct task_struct *tsk)
345 {
346 	unsigned long usermsr;
347 
348 	if (!tsk->thread.regs)
349 		return;
350 
351 	usermsr = tsk->thread.regs->msr;
352 
353 	if ((usermsr & msr_all_available) == 0)
354 		return;
355 
356 	msr_check_and_set(msr_all_available);
357 
358 #ifdef CONFIG_PPC_FPU
359 	if (usermsr & MSR_FP)
360 		__giveup_fpu(tsk);
361 #endif
362 #ifdef CONFIG_ALTIVEC
363 	if (usermsr & MSR_VEC)
364 		__giveup_altivec(tsk);
365 #endif
366 #ifdef CONFIG_VSX
367 	if (usermsr & MSR_VSX)
368 		__giveup_vsx(tsk);
369 #endif
370 #ifdef CONFIG_SPE
371 	if (usermsr & MSR_SPE)
372 		__giveup_spe(tsk);
373 #endif
374 
375 	msr_check_and_clear(msr_all_available);
376 }
377 EXPORT_SYMBOL(giveup_all);
378 
379 void flush_all_to_thread(struct task_struct *tsk)
380 {
381 	if (tsk->thread.regs) {
382 		preempt_disable();
383 		BUG_ON(tsk != current);
384 		giveup_all(tsk);
385 
386 #ifdef CONFIG_SPE
387 		if (tsk->thread.regs->msr & MSR_SPE)
388 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
389 #endif
390 
391 		preempt_enable();
392 	}
393 }
394 EXPORT_SYMBOL(flush_all_to_thread);
395 
396 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
397 void do_send_trap(struct pt_regs *regs, unsigned long address,
398 		  unsigned long error_code, int signal_code, int breakpt)
399 {
400 	siginfo_t info;
401 
402 	current->thread.trap_nr = signal_code;
403 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
404 			11, SIGSEGV) == NOTIFY_STOP)
405 		return;
406 
407 	/* Deliver the signal to userspace */
408 	info.si_signo = SIGTRAP;
409 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
410 	info.si_code = signal_code;
411 	info.si_addr = (void __user *)address;
412 	force_sig_info(SIGTRAP, &info, current);
413 }
414 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
415 void do_break (struct pt_regs *regs, unsigned long address,
416 		    unsigned long error_code)
417 {
418 	siginfo_t info;
419 
420 	current->thread.trap_nr = TRAP_HWBKPT;
421 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
422 			11, SIGSEGV) == NOTIFY_STOP)
423 		return;
424 
425 	if (debugger_break_match(regs))
426 		return;
427 
428 	/* Clear the breakpoint */
429 	hw_breakpoint_disable();
430 
431 	/* Deliver the signal to userspace */
432 	info.si_signo = SIGTRAP;
433 	info.si_errno = 0;
434 	info.si_code = TRAP_HWBKPT;
435 	info.si_addr = (void __user *)address;
436 	force_sig_info(SIGTRAP, &info, current);
437 }
438 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
439 
440 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
441 
442 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
443 /*
444  * Set the debug registers back to their default "safe" values.
445  */
446 static void set_debug_reg_defaults(struct thread_struct *thread)
447 {
448 	thread->debug.iac1 = thread->debug.iac2 = 0;
449 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
450 	thread->debug.iac3 = thread->debug.iac4 = 0;
451 #endif
452 	thread->debug.dac1 = thread->debug.dac2 = 0;
453 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
454 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
455 #endif
456 	thread->debug.dbcr0 = 0;
457 #ifdef CONFIG_BOOKE
458 	/*
459 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
460 	 */
461 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
462 			DBCR1_IAC3US | DBCR1_IAC4US;
463 	/*
464 	 * Force Data Address Compare User/Supervisor bits to be User-only
465 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
466 	 */
467 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
468 #else
469 	thread->debug.dbcr1 = 0;
470 #endif
471 }
472 
473 static void prime_debug_regs(struct debug_reg *debug)
474 {
475 	/*
476 	 * We could have inherited MSR_DE from userspace, since
477 	 * it doesn't get cleared on exception entry.  Make sure
478 	 * MSR_DE is clear before we enable any debug events.
479 	 */
480 	mtmsr(mfmsr() & ~MSR_DE);
481 
482 	mtspr(SPRN_IAC1, debug->iac1);
483 	mtspr(SPRN_IAC2, debug->iac2);
484 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
485 	mtspr(SPRN_IAC3, debug->iac3);
486 	mtspr(SPRN_IAC4, debug->iac4);
487 #endif
488 	mtspr(SPRN_DAC1, debug->dac1);
489 	mtspr(SPRN_DAC2, debug->dac2);
490 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
491 	mtspr(SPRN_DVC1, debug->dvc1);
492 	mtspr(SPRN_DVC2, debug->dvc2);
493 #endif
494 	mtspr(SPRN_DBCR0, debug->dbcr0);
495 	mtspr(SPRN_DBCR1, debug->dbcr1);
496 #ifdef CONFIG_BOOKE
497 	mtspr(SPRN_DBCR2, debug->dbcr2);
498 #endif
499 }
500 /*
501  * Unless neither the old or new thread are making use of the
502  * debug registers, set the debug registers from the values
503  * stored in the new thread.
504  */
505 void switch_booke_debug_regs(struct debug_reg *new_debug)
506 {
507 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
508 		|| (new_debug->dbcr0 & DBCR0_IDM))
509 			prime_debug_regs(new_debug);
510 }
511 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
512 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
513 #ifndef CONFIG_HAVE_HW_BREAKPOINT
514 static void set_debug_reg_defaults(struct thread_struct *thread)
515 {
516 	thread->hw_brk.address = 0;
517 	thread->hw_brk.type = 0;
518 	set_breakpoint(&thread->hw_brk);
519 }
520 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
521 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
522 
523 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
524 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
525 {
526 	mtspr(SPRN_DAC1, dabr);
527 #ifdef CONFIG_PPC_47x
528 	isync();
529 #endif
530 	return 0;
531 }
532 #elif defined(CONFIG_PPC_BOOK3S)
533 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
534 {
535 	mtspr(SPRN_DABR, dabr);
536 	if (cpu_has_feature(CPU_FTR_DABRX))
537 		mtspr(SPRN_DABRX, dabrx);
538 	return 0;
539 }
540 #else
541 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
542 {
543 	return -EINVAL;
544 }
545 #endif
546 
547 static inline int set_dabr(struct arch_hw_breakpoint *brk)
548 {
549 	unsigned long dabr, dabrx;
550 
551 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
552 	dabrx = ((brk->type >> 3) & 0x7);
553 
554 	if (ppc_md.set_dabr)
555 		return ppc_md.set_dabr(dabr, dabrx);
556 
557 	return __set_dabr(dabr, dabrx);
558 }
559 
560 static inline int set_dawr(struct arch_hw_breakpoint *brk)
561 {
562 	unsigned long dawr, dawrx, mrd;
563 
564 	dawr = brk->address;
565 
566 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
567 		                   << (63 - 58); //* read/write bits */
568 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
569 		                   << (63 - 59); //* translate */
570 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
571 		                   >> 3; //* PRIM bits */
572 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
573 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
574 	   0b111111=64DW.
575 	   brk->len is in bytes.
576 	   This aligns up to double word size, shifts and does the bias.
577 	*/
578 	mrd = ((brk->len + 7) >> 3) - 1;
579 	dawrx |= (mrd & 0x3f) << (63 - 53);
580 
581 	if (ppc_md.set_dawr)
582 		return ppc_md.set_dawr(dawr, dawrx);
583 	mtspr(SPRN_DAWR, dawr);
584 	mtspr(SPRN_DAWRX, dawrx);
585 	return 0;
586 }
587 
588 void __set_breakpoint(struct arch_hw_breakpoint *brk)
589 {
590 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
591 
592 	if (cpu_has_feature(CPU_FTR_DAWR))
593 		set_dawr(brk);
594 	else
595 		set_dabr(brk);
596 }
597 
598 void set_breakpoint(struct arch_hw_breakpoint *brk)
599 {
600 	preempt_disable();
601 	__set_breakpoint(brk);
602 	preempt_enable();
603 }
604 
605 #ifdef CONFIG_PPC64
606 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
607 #endif
608 
609 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
610 			      struct arch_hw_breakpoint *b)
611 {
612 	if (a->address != b->address)
613 		return false;
614 	if (a->type != b->type)
615 		return false;
616 	if (a->len != b->len)
617 		return false;
618 	return true;
619 }
620 
621 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
622 static void tm_reclaim_thread(struct thread_struct *thr,
623 			      struct thread_info *ti, uint8_t cause)
624 {
625 	unsigned long msr_diff = 0;
626 
627 	/*
628 	 * If FP/VSX registers have been already saved to the
629 	 * thread_struct, move them to the transact_fp array.
630 	 * We clear the TIF_RESTORE_TM bit since after the reclaim
631 	 * the thread will no longer be transactional.
632 	 */
633 	if (test_ti_thread_flag(ti, TIF_RESTORE_TM)) {
634 		msr_diff = thr->ckpt_regs.msr & ~thr->regs->msr;
635 		if (msr_diff & MSR_FP)
636 			memcpy(&thr->transact_fp, &thr->fp_state,
637 			       sizeof(struct thread_fp_state));
638 		if (msr_diff & MSR_VEC)
639 			memcpy(&thr->transact_vr, &thr->vr_state,
640 			       sizeof(struct thread_vr_state));
641 		clear_ti_thread_flag(ti, TIF_RESTORE_TM);
642 		msr_diff &= MSR_FP | MSR_VEC | MSR_VSX | MSR_FE0 | MSR_FE1;
643 	}
644 
645 	/*
646 	 * Use the current MSR TM suspended bit to track if we have
647 	 * checkpointed state outstanding.
648 	 * On signal delivery, we'd normally reclaim the checkpointed
649 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
650 	 * This will then directly return to userspace without going
651 	 * through __switch_to(). However, if the stack frame is bad,
652 	 * we need to exit this thread which calls __switch_to() which
653 	 * will again attempt to reclaim the already saved tm state.
654 	 * Hence we need to check that we've not already reclaimed
655 	 * this state.
656 	 * We do this using the current MSR, rather tracking it in
657 	 * some specific thread_struct bit, as it has the additional
658 	 * benifit of checking for a potential TM bad thing exception.
659 	 */
660 	if (!MSR_TM_SUSPENDED(mfmsr()))
661 		return;
662 
663 	tm_reclaim(thr, thr->regs->msr, cause);
664 
665 	/* Having done the reclaim, we now have the checkpointed
666 	 * FP/VSX values in the registers.  These might be valid
667 	 * even if we have previously called enable_kernel_fp() or
668 	 * flush_fp_to_thread(), so update thr->regs->msr to
669 	 * indicate their current validity.
670 	 */
671 	thr->regs->msr |= msr_diff;
672 }
673 
674 void tm_reclaim_current(uint8_t cause)
675 {
676 	tm_enable();
677 	tm_reclaim_thread(&current->thread, current_thread_info(), cause);
678 }
679 
680 static inline void tm_reclaim_task(struct task_struct *tsk)
681 {
682 	/* We have to work out if we're switching from/to a task that's in the
683 	 * middle of a transaction.
684 	 *
685 	 * In switching we need to maintain a 2nd register state as
686 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
687 	 * checkpointed (tbegin) state in ckpt_regs and saves the transactional
688 	 * (current) FPRs into oldtask->thread.transact_fpr[].
689 	 *
690 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
691 	 */
692 	struct thread_struct *thr = &tsk->thread;
693 
694 	if (!thr->regs)
695 		return;
696 
697 	if (!MSR_TM_ACTIVE(thr->regs->msr))
698 		goto out_and_saveregs;
699 
700 	/* Stash the original thread MSR, as giveup_fpu et al will
701 	 * modify it.  We hold onto it to see whether the task used
702 	 * FP & vector regs.  If the TIF_RESTORE_TM flag is set,
703 	 * ckpt_regs.msr is already set.
704 	 */
705 	if (!test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_TM))
706 		thr->ckpt_regs.msr = thr->regs->msr;
707 
708 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
709 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
710 		 tsk->pid, thr->regs->nip,
711 		 thr->regs->ccr, thr->regs->msr,
712 		 thr->regs->trap);
713 
714 	tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED);
715 
716 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
717 		 tsk->pid);
718 
719 out_and_saveregs:
720 	/* Always save the regs here, even if a transaction's not active.
721 	 * This context-switches a thread's TM info SPRs.  We do it here to
722 	 * be consistent with the restore path (in recheckpoint) which
723 	 * cannot happen later in _switch().
724 	 */
725 	tm_save_sprs(thr);
726 }
727 
728 extern void __tm_recheckpoint(struct thread_struct *thread,
729 			      unsigned long orig_msr);
730 
731 void tm_recheckpoint(struct thread_struct *thread,
732 		     unsigned long orig_msr)
733 {
734 	unsigned long flags;
735 
736 	/* We really can't be interrupted here as the TEXASR registers can't
737 	 * change and later in the trecheckpoint code, we have a userspace R1.
738 	 * So let's hard disable over this region.
739 	 */
740 	local_irq_save(flags);
741 	hard_irq_disable();
742 
743 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
744 	 * before the trecheckpoint and no explosion occurs.
745 	 */
746 	tm_restore_sprs(thread);
747 
748 	__tm_recheckpoint(thread, orig_msr);
749 
750 	local_irq_restore(flags);
751 }
752 
753 static inline void tm_recheckpoint_new_task(struct task_struct *new)
754 {
755 	unsigned long msr;
756 
757 	if (!cpu_has_feature(CPU_FTR_TM))
758 		return;
759 
760 	/* Recheckpoint the registers of the thread we're about to switch to.
761 	 *
762 	 * If the task was using FP, we non-lazily reload both the original and
763 	 * the speculative FP register states.  This is because the kernel
764 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
765 	 * unavoidable later, we are unable to determine which set of FP regs
766 	 * need to be restored.
767 	 */
768 	if (!new->thread.regs)
769 		return;
770 
771 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
772 		tm_restore_sprs(&new->thread);
773 		return;
774 	}
775 	msr = new->thread.ckpt_regs.msr;
776 	/* Recheckpoint to restore original checkpointed register state. */
777 	TM_DEBUG("*** tm_recheckpoint of pid %d "
778 		 "(new->msr 0x%lx, new->origmsr 0x%lx)\n",
779 		 new->pid, new->thread.regs->msr, msr);
780 
781 	/* This loads the checkpointed FP/VEC state, if used */
782 	tm_recheckpoint(&new->thread, msr);
783 
784 	/* This loads the speculative FP/VEC state, if used */
785 	if (msr & MSR_FP) {
786 		do_load_up_transact_fpu(&new->thread);
787 		new->thread.regs->msr |=
788 			(MSR_FP | new->thread.fpexc_mode);
789 	}
790 #ifdef CONFIG_ALTIVEC
791 	if (msr & MSR_VEC) {
792 		do_load_up_transact_altivec(&new->thread);
793 		new->thread.regs->msr |= MSR_VEC;
794 	}
795 #endif
796 	/* We may as well turn on VSX too since all the state is restored now */
797 	if (msr & MSR_VSX)
798 		new->thread.regs->msr |= MSR_VSX;
799 
800 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
801 		 "(kernel msr 0x%lx)\n",
802 		 new->pid, mfmsr());
803 }
804 
805 static inline void __switch_to_tm(struct task_struct *prev)
806 {
807 	if (cpu_has_feature(CPU_FTR_TM)) {
808 		tm_enable();
809 		tm_reclaim_task(prev);
810 	}
811 }
812 
813 /*
814  * This is called if we are on the way out to userspace and the
815  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
816  * FP and/or vector state and does so if necessary.
817  * If userspace is inside a transaction (whether active or
818  * suspended) and FP/VMX/VSX instructions have ever been enabled
819  * inside that transaction, then we have to keep them enabled
820  * and keep the FP/VMX/VSX state loaded while ever the transaction
821  * continues.  The reason is that if we didn't, and subsequently
822  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
823  * we don't know whether it's the same transaction, and thus we
824  * don't know which of the checkpointed state and the transactional
825  * state to use.
826  */
827 void restore_tm_state(struct pt_regs *regs)
828 {
829 	unsigned long msr_diff;
830 
831 	clear_thread_flag(TIF_RESTORE_TM);
832 	if (!MSR_TM_ACTIVE(regs->msr))
833 		return;
834 
835 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
836 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
837 	if (msr_diff & MSR_FP) {
838 		msr_check_and_set(MSR_FP);
839 		load_fp_state(&current->thread.fp_state);
840 		msr_check_and_clear(MSR_FP);
841 		regs->msr |= current->thread.fpexc_mode;
842 	}
843 	if (msr_diff & MSR_VEC) {
844 		msr_check_and_set(MSR_VEC);
845 		load_vr_state(&current->thread.vr_state);
846 		msr_check_and_clear(MSR_VEC);
847 	}
848 	regs->msr |= msr_diff;
849 }
850 
851 #else
852 #define tm_recheckpoint_new_task(new)
853 #define __switch_to_tm(prev)
854 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
855 
856 static inline void save_sprs(struct thread_struct *t)
857 {
858 #ifdef CONFIG_ALTIVEC
859 	if (cpu_has_feature(cpu_has_feature(CPU_FTR_ALTIVEC)))
860 		t->vrsave = mfspr(SPRN_VRSAVE);
861 #endif
862 #ifdef CONFIG_PPC_BOOK3S_64
863 	if (cpu_has_feature(CPU_FTR_DSCR))
864 		t->dscr = mfspr(SPRN_DSCR);
865 
866 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
867 		t->bescr = mfspr(SPRN_BESCR);
868 		t->ebbhr = mfspr(SPRN_EBBHR);
869 		t->ebbrr = mfspr(SPRN_EBBRR);
870 
871 		t->fscr = mfspr(SPRN_FSCR);
872 
873 		/*
874 		 * Note that the TAR is not available for use in the kernel.
875 		 * (To provide this, the TAR should be backed up/restored on
876 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
877 		 * this should be in pt_regs anyway (for debug).)
878 		 */
879 		t->tar = mfspr(SPRN_TAR);
880 	}
881 #endif
882 }
883 
884 static inline void restore_sprs(struct thread_struct *old_thread,
885 				struct thread_struct *new_thread)
886 {
887 #ifdef CONFIG_ALTIVEC
888 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
889 	    old_thread->vrsave != new_thread->vrsave)
890 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
891 #endif
892 #ifdef CONFIG_PPC_BOOK3S_64
893 	if (cpu_has_feature(CPU_FTR_DSCR)) {
894 		u64 dscr = get_paca()->dscr_default;
895 		u64 fscr = old_thread->fscr & ~FSCR_DSCR;
896 
897 		if (new_thread->dscr_inherit) {
898 			dscr = new_thread->dscr;
899 			fscr |= FSCR_DSCR;
900 		}
901 
902 		if (old_thread->dscr != dscr)
903 			mtspr(SPRN_DSCR, dscr);
904 
905 		if (old_thread->fscr != fscr)
906 			mtspr(SPRN_FSCR, fscr);
907 	}
908 
909 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
910 		if (old_thread->bescr != new_thread->bescr)
911 			mtspr(SPRN_BESCR, new_thread->bescr);
912 		if (old_thread->ebbhr != new_thread->ebbhr)
913 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
914 		if (old_thread->ebbrr != new_thread->ebbrr)
915 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
916 
917 		if (old_thread->tar != new_thread->tar)
918 			mtspr(SPRN_TAR, new_thread->tar);
919 	}
920 #endif
921 }
922 
923 struct task_struct *__switch_to(struct task_struct *prev,
924 	struct task_struct *new)
925 {
926 	struct thread_struct *new_thread, *old_thread;
927 	struct task_struct *last;
928 #ifdef CONFIG_PPC_BOOK3S_64
929 	struct ppc64_tlb_batch *batch;
930 #endif
931 
932 	new_thread = &new->thread;
933 	old_thread = &current->thread;
934 
935 	WARN_ON(!irqs_disabled());
936 
937 #ifdef CONFIG_PPC64
938 	/*
939 	 * Collect processor utilization data per process
940 	 */
941 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
942 		struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array);
943 		long unsigned start_tb, current_tb;
944 		start_tb = old_thread->start_tb;
945 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
946 		old_thread->accum_tb += (current_tb - start_tb);
947 		new_thread->start_tb = current_tb;
948 	}
949 #endif /* CONFIG_PPC64 */
950 
951 #ifdef CONFIG_PPC_BOOK3S_64
952 	batch = this_cpu_ptr(&ppc64_tlb_batch);
953 	if (batch->active) {
954 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
955 		if (batch->index)
956 			__flush_tlb_pending(batch);
957 		batch->active = 0;
958 	}
959 #endif /* CONFIG_PPC_BOOK3S_64 */
960 
961 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
962 	switch_booke_debug_regs(&new->thread.debug);
963 #else
964 /*
965  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
966  * schedule DABR
967  */
968 #ifndef CONFIG_HAVE_HW_BREAKPOINT
969 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
970 		__set_breakpoint(&new->thread.hw_brk);
971 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
972 #endif
973 
974 	/*
975 	 * We need to save SPRs before treclaim/trecheckpoint as these will
976 	 * change a number of them.
977 	 */
978 	save_sprs(&prev->thread);
979 
980 	__switch_to_tm(prev);
981 
982 	/* Save FPU, Altivec, VSX and SPE state */
983 	giveup_all(prev);
984 
985 	/*
986 	 * We can't take a PMU exception inside _switch() since there is a
987 	 * window where the kernel stack SLB and the kernel stack are out
988 	 * of sync. Hard disable here.
989 	 */
990 	hard_irq_disable();
991 
992 	tm_recheckpoint_new_task(new);
993 
994 	/*
995 	 * Call restore_sprs() before calling _switch(). If we move it after
996 	 * _switch() then we miss out on calling it for new tasks. The reason
997 	 * for this is we manually create a stack frame for new tasks that
998 	 * directly returns through ret_from_fork() or
999 	 * ret_from_kernel_thread(). See copy_thread() for details.
1000 	 */
1001 	restore_sprs(old_thread, new_thread);
1002 
1003 	last = _switch(old_thread, new_thread);
1004 
1005 #ifdef CONFIG_PPC_BOOK3S_64
1006 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1007 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1008 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1009 		batch->active = 1;
1010 	}
1011 #endif /* CONFIG_PPC_BOOK3S_64 */
1012 
1013 	return last;
1014 }
1015 
1016 static int instructions_to_print = 16;
1017 
1018 static void show_instructions(struct pt_regs *regs)
1019 {
1020 	int i;
1021 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1022 			sizeof(int));
1023 
1024 	printk("Instruction dump:");
1025 
1026 	for (i = 0; i < instructions_to_print; i++) {
1027 		int instr;
1028 
1029 		if (!(i % 8))
1030 			printk("\n");
1031 
1032 #if !defined(CONFIG_BOOKE)
1033 		/* If executing with the IMMU off, adjust pc rather
1034 		 * than print XXXXXXXX.
1035 		 */
1036 		if (!(regs->msr & MSR_IR))
1037 			pc = (unsigned long)phys_to_virt(pc);
1038 #endif
1039 
1040 		if (!__kernel_text_address(pc) ||
1041 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1042 			printk(KERN_CONT "XXXXXXXX ");
1043 		} else {
1044 			if (regs->nip == pc)
1045 				printk(KERN_CONT "<%08x> ", instr);
1046 			else
1047 				printk(KERN_CONT "%08x ", instr);
1048 		}
1049 
1050 		pc += sizeof(int);
1051 	}
1052 
1053 	printk("\n");
1054 }
1055 
1056 struct regbit {
1057 	unsigned long bit;
1058 	const char *name;
1059 };
1060 
1061 static struct regbit msr_bits[] = {
1062 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1063 	{MSR_SF,	"SF"},
1064 	{MSR_HV,	"HV"},
1065 #endif
1066 	{MSR_VEC,	"VEC"},
1067 	{MSR_VSX,	"VSX"},
1068 #ifdef CONFIG_BOOKE
1069 	{MSR_CE,	"CE"},
1070 #endif
1071 	{MSR_EE,	"EE"},
1072 	{MSR_PR,	"PR"},
1073 	{MSR_FP,	"FP"},
1074 	{MSR_ME,	"ME"},
1075 #ifdef CONFIG_BOOKE
1076 	{MSR_DE,	"DE"},
1077 #else
1078 	{MSR_SE,	"SE"},
1079 	{MSR_BE,	"BE"},
1080 #endif
1081 	{MSR_IR,	"IR"},
1082 	{MSR_DR,	"DR"},
1083 	{MSR_PMM,	"PMM"},
1084 #ifndef CONFIG_BOOKE
1085 	{MSR_RI,	"RI"},
1086 	{MSR_LE,	"LE"},
1087 #endif
1088 	{0,		NULL}
1089 };
1090 
1091 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1092 {
1093 	const char *s = "";
1094 
1095 	for (; bits->bit; ++bits)
1096 		if (val & bits->bit) {
1097 			printk("%s%s", s, bits->name);
1098 			s = sep;
1099 		}
1100 }
1101 
1102 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1103 static struct regbit msr_tm_bits[] = {
1104 	{MSR_TS_T,	"T"},
1105 	{MSR_TS_S,	"S"},
1106 	{MSR_TM,	"E"},
1107 	{0,		NULL}
1108 };
1109 
1110 static void print_tm_bits(unsigned long val)
1111 {
1112 /*
1113  * This only prints something if at least one of the TM bit is set.
1114  * Inside the TM[], the output means:
1115  *   E: Enabled		(bit 32)
1116  *   S: Suspended	(bit 33)
1117  *   T: Transactional	(bit 34)
1118  */
1119 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1120 		printk(",TM[");
1121 		print_bits(val, msr_tm_bits, "");
1122 		printk("]");
1123 	}
1124 }
1125 #else
1126 static void print_tm_bits(unsigned long val) {}
1127 #endif
1128 
1129 static void print_msr_bits(unsigned long val)
1130 {
1131 	printk("<");
1132 	print_bits(val, msr_bits, ",");
1133 	print_tm_bits(val);
1134 	printk(">");
1135 }
1136 
1137 #ifdef CONFIG_PPC64
1138 #define REG		"%016lx"
1139 #define REGS_PER_LINE	4
1140 #define LAST_VOLATILE	13
1141 #else
1142 #define REG		"%08lx"
1143 #define REGS_PER_LINE	8
1144 #define LAST_VOLATILE	12
1145 #endif
1146 
1147 void show_regs(struct pt_regs * regs)
1148 {
1149 	int i, trap;
1150 
1151 	show_regs_print_info(KERN_DEFAULT);
1152 
1153 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1154 	       regs->nip, regs->link, regs->ctr);
1155 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
1156 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1157 	printk("MSR: "REG" ", regs->msr);
1158 	print_msr_bits(regs->msr);
1159 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1160 	trap = TRAP(regs);
1161 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1162 		printk("CFAR: "REG" ", regs->orig_gpr3);
1163 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1164 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1165 		printk("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1166 #else
1167 		printk("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1168 #endif
1169 #ifdef CONFIG_PPC64
1170 	printk("SOFTE: %ld ", regs->softe);
1171 #endif
1172 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1173 	if (MSR_TM_ACTIVE(regs->msr))
1174 		printk("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1175 #endif
1176 
1177 	for (i = 0;  i < 32;  i++) {
1178 		if ((i % REGS_PER_LINE) == 0)
1179 			printk("\nGPR%02d: ", i);
1180 		printk(REG " ", regs->gpr[i]);
1181 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1182 			break;
1183 	}
1184 	printk("\n");
1185 #ifdef CONFIG_KALLSYMS
1186 	/*
1187 	 * Lookup NIP late so we have the best change of getting the
1188 	 * above info out without failing
1189 	 */
1190 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1191 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1192 #endif
1193 	show_stack(current, (unsigned long *) regs->gpr[1]);
1194 	if (!user_mode(regs))
1195 		show_instructions(regs);
1196 }
1197 
1198 void exit_thread(void)
1199 {
1200 }
1201 
1202 void flush_thread(void)
1203 {
1204 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1205 	flush_ptrace_hw_breakpoint(current);
1206 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1207 	set_debug_reg_defaults(&current->thread);
1208 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1209 }
1210 
1211 void
1212 release_thread(struct task_struct *t)
1213 {
1214 }
1215 
1216 /*
1217  * this gets called so that we can store coprocessor state into memory and
1218  * copy the current task into the new thread.
1219  */
1220 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1221 {
1222 	flush_all_to_thread(src);
1223 	/*
1224 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1225 	 * flush but it removes the checkpointed state from the current CPU and
1226 	 * transitions the CPU out of TM mode.  Hence we need to call
1227 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1228 	 * checkpointed state back and the TM mode.
1229 	 */
1230 	__switch_to_tm(src);
1231 	tm_recheckpoint_new_task(src);
1232 
1233 	*dst = *src;
1234 
1235 	clear_task_ebb(dst);
1236 
1237 	return 0;
1238 }
1239 
1240 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1241 {
1242 #ifdef CONFIG_PPC_STD_MMU_64
1243 	unsigned long sp_vsid;
1244 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1245 
1246 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1247 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1248 			<< SLB_VSID_SHIFT_1T;
1249 	else
1250 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1251 			<< SLB_VSID_SHIFT;
1252 	sp_vsid |= SLB_VSID_KERNEL | llp;
1253 	p->thread.ksp_vsid = sp_vsid;
1254 #endif
1255 }
1256 
1257 /*
1258  * Copy a thread..
1259  */
1260 
1261 /*
1262  * Copy architecture-specific thread state
1263  */
1264 int copy_thread(unsigned long clone_flags, unsigned long usp,
1265 		unsigned long kthread_arg, struct task_struct *p)
1266 {
1267 	struct pt_regs *childregs, *kregs;
1268 	extern void ret_from_fork(void);
1269 	extern void ret_from_kernel_thread(void);
1270 	void (*f)(void);
1271 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1272 	struct thread_info *ti = task_thread_info(p);
1273 
1274 	klp_init_thread_info(ti);
1275 
1276 	/* Copy registers */
1277 	sp -= sizeof(struct pt_regs);
1278 	childregs = (struct pt_regs *) sp;
1279 	if (unlikely(p->flags & PF_KTHREAD)) {
1280 		/* kernel thread */
1281 		memset(childregs, 0, sizeof(struct pt_regs));
1282 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1283 		/* function */
1284 		if (usp)
1285 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1286 #ifdef CONFIG_PPC64
1287 		clear_tsk_thread_flag(p, TIF_32BIT);
1288 		childregs->softe = 1;
1289 #endif
1290 		childregs->gpr[15] = kthread_arg;
1291 		p->thread.regs = NULL;	/* no user register state */
1292 		ti->flags |= _TIF_RESTOREALL;
1293 		f = ret_from_kernel_thread;
1294 	} else {
1295 		/* user thread */
1296 		struct pt_regs *regs = current_pt_regs();
1297 		CHECK_FULL_REGS(regs);
1298 		*childregs = *regs;
1299 		if (usp)
1300 			childregs->gpr[1] = usp;
1301 		p->thread.regs = childregs;
1302 		childregs->gpr[3] = 0;  /* Result from fork() */
1303 		if (clone_flags & CLONE_SETTLS) {
1304 #ifdef CONFIG_PPC64
1305 			if (!is_32bit_task())
1306 				childregs->gpr[13] = childregs->gpr[6];
1307 			else
1308 #endif
1309 				childregs->gpr[2] = childregs->gpr[6];
1310 		}
1311 
1312 		f = ret_from_fork;
1313 	}
1314 	sp -= STACK_FRAME_OVERHEAD;
1315 
1316 	/*
1317 	 * The way this works is that at some point in the future
1318 	 * some task will call _switch to switch to the new task.
1319 	 * That will pop off the stack frame created below and start
1320 	 * the new task running at ret_from_fork.  The new task will
1321 	 * do some house keeping and then return from the fork or clone
1322 	 * system call, using the stack frame created above.
1323 	 */
1324 	((unsigned long *)sp)[0] = 0;
1325 	sp -= sizeof(struct pt_regs);
1326 	kregs = (struct pt_regs *) sp;
1327 	sp -= STACK_FRAME_OVERHEAD;
1328 	p->thread.ksp = sp;
1329 #ifdef CONFIG_PPC32
1330 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1331 				_ALIGN_UP(sizeof(struct thread_info), 16);
1332 #endif
1333 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1334 	p->thread.ptrace_bps[0] = NULL;
1335 #endif
1336 
1337 	p->thread.fp_save_area = NULL;
1338 #ifdef CONFIG_ALTIVEC
1339 	p->thread.vr_save_area = NULL;
1340 #endif
1341 
1342 	setup_ksp_vsid(p, sp);
1343 
1344 #ifdef CONFIG_PPC64
1345 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1346 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1347 		p->thread.dscr = mfspr(SPRN_DSCR);
1348 	}
1349 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1350 		p->thread.ppr = INIT_PPR;
1351 #endif
1352 	kregs->nip = ppc_function_entry(f);
1353 	return 0;
1354 }
1355 
1356 /*
1357  * Set up a thread for executing a new program
1358  */
1359 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1360 {
1361 #ifdef CONFIG_PPC64
1362 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1363 #endif
1364 
1365 	/*
1366 	 * If we exec out of a kernel thread then thread.regs will not be
1367 	 * set.  Do it now.
1368 	 */
1369 	if (!current->thread.regs) {
1370 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1371 		current->thread.regs = regs - 1;
1372 	}
1373 
1374 	memset(regs->gpr, 0, sizeof(regs->gpr));
1375 	regs->ctr = 0;
1376 	regs->link = 0;
1377 	regs->xer = 0;
1378 	regs->ccr = 0;
1379 	regs->gpr[1] = sp;
1380 
1381 	/*
1382 	 * We have just cleared all the nonvolatile GPRs, so make
1383 	 * FULL_REGS(regs) return true.  This is necessary to allow
1384 	 * ptrace to examine the thread immediately after exec.
1385 	 */
1386 	regs->trap &= ~1UL;
1387 
1388 #ifdef CONFIG_PPC32
1389 	regs->mq = 0;
1390 	regs->nip = start;
1391 	regs->msr = MSR_USER;
1392 #else
1393 	if (!is_32bit_task()) {
1394 		unsigned long entry;
1395 
1396 		if (is_elf2_task()) {
1397 			/* Look ma, no function descriptors! */
1398 			entry = start;
1399 
1400 			/*
1401 			 * Ulrich says:
1402 			 *   The latest iteration of the ABI requires that when
1403 			 *   calling a function (at its global entry point),
1404 			 *   the caller must ensure r12 holds the entry point
1405 			 *   address (so that the function can quickly
1406 			 *   establish addressability).
1407 			 */
1408 			regs->gpr[12] = start;
1409 			/* Make sure that's restored on entry to userspace. */
1410 			set_thread_flag(TIF_RESTOREALL);
1411 		} else {
1412 			unsigned long toc;
1413 
1414 			/* start is a relocated pointer to the function
1415 			 * descriptor for the elf _start routine.  The first
1416 			 * entry in the function descriptor is the entry
1417 			 * address of _start and the second entry is the TOC
1418 			 * value we need to use.
1419 			 */
1420 			__get_user(entry, (unsigned long __user *)start);
1421 			__get_user(toc, (unsigned long __user *)start+1);
1422 
1423 			/* Check whether the e_entry function descriptor entries
1424 			 * need to be relocated before we can use them.
1425 			 */
1426 			if (load_addr != 0) {
1427 				entry += load_addr;
1428 				toc   += load_addr;
1429 			}
1430 			regs->gpr[2] = toc;
1431 		}
1432 		regs->nip = entry;
1433 		regs->msr = MSR_USER64;
1434 	} else {
1435 		regs->nip = start;
1436 		regs->gpr[2] = 0;
1437 		regs->msr = MSR_USER32;
1438 	}
1439 #endif
1440 #ifdef CONFIG_VSX
1441 	current->thread.used_vsr = 0;
1442 #endif
1443 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1444 	current->thread.fp_save_area = NULL;
1445 #ifdef CONFIG_ALTIVEC
1446 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1447 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1448 	current->thread.vr_save_area = NULL;
1449 	current->thread.vrsave = 0;
1450 	current->thread.used_vr = 0;
1451 #endif /* CONFIG_ALTIVEC */
1452 #ifdef CONFIG_SPE
1453 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1454 	current->thread.acc = 0;
1455 	current->thread.spefscr = 0;
1456 	current->thread.used_spe = 0;
1457 #endif /* CONFIG_SPE */
1458 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1459 	if (cpu_has_feature(CPU_FTR_TM))
1460 		regs->msr |= MSR_TM;
1461 	current->thread.tm_tfhar = 0;
1462 	current->thread.tm_texasr = 0;
1463 	current->thread.tm_tfiar = 0;
1464 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1465 }
1466 EXPORT_SYMBOL(start_thread);
1467 
1468 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1469 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1470 
1471 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1472 {
1473 	struct pt_regs *regs = tsk->thread.regs;
1474 
1475 	/* This is a bit hairy.  If we are an SPE enabled  processor
1476 	 * (have embedded fp) we store the IEEE exception enable flags in
1477 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1478 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1479 	if (val & PR_FP_EXC_SW_ENABLE) {
1480 #ifdef CONFIG_SPE
1481 		if (cpu_has_feature(CPU_FTR_SPE)) {
1482 			/*
1483 			 * When the sticky exception bits are set
1484 			 * directly by userspace, it must call prctl
1485 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1486 			 * in the existing prctl settings) or
1487 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1488 			 * the bits being set).  <fenv.h> functions
1489 			 * saving and restoring the whole
1490 			 * floating-point environment need to do so
1491 			 * anyway to restore the prctl settings from
1492 			 * the saved environment.
1493 			 */
1494 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1495 			tsk->thread.fpexc_mode = val &
1496 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1497 			return 0;
1498 		} else {
1499 			return -EINVAL;
1500 		}
1501 #else
1502 		return -EINVAL;
1503 #endif
1504 	}
1505 
1506 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1507 	 * __pack_fe01 use do not overlap with bits used for
1508 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1509 	 * on CONFIG_SPE implementations are reserved so writing to
1510 	 * them does not change anything */
1511 	if (val > PR_FP_EXC_PRECISE)
1512 		return -EINVAL;
1513 	tsk->thread.fpexc_mode = __pack_fe01(val);
1514 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1515 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1516 			| tsk->thread.fpexc_mode;
1517 	return 0;
1518 }
1519 
1520 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1521 {
1522 	unsigned int val;
1523 
1524 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1525 #ifdef CONFIG_SPE
1526 		if (cpu_has_feature(CPU_FTR_SPE)) {
1527 			/*
1528 			 * When the sticky exception bits are set
1529 			 * directly by userspace, it must call prctl
1530 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1531 			 * in the existing prctl settings) or
1532 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1533 			 * the bits being set).  <fenv.h> functions
1534 			 * saving and restoring the whole
1535 			 * floating-point environment need to do so
1536 			 * anyway to restore the prctl settings from
1537 			 * the saved environment.
1538 			 */
1539 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1540 			val = tsk->thread.fpexc_mode;
1541 		} else
1542 			return -EINVAL;
1543 #else
1544 		return -EINVAL;
1545 #endif
1546 	else
1547 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1548 	return put_user(val, (unsigned int __user *) adr);
1549 }
1550 
1551 int set_endian(struct task_struct *tsk, unsigned int val)
1552 {
1553 	struct pt_regs *regs = tsk->thread.regs;
1554 
1555 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1556 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1557 		return -EINVAL;
1558 
1559 	if (regs == NULL)
1560 		return -EINVAL;
1561 
1562 	if (val == PR_ENDIAN_BIG)
1563 		regs->msr &= ~MSR_LE;
1564 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1565 		regs->msr |= MSR_LE;
1566 	else
1567 		return -EINVAL;
1568 
1569 	return 0;
1570 }
1571 
1572 int get_endian(struct task_struct *tsk, unsigned long adr)
1573 {
1574 	struct pt_regs *regs = tsk->thread.regs;
1575 	unsigned int val;
1576 
1577 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1578 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1579 		return -EINVAL;
1580 
1581 	if (regs == NULL)
1582 		return -EINVAL;
1583 
1584 	if (regs->msr & MSR_LE) {
1585 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1586 			val = PR_ENDIAN_LITTLE;
1587 		else
1588 			val = PR_ENDIAN_PPC_LITTLE;
1589 	} else
1590 		val = PR_ENDIAN_BIG;
1591 
1592 	return put_user(val, (unsigned int __user *)adr);
1593 }
1594 
1595 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1596 {
1597 	tsk->thread.align_ctl = val;
1598 	return 0;
1599 }
1600 
1601 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1602 {
1603 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1604 }
1605 
1606 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1607 				  unsigned long nbytes)
1608 {
1609 	unsigned long stack_page;
1610 	unsigned long cpu = task_cpu(p);
1611 
1612 	/*
1613 	 * Avoid crashing if the stack has overflowed and corrupted
1614 	 * task_cpu(p), which is in the thread_info struct.
1615 	 */
1616 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1617 		stack_page = (unsigned long) hardirq_ctx[cpu];
1618 		if (sp >= stack_page + sizeof(struct thread_struct)
1619 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1620 			return 1;
1621 
1622 		stack_page = (unsigned long) softirq_ctx[cpu];
1623 		if (sp >= stack_page + sizeof(struct thread_struct)
1624 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1625 			return 1;
1626 	}
1627 	return 0;
1628 }
1629 
1630 int validate_sp(unsigned long sp, struct task_struct *p,
1631 		       unsigned long nbytes)
1632 {
1633 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1634 
1635 	if (sp >= stack_page + sizeof(struct thread_struct)
1636 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1637 		return 1;
1638 
1639 	return valid_irq_stack(sp, p, nbytes);
1640 }
1641 
1642 EXPORT_SYMBOL(validate_sp);
1643 
1644 unsigned long get_wchan(struct task_struct *p)
1645 {
1646 	unsigned long ip, sp;
1647 	int count = 0;
1648 
1649 	if (!p || p == current || p->state == TASK_RUNNING)
1650 		return 0;
1651 
1652 	sp = p->thread.ksp;
1653 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1654 		return 0;
1655 
1656 	do {
1657 		sp = *(unsigned long *)sp;
1658 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1659 			return 0;
1660 		if (count > 0) {
1661 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1662 			if (!in_sched_functions(ip))
1663 				return ip;
1664 		}
1665 	} while (count++ < 16);
1666 	return 0;
1667 }
1668 
1669 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1670 
1671 void show_stack(struct task_struct *tsk, unsigned long *stack)
1672 {
1673 	unsigned long sp, ip, lr, newsp;
1674 	int count = 0;
1675 	int firstframe = 1;
1676 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1677 	int curr_frame = current->curr_ret_stack;
1678 	extern void return_to_handler(void);
1679 	unsigned long rth = (unsigned long)return_to_handler;
1680 #endif
1681 
1682 	sp = (unsigned long) stack;
1683 	if (tsk == NULL)
1684 		tsk = current;
1685 	if (sp == 0) {
1686 		if (tsk == current)
1687 			sp = current_stack_pointer();
1688 		else
1689 			sp = tsk->thread.ksp;
1690 	}
1691 
1692 	lr = 0;
1693 	printk("Call Trace:\n");
1694 	do {
1695 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1696 			return;
1697 
1698 		stack = (unsigned long *) sp;
1699 		newsp = stack[0];
1700 		ip = stack[STACK_FRAME_LR_SAVE];
1701 		if (!firstframe || ip != lr) {
1702 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1703 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1704 			if ((ip == rth) && curr_frame >= 0) {
1705 				printk(" (%pS)",
1706 				       (void *)current->ret_stack[curr_frame].ret);
1707 				curr_frame--;
1708 			}
1709 #endif
1710 			if (firstframe)
1711 				printk(" (unreliable)");
1712 			printk("\n");
1713 		}
1714 		firstframe = 0;
1715 
1716 		/*
1717 		 * See if this is an exception frame.
1718 		 * We look for the "regshere" marker in the current frame.
1719 		 */
1720 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1721 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1722 			struct pt_regs *regs = (struct pt_regs *)
1723 				(sp + STACK_FRAME_OVERHEAD);
1724 			lr = regs->link;
1725 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
1726 			       regs->trap, (void *)regs->nip, (void *)lr);
1727 			firstframe = 1;
1728 		}
1729 
1730 		sp = newsp;
1731 	} while (count++ < kstack_depth_to_print);
1732 }
1733 
1734 #ifdef CONFIG_PPC64
1735 /* Called with hard IRQs off */
1736 void notrace __ppc64_runlatch_on(void)
1737 {
1738 	struct thread_info *ti = current_thread_info();
1739 	unsigned long ctrl;
1740 
1741 	ctrl = mfspr(SPRN_CTRLF);
1742 	ctrl |= CTRL_RUNLATCH;
1743 	mtspr(SPRN_CTRLT, ctrl);
1744 
1745 	ti->local_flags |= _TLF_RUNLATCH;
1746 }
1747 
1748 /* Called with hard IRQs off */
1749 void notrace __ppc64_runlatch_off(void)
1750 {
1751 	struct thread_info *ti = current_thread_info();
1752 	unsigned long ctrl;
1753 
1754 	ti->local_flags &= ~_TLF_RUNLATCH;
1755 
1756 	ctrl = mfspr(SPRN_CTRLF);
1757 	ctrl &= ~CTRL_RUNLATCH;
1758 	mtspr(SPRN_CTRLT, ctrl);
1759 }
1760 #endif /* CONFIG_PPC64 */
1761 
1762 unsigned long arch_align_stack(unsigned long sp)
1763 {
1764 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1765 		sp -= get_random_int() & ~PAGE_MASK;
1766 	return sp & ~0xf;
1767 }
1768 
1769 static inline unsigned long brk_rnd(void)
1770 {
1771         unsigned long rnd = 0;
1772 
1773 	/* 8MB for 32bit, 1GB for 64bit */
1774 	if (is_32bit_task())
1775 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
1776 	else
1777 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
1778 
1779 	return rnd << PAGE_SHIFT;
1780 }
1781 
1782 unsigned long arch_randomize_brk(struct mm_struct *mm)
1783 {
1784 	unsigned long base = mm->brk;
1785 	unsigned long ret;
1786 
1787 #ifdef CONFIG_PPC_STD_MMU_64
1788 	/*
1789 	 * If we are using 1TB segments and we are allowed to randomise
1790 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1791 	 * segment. Otherwise the heap will be in the bottom 1TB
1792 	 * which always uses 256MB segments and this may result in a
1793 	 * performance penalty.
1794 	 */
1795 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1796 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1797 #endif
1798 
1799 	ret = PAGE_ALIGN(base + brk_rnd());
1800 
1801 	if (ret < mm->brk)
1802 		return mm->brk;
1803 
1804 	return ret;
1805 }
1806 
1807