1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 #include <linux/pkeys.h> 46 47 #include <asm/pgtable.h> 48 #include <asm/io.h> 49 #include <asm/processor.h> 50 #include <asm/mmu.h> 51 #include <asm/prom.h> 52 #include <asm/machdep.h> 53 #include <asm/time.h> 54 #include <asm/runlatch.h> 55 #include <asm/syscalls.h> 56 #include <asm/switch_to.h> 57 #include <asm/tm.h> 58 #include <asm/debug.h> 59 #ifdef CONFIG_PPC64 60 #include <asm/firmware.h> 61 #include <asm/hw_irq.h> 62 #endif 63 #include <asm/code-patching.h> 64 #include <asm/exec.h> 65 #include <asm/livepatch.h> 66 #include <asm/cpu_has_feature.h> 67 #include <asm/asm-prototypes.h> 68 69 #include <linux/kprobes.h> 70 #include <linux/kdebug.h> 71 72 /* Transactional Memory debug */ 73 #ifdef TM_DEBUG_SW 74 #define TM_DEBUG(x...) printk(KERN_INFO x) 75 #else 76 #define TM_DEBUG(x...) do { } while(0) 77 #endif 78 79 extern unsigned long _get_SP(void); 80 81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 82 /* 83 * Are we running in "Suspend disabled" mode? If so we have to block any 84 * sigreturn that would get us into suspended state, and we also warn in some 85 * other paths that we should never reach with suspend disabled. 86 */ 87 bool tm_suspend_disabled __ro_after_init = false; 88 89 static void check_if_tm_restore_required(struct task_struct *tsk) 90 { 91 /* 92 * If we are saving the current thread's registers, and the 93 * thread is in a transactional state, set the TIF_RESTORE_TM 94 * bit so that we know to restore the registers before 95 * returning to userspace. 96 */ 97 if (tsk == current && tsk->thread.regs && 98 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 99 !test_thread_flag(TIF_RESTORE_TM)) { 100 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 101 set_thread_flag(TIF_RESTORE_TM); 102 } 103 } 104 105 static inline bool msr_tm_active(unsigned long msr) 106 { 107 return MSR_TM_ACTIVE(msr); 108 } 109 110 static bool tm_active_with_fp(struct task_struct *tsk) 111 { 112 return msr_tm_active(tsk->thread.regs->msr) && 113 (tsk->thread.ckpt_regs.msr & MSR_FP); 114 } 115 116 static bool tm_active_with_altivec(struct task_struct *tsk) 117 { 118 return msr_tm_active(tsk->thread.regs->msr) && 119 (tsk->thread.ckpt_regs.msr & MSR_VEC); 120 } 121 #else 122 static inline bool msr_tm_active(unsigned long msr) { return false; } 123 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 124 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 125 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 126 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 127 128 bool strict_msr_control; 129 EXPORT_SYMBOL(strict_msr_control); 130 131 static int __init enable_strict_msr_control(char *str) 132 { 133 strict_msr_control = true; 134 pr_info("Enabling strict facility control\n"); 135 136 return 0; 137 } 138 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 139 140 unsigned long msr_check_and_set(unsigned long bits) 141 { 142 unsigned long oldmsr = mfmsr(); 143 unsigned long newmsr; 144 145 newmsr = oldmsr | bits; 146 147 #ifdef CONFIG_VSX 148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 149 newmsr |= MSR_VSX; 150 #endif 151 152 if (oldmsr != newmsr) 153 mtmsr_isync(newmsr); 154 155 return newmsr; 156 } 157 158 void __msr_check_and_clear(unsigned long bits) 159 { 160 unsigned long oldmsr = mfmsr(); 161 unsigned long newmsr; 162 163 newmsr = oldmsr & ~bits; 164 165 #ifdef CONFIG_VSX 166 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 167 newmsr &= ~MSR_VSX; 168 #endif 169 170 if (oldmsr != newmsr) 171 mtmsr_isync(newmsr); 172 } 173 EXPORT_SYMBOL(__msr_check_and_clear); 174 175 #ifdef CONFIG_PPC_FPU 176 void __giveup_fpu(struct task_struct *tsk) 177 { 178 unsigned long msr; 179 180 save_fpu(tsk); 181 msr = tsk->thread.regs->msr; 182 msr &= ~MSR_FP; 183 #ifdef CONFIG_VSX 184 if (cpu_has_feature(CPU_FTR_VSX)) 185 msr &= ~MSR_VSX; 186 #endif 187 tsk->thread.regs->msr = msr; 188 } 189 190 void giveup_fpu(struct task_struct *tsk) 191 { 192 check_if_tm_restore_required(tsk); 193 194 msr_check_and_set(MSR_FP); 195 __giveup_fpu(tsk); 196 msr_check_and_clear(MSR_FP); 197 } 198 EXPORT_SYMBOL(giveup_fpu); 199 200 /* 201 * Make sure the floating-point register state in the 202 * the thread_struct is up to date for task tsk. 203 */ 204 void flush_fp_to_thread(struct task_struct *tsk) 205 { 206 if (tsk->thread.regs) { 207 /* 208 * We need to disable preemption here because if we didn't, 209 * another process could get scheduled after the regs->msr 210 * test but before we have finished saving the FP registers 211 * to the thread_struct. That process could take over the 212 * FPU, and then when we get scheduled again we would store 213 * bogus values for the remaining FP registers. 214 */ 215 preempt_disable(); 216 if (tsk->thread.regs->msr & MSR_FP) { 217 /* 218 * This should only ever be called for current or 219 * for a stopped child process. Since we save away 220 * the FP register state on context switch, 221 * there is something wrong if a stopped child appears 222 * to still have its FP state in the CPU registers. 223 */ 224 BUG_ON(tsk != current); 225 giveup_fpu(tsk); 226 } 227 preempt_enable(); 228 } 229 } 230 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 231 232 void enable_kernel_fp(void) 233 { 234 unsigned long cpumsr; 235 236 WARN_ON(preemptible()); 237 238 cpumsr = msr_check_and_set(MSR_FP); 239 240 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 241 check_if_tm_restore_required(current); 242 /* 243 * If a thread has already been reclaimed then the 244 * checkpointed registers are on the CPU but have definitely 245 * been saved by the reclaim code. Don't need to and *cannot* 246 * giveup as this would save to the 'live' structure not the 247 * checkpointed structure. 248 */ 249 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 250 return; 251 __giveup_fpu(current); 252 } 253 } 254 EXPORT_SYMBOL(enable_kernel_fp); 255 256 static int restore_fp(struct task_struct *tsk) 257 { 258 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 259 load_fp_state(¤t->thread.fp_state); 260 current->thread.load_fp++; 261 return 1; 262 } 263 return 0; 264 } 265 #else 266 static int restore_fp(struct task_struct *tsk) { return 0; } 267 #endif /* CONFIG_PPC_FPU */ 268 269 #ifdef CONFIG_ALTIVEC 270 #define loadvec(thr) ((thr).load_vec) 271 272 static void __giveup_altivec(struct task_struct *tsk) 273 { 274 unsigned long msr; 275 276 save_altivec(tsk); 277 msr = tsk->thread.regs->msr; 278 msr &= ~MSR_VEC; 279 #ifdef CONFIG_VSX 280 if (cpu_has_feature(CPU_FTR_VSX)) 281 msr &= ~MSR_VSX; 282 #endif 283 tsk->thread.regs->msr = msr; 284 } 285 286 void giveup_altivec(struct task_struct *tsk) 287 { 288 check_if_tm_restore_required(tsk); 289 290 msr_check_and_set(MSR_VEC); 291 __giveup_altivec(tsk); 292 msr_check_and_clear(MSR_VEC); 293 } 294 EXPORT_SYMBOL(giveup_altivec); 295 296 void enable_kernel_altivec(void) 297 { 298 unsigned long cpumsr; 299 300 WARN_ON(preemptible()); 301 302 cpumsr = msr_check_and_set(MSR_VEC); 303 304 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 305 check_if_tm_restore_required(current); 306 /* 307 * If a thread has already been reclaimed then the 308 * checkpointed registers are on the CPU but have definitely 309 * been saved by the reclaim code. Don't need to and *cannot* 310 * giveup as this would save to the 'live' structure not the 311 * checkpointed structure. 312 */ 313 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 314 return; 315 __giveup_altivec(current); 316 } 317 } 318 EXPORT_SYMBOL(enable_kernel_altivec); 319 320 /* 321 * Make sure the VMX/Altivec register state in the 322 * the thread_struct is up to date for task tsk. 323 */ 324 void flush_altivec_to_thread(struct task_struct *tsk) 325 { 326 if (tsk->thread.regs) { 327 preempt_disable(); 328 if (tsk->thread.regs->msr & MSR_VEC) { 329 BUG_ON(tsk != current); 330 giveup_altivec(tsk); 331 } 332 preempt_enable(); 333 } 334 } 335 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 336 337 static int restore_altivec(struct task_struct *tsk) 338 { 339 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 340 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 341 load_vr_state(&tsk->thread.vr_state); 342 tsk->thread.used_vr = 1; 343 tsk->thread.load_vec++; 344 345 return 1; 346 } 347 return 0; 348 } 349 #else 350 #define loadvec(thr) 0 351 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 352 #endif /* CONFIG_ALTIVEC */ 353 354 #ifdef CONFIG_VSX 355 static void __giveup_vsx(struct task_struct *tsk) 356 { 357 unsigned long msr = tsk->thread.regs->msr; 358 359 /* 360 * We should never be ssetting MSR_VSX without also setting 361 * MSR_FP and MSR_VEC 362 */ 363 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 364 365 /* __giveup_fpu will clear MSR_VSX */ 366 if (msr & MSR_FP) 367 __giveup_fpu(tsk); 368 if (msr & MSR_VEC) 369 __giveup_altivec(tsk); 370 } 371 372 static void giveup_vsx(struct task_struct *tsk) 373 { 374 check_if_tm_restore_required(tsk); 375 376 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 377 __giveup_vsx(tsk); 378 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 379 } 380 381 void enable_kernel_vsx(void) 382 { 383 unsigned long cpumsr; 384 385 WARN_ON(preemptible()); 386 387 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 388 389 if (current->thread.regs && 390 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 391 check_if_tm_restore_required(current); 392 /* 393 * If a thread has already been reclaimed then the 394 * checkpointed registers are on the CPU but have definitely 395 * been saved by the reclaim code. Don't need to and *cannot* 396 * giveup as this would save to the 'live' structure not the 397 * checkpointed structure. 398 */ 399 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 400 return; 401 __giveup_vsx(current); 402 } 403 } 404 EXPORT_SYMBOL(enable_kernel_vsx); 405 406 void flush_vsx_to_thread(struct task_struct *tsk) 407 { 408 if (tsk->thread.regs) { 409 preempt_disable(); 410 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 411 BUG_ON(tsk != current); 412 giveup_vsx(tsk); 413 } 414 preempt_enable(); 415 } 416 } 417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 418 419 static int restore_vsx(struct task_struct *tsk) 420 { 421 if (cpu_has_feature(CPU_FTR_VSX)) { 422 tsk->thread.used_vsr = 1; 423 return 1; 424 } 425 426 return 0; 427 } 428 #else 429 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 430 #endif /* CONFIG_VSX */ 431 432 #ifdef CONFIG_SPE 433 void giveup_spe(struct task_struct *tsk) 434 { 435 check_if_tm_restore_required(tsk); 436 437 msr_check_and_set(MSR_SPE); 438 __giveup_spe(tsk); 439 msr_check_and_clear(MSR_SPE); 440 } 441 EXPORT_SYMBOL(giveup_spe); 442 443 void enable_kernel_spe(void) 444 { 445 WARN_ON(preemptible()); 446 447 msr_check_and_set(MSR_SPE); 448 449 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 450 check_if_tm_restore_required(current); 451 __giveup_spe(current); 452 } 453 } 454 EXPORT_SYMBOL(enable_kernel_spe); 455 456 void flush_spe_to_thread(struct task_struct *tsk) 457 { 458 if (tsk->thread.regs) { 459 preempt_disable(); 460 if (tsk->thread.regs->msr & MSR_SPE) { 461 BUG_ON(tsk != current); 462 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 463 giveup_spe(tsk); 464 } 465 preempt_enable(); 466 } 467 } 468 #endif /* CONFIG_SPE */ 469 470 static unsigned long msr_all_available; 471 472 static int __init init_msr_all_available(void) 473 { 474 #ifdef CONFIG_PPC_FPU 475 msr_all_available |= MSR_FP; 476 #endif 477 #ifdef CONFIG_ALTIVEC 478 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 479 msr_all_available |= MSR_VEC; 480 #endif 481 #ifdef CONFIG_VSX 482 if (cpu_has_feature(CPU_FTR_VSX)) 483 msr_all_available |= MSR_VSX; 484 #endif 485 #ifdef CONFIG_SPE 486 if (cpu_has_feature(CPU_FTR_SPE)) 487 msr_all_available |= MSR_SPE; 488 #endif 489 490 return 0; 491 } 492 early_initcall(init_msr_all_available); 493 494 void giveup_all(struct task_struct *tsk) 495 { 496 unsigned long usermsr; 497 498 if (!tsk->thread.regs) 499 return; 500 501 usermsr = tsk->thread.regs->msr; 502 503 if ((usermsr & msr_all_available) == 0) 504 return; 505 506 msr_check_and_set(msr_all_available); 507 check_if_tm_restore_required(tsk); 508 509 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 510 511 #ifdef CONFIG_PPC_FPU 512 if (usermsr & MSR_FP) 513 __giveup_fpu(tsk); 514 #endif 515 #ifdef CONFIG_ALTIVEC 516 if (usermsr & MSR_VEC) 517 __giveup_altivec(tsk); 518 #endif 519 #ifdef CONFIG_SPE 520 if (usermsr & MSR_SPE) 521 __giveup_spe(tsk); 522 #endif 523 524 msr_check_and_clear(msr_all_available); 525 } 526 EXPORT_SYMBOL(giveup_all); 527 528 void restore_math(struct pt_regs *regs) 529 { 530 unsigned long msr; 531 532 if (!msr_tm_active(regs->msr) && 533 !current->thread.load_fp && !loadvec(current->thread)) 534 return; 535 536 msr = regs->msr; 537 msr_check_and_set(msr_all_available); 538 539 /* 540 * Only reload if the bit is not set in the user MSR, the bit BEING set 541 * indicates that the registers are hot 542 */ 543 if ((!(msr & MSR_FP)) && restore_fp(current)) 544 msr |= MSR_FP | current->thread.fpexc_mode; 545 546 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 547 msr |= MSR_VEC; 548 549 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 550 restore_vsx(current)) { 551 msr |= MSR_VSX; 552 } 553 554 msr_check_and_clear(msr_all_available); 555 556 regs->msr = msr; 557 } 558 559 void save_all(struct task_struct *tsk) 560 { 561 unsigned long usermsr; 562 563 if (!tsk->thread.regs) 564 return; 565 566 usermsr = tsk->thread.regs->msr; 567 568 if ((usermsr & msr_all_available) == 0) 569 return; 570 571 msr_check_and_set(msr_all_available); 572 573 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 574 575 if (usermsr & MSR_FP) 576 save_fpu(tsk); 577 578 if (usermsr & MSR_VEC) 579 save_altivec(tsk); 580 581 if (usermsr & MSR_SPE) 582 __giveup_spe(tsk); 583 584 msr_check_and_clear(msr_all_available); 585 } 586 587 void flush_all_to_thread(struct task_struct *tsk) 588 { 589 if (tsk->thread.regs) { 590 preempt_disable(); 591 BUG_ON(tsk != current); 592 save_all(tsk); 593 594 #ifdef CONFIG_SPE 595 if (tsk->thread.regs->msr & MSR_SPE) 596 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 597 #endif 598 599 preempt_enable(); 600 } 601 } 602 EXPORT_SYMBOL(flush_all_to_thread); 603 604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 605 void do_send_trap(struct pt_regs *regs, unsigned long address, 606 unsigned long error_code, int signal_code, int breakpt) 607 { 608 siginfo_t info; 609 610 current->thread.trap_nr = signal_code; 611 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 612 11, SIGSEGV) == NOTIFY_STOP) 613 return; 614 615 /* Deliver the signal to userspace */ 616 info.si_signo = SIGTRAP; 617 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 618 info.si_code = signal_code; 619 info.si_addr = (void __user *)address; 620 force_sig_info(SIGTRAP, &info, current); 621 } 622 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 623 void do_break (struct pt_regs *regs, unsigned long address, 624 unsigned long error_code) 625 { 626 siginfo_t info; 627 628 current->thread.trap_nr = TRAP_HWBKPT; 629 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 630 11, SIGSEGV) == NOTIFY_STOP) 631 return; 632 633 if (debugger_break_match(regs)) 634 return; 635 636 /* Clear the breakpoint */ 637 hw_breakpoint_disable(); 638 639 /* Deliver the signal to userspace */ 640 info.si_signo = SIGTRAP; 641 info.si_errno = 0; 642 info.si_code = TRAP_HWBKPT; 643 info.si_addr = (void __user *)address; 644 force_sig_info(SIGTRAP, &info, current); 645 } 646 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 647 648 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 649 650 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 651 /* 652 * Set the debug registers back to their default "safe" values. 653 */ 654 static void set_debug_reg_defaults(struct thread_struct *thread) 655 { 656 thread->debug.iac1 = thread->debug.iac2 = 0; 657 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 658 thread->debug.iac3 = thread->debug.iac4 = 0; 659 #endif 660 thread->debug.dac1 = thread->debug.dac2 = 0; 661 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 662 thread->debug.dvc1 = thread->debug.dvc2 = 0; 663 #endif 664 thread->debug.dbcr0 = 0; 665 #ifdef CONFIG_BOOKE 666 /* 667 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 668 */ 669 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 670 DBCR1_IAC3US | DBCR1_IAC4US; 671 /* 672 * Force Data Address Compare User/Supervisor bits to be User-only 673 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 674 */ 675 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 676 #else 677 thread->debug.dbcr1 = 0; 678 #endif 679 } 680 681 static void prime_debug_regs(struct debug_reg *debug) 682 { 683 /* 684 * We could have inherited MSR_DE from userspace, since 685 * it doesn't get cleared on exception entry. Make sure 686 * MSR_DE is clear before we enable any debug events. 687 */ 688 mtmsr(mfmsr() & ~MSR_DE); 689 690 mtspr(SPRN_IAC1, debug->iac1); 691 mtspr(SPRN_IAC2, debug->iac2); 692 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 693 mtspr(SPRN_IAC3, debug->iac3); 694 mtspr(SPRN_IAC4, debug->iac4); 695 #endif 696 mtspr(SPRN_DAC1, debug->dac1); 697 mtspr(SPRN_DAC2, debug->dac2); 698 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 699 mtspr(SPRN_DVC1, debug->dvc1); 700 mtspr(SPRN_DVC2, debug->dvc2); 701 #endif 702 mtspr(SPRN_DBCR0, debug->dbcr0); 703 mtspr(SPRN_DBCR1, debug->dbcr1); 704 #ifdef CONFIG_BOOKE 705 mtspr(SPRN_DBCR2, debug->dbcr2); 706 #endif 707 } 708 /* 709 * Unless neither the old or new thread are making use of the 710 * debug registers, set the debug registers from the values 711 * stored in the new thread. 712 */ 713 void switch_booke_debug_regs(struct debug_reg *new_debug) 714 { 715 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 716 || (new_debug->dbcr0 & DBCR0_IDM)) 717 prime_debug_regs(new_debug); 718 } 719 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 720 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 721 #ifndef CONFIG_HAVE_HW_BREAKPOINT 722 static void set_debug_reg_defaults(struct thread_struct *thread) 723 { 724 thread->hw_brk.address = 0; 725 thread->hw_brk.type = 0; 726 set_breakpoint(&thread->hw_brk); 727 } 728 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 729 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 730 731 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 732 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 733 { 734 mtspr(SPRN_DAC1, dabr); 735 #ifdef CONFIG_PPC_47x 736 isync(); 737 #endif 738 return 0; 739 } 740 #elif defined(CONFIG_PPC_BOOK3S) 741 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 742 { 743 mtspr(SPRN_DABR, dabr); 744 if (cpu_has_feature(CPU_FTR_DABRX)) 745 mtspr(SPRN_DABRX, dabrx); 746 return 0; 747 } 748 #elif defined(CONFIG_PPC_8xx) 749 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 750 { 751 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 752 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 753 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 754 755 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 756 lctrl1 |= 0xa0000; 757 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 758 lctrl1 |= 0xf0000; 759 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 760 lctrl2 = 0; 761 762 mtspr(SPRN_LCTRL2, 0); 763 mtspr(SPRN_CMPE, addr); 764 mtspr(SPRN_CMPF, addr + 4); 765 mtspr(SPRN_LCTRL1, lctrl1); 766 mtspr(SPRN_LCTRL2, lctrl2); 767 768 return 0; 769 } 770 #else 771 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 772 { 773 return -EINVAL; 774 } 775 #endif 776 777 static inline int set_dabr(struct arch_hw_breakpoint *brk) 778 { 779 unsigned long dabr, dabrx; 780 781 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 782 dabrx = ((brk->type >> 3) & 0x7); 783 784 if (ppc_md.set_dabr) 785 return ppc_md.set_dabr(dabr, dabrx); 786 787 return __set_dabr(dabr, dabrx); 788 } 789 790 static inline int set_dawr(struct arch_hw_breakpoint *brk) 791 { 792 unsigned long dawr, dawrx, mrd; 793 794 dawr = brk->address; 795 796 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 797 << (63 - 58); //* read/write bits */ 798 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 799 << (63 - 59); //* translate */ 800 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 801 >> 3; //* PRIM bits */ 802 /* dawr length is stored in field MDR bits 48:53. Matches range in 803 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 804 0b111111=64DW. 805 brk->len is in bytes. 806 This aligns up to double word size, shifts and does the bias. 807 */ 808 mrd = ((brk->len + 7) >> 3) - 1; 809 dawrx |= (mrd & 0x3f) << (63 - 53); 810 811 if (ppc_md.set_dawr) 812 return ppc_md.set_dawr(dawr, dawrx); 813 mtspr(SPRN_DAWR, dawr); 814 mtspr(SPRN_DAWRX, dawrx); 815 return 0; 816 } 817 818 void __set_breakpoint(struct arch_hw_breakpoint *brk) 819 { 820 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 821 822 if (cpu_has_feature(CPU_FTR_DAWR)) 823 set_dawr(brk); 824 else 825 set_dabr(brk); 826 } 827 828 void set_breakpoint(struct arch_hw_breakpoint *brk) 829 { 830 preempt_disable(); 831 __set_breakpoint(brk); 832 preempt_enable(); 833 } 834 835 #ifdef CONFIG_PPC64 836 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 837 #endif 838 839 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 840 struct arch_hw_breakpoint *b) 841 { 842 if (a->address != b->address) 843 return false; 844 if (a->type != b->type) 845 return false; 846 if (a->len != b->len) 847 return false; 848 return true; 849 } 850 851 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 852 853 static inline bool tm_enabled(struct task_struct *tsk) 854 { 855 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 856 } 857 858 static void tm_reclaim_thread(struct thread_struct *thr, 859 struct thread_info *ti, uint8_t cause) 860 { 861 /* 862 * Use the current MSR TM suspended bit to track if we have 863 * checkpointed state outstanding. 864 * On signal delivery, we'd normally reclaim the checkpointed 865 * state to obtain stack pointer (see:get_tm_stackpointer()). 866 * This will then directly return to userspace without going 867 * through __switch_to(). However, if the stack frame is bad, 868 * we need to exit this thread which calls __switch_to() which 869 * will again attempt to reclaim the already saved tm state. 870 * Hence we need to check that we've not already reclaimed 871 * this state. 872 * We do this using the current MSR, rather tracking it in 873 * some specific thread_struct bit, as it has the additional 874 * benefit of checking for a potential TM bad thing exception. 875 */ 876 if (!MSR_TM_SUSPENDED(mfmsr())) 877 return; 878 879 giveup_all(container_of(thr, struct task_struct, thread)); 880 881 tm_reclaim(thr, cause); 882 883 /* 884 * If we are in a transaction and FP is off then we can't have 885 * used FP inside that transaction. Hence the checkpointed 886 * state is the same as the live state. We need to copy the 887 * live state to the checkpointed state so that when the 888 * transaction is restored, the checkpointed state is correct 889 * and the aborted transaction sees the correct state. We use 890 * ckpt_regs.msr here as that's what tm_reclaim will use to 891 * determine if it's going to write the checkpointed state or 892 * not. So either this will write the checkpointed registers, 893 * or reclaim will. Similarly for VMX. 894 */ 895 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 896 memcpy(&thr->ckfp_state, &thr->fp_state, 897 sizeof(struct thread_fp_state)); 898 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 899 memcpy(&thr->ckvr_state, &thr->vr_state, 900 sizeof(struct thread_vr_state)); 901 } 902 903 void tm_reclaim_current(uint8_t cause) 904 { 905 tm_enable(); 906 tm_reclaim_thread(¤t->thread, current_thread_info(), cause); 907 } 908 909 static inline void tm_reclaim_task(struct task_struct *tsk) 910 { 911 /* We have to work out if we're switching from/to a task that's in the 912 * middle of a transaction. 913 * 914 * In switching we need to maintain a 2nd register state as 915 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 916 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 917 * ckvr_state 918 * 919 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 920 */ 921 struct thread_struct *thr = &tsk->thread; 922 923 if (!thr->regs) 924 return; 925 926 if (!MSR_TM_ACTIVE(thr->regs->msr)) 927 goto out_and_saveregs; 928 929 WARN_ON(tm_suspend_disabled); 930 931 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 932 "ccr=%lx, msr=%lx, trap=%lx)\n", 933 tsk->pid, thr->regs->nip, 934 thr->regs->ccr, thr->regs->msr, 935 thr->regs->trap); 936 937 tm_reclaim_thread(thr, task_thread_info(tsk), TM_CAUSE_RESCHED); 938 939 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 940 tsk->pid); 941 942 out_and_saveregs: 943 /* Always save the regs here, even if a transaction's not active. 944 * This context-switches a thread's TM info SPRs. We do it here to 945 * be consistent with the restore path (in recheckpoint) which 946 * cannot happen later in _switch(). 947 */ 948 tm_save_sprs(thr); 949 } 950 951 extern void __tm_recheckpoint(struct thread_struct *thread); 952 953 void tm_recheckpoint(struct thread_struct *thread) 954 { 955 unsigned long flags; 956 957 if (!(thread->regs->msr & MSR_TM)) 958 return; 959 960 /* We really can't be interrupted here as the TEXASR registers can't 961 * change and later in the trecheckpoint code, we have a userspace R1. 962 * So let's hard disable over this region. 963 */ 964 local_irq_save(flags); 965 hard_irq_disable(); 966 967 /* The TM SPRs are restored here, so that TEXASR.FS can be set 968 * before the trecheckpoint and no explosion occurs. 969 */ 970 tm_restore_sprs(thread); 971 972 __tm_recheckpoint(thread); 973 974 local_irq_restore(flags); 975 } 976 977 static inline void tm_recheckpoint_new_task(struct task_struct *new) 978 { 979 if (!cpu_has_feature(CPU_FTR_TM)) 980 return; 981 982 /* Recheckpoint the registers of the thread we're about to switch to. 983 * 984 * If the task was using FP, we non-lazily reload both the original and 985 * the speculative FP register states. This is because the kernel 986 * doesn't see if/when a TM rollback occurs, so if we take an FP 987 * unavailable later, we are unable to determine which set of FP regs 988 * need to be restored. 989 */ 990 if (!tm_enabled(new)) 991 return; 992 993 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 994 tm_restore_sprs(&new->thread); 995 return; 996 } 997 /* Recheckpoint to restore original checkpointed register state. */ 998 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 999 new->pid, new->thread.regs->msr); 1000 1001 tm_recheckpoint(&new->thread); 1002 1003 /* 1004 * The checkpointed state has been restored but the live state has 1005 * not, ensure all the math functionality is turned off to trigger 1006 * restore_math() to reload. 1007 */ 1008 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1009 1010 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1011 "(kernel msr 0x%lx)\n", 1012 new->pid, mfmsr()); 1013 } 1014 1015 static inline void __switch_to_tm(struct task_struct *prev, 1016 struct task_struct *new) 1017 { 1018 if (cpu_has_feature(CPU_FTR_TM)) { 1019 if (tm_enabled(prev) || tm_enabled(new)) 1020 tm_enable(); 1021 1022 if (tm_enabled(prev)) { 1023 prev->thread.load_tm++; 1024 tm_reclaim_task(prev); 1025 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1026 prev->thread.regs->msr &= ~MSR_TM; 1027 } 1028 1029 tm_recheckpoint_new_task(new); 1030 } 1031 } 1032 1033 /* 1034 * This is called if we are on the way out to userspace and the 1035 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1036 * FP and/or vector state and does so if necessary. 1037 * If userspace is inside a transaction (whether active or 1038 * suspended) and FP/VMX/VSX instructions have ever been enabled 1039 * inside that transaction, then we have to keep them enabled 1040 * and keep the FP/VMX/VSX state loaded while ever the transaction 1041 * continues. The reason is that if we didn't, and subsequently 1042 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1043 * we don't know whether it's the same transaction, and thus we 1044 * don't know which of the checkpointed state and the transactional 1045 * state to use. 1046 */ 1047 void restore_tm_state(struct pt_regs *regs) 1048 { 1049 unsigned long msr_diff; 1050 1051 /* 1052 * This is the only moment we should clear TIF_RESTORE_TM as 1053 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1054 * again, anything else could lead to an incorrect ckpt_msr being 1055 * saved and therefore incorrect signal contexts. 1056 */ 1057 clear_thread_flag(TIF_RESTORE_TM); 1058 if (!MSR_TM_ACTIVE(regs->msr)) 1059 return; 1060 1061 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1062 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1063 1064 /* Ensure that restore_math() will restore */ 1065 if (msr_diff & MSR_FP) 1066 current->thread.load_fp = 1; 1067 #ifdef CONFIG_ALTIVEC 1068 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1069 current->thread.load_vec = 1; 1070 #endif 1071 restore_math(regs); 1072 1073 regs->msr |= msr_diff; 1074 } 1075 1076 #else 1077 #define tm_recheckpoint_new_task(new) 1078 #define __switch_to_tm(prev, new) 1079 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1080 1081 static inline void save_sprs(struct thread_struct *t) 1082 { 1083 #ifdef CONFIG_ALTIVEC 1084 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1085 t->vrsave = mfspr(SPRN_VRSAVE); 1086 #endif 1087 #ifdef CONFIG_PPC_BOOK3S_64 1088 if (cpu_has_feature(CPU_FTR_DSCR)) 1089 t->dscr = mfspr(SPRN_DSCR); 1090 1091 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1092 t->bescr = mfspr(SPRN_BESCR); 1093 t->ebbhr = mfspr(SPRN_EBBHR); 1094 t->ebbrr = mfspr(SPRN_EBBRR); 1095 1096 t->fscr = mfspr(SPRN_FSCR); 1097 1098 /* 1099 * Note that the TAR is not available for use in the kernel. 1100 * (To provide this, the TAR should be backed up/restored on 1101 * exception entry/exit instead, and be in pt_regs. FIXME, 1102 * this should be in pt_regs anyway (for debug).) 1103 */ 1104 t->tar = mfspr(SPRN_TAR); 1105 } 1106 #endif 1107 1108 thread_pkey_regs_save(t); 1109 } 1110 1111 static inline void restore_sprs(struct thread_struct *old_thread, 1112 struct thread_struct *new_thread) 1113 { 1114 #ifdef CONFIG_ALTIVEC 1115 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1116 old_thread->vrsave != new_thread->vrsave) 1117 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1118 #endif 1119 #ifdef CONFIG_PPC_BOOK3S_64 1120 if (cpu_has_feature(CPU_FTR_DSCR)) { 1121 u64 dscr = get_paca()->dscr_default; 1122 if (new_thread->dscr_inherit) 1123 dscr = new_thread->dscr; 1124 1125 if (old_thread->dscr != dscr) 1126 mtspr(SPRN_DSCR, dscr); 1127 } 1128 1129 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1130 if (old_thread->bescr != new_thread->bescr) 1131 mtspr(SPRN_BESCR, new_thread->bescr); 1132 if (old_thread->ebbhr != new_thread->ebbhr) 1133 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1134 if (old_thread->ebbrr != new_thread->ebbrr) 1135 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1136 1137 if (old_thread->fscr != new_thread->fscr) 1138 mtspr(SPRN_FSCR, new_thread->fscr); 1139 1140 if (old_thread->tar != new_thread->tar) 1141 mtspr(SPRN_TAR, new_thread->tar); 1142 } 1143 1144 if (cpu_has_feature(CPU_FTR_ARCH_300) && 1145 old_thread->tidr != new_thread->tidr) 1146 mtspr(SPRN_TIDR, new_thread->tidr); 1147 #endif 1148 1149 thread_pkey_regs_restore(new_thread, old_thread); 1150 } 1151 1152 #ifdef CONFIG_PPC_BOOK3S_64 1153 #define CP_SIZE 128 1154 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1155 #endif 1156 1157 struct task_struct *__switch_to(struct task_struct *prev, 1158 struct task_struct *new) 1159 { 1160 struct thread_struct *new_thread, *old_thread; 1161 struct task_struct *last; 1162 #ifdef CONFIG_PPC_BOOK3S_64 1163 struct ppc64_tlb_batch *batch; 1164 #endif 1165 1166 new_thread = &new->thread; 1167 old_thread = ¤t->thread; 1168 1169 WARN_ON(!irqs_disabled()); 1170 1171 #ifdef CONFIG_PPC64 1172 /* 1173 * Collect processor utilization data per process 1174 */ 1175 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 1176 struct cpu_usage *cu = this_cpu_ptr(&cpu_usage_array); 1177 long unsigned start_tb, current_tb; 1178 start_tb = old_thread->start_tb; 1179 cu->current_tb = current_tb = mfspr(SPRN_PURR); 1180 old_thread->accum_tb += (current_tb - start_tb); 1181 new_thread->start_tb = current_tb; 1182 } 1183 #endif /* CONFIG_PPC64 */ 1184 1185 #ifdef CONFIG_PPC_BOOK3S_64 1186 batch = this_cpu_ptr(&ppc64_tlb_batch); 1187 if (batch->active) { 1188 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1189 if (batch->index) 1190 __flush_tlb_pending(batch); 1191 batch->active = 0; 1192 } 1193 #endif /* CONFIG_PPC_BOOK3S_64 */ 1194 1195 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1196 switch_booke_debug_regs(&new->thread.debug); 1197 #else 1198 /* 1199 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1200 * schedule DABR 1201 */ 1202 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1203 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1204 __set_breakpoint(&new->thread.hw_brk); 1205 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1206 #endif 1207 1208 /* 1209 * We need to save SPRs before treclaim/trecheckpoint as these will 1210 * change a number of them. 1211 */ 1212 save_sprs(&prev->thread); 1213 1214 /* Save FPU, Altivec, VSX and SPE state */ 1215 giveup_all(prev); 1216 1217 __switch_to_tm(prev, new); 1218 1219 if (!radix_enabled()) { 1220 /* 1221 * We can't take a PMU exception inside _switch() since there 1222 * is a window where the kernel stack SLB and the kernel stack 1223 * are out of sync. Hard disable here. 1224 */ 1225 hard_irq_disable(); 1226 } 1227 1228 /* 1229 * Call restore_sprs() before calling _switch(). If we move it after 1230 * _switch() then we miss out on calling it for new tasks. The reason 1231 * for this is we manually create a stack frame for new tasks that 1232 * directly returns through ret_from_fork() or 1233 * ret_from_kernel_thread(). See copy_thread() for details. 1234 */ 1235 restore_sprs(old_thread, new_thread); 1236 1237 last = _switch(old_thread, new_thread); 1238 1239 #ifdef CONFIG_PPC_BOOK3S_64 1240 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1241 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1242 batch = this_cpu_ptr(&ppc64_tlb_batch); 1243 batch->active = 1; 1244 } 1245 1246 if (current_thread_info()->task->thread.regs) { 1247 restore_math(current_thread_info()->task->thread.regs); 1248 1249 /* 1250 * The copy-paste buffer can only store into foreign real 1251 * addresses, so unprivileged processes can not see the 1252 * data or use it in any way unless they have foreign real 1253 * mappings. If the new process has the foreign real address 1254 * mappings, we must issue a cp_abort to clear any state and 1255 * prevent snooping, corruption or a covert channel. 1256 * 1257 * DD1 allows paste into normal system memory so we do an 1258 * unpaired copy, rather than cp_abort, to clear the buffer, 1259 * since cp_abort is quite expensive. 1260 */ 1261 if (current_thread_info()->task->thread.used_vas) { 1262 asm volatile(PPC_CP_ABORT); 1263 } else if (cpu_has_feature(CPU_FTR_POWER9_DD1)) { 1264 asm volatile(PPC_COPY(%0, %1) 1265 : : "r"(dummy_copy_buffer), "r"(0)); 1266 } 1267 } 1268 #endif /* CONFIG_PPC_BOOK3S_64 */ 1269 1270 return last; 1271 } 1272 1273 static int instructions_to_print = 16; 1274 1275 static void show_instructions(struct pt_regs *regs) 1276 { 1277 int i; 1278 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1279 sizeof(int)); 1280 1281 printk("Instruction dump:"); 1282 1283 for (i = 0; i < instructions_to_print; i++) { 1284 int instr; 1285 1286 if (!(i % 8)) 1287 pr_cont("\n"); 1288 1289 #if !defined(CONFIG_BOOKE) 1290 /* If executing with the IMMU off, adjust pc rather 1291 * than print XXXXXXXX. 1292 */ 1293 if (!(regs->msr & MSR_IR)) 1294 pc = (unsigned long)phys_to_virt(pc); 1295 #endif 1296 1297 if (!__kernel_text_address(pc) || 1298 probe_kernel_address((unsigned int __user *)pc, instr)) { 1299 pr_cont("XXXXXXXX "); 1300 } else { 1301 if (regs->nip == pc) 1302 pr_cont("<%08x> ", instr); 1303 else 1304 pr_cont("%08x ", instr); 1305 } 1306 1307 pc += sizeof(int); 1308 } 1309 1310 pr_cont("\n"); 1311 } 1312 1313 struct regbit { 1314 unsigned long bit; 1315 const char *name; 1316 }; 1317 1318 static struct regbit msr_bits[] = { 1319 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1320 {MSR_SF, "SF"}, 1321 {MSR_HV, "HV"}, 1322 #endif 1323 {MSR_VEC, "VEC"}, 1324 {MSR_VSX, "VSX"}, 1325 #ifdef CONFIG_BOOKE 1326 {MSR_CE, "CE"}, 1327 #endif 1328 {MSR_EE, "EE"}, 1329 {MSR_PR, "PR"}, 1330 {MSR_FP, "FP"}, 1331 {MSR_ME, "ME"}, 1332 #ifdef CONFIG_BOOKE 1333 {MSR_DE, "DE"}, 1334 #else 1335 {MSR_SE, "SE"}, 1336 {MSR_BE, "BE"}, 1337 #endif 1338 {MSR_IR, "IR"}, 1339 {MSR_DR, "DR"}, 1340 {MSR_PMM, "PMM"}, 1341 #ifndef CONFIG_BOOKE 1342 {MSR_RI, "RI"}, 1343 {MSR_LE, "LE"}, 1344 #endif 1345 {0, NULL} 1346 }; 1347 1348 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1349 { 1350 const char *s = ""; 1351 1352 for (; bits->bit; ++bits) 1353 if (val & bits->bit) { 1354 pr_cont("%s%s", s, bits->name); 1355 s = sep; 1356 } 1357 } 1358 1359 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1360 static struct regbit msr_tm_bits[] = { 1361 {MSR_TS_T, "T"}, 1362 {MSR_TS_S, "S"}, 1363 {MSR_TM, "E"}, 1364 {0, NULL} 1365 }; 1366 1367 static void print_tm_bits(unsigned long val) 1368 { 1369 /* 1370 * This only prints something if at least one of the TM bit is set. 1371 * Inside the TM[], the output means: 1372 * E: Enabled (bit 32) 1373 * S: Suspended (bit 33) 1374 * T: Transactional (bit 34) 1375 */ 1376 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1377 pr_cont(",TM["); 1378 print_bits(val, msr_tm_bits, ""); 1379 pr_cont("]"); 1380 } 1381 } 1382 #else 1383 static void print_tm_bits(unsigned long val) {} 1384 #endif 1385 1386 static void print_msr_bits(unsigned long val) 1387 { 1388 pr_cont("<"); 1389 print_bits(val, msr_bits, ","); 1390 print_tm_bits(val); 1391 pr_cont(">"); 1392 } 1393 1394 #ifdef CONFIG_PPC64 1395 #define REG "%016lx" 1396 #define REGS_PER_LINE 4 1397 #define LAST_VOLATILE 13 1398 #else 1399 #define REG "%08lx" 1400 #define REGS_PER_LINE 8 1401 #define LAST_VOLATILE 12 1402 #endif 1403 1404 void show_regs(struct pt_regs * regs) 1405 { 1406 int i, trap; 1407 1408 show_regs_print_info(KERN_DEFAULT); 1409 1410 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1411 regs->nip, regs->link, regs->ctr); 1412 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1413 regs, regs->trap, print_tainted(), init_utsname()->release); 1414 printk("MSR: "REG" ", regs->msr); 1415 print_msr_bits(regs->msr); 1416 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1417 trap = TRAP(regs); 1418 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1419 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1420 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1421 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1422 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1423 #else 1424 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1425 #endif 1426 #ifdef CONFIG_PPC64 1427 pr_cont("SOFTE: %ld ", regs->softe); 1428 #endif 1429 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1430 if (MSR_TM_ACTIVE(regs->msr)) 1431 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1432 #endif 1433 1434 for (i = 0; i < 32; i++) { 1435 if ((i % REGS_PER_LINE) == 0) 1436 pr_cont("\nGPR%02d: ", i); 1437 pr_cont(REG " ", regs->gpr[i]); 1438 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1439 break; 1440 } 1441 pr_cont("\n"); 1442 #ifdef CONFIG_KALLSYMS 1443 /* 1444 * Lookup NIP late so we have the best change of getting the 1445 * above info out without failing 1446 */ 1447 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1448 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1449 #endif 1450 show_stack(current, (unsigned long *) regs->gpr[1]); 1451 if (!user_mode(regs)) 1452 show_instructions(regs); 1453 } 1454 1455 void flush_thread(void) 1456 { 1457 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1458 flush_ptrace_hw_breakpoint(current); 1459 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1460 set_debug_reg_defaults(¤t->thread); 1461 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1462 } 1463 1464 int set_thread_uses_vas(void) 1465 { 1466 #ifdef CONFIG_PPC_BOOK3S_64 1467 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1468 return -EINVAL; 1469 1470 current->thread.used_vas = 1; 1471 1472 /* 1473 * Even a process that has no foreign real address mapping can use 1474 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1475 * to clear any pending COPY and prevent a covert channel. 1476 * 1477 * __switch_to() will issue CP_ABORT on future context switches. 1478 */ 1479 asm volatile(PPC_CP_ABORT); 1480 1481 #endif /* CONFIG_PPC_BOOK3S_64 */ 1482 return 0; 1483 } 1484 1485 #ifdef CONFIG_PPC64 1486 static DEFINE_SPINLOCK(vas_thread_id_lock); 1487 static DEFINE_IDA(vas_thread_ida); 1488 1489 /* 1490 * We need to assign a unique thread id to each thread in a process. 1491 * 1492 * This thread id, referred to as TIDR, and separate from the Linux's tgid, 1493 * is intended to be used to direct an ASB_Notify from the hardware to the 1494 * thread, when a suitable event occurs in the system. 1495 * 1496 * One such event is a "paste" instruction in the context of Fast Thread 1497 * Wakeup (aka Core-to-core wake up in the Virtual Accelerator Switchboard 1498 * (VAS) in POWER9. 1499 * 1500 * To get a unique TIDR per process we could simply reuse task_pid_nr() but 1501 * the problem is that task_pid_nr() is not yet available copy_thread() is 1502 * called. Fixing that would require changing more intrusive arch-neutral 1503 * code in code path in copy_process()?. 1504 * 1505 * Further, to assign unique TIDRs within each process, we need an atomic 1506 * field (or an IDR) in task_struct, which again intrudes into the arch- 1507 * neutral code. So try to assign globally unique TIDRs for now. 1508 * 1509 * NOTE: TIDR 0 indicates that the thread does not need a TIDR value. 1510 * For now, only threads that expect to be notified by the VAS 1511 * hardware need a TIDR value and we assign values > 0 for those. 1512 */ 1513 #define MAX_THREAD_CONTEXT ((1 << 16) - 1) 1514 static int assign_thread_tidr(void) 1515 { 1516 int index; 1517 int err; 1518 1519 again: 1520 if (!ida_pre_get(&vas_thread_ida, GFP_KERNEL)) 1521 return -ENOMEM; 1522 1523 spin_lock(&vas_thread_id_lock); 1524 err = ida_get_new_above(&vas_thread_ida, 1, &index); 1525 spin_unlock(&vas_thread_id_lock); 1526 1527 if (err == -EAGAIN) 1528 goto again; 1529 else if (err) 1530 return err; 1531 1532 if (index > MAX_THREAD_CONTEXT) { 1533 spin_lock(&vas_thread_id_lock); 1534 ida_remove(&vas_thread_ida, index); 1535 spin_unlock(&vas_thread_id_lock); 1536 return -ENOMEM; 1537 } 1538 1539 return index; 1540 } 1541 1542 static void free_thread_tidr(int id) 1543 { 1544 spin_lock(&vas_thread_id_lock); 1545 ida_remove(&vas_thread_ida, id); 1546 spin_unlock(&vas_thread_id_lock); 1547 } 1548 1549 /* 1550 * Clear any TIDR value assigned to this thread. 1551 */ 1552 void clear_thread_tidr(struct task_struct *t) 1553 { 1554 if (!t->thread.tidr) 1555 return; 1556 1557 if (!cpu_has_feature(CPU_FTR_ARCH_300)) { 1558 WARN_ON_ONCE(1); 1559 return; 1560 } 1561 1562 mtspr(SPRN_TIDR, 0); 1563 free_thread_tidr(t->thread.tidr); 1564 t->thread.tidr = 0; 1565 } 1566 1567 void arch_release_task_struct(struct task_struct *t) 1568 { 1569 clear_thread_tidr(t); 1570 } 1571 1572 /* 1573 * Assign a unique TIDR (thread id) for task @t and set it in the thread 1574 * structure. For now, we only support setting TIDR for 'current' task. 1575 */ 1576 int set_thread_tidr(struct task_struct *t) 1577 { 1578 int rc; 1579 1580 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1581 return -EINVAL; 1582 1583 if (t != current) 1584 return -EINVAL; 1585 1586 if (t->thread.tidr) 1587 return 0; 1588 1589 rc = assign_thread_tidr(); 1590 if (rc < 0) 1591 return rc; 1592 1593 t->thread.tidr = rc; 1594 mtspr(SPRN_TIDR, t->thread.tidr); 1595 1596 return 0; 1597 } 1598 EXPORT_SYMBOL_GPL(set_thread_tidr); 1599 1600 #endif /* CONFIG_PPC64 */ 1601 1602 void 1603 release_thread(struct task_struct *t) 1604 { 1605 } 1606 1607 /* 1608 * this gets called so that we can store coprocessor state into memory and 1609 * copy the current task into the new thread. 1610 */ 1611 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1612 { 1613 flush_all_to_thread(src); 1614 /* 1615 * Flush TM state out so we can copy it. __switch_to_tm() does this 1616 * flush but it removes the checkpointed state from the current CPU and 1617 * transitions the CPU out of TM mode. Hence we need to call 1618 * tm_recheckpoint_new_task() (on the same task) to restore the 1619 * checkpointed state back and the TM mode. 1620 * 1621 * Can't pass dst because it isn't ready. Doesn't matter, passing 1622 * dst is only important for __switch_to() 1623 */ 1624 __switch_to_tm(src, src); 1625 1626 *dst = *src; 1627 1628 clear_task_ebb(dst); 1629 1630 return 0; 1631 } 1632 1633 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1634 { 1635 #ifdef CONFIG_PPC_BOOK3S_64 1636 unsigned long sp_vsid; 1637 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1638 1639 if (radix_enabled()) 1640 return; 1641 1642 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1643 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1644 << SLB_VSID_SHIFT_1T; 1645 else 1646 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1647 << SLB_VSID_SHIFT; 1648 sp_vsid |= SLB_VSID_KERNEL | llp; 1649 p->thread.ksp_vsid = sp_vsid; 1650 #endif 1651 } 1652 1653 /* 1654 * Copy a thread.. 1655 */ 1656 1657 /* 1658 * Copy architecture-specific thread state 1659 */ 1660 int copy_thread(unsigned long clone_flags, unsigned long usp, 1661 unsigned long kthread_arg, struct task_struct *p) 1662 { 1663 struct pt_regs *childregs, *kregs; 1664 extern void ret_from_fork(void); 1665 extern void ret_from_kernel_thread(void); 1666 void (*f)(void); 1667 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1668 struct thread_info *ti = task_thread_info(p); 1669 1670 klp_init_thread_info(ti); 1671 1672 /* Copy registers */ 1673 sp -= sizeof(struct pt_regs); 1674 childregs = (struct pt_regs *) sp; 1675 if (unlikely(p->flags & PF_KTHREAD)) { 1676 /* kernel thread */ 1677 memset(childregs, 0, sizeof(struct pt_regs)); 1678 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1679 /* function */ 1680 if (usp) 1681 childregs->gpr[14] = ppc_function_entry((void *)usp); 1682 #ifdef CONFIG_PPC64 1683 clear_tsk_thread_flag(p, TIF_32BIT); 1684 childregs->softe = IRQS_ENABLED; 1685 #endif 1686 childregs->gpr[15] = kthread_arg; 1687 p->thread.regs = NULL; /* no user register state */ 1688 ti->flags |= _TIF_RESTOREALL; 1689 f = ret_from_kernel_thread; 1690 } else { 1691 /* user thread */ 1692 struct pt_regs *regs = current_pt_regs(); 1693 CHECK_FULL_REGS(regs); 1694 *childregs = *regs; 1695 if (usp) 1696 childregs->gpr[1] = usp; 1697 p->thread.regs = childregs; 1698 childregs->gpr[3] = 0; /* Result from fork() */ 1699 if (clone_flags & CLONE_SETTLS) { 1700 #ifdef CONFIG_PPC64 1701 if (!is_32bit_task()) 1702 childregs->gpr[13] = childregs->gpr[6]; 1703 else 1704 #endif 1705 childregs->gpr[2] = childregs->gpr[6]; 1706 } 1707 1708 f = ret_from_fork; 1709 } 1710 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1711 sp -= STACK_FRAME_OVERHEAD; 1712 1713 /* 1714 * The way this works is that at some point in the future 1715 * some task will call _switch to switch to the new task. 1716 * That will pop off the stack frame created below and start 1717 * the new task running at ret_from_fork. The new task will 1718 * do some house keeping and then return from the fork or clone 1719 * system call, using the stack frame created above. 1720 */ 1721 ((unsigned long *)sp)[0] = 0; 1722 sp -= sizeof(struct pt_regs); 1723 kregs = (struct pt_regs *) sp; 1724 sp -= STACK_FRAME_OVERHEAD; 1725 p->thread.ksp = sp; 1726 #ifdef CONFIG_PPC32 1727 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1728 _ALIGN_UP(sizeof(struct thread_info), 16); 1729 #endif 1730 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1731 p->thread.ptrace_bps[0] = NULL; 1732 #endif 1733 1734 p->thread.fp_save_area = NULL; 1735 #ifdef CONFIG_ALTIVEC 1736 p->thread.vr_save_area = NULL; 1737 #endif 1738 1739 setup_ksp_vsid(p, sp); 1740 1741 #ifdef CONFIG_PPC64 1742 if (cpu_has_feature(CPU_FTR_DSCR)) { 1743 p->thread.dscr_inherit = current->thread.dscr_inherit; 1744 p->thread.dscr = mfspr(SPRN_DSCR); 1745 } 1746 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1747 p->thread.ppr = INIT_PPR; 1748 1749 p->thread.tidr = 0; 1750 #endif 1751 kregs->nip = ppc_function_entry(f); 1752 return 0; 1753 } 1754 1755 /* 1756 * Set up a thread for executing a new program 1757 */ 1758 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1759 { 1760 #ifdef CONFIG_PPC64 1761 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1762 #endif 1763 1764 /* 1765 * If we exec out of a kernel thread then thread.regs will not be 1766 * set. Do it now. 1767 */ 1768 if (!current->thread.regs) { 1769 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1770 current->thread.regs = regs - 1; 1771 } 1772 1773 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1774 /* 1775 * Clear any transactional state, we're exec()ing. The cause is 1776 * not important as there will never be a recheckpoint so it's not 1777 * user visible. 1778 */ 1779 if (MSR_TM_SUSPENDED(mfmsr())) 1780 tm_reclaim_current(0); 1781 #endif 1782 1783 memset(regs->gpr, 0, sizeof(regs->gpr)); 1784 regs->ctr = 0; 1785 regs->link = 0; 1786 regs->xer = 0; 1787 regs->ccr = 0; 1788 regs->gpr[1] = sp; 1789 1790 /* 1791 * We have just cleared all the nonvolatile GPRs, so make 1792 * FULL_REGS(regs) return true. This is necessary to allow 1793 * ptrace to examine the thread immediately after exec. 1794 */ 1795 regs->trap &= ~1UL; 1796 1797 #ifdef CONFIG_PPC32 1798 regs->mq = 0; 1799 regs->nip = start; 1800 regs->msr = MSR_USER; 1801 #else 1802 if (!is_32bit_task()) { 1803 unsigned long entry; 1804 1805 if (is_elf2_task()) { 1806 /* Look ma, no function descriptors! */ 1807 entry = start; 1808 1809 /* 1810 * Ulrich says: 1811 * The latest iteration of the ABI requires that when 1812 * calling a function (at its global entry point), 1813 * the caller must ensure r12 holds the entry point 1814 * address (so that the function can quickly 1815 * establish addressability). 1816 */ 1817 regs->gpr[12] = start; 1818 /* Make sure that's restored on entry to userspace. */ 1819 set_thread_flag(TIF_RESTOREALL); 1820 } else { 1821 unsigned long toc; 1822 1823 /* start is a relocated pointer to the function 1824 * descriptor for the elf _start routine. The first 1825 * entry in the function descriptor is the entry 1826 * address of _start and the second entry is the TOC 1827 * value we need to use. 1828 */ 1829 __get_user(entry, (unsigned long __user *)start); 1830 __get_user(toc, (unsigned long __user *)start+1); 1831 1832 /* Check whether the e_entry function descriptor entries 1833 * need to be relocated before we can use them. 1834 */ 1835 if (load_addr != 0) { 1836 entry += load_addr; 1837 toc += load_addr; 1838 } 1839 regs->gpr[2] = toc; 1840 } 1841 regs->nip = entry; 1842 regs->msr = MSR_USER64; 1843 } else { 1844 regs->nip = start; 1845 regs->gpr[2] = 0; 1846 regs->msr = MSR_USER32; 1847 } 1848 #endif 1849 #ifdef CONFIG_VSX 1850 current->thread.used_vsr = 0; 1851 #endif 1852 current->thread.load_fp = 0; 1853 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1854 current->thread.fp_save_area = NULL; 1855 #ifdef CONFIG_ALTIVEC 1856 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1857 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1858 current->thread.vr_save_area = NULL; 1859 current->thread.vrsave = 0; 1860 current->thread.used_vr = 0; 1861 current->thread.load_vec = 0; 1862 #endif /* CONFIG_ALTIVEC */ 1863 #ifdef CONFIG_SPE 1864 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1865 current->thread.acc = 0; 1866 current->thread.spefscr = 0; 1867 current->thread.used_spe = 0; 1868 #endif /* CONFIG_SPE */ 1869 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1870 current->thread.tm_tfhar = 0; 1871 current->thread.tm_texasr = 0; 1872 current->thread.tm_tfiar = 0; 1873 current->thread.load_tm = 0; 1874 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1875 1876 thread_pkey_regs_init(¤t->thread); 1877 } 1878 EXPORT_SYMBOL(start_thread); 1879 1880 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1881 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1882 1883 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1884 { 1885 struct pt_regs *regs = tsk->thread.regs; 1886 1887 /* This is a bit hairy. If we are an SPE enabled processor 1888 * (have embedded fp) we store the IEEE exception enable flags in 1889 * fpexc_mode. fpexc_mode is also used for setting FP exception 1890 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1891 if (val & PR_FP_EXC_SW_ENABLE) { 1892 #ifdef CONFIG_SPE 1893 if (cpu_has_feature(CPU_FTR_SPE)) { 1894 /* 1895 * When the sticky exception bits are set 1896 * directly by userspace, it must call prctl 1897 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1898 * in the existing prctl settings) or 1899 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1900 * the bits being set). <fenv.h> functions 1901 * saving and restoring the whole 1902 * floating-point environment need to do so 1903 * anyway to restore the prctl settings from 1904 * the saved environment. 1905 */ 1906 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1907 tsk->thread.fpexc_mode = val & 1908 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1909 return 0; 1910 } else { 1911 return -EINVAL; 1912 } 1913 #else 1914 return -EINVAL; 1915 #endif 1916 } 1917 1918 /* on a CONFIG_SPE this does not hurt us. The bits that 1919 * __pack_fe01 use do not overlap with bits used for 1920 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1921 * on CONFIG_SPE implementations are reserved so writing to 1922 * them does not change anything */ 1923 if (val > PR_FP_EXC_PRECISE) 1924 return -EINVAL; 1925 tsk->thread.fpexc_mode = __pack_fe01(val); 1926 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1927 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1928 | tsk->thread.fpexc_mode; 1929 return 0; 1930 } 1931 1932 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1933 { 1934 unsigned int val; 1935 1936 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1937 #ifdef CONFIG_SPE 1938 if (cpu_has_feature(CPU_FTR_SPE)) { 1939 /* 1940 * When the sticky exception bits are set 1941 * directly by userspace, it must call prctl 1942 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1943 * in the existing prctl settings) or 1944 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1945 * the bits being set). <fenv.h> functions 1946 * saving and restoring the whole 1947 * floating-point environment need to do so 1948 * anyway to restore the prctl settings from 1949 * the saved environment. 1950 */ 1951 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1952 val = tsk->thread.fpexc_mode; 1953 } else 1954 return -EINVAL; 1955 #else 1956 return -EINVAL; 1957 #endif 1958 else 1959 val = __unpack_fe01(tsk->thread.fpexc_mode); 1960 return put_user(val, (unsigned int __user *) adr); 1961 } 1962 1963 int set_endian(struct task_struct *tsk, unsigned int val) 1964 { 1965 struct pt_regs *regs = tsk->thread.regs; 1966 1967 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1968 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1969 return -EINVAL; 1970 1971 if (regs == NULL) 1972 return -EINVAL; 1973 1974 if (val == PR_ENDIAN_BIG) 1975 regs->msr &= ~MSR_LE; 1976 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1977 regs->msr |= MSR_LE; 1978 else 1979 return -EINVAL; 1980 1981 return 0; 1982 } 1983 1984 int get_endian(struct task_struct *tsk, unsigned long adr) 1985 { 1986 struct pt_regs *regs = tsk->thread.regs; 1987 unsigned int val; 1988 1989 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1990 !cpu_has_feature(CPU_FTR_REAL_LE)) 1991 return -EINVAL; 1992 1993 if (regs == NULL) 1994 return -EINVAL; 1995 1996 if (regs->msr & MSR_LE) { 1997 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1998 val = PR_ENDIAN_LITTLE; 1999 else 2000 val = PR_ENDIAN_PPC_LITTLE; 2001 } else 2002 val = PR_ENDIAN_BIG; 2003 2004 return put_user(val, (unsigned int __user *)adr); 2005 } 2006 2007 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 2008 { 2009 tsk->thread.align_ctl = val; 2010 return 0; 2011 } 2012 2013 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 2014 { 2015 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 2016 } 2017 2018 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 2019 unsigned long nbytes) 2020 { 2021 unsigned long stack_page; 2022 unsigned long cpu = task_cpu(p); 2023 2024 /* 2025 * Avoid crashing if the stack has overflowed and corrupted 2026 * task_cpu(p), which is in the thread_info struct. 2027 */ 2028 if (cpu < NR_CPUS && cpu_possible(cpu)) { 2029 stack_page = (unsigned long) hardirq_ctx[cpu]; 2030 if (sp >= stack_page + sizeof(struct thread_struct) 2031 && sp <= stack_page + THREAD_SIZE - nbytes) 2032 return 1; 2033 2034 stack_page = (unsigned long) softirq_ctx[cpu]; 2035 if (sp >= stack_page + sizeof(struct thread_struct) 2036 && sp <= stack_page + THREAD_SIZE - nbytes) 2037 return 1; 2038 } 2039 return 0; 2040 } 2041 2042 int validate_sp(unsigned long sp, struct task_struct *p, 2043 unsigned long nbytes) 2044 { 2045 unsigned long stack_page = (unsigned long)task_stack_page(p); 2046 2047 if (sp >= stack_page + sizeof(struct thread_struct) 2048 && sp <= stack_page + THREAD_SIZE - nbytes) 2049 return 1; 2050 2051 return valid_irq_stack(sp, p, nbytes); 2052 } 2053 2054 EXPORT_SYMBOL(validate_sp); 2055 2056 unsigned long get_wchan(struct task_struct *p) 2057 { 2058 unsigned long ip, sp; 2059 int count = 0; 2060 2061 if (!p || p == current || p->state == TASK_RUNNING) 2062 return 0; 2063 2064 sp = p->thread.ksp; 2065 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2066 return 0; 2067 2068 do { 2069 sp = *(unsigned long *)sp; 2070 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2071 p->state == TASK_RUNNING) 2072 return 0; 2073 if (count > 0) { 2074 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2075 if (!in_sched_functions(ip)) 2076 return ip; 2077 } 2078 } while (count++ < 16); 2079 return 0; 2080 } 2081 2082 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2083 2084 void show_stack(struct task_struct *tsk, unsigned long *stack) 2085 { 2086 unsigned long sp, ip, lr, newsp; 2087 int count = 0; 2088 int firstframe = 1; 2089 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2090 int curr_frame = current->curr_ret_stack; 2091 extern void return_to_handler(void); 2092 unsigned long rth = (unsigned long)return_to_handler; 2093 #endif 2094 2095 sp = (unsigned long) stack; 2096 if (tsk == NULL) 2097 tsk = current; 2098 if (sp == 0) { 2099 if (tsk == current) 2100 sp = current_stack_pointer(); 2101 else 2102 sp = tsk->thread.ksp; 2103 } 2104 2105 lr = 0; 2106 printk("Call Trace:\n"); 2107 do { 2108 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2109 return; 2110 2111 stack = (unsigned long *) sp; 2112 newsp = stack[0]; 2113 ip = stack[STACK_FRAME_LR_SAVE]; 2114 if (!firstframe || ip != lr) { 2115 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2116 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2117 if ((ip == rth) && curr_frame >= 0) { 2118 pr_cont(" (%pS)", 2119 (void *)current->ret_stack[curr_frame].ret); 2120 curr_frame--; 2121 } 2122 #endif 2123 if (firstframe) 2124 pr_cont(" (unreliable)"); 2125 pr_cont("\n"); 2126 } 2127 firstframe = 0; 2128 2129 /* 2130 * See if this is an exception frame. 2131 * We look for the "regshere" marker in the current frame. 2132 */ 2133 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2134 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2135 struct pt_regs *regs = (struct pt_regs *) 2136 (sp + STACK_FRAME_OVERHEAD); 2137 lr = regs->link; 2138 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2139 regs->trap, (void *)regs->nip, (void *)lr); 2140 firstframe = 1; 2141 } 2142 2143 sp = newsp; 2144 } while (count++ < kstack_depth_to_print); 2145 } 2146 2147 #ifdef CONFIG_PPC64 2148 /* Called with hard IRQs off */ 2149 void notrace __ppc64_runlatch_on(void) 2150 { 2151 struct thread_info *ti = current_thread_info(); 2152 2153 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2154 /* 2155 * Least significant bit (RUN) is the only writable bit of 2156 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2157 * earliest ISA where this is the case, but it's convenient. 2158 */ 2159 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2160 } else { 2161 unsigned long ctrl; 2162 2163 /* 2164 * Some architectures (e.g., Cell) have writable fields other 2165 * than RUN, so do the read-modify-write. 2166 */ 2167 ctrl = mfspr(SPRN_CTRLF); 2168 ctrl |= CTRL_RUNLATCH; 2169 mtspr(SPRN_CTRLT, ctrl); 2170 } 2171 2172 ti->local_flags |= _TLF_RUNLATCH; 2173 } 2174 2175 /* Called with hard IRQs off */ 2176 void notrace __ppc64_runlatch_off(void) 2177 { 2178 struct thread_info *ti = current_thread_info(); 2179 2180 ti->local_flags &= ~_TLF_RUNLATCH; 2181 2182 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2183 mtspr(SPRN_CTRLT, 0); 2184 } else { 2185 unsigned long ctrl; 2186 2187 ctrl = mfspr(SPRN_CTRLF); 2188 ctrl &= ~CTRL_RUNLATCH; 2189 mtspr(SPRN_CTRLT, ctrl); 2190 } 2191 } 2192 #endif /* CONFIG_PPC64 */ 2193 2194 unsigned long arch_align_stack(unsigned long sp) 2195 { 2196 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2197 sp -= get_random_int() & ~PAGE_MASK; 2198 return sp & ~0xf; 2199 } 2200 2201 static inline unsigned long brk_rnd(void) 2202 { 2203 unsigned long rnd = 0; 2204 2205 /* 8MB for 32bit, 1GB for 64bit */ 2206 if (is_32bit_task()) 2207 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2208 else 2209 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2210 2211 return rnd << PAGE_SHIFT; 2212 } 2213 2214 unsigned long arch_randomize_brk(struct mm_struct *mm) 2215 { 2216 unsigned long base = mm->brk; 2217 unsigned long ret; 2218 2219 #ifdef CONFIG_PPC_BOOK3S_64 2220 /* 2221 * If we are using 1TB segments and we are allowed to randomise 2222 * the heap, we can put it above 1TB so it is backed by a 1TB 2223 * segment. Otherwise the heap will be in the bottom 1TB 2224 * which always uses 256MB segments and this may result in a 2225 * performance penalty. We don't need to worry about radix. For 2226 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2227 */ 2228 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2229 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2230 #endif 2231 2232 ret = PAGE_ALIGN(base + brk_rnd()); 2233 2234 if (ret < mm->brk) 2235 return mm->brk; 2236 2237 return ret; 2238 } 2239 2240