1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/pgtable.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/mmu.h> 48 #include <asm/prom.h> 49 #include <asm/machdep.h> 50 #include <asm/time.h> 51 #include <asm/runlatch.h> 52 #include <asm/syscalls.h> 53 #include <asm/switch_to.h> 54 #include <asm/tm.h> 55 #include <asm/debug.h> 56 #ifdef CONFIG_PPC64 57 #include <asm/firmware.h> 58 #include <asm/hw_irq.h> 59 #endif 60 #include <asm/code-patching.h> 61 #include <asm/exec.h> 62 #include <asm/livepatch.h> 63 #include <asm/cpu_has_feature.h> 64 #include <asm/asm-prototypes.h> 65 #include <asm/stacktrace.h> 66 #include <asm/hw_breakpoint.h> 67 68 #include <linux/kprobes.h> 69 #include <linux/kdebug.h> 70 71 /* Transactional Memory debug */ 72 #ifdef TM_DEBUG_SW 73 #define TM_DEBUG(x...) printk(KERN_INFO x) 74 #else 75 #define TM_DEBUG(x...) do { } while(0) 76 #endif 77 78 extern unsigned long _get_SP(void); 79 80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 81 /* 82 * Are we running in "Suspend disabled" mode? If so we have to block any 83 * sigreturn that would get us into suspended state, and we also warn in some 84 * other paths that we should never reach with suspend disabled. 85 */ 86 bool tm_suspend_disabled __ro_after_init = false; 87 88 static void check_if_tm_restore_required(struct task_struct *tsk) 89 { 90 /* 91 * If we are saving the current thread's registers, and the 92 * thread is in a transactional state, set the TIF_RESTORE_TM 93 * bit so that we know to restore the registers before 94 * returning to userspace. 95 */ 96 if (tsk == current && tsk->thread.regs && 97 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 98 !test_thread_flag(TIF_RESTORE_TM)) { 99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 100 set_thread_flag(TIF_RESTORE_TM); 101 } 102 } 103 104 static bool tm_active_with_fp(struct task_struct *tsk) 105 { 106 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 107 (tsk->thread.ckpt_regs.msr & MSR_FP); 108 } 109 110 static bool tm_active_with_altivec(struct task_struct *tsk) 111 { 112 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 113 (tsk->thread.ckpt_regs.msr & MSR_VEC); 114 } 115 #else 116 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 117 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 118 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 119 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 120 121 bool strict_msr_control; 122 EXPORT_SYMBOL(strict_msr_control); 123 124 static int __init enable_strict_msr_control(char *str) 125 { 126 strict_msr_control = true; 127 pr_info("Enabling strict facility control\n"); 128 129 return 0; 130 } 131 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 132 133 /* notrace because it's called by restore_math */ 134 unsigned long notrace msr_check_and_set(unsigned long bits) 135 { 136 unsigned long oldmsr = mfmsr(); 137 unsigned long newmsr; 138 139 newmsr = oldmsr | bits; 140 141 #ifdef CONFIG_VSX 142 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 143 newmsr |= MSR_VSX; 144 #endif 145 146 if (oldmsr != newmsr) 147 mtmsr_isync(newmsr); 148 149 return newmsr; 150 } 151 EXPORT_SYMBOL_GPL(msr_check_and_set); 152 153 /* notrace because it's called by restore_math */ 154 void notrace __msr_check_and_clear(unsigned long bits) 155 { 156 unsigned long oldmsr = mfmsr(); 157 unsigned long newmsr; 158 159 newmsr = oldmsr & ~bits; 160 161 #ifdef CONFIG_VSX 162 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 163 newmsr &= ~MSR_VSX; 164 #endif 165 166 if (oldmsr != newmsr) 167 mtmsr_isync(newmsr); 168 } 169 EXPORT_SYMBOL(__msr_check_and_clear); 170 171 #ifdef CONFIG_PPC_FPU 172 static void __giveup_fpu(struct task_struct *tsk) 173 { 174 unsigned long msr; 175 176 save_fpu(tsk); 177 msr = tsk->thread.regs->msr; 178 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 179 #ifdef CONFIG_VSX 180 if (cpu_has_feature(CPU_FTR_VSX)) 181 msr &= ~MSR_VSX; 182 #endif 183 tsk->thread.regs->msr = msr; 184 } 185 186 void giveup_fpu(struct task_struct *tsk) 187 { 188 check_if_tm_restore_required(tsk); 189 190 msr_check_and_set(MSR_FP); 191 __giveup_fpu(tsk); 192 msr_check_and_clear(MSR_FP); 193 } 194 EXPORT_SYMBOL(giveup_fpu); 195 196 /* 197 * Make sure the floating-point register state in the 198 * the thread_struct is up to date for task tsk. 199 */ 200 void flush_fp_to_thread(struct task_struct *tsk) 201 { 202 if (tsk->thread.regs) { 203 /* 204 * We need to disable preemption here because if we didn't, 205 * another process could get scheduled after the regs->msr 206 * test but before we have finished saving the FP registers 207 * to the thread_struct. That process could take over the 208 * FPU, and then when we get scheduled again we would store 209 * bogus values for the remaining FP registers. 210 */ 211 preempt_disable(); 212 if (tsk->thread.regs->msr & MSR_FP) { 213 /* 214 * This should only ever be called for current or 215 * for a stopped child process. Since we save away 216 * the FP register state on context switch, 217 * there is something wrong if a stopped child appears 218 * to still have its FP state in the CPU registers. 219 */ 220 BUG_ON(tsk != current); 221 giveup_fpu(tsk); 222 } 223 preempt_enable(); 224 } 225 } 226 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 227 228 void enable_kernel_fp(void) 229 { 230 unsigned long cpumsr; 231 232 WARN_ON(preemptible()); 233 234 cpumsr = msr_check_and_set(MSR_FP); 235 236 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 237 check_if_tm_restore_required(current); 238 /* 239 * If a thread has already been reclaimed then the 240 * checkpointed registers are on the CPU but have definitely 241 * been saved by the reclaim code. Don't need to and *cannot* 242 * giveup as this would save to the 'live' structure not the 243 * checkpointed structure. 244 */ 245 if (!MSR_TM_ACTIVE(cpumsr) && 246 MSR_TM_ACTIVE(current->thread.regs->msr)) 247 return; 248 __giveup_fpu(current); 249 } 250 } 251 EXPORT_SYMBOL(enable_kernel_fp); 252 253 static int restore_fp(struct task_struct *tsk) 254 { 255 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 256 load_fp_state(¤t->thread.fp_state); 257 current->thread.load_fp++; 258 return 1; 259 } 260 return 0; 261 } 262 #else 263 static int restore_fp(struct task_struct *tsk) { return 0; } 264 #endif /* CONFIG_PPC_FPU */ 265 266 #ifdef CONFIG_ALTIVEC 267 #define loadvec(thr) ((thr).load_vec) 268 269 static void __giveup_altivec(struct task_struct *tsk) 270 { 271 unsigned long msr; 272 273 save_altivec(tsk); 274 msr = tsk->thread.regs->msr; 275 msr &= ~MSR_VEC; 276 #ifdef CONFIG_VSX 277 if (cpu_has_feature(CPU_FTR_VSX)) 278 msr &= ~MSR_VSX; 279 #endif 280 tsk->thread.regs->msr = msr; 281 } 282 283 void giveup_altivec(struct task_struct *tsk) 284 { 285 check_if_tm_restore_required(tsk); 286 287 msr_check_and_set(MSR_VEC); 288 __giveup_altivec(tsk); 289 msr_check_and_clear(MSR_VEC); 290 } 291 EXPORT_SYMBOL(giveup_altivec); 292 293 void enable_kernel_altivec(void) 294 { 295 unsigned long cpumsr; 296 297 WARN_ON(preemptible()); 298 299 cpumsr = msr_check_and_set(MSR_VEC); 300 301 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 302 check_if_tm_restore_required(current); 303 /* 304 * If a thread has already been reclaimed then the 305 * checkpointed registers are on the CPU but have definitely 306 * been saved by the reclaim code. Don't need to and *cannot* 307 * giveup as this would save to the 'live' structure not the 308 * checkpointed structure. 309 */ 310 if (!MSR_TM_ACTIVE(cpumsr) && 311 MSR_TM_ACTIVE(current->thread.regs->msr)) 312 return; 313 __giveup_altivec(current); 314 } 315 } 316 EXPORT_SYMBOL(enable_kernel_altivec); 317 318 /* 319 * Make sure the VMX/Altivec register state in the 320 * the thread_struct is up to date for task tsk. 321 */ 322 void flush_altivec_to_thread(struct task_struct *tsk) 323 { 324 if (tsk->thread.regs) { 325 preempt_disable(); 326 if (tsk->thread.regs->msr & MSR_VEC) { 327 BUG_ON(tsk != current); 328 giveup_altivec(tsk); 329 } 330 preempt_enable(); 331 } 332 } 333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 334 335 static int restore_altivec(struct task_struct *tsk) 336 { 337 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 338 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 339 load_vr_state(&tsk->thread.vr_state); 340 tsk->thread.used_vr = 1; 341 tsk->thread.load_vec++; 342 343 return 1; 344 } 345 return 0; 346 } 347 #else 348 #define loadvec(thr) 0 349 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 350 #endif /* CONFIG_ALTIVEC */ 351 352 #ifdef CONFIG_VSX 353 static void __giveup_vsx(struct task_struct *tsk) 354 { 355 unsigned long msr = tsk->thread.regs->msr; 356 357 /* 358 * We should never be ssetting MSR_VSX without also setting 359 * MSR_FP and MSR_VEC 360 */ 361 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 362 363 /* __giveup_fpu will clear MSR_VSX */ 364 if (msr & MSR_FP) 365 __giveup_fpu(tsk); 366 if (msr & MSR_VEC) 367 __giveup_altivec(tsk); 368 } 369 370 static void giveup_vsx(struct task_struct *tsk) 371 { 372 check_if_tm_restore_required(tsk); 373 374 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 375 __giveup_vsx(tsk); 376 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 377 } 378 379 void enable_kernel_vsx(void) 380 { 381 unsigned long cpumsr; 382 383 WARN_ON(preemptible()); 384 385 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 386 387 if (current->thread.regs && 388 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 389 check_if_tm_restore_required(current); 390 /* 391 * If a thread has already been reclaimed then the 392 * checkpointed registers are on the CPU but have definitely 393 * been saved by the reclaim code. Don't need to and *cannot* 394 * giveup as this would save to the 'live' structure not the 395 * checkpointed structure. 396 */ 397 if (!MSR_TM_ACTIVE(cpumsr) && 398 MSR_TM_ACTIVE(current->thread.regs->msr)) 399 return; 400 __giveup_vsx(current); 401 } 402 } 403 EXPORT_SYMBOL(enable_kernel_vsx); 404 405 void flush_vsx_to_thread(struct task_struct *tsk) 406 { 407 if (tsk->thread.regs) { 408 preempt_disable(); 409 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 410 BUG_ON(tsk != current); 411 giveup_vsx(tsk); 412 } 413 preempt_enable(); 414 } 415 } 416 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 417 418 static int restore_vsx(struct task_struct *tsk) 419 { 420 if (cpu_has_feature(CPU_FTR_VSX)) { 421 tsk->thread.used_vsr = 1; 422 return 1; 423 } 424 425 return 0; 426 } 427 #else 428 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 429 #endif /* CONFIG_VSX */ 430 431 #ifdef CONFIG_SPE 432 void giveup_spe(struct task_struct *tsk) 433 { 434 check_if_tm_restore_required(tsk); 435 436 msr_check_and_set(MSR_SPE); 437 __giveup_spe(tsk); 438 msr_check_and_clear(MSR_SPE); 439 } 440 EXPORT_SYMBOL(giveup_spe); 441 442 void enable_kernel_spe(void) 443 { 444 WARN_ON(preemptible()); 445 446 msr_check_and_set(MSR_SPE); 447 448 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 449 check_if_tm_restore_required(current); 450 __giveup_spe(current); 451 } 452 } 453 EXPORT_SYMBOL(enable_kernel_spe); 454 455 void flush_spe_to_thread(struct task_struct *tsk) 456 { 457 if (tsk->thread.regs) { 458 preempt_disable(); 459 if (tsk->thread.regs->msr & MSR_SPE) { 460 BUG_ON(tsk != current); 461 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 462 giveup_spe(tsk); 463 } 464 preempt_enable(); 465 } 466 } 467 #endif /* CONFIG_SPE */ 468 469 static unsigned long msr_all_available; 470 471 static int __init init_msr_all_available(void) 472 { 473 #ifdef CONFIG_PPC_FPU 474 msr_all_available |= MSR_FP; 475 #endif 476 #ifdef CONFIG_ALTIVEC 477 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 478 msr_all_available |= MSR_VEC; 479 #endif 480 #ifdef CONFIG_VSX 481 if (cpu_has_feature(CPU_FTR_VSX)) 482 msr_all_available |= MSR_VSX; 483 #endif 484 #ifdef CONFIG_SPE 485 if (cpu_has_feature(CPU_FTR_SPE)) 486 msr_all_available |= MSR_SPE; 487 #endif 488 489 return 0; 490 } 491 early_initcall(init_msr_all_available); 492 493 void giveup_all(struct task_struct *tsk) 494 { 495 unsigned long usermsr; 496 497 if (!tsk->thread.regs) 498 return; 499 500 usermsr = tsk->thread.regs->msr; 501 502 if ((usermsr & msr_all_available) == 0) 503 return; 504 505 msr_check_and_set(msr_all_available); 506 check_if_tm_restore_required(tsk); 507 508 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 509 510 #ifdef CONFIG_PPC_FPU 511 if (usermsr & MSR_FP) 512 __giveup_fpu(tsk); 513 #endif 514 #ifdef CONFIG_ALTIVEC 515 if (usermsr & MSR_VEC) 516 __giveup_altivec(tsk); 517 #endif 518 #ifdef CONFIG_SPE 519 if (usermsr & MSR_SPE) 520 __giveup_spe(tsk); 521 #endif 522 523 msr_check_and_clear(msr_all_available); 524 } 525 EXPORT_SYMBOL(giveup_all); 526 527 /* 528 * The exception exit path calls restore_math() with interrupts hard disabled 529 * but the soft irq state not "reconciled". ftrace code that calls 530 * local_irq_save/restore causes warnings. 531 * 532 * Rather than complicate the exit path, just don't trace restore_math. This 533 * could be done by having ftrace entry code check for this un-reconciled 534 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 535 * temporarily fix it up for the duration of the ftrace call. 536 */ 537 void notrace restore_math(struct pt_regs *regs) 538 { 539 unsigned long msr; 540 541 if (!MSR_TM_ACTIVE(regs->msr) && 542 !current->thread.load_fp && !loadvec(current->thread)) 543 return; 544 545 msr = regs->msr; 546 msr_check_and_set(msr_all_available); 547 548 /* 549 * Only reload if the bit is not set in the user MSR, the bit BEING set 550 * indicates that the registers are hot 551 */ 552 if ((!(msr & MSR_FP)) && restore_fp(current)) 553 msr |= MSR_FP | current->thread.fpexc_mode; 554 555 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 556 msr |= MSR_VEC; 557 558 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 559 restore_vsx(current)) { 560 msr |= MSR_VSX; 561 } 562 563 msr_check_and_clear(msr_all_available); 564 565 regs->msr = msr; 566 } 567 568 static void save_all(struct task_struct *tsk) 569 { 570 unsigned long usermsr; 571 572 if (!tsk->thread.regs) 573 return; 574 575 usermsr = tsk->thread.regs->msr; 576 577 if ((usermsr & msr_all_available) == 0) 578 return; 579 580 msr_check_and_set(msr_all_available); 581 582 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 583 584 if (usermsr & MSR_FP) 585 save_fpu(tsk); 586 587 if (usermsr & MSR_VEC) 588 save_altivec(tsk); 589 590 if (usermsr & MSR_SPE) 591 __giveup_spe(tsk); 592 593 msr_check_and_clear(msr_all_available); 594 thread_pkey_regs_save(&tsk->thread); 595 } 596 597 void flush_all_to_thread(struct task_struct *tsk) 598 { 599 if (tsk->thread.regs) { 600 preempt_disable(); 601 BUG_ON(tsk != current); 602 #ifdef CONFIG_SPE 603 if (tsk->thread.regs->msr & MSR_SPE) 604 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 605 #endif 606 save_all(tsk); 607 608 preempt_enable(); 609 } 610 } 611 EXPORT_SYMBOL(flush_all_to_thread); 612 613 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 614 void do_send_trap(struct pt_regs *regs, unsigned long address, 615 unsigned long error_code, int breakpt) 616 { 617 current->thread.trap_nr = TRAP_HWBKPT; 618 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 619 11, SIGSEGV) == NOTIFY_STOP) 620 return; 621 622 /* Deliver the signal to userspace */ 623 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 624 (void __user *)address); 625 } 626 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 627 void do_break (struct pt_regs *regs, unsigned long address, 628 unsigned long error_code) 629 { 630 current->thread.trap_nr = TRAP_HWBKPT; 631 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 632 11, SIGSEGV) == NOTIFY_STOP) 633 return; 634 635 if (debugger_break_match(regs)) 636 return; 637 638 /* Clear the breakpoint */ 639 hw_breakpoint_disable(); 640 641 /* Deliver the signal to userspace */ 642 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address); 643 } 644 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 645 646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 647 648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 649 /* 650 * Set the debug registers back to their default "safe" values. 651 */ 652 static void set_debug_reg_defaults(struct thread_struct *thread) 653 { 654 thread->debug.iac1 = thread->debug.iac2 = 0; 655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 656 thread->debug.iac3 = thread->debug.iac4 = 0; 657 #endif 658 thread->debug.dac1 = thread->debug.dac2 = 0; 659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 660 thread->debug.dvc1 = thread->debug.dvc2 = 0; 661 #endif 662 thread->debug.dbcr0 = 0; 663 #ifdef CONFIG_BOOKE 664 /* 665 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 666 */ 667 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 668 DBCR1_IAC3US | DBCR1_IAC4US; 669 /* 670 * Force Data Address Compare User/Supervisor bits to be User-only 671 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 672 */ 673 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 674 #else 675 thread->debug.dbcr1 = 0; 676 #endif 677 } 678 679 static void prime_debug_regs(struct debug_reg *debug) 680 { 681 /* 682 * We could have inherited MSR_DE from userspace, since 683 * it doesn't get cleared on exception entry. Make sure 684 * MSR_DE is clear before we enable any debug events. 685 */ 686 mtmsr(mfmsr() & ~MSR_DE); 687 688 mtspr(SPRN_IAC1, debug->iac1); 689 mtspr(SPRN_IAC2, debug->iac2); 690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 691 mtspr(SPRN_IAC3, debug->iac3); 692 mtspr(SPRN_IAC4, debug->iac4); 693 #endif 694 mtspr(SPRN_DAC1, debug->dac1); 695 mtspr(SPRN_DAC2, debug->dac2); 696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 697 mtspr(SPRN_DVC1, debug->dvc1); 698 mtspr(SPRN_DVC2, debug->dvc2); 699 #endif 700 mtspr(SPRN_DBCR0, debug->dbcr0); 701 mtspr(SPRN_DBCR1, debug->dbcr1); 702 #ifdef CONFIG_BOOKE 703 mtspr(SPRN_DBCR2, debug->dbcr2); 704 #endif 705 } 706 /* 707 * Unless neither the old or new thread are making use of the 708 * debug registers, set the debug registers from the values 709 * stored in the new thread. 710 */ 711 void switch_booke_debug_regs(struct debug_reg *new_debug) 712 { 713 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 714 || (new_debug->dbcr0 & DBCR0_IDM)) 715 prime_debug_regs(new_debug); 716 } 717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 718 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 719 #ifndef CONFIG_HAVE_HW_BREAKPOINT 720 static void set_breakpoint(struct arch_hw_breakpoint *brk) 721 { 722 preempt_disable(); 723 __set_breakpoint(brk); 724 preempt_enable(); 725 } 726 727 static void set_debug_reg_defaults(struct thread_struct *thread) 728 { 729 thread->hw_brk.address = 0; 730 thread->hw_brk.type = 0; 731 if (ppc_breakpoint_available()) 732 set_breakpoint(&thread->hw_brk); 733 } 734 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 735 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 736 737 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 739 { 740 mtspr(SPRN_DAC1, dabr); 741 #ifdef CONFIG_PPC_47x 742 isync(); 743 #endif 744 return 0; 745 } 746 #elif defined(CONFIG_PPC_BOOK3S) 747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 748 { 749 mtspr(SPRN_DABR, dabr); 750 if (cpu_has_feature(CPU_FTR_DABRX)) 751 mtspr(SPRN_DABRX, dabrx); 752 return 0; 753 } 754 #elif defined(CONFIG_PPC_8xx) 755 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 756 { 757 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 758 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 759 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 760 761 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 762 lctrl1 |= 0xa0000; 763 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 764 lctrl1 |= 0xf0000; 765 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 766 lctrl2 = 0; 767 768 mtspr(SPRN_LCTRL2, 0); 769 mtspr(SPRN_CMPE, addr); 770 mtspr(SPRN_CMPF, addr + 4); 771 mtspr(SPRN_LCTRL1, lctrl1); 772 mtspr(SPRN_LCTRL2, lctrl2); 773 774 return 0; 775 } 776 #else 777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 778 { 779 return -EINVAL; 780 } 781 #endif 782 783 static inline int set_dabr(struct arch_hw_breakpoint *brk) 784 { 785 unsigned long dabr, dabrx; 786 787 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 788 dabrx = ((brk->type >> 3) & 0x7); 789 790 if (ppc_md.set_dabr) 791 return ppc_md.set_dabr(dabr, dabrx); 792 793 return __set_dabr(dabr, dabrx); 794 } 795 796 void __set_breakpoint(struct arch_hw_breakpoint *brk) 797 { 798 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 799 800 if (dawr_enabled()) 801 // Power8 or later 802 set_dawr(brk); 803 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 804 // Power7 or earlier 805 set_dabr(brk); 806 else 807 // Shouldn't happen due to higher level checks 808 WARN_ON_ONCE(1); 809 } 810 811 /* Check if we have DAWR or DABR hardware */ 812 bool ppc_breakpoint_available(void) 813 { 814 if (dawr_enabled()) 815 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 816 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 817 return false; /* POWER9 with DAWR disabled */ 818 /* DABR: Everything but POWER8 and POWER9 */ 819 return true; 820 } 821 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 822 823 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 824 struct arch_hw_breakpoint *b) 825 { 826 if (a->address != b->address) 827 return false; 828 if (a->type != b->type) 829 return false; 830 if (a->len != b->len) 831 return false; 832 return true; 833 } 834 835 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 836 837 static inline bool tm_enabled(struct task_struct *tsk) 838 { 839 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 840 } 841 842 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 843 { 844 /* 845 * Use the current MSR TM suspended bit to track if we have 846 * checkpointed state outstanding. 847 * On signal delivery, we'd normally reclaim the checkpointed 848 * state to obtain stack pointer (see:get_tm_stackpointer()). 849 * This will then directly return to userspace without going 850 * through __switch_to(). However, if the stack frame is bad, 851 * we need to exit this thread which calls __switch_to() which 852 * will again attempt to reclaim the already saved tm state. 853 * Hence we need to check that we've not already reclaimed 854 * this state. 855 * We do this using the current MSR, rather tracking it in 856 * some specific thread_struct bit, as it has the additional 857 * benefit of checking for a potential TM bad thing exception. 858 */ 859 if (!MSR_TM_SUSPENDED(mfmsr())) 860 return; 861 862 giveup_all(container_of(thr, struct task_struct, thread)); 863 864 tm_reclaim(thr, cause); 865 866 /* 867 * If we are in a transaction and FP is off then we can't have 868 * used FP inside that transaction. Hence the checkpointed 869 * state is the same as the live state. We need to copy the 870 * live state to the checkpointed state so that when the 871 * transaction is restored, the checkpointed state is correct 872 * and the aborted transaction sees the correct state. We use 873 * ckpt_regs.msr here as that's what tm_reclaim will use to 874 * determine if it's going to write the checkpointed state or 875 * not. So either this will write the checkpointed registers, 876 * or reclaim will. Similarly for VMX. 877 */ 878 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 879 memcpy(&thr->ckfp_state, &thr->fp_state, 880 sizeof(struct thread_fp_state)); 881 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 882 memcpy(&thr->ckvr_state, &thr->vr_state, 883 sizeof(struct thread_vr_state)); 884 } 885 886 void tm_reclaim_current(uint8_t cause) 887 { 888 tm_enable(); 889 tm_reclaim_thread(¤t->thread, cause); 890 } 891 892 static inline void tm_reclaim_task(struct task_struct *tsk) 893 { 894 /* We have to work out if we're switching from/to a task that's in the 895 * middle of a transaction. 896 * 897 * In switching we need to maintain a 2nd register state as 898 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 899 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 900 * ckvr_state 901 * 902 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 903 */ 904 struct thread_struct *thr = &tsk->thread; 905 906 if (!thr->regs) 907 return; 908 909 if (!MSR_TM_ACTIVE(thr->regs->msr)) 910 goto out_and_saveregs; 911 912 WARN_ON(tm_suspend_disabled); 913 914 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 915 "ccr=%lx, msr=%lx, trap=%lx)\n", 916 tsk->pid, thr->regs->nip, 917 thr->regs->ccr, thr->regs->msr, 918 thr->regs->trap); 919 920 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 921 922 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 923 tsk->pid); 924 925 out_and_saveregs: 926 /* Always save the regs here, even if a transaction's not active. 927 * This context-switches a thread's TM info SPRs. We do it here to 928 * be consistent with the restore path (in recheckpoint) which 929 * cannot happen later in _switch(). 930 */ 931 tm_save_sprs(thr); 932 } 933 934 extern void __tm_recheckpoint(struct thread_struct *thread); 935 936 void tm_recheckpoint(struct thread_struct *thread) 937 { 938 unsigned long flags; 939 940 if (!(thread->regs->msr & MSR_TM)) 941 return; 942 943 /* We really can't be interrupted here as the TEXASR registers can't 944 * change and later in the trecheckpoint code, we have a userspace R1. 945 * So let's hard disable over this region. 946 */ 947 local_irq_save(flags); 948 hard_irq_disable(); 949 950 /* The TM SPRs are restored here, so that TEXASR.FS can be set 951 * before the trecheckpoint and no explosion occurs. 952 */ 953 tm_restore_sprs(thread); 954 955 __tm_recheckpoint(thread); 956 957 local_irq_restore(flags); 958 } 959 960 static inline void tm_recheckpoint_new_task(struct task_struct *new) 961 { 962 if (!cpu_has_feature(CPU_FTR_TM)) 963 return; 964 965 /* Recheckpoint the registers of the thread we're about to switch to. 966 * 967 * If the task was using FP, we non-lazily reload both the original and 968 * the speculative FP register states. This is because the kernel 969 * doesn't see if/when a TM rollback occurs, so if we take an FP 970 * unavailable later, we are unable to determine which set of FP regs 971 * need to be restored. 972 */ 973 if (!tm_enabled(new)) 974 return; 975 976 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 977 tm_restore_sprs(&new->thread); 978 return; 979 } 980 /* Recheckpoint to restore original checkpointed register state. */ 981 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 982 new->pid, new->thread.regs->msr); 983 984 tm_recheckpoint(&new->thread); 985 986 /* 987 * The checkpointed state has been restored but the live state has 988 * not, ensure all the math functionality is turned off to trigger 989 * restore_math() to reload. 990 */ 991 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 992 993 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 994 "(kernel msr 0x%lx)\n", 995 new->pid, mfmsr()); 996 } 997 998 static inline void __switch_to_tm(struct task_struct *prev, 999 struct task_struct *new) 1000 { 1001 if (cpu_has_feature(CPU_FTR_TM)) { 1002 if (tm_enabled(prev) || tm_enabled(new)) 1003 tm_enable(); 1004 1005 if (tm_enabled(prev)) { 1006 prev->thread.load_tm++; 1007 tm_reclaim_task(prev); 1008 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1009 prev->thread.regs->msr &= ~MSR_TM; 1010 } 1011 1012 tm_recheckpoint_new_task(new); 1013 } 1014 } 1015 1016 /* 1017 * This is called if we are on the way out to userspace and the 1018 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1019 * FP and/or vector state and does so if necessary. 1020 * If userspace is inside a transaction (whether active or 1021 * suspended) and FP/VMX/VSX instructions have ever been enabled 1022 * inside that transaction, then we have to keep them enabled 1023 * and keep the FP/VMX/VSX state loaded while ever the transaction 1024 * continues. The reason is that if we didn't, and subsequently 1025 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1026 * we don't know whether it's the same transaction, and thus we 1027 * don't know which of the checkpointed state and the transactional 1028 * state to use. 1029 */ 1030 void restore_tm_state(struct pt_regs *regs) 1031 { 1032 unsigned long msr_diff; 1033 1034 /* 1035 * This is the only moment we should clear TIF_RESTORE_TM as 1036 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1037 * again, anything else could lead to an incorrect ckpt_msr being 1038 * saved and therefore incorrect signal contexts. 1039 */ 1040 clear_thread_flag(TIF_RESTORE_TM); 1041 if (!MSR_TM_ACTIVE(regs->msr)) 1042 return; 1043 1044 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1045 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1046 1047 /* Ensure that restore_math() will restore */ 1048 if (msr_diff & MSR_FP) 1049 current->thread.load_fp = 1; 1050 #ifdef CONFIG_ALTIVEC 1051 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1052 current->thread.load_vec = 1; 1053 #endif 1054 restore_math(regs); 1055 1056 regs->msr |= msr_diff; 1057 } 1058 1059 #else 1060 #define tm_recheckpoint_new_task(new) 1061 #define __switch_to_tm(prev, new) 1062 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1063 1064 static inline void save_sprs(struct thread_struct *t) 1065 { 1066 #ifdef CONFIG_ALTIVEC 1067 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1068 t->vrsave = mfspr(SPRN_VRSAVE); 1069 #endif 1070 #ifdef CONFIG_PPC_BOOK3S_64 1071 if (cpu_has_feature(CPU_FTR_DSCR)) 1072 t->dscr = mfspr(SPRN_DSCR); 1073 1074 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1075 t->bescr = mfspr(SPRN_BESCR); 1076 t->ebbhr = mfspr(SPRN_EBBHR); 1077 t->ebbrr = mfspr(SPRN_EBBRR); 1078 1079 t->fscr = mfspr(SPRN_FSCR); 1080 1081 /* 1082 * Note that the TAR is not available for use in the kernel. 1083 * (To provide this, the TAR should be backed up/restored on 1084 * exception entry/exit instead, and be in pt_regs. FIXME, 1085 * this should be in pt_regs anyway (for debug).) 1086 */ 1087 t->tar = mfspr(SPRN_TAR); 1088 } 1089 #endif 1090 1091 thread_pkey_regs_save(t); 1092 } 1093 1094 static inline void restore_sprs(struct thread_struct *old_thread, 1095 struct thread_struct *new_thread) 1096 { 1097 #ifdef CONFIG_ALTIVEC 1098 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1099 old_thread->vrsave != new_thread->vrsave) 1100 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1101 #endif 1102 #ifdef CONFIG_PPC_BOOK3S_64 1103 if (cpu_has_feature(CPU_FTR_DSCR)) { 1104 u64 dscr = get_paca()->dscr_default; 1105 if (new_thread->dscr_inherit) 1106 dscr = new_thread->dscr; 1107 1108 if (old_thread->dscr != dscr) 1109 mtspr(SPRN_DSCR, dscr); 1110 } 1111 1112 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1113 if (old_thread->bescr != new_thread->bescr) 1114 mtspr(SPRN_BESCR, new_thread->bescr); 1115 if (old_thread->ebbhr != new_thread->ebbhr) 1116 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1117 if (old_thread->ebbrr != new_thread->ebbrr) 1118 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1119 1120 if (old_thread->fscr != new_thread->fscr) 1121 mtspr(SPRN_FSCR, new_thread->fscr); 1122 1123 if (old_thread->tar != new_thread->tar) 1124 mtspr(SPRN_TAR, new_thread->tar); 1125 } 1126 1127 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1128 old_thread->tidr != new_thread->tidr) 1129 mtspr(SPRN_TIDR, new_thread->tidr); 1130 #endif 1131 1132 thread_pkey_regs_restore(new_thread, old_thread); 1133 } 1134 1135 struct task_struct *__switch_to(struct task_struct *prev, 1136 struct task_struct *new) 1137 { 1138 struct thread_struct *new_thread, *old_thread; 1139 struct task_struct *last; 1140 #ifdef CONFIG_PPC_BOOK3S_64 1141 struct ppc64_tlb_batch *batch; 1142 #endif 1143 1144 new_thread = &new->thread; 1145 old_thread = ¤t->thread; 1146 1147 WARN_ON(!irqs_disabled()); 1148 1149 #ifdef CONFIG_PPC_BOOK3S_64 1150 batch = this_cpu_ptr(&ppc64_tlb_batch); 1151 if (batch->active) { 1152 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1153 if (batch->index) 1154 __flush_tlb_pending(batch); 1155 batch->active = 0; 1156 } 1157 #endif /* CONFIG_PPC_BOOK3S_64 */ 1158 1159 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1160 switch_booke_debug_regs(&new->thread.debug); 1161 #else 1162 /* 1163 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1164 * schedule DABR 1165 */ 1166 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1167 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1168 __set_breakpoint(&new->thread.hw_brk); 1169 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1170 #endif 1171 1172 /* 1173 * We need to save SPRs before treclaim/trecheckpoint as these will 1174 * change a number of them. 1175 */ 1176 save_sprs(&prev->thread); 1177 1178 /* Save FPU, Altivec, VSX and SPE state */ 1179 giveup_all(prev); 1180 1181 __switch_to_tm(prev, new); 1182 1183 if (!radix_enabled()) { 1184 /* 1185 * We can't take a PMU exception inside _switch() since there 1186 * is a window where the kernel stack SLB and the kernel stack 1187 * are out of sync. Hard disable here. 1188 */ 1189 hard_irq_disable(); 1190 } 1191 1192 /* 1193 * Call restore_sprs() before calling _switch(). If we move it after 1194 * _switch() then we miss out on calling it for new tasks. The reason 1195 * for this is we manually create a stack frame for new tasks that 1196 * directly returns through ret_from_fork() or 1197 * ret_from_kernel_thread(). See copy_thread() for details. 1198 */ 1199 restore_sprs(old_thread, new_thread); 1200 1201 last = _switch(old_thread, new_thread); 1202 1203 #ifdef CONFIG_PPC_BOOK3S_64 1204 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1205 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1206 batch = this_cpu_ptr(&ppc64_tlb_batch); 1207 batch->active = 1; 1208 } 1209 1210 if (current->thread.regs) { 1211 restore_math(current->thread.regs); 1212 1213 /* 1214 * The copy-paste buffer can only store into foreign real 1215 * addresses, so unprivileged processes can not see the 1216 * data or use it in any way unless they have foreign real 1217 * mappings. If the new process has the foreign real address 1218 * mappings, we must issue a cp_abort to clear any state and 1219 * prevent snooping, corruption or a covert channel. 1220 */ 1221 if (current->thread.used_vas) 1222 asm volatile(PPC_CP_ABORT); 1223 } 1224 #endif /* CONFIG_PPC_BOOK3S_64 */ 1225 1226 return last; 1227 } 1228 1229 #define NR_INSN_TO_PRINT 16 1230 1231 static void show_instructions(struct pt_regs *regs) 1232 { 1233 int i; 1234 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1235 1236 printk("Instruction dump:"); 1237 1238 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1239 int instr; 1240 1241 if (!(i % 8)) 1242 pr_cont("\n"); 1243 1244 #if !defined(CONFIG_BOOKE) 1245 /* If executing with the IMMU off, adjust pc rather 1246 * than print XXXXXXXX. 1247 */ 1248 if (!(regs->msr & MSR_IR)) 1249 pc = (unsigned long)phys_to_virt(pc); 1250 #endif 1251 1252 if (!__kernel_text_address(pc) || 1253 probe_kernel_address((const void *)pc, instr)) { 1254 pr_cont("XXXXXXXX "); 1255 } else { 1256 if (regs->nip == pc) 1257 pr_cont("<%08x> ", instr); 1258 else 1259 pr_cont("%08x ", instr); 1260 } 1261 1262 pc += sizeof(int); 1263 } 1264 1265 pr_cont("\n"); 1266 } 1267 1268 void show_user_instructions(struct pt_regs *regs) 1269 { 1270 unsigned long pc; 1271 int n = NR_INSN_TO_PRINT; 1272 struct seq_buf s; 1273 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1274 1275 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1276 1277 /* 1278 * Make sure the NIP points at userspace, not kernel text/data or 1279 * elsewhere. 1280 */ 1281 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { 1282 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1283 current->comm, current->pid); 1284 return; 1285 } 1286 1287 seq_buf_init(&s, buf, sizeof(buf)); 1288 1289 while (n) { 1290 int i; 1291 1292 seq_buf_clear(&s); 1293 1294 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1295 int instr; 1296 1297 if (probe_kernel_address((const void *)pc, instr)) { 1298 seq_buf_printf(&s, "XXXXXXXX "); 1299 continue; 1300 } 1301 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1302 } 1303 1304 if (!seq_buf_has_overflowed(&s)) 1305 pr_info("%s[%d]: code: %s\n", current->comm, 1306 current->pid, s.buffer); 1307 } 1308 } 1309 1310 struct regbit { 1311 unsigned long bit; 1312 const char *name; 1313 }; 1314 1315 static struct regbit msr_bits[] = { 1316 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1317 {MSR_SF, "SF"}, 1318 {MSR_HV, "HV"}, 1319 #endif 1320 {MSR_VEC, "VEC"}, 1321 {MSR_VSX, "VSX"}, 1322 #ifdef CONFIG_BOOKE 1323 {MSR_CE, "CE"}, 1324 #endif 1325 {MSR_EE, "EE"}, 1326 {MSR_PR, "PR"}, 1327 {MSR_FP, "FP"}, 1328 {MSR_ME, "ME"}, 1329 #ifdef CONFIG_BOOKE 1330 {MSR_DE, "DE"}, 1331 #else 1332 {MSR_SE, "SE"}, 1333 {MSR_BE, "BE"}, 1334 #endif 1335 {MSR_IR, "IR"}, 1336 {MSR_DR, "DR"}, 1337 {MSR_PMM, "PMM"}, 1338 #ifndef CONFIG_BOOKE 1339 {MSR_RI, "RI"}, 1340 {MSR_LE, "LE"}, 1341 #endif 1342 {0, NULL} 1343 }; 1344 1345 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1346 { 1347 const char *s = ""; 1348 1349 for (; bits->bit; ++bits) 1350 if (val & bits->bit) { 1351 pr_cont("%s%s", s, bits->name); 1352 s = sep; 1353 } 1354 } 1355 1356 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1357 static struct regbit msr_tm_bits[] = { 1358 {MSR_TS_T, "T"}, 1359 {MSR_TS_S, "S"}, 1360 {MSR_TM, "E"}, 1361 {0, NULL} 1362 }; 1363 1364 static void print_tm_bits(unsigned long val) 1365 { 1366 /* 1367 * This only prints something if at least one of the TM bit is set. 1368 * Inside the TM[], the output means: 1369 * E: Enabled (bit 32) 1370 * S: Suspended (bit 33) 1371 * T: Transactional (bit 34) 1372 */ 1373 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1374 pr_cont(",TM["); 1375 print_bits(val, msr_tm_bits, ""); 1376 pr_cont("]"); 1377 } 1378 } 1379 #else 1380 static void print_tm_bits(unsigned long val) {} 1381 #endif 1382 1383 static void print_msr_bits(unsigned long val) 1384 { 1385 pr_cont("<"); 1386 print_bits(val, msr_bits, ","); 1387 print_tm_bits(val); 1388 pr_cont(">"); 1389 } 1390 1391 #ifdef CONFIG_PPC64 1392 #define REG "%016lx" 1393 #define REGS_PER_LINE 4 1394 #define LAST_VOLATILE 13 1395 #else 1396 #define REG "%08lx" 1397 #define REGS_PER_LINE 8 1398 #define LAST_VOLATILE 12 1399 #endif 1400 1401 void show_regs(struct pt_regs * regs) 1402 { 1403 int i, trap; 1404 1405 show_regs_print_info(KERN_DEFAULT); 1406 1407 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1408 regs->nip, regs->link, regs->ctr); 1409 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1410 regs, regs->trap, print_tainted(), init_utsname()->release); 1411 printk("MSR: "REG" ", regs->msr); 1412 print_msr_bits(regs->msr); 1413 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1414 trap = TRAP(regs); 1415 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1416 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1417 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1418 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1419 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1420 #else 1421 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1422 #endif 1423 #ifdef CONFIG_PPC64 1424 pr_cont("IRQMASK: %lx ", regs->softe); 1425 #endif 1426 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1427 if (MSR_TM_ACTIVE(regs->msr)) 1428 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1429 #endif 1430 1431 for (i = 0; i < 32; i++) { 1432 if ((i % REGS_PER_LINE) == 0) 1433 pr_cont("\nGPR%02d: ", i); 1434 pr_cont(REG " ", regs->gpr[i]); 1435 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1436 break; 1437 } 1438 pr_cont("\n"); 1439 #ifdef CONFIG_KALLSYMS 1440 /* 1441 * Lookup NIP late so we have the best change of getting the 1442 * above info out without failing 1443 */ 1444 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1445 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1446 #endif 1447 show_stack(current, (unsigned long *) regs->gpr[1]); 1448 if (!user_mode(regs)) 1449 show_instructions(regs); 1450 } 1451 1452 void flush_thread(void) 1453 { 1454 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1455 flush_ptrace_hw_breakpoint(current); 1456 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1457 set_debug_reg_defaults(¤t->thread); 1458 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1459 } 1460 1461 #ifdef CONFIG_PPC_BOOK3S_64 1462 void arch_setup_new_exec(void) 1463 { 1464 if (radix_enabled()) 1465 return; 1466 hash__setup_new_exec(); 1467 } 1468 #endif 1469 1470 int set_thread_uses_vas(void) 1471 { 1472 #ifdef CONFIG_PPC_BOOK3S_64 1473 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1474 return -EINVAL; 1475 1476 current->thread.used_vas = 1; 1477 1478 /* 1479 * Even a process that has no foreign real address mapping can use 1480 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1481 * to clear any pending COPY and prevent a covert channel. 1482 * 1483 * __switch_to() will issue CP_ABORT on future context switches. 1484 */ 1485 asm volatile(PPC_CP_ABORT); 1486 1487 #endif /* CONFIG_PPC_BOOK3S_64 */ 1488 return 0; 1489 } 1490 1491 #ifdef CONFIG_PPC64 1492 /** 1493 * Assign a TIDR (thread ID) for task @t and set it in the thread 1494 * structure. For now, we only support setting TIDR for 'current' task. 1495 * 1496 * Since the TID value is a truncated form of it PID, it is possible 1497 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1498 * that 2 threads share the same TID and are waiting, one of the following 1499 * cases will happen: 1500 * 1501 * 1. The correct thread is running, the wrong thread is not 1502 * In this situation, the correct thread is woken and proceeds to pass it's 1503 * condition check. 1504 * 1505 * 2. Neither threads are running 1506 * In this situation, neither thread will be woken. When scheduled, the waiting 1507 * threads will execute either a wait, which will return immediately, followed 1508 * by a condition check, which will pass for the correct thread and fail 1509 * for the wrong thread, or they will execute the condition check immediately. 1510 * 1511 * 3. The wrong thread is running, the correct thread is not 1512 * The wrong thread will be woken, but will fail it's condition check and 1513 * re-execute wait. The correct thread, when scheduled, will execute either 1514 * it's condition check (which will pass), or wait, which returns immediately 1515 * when called the first time after the thread is scheduled, followed by it's 1516 * condition check (which will pass). 1517 * 1518 * 4. Both threads are running 1519 * Both threads will be woken. The wrong thread will fail it's condition check 1520 * and execute another wait, while the correct thread will pass it's condition 1521 * check. 1522 * 1523 * @t: the task to set the thread ID for 1524 */ 1525 int set_thread_tidr(struct task_struct *t) 1526 { 1527 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1528 return -EINVAL; 1529 1530 if (t != current) 1531 return -EINVAL; 1532 1533 if (t->thread.tidr) 1534 return 0; 1535 1536 t->thread.tidr = (u16)task_pid_nr(t); 1537 mtspr(SPRN_TIDR, t->thread.tidr); 1538 1539 return 0; 1540 } 1541 EXPORT_SYMBOL_GPL(set_thread_tidr); 1542 1543 #endif /* CONFIG_PPC64 */ 1544 1545 void 1546 release_thread(struct task_struct *t) 1547 { 1548 } 1549 1550 /* 1551 * this gets called so that we can store coprocessor state into memory and 1552 * copy the current task into the new thread. 1553 */ 1554 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1555 { 1556 flush_all_to_thread(src); 1557 /* 1558 * Flush TM state out so we can copy it. __switch_to_tm() does this 1559 * flush but it removes the checkpointed state from the current CPU and 1560 * transitions the CPU out of TM mode. Hence we need to call 1561 * tm_recheckpoint_new_task() (on the same task) to restore the 1562 * checkpointed state back and the TM mode. 1563 * 1564 * Can't pass dst because it isn't ready. Doesn't matter, passing 1565 * dst is only important for __switch_to() 1566 */ 1567 __switch_to_tm(src, src); 1568 1569 *dst = *src; 1570 1571 clear_task_ebb(dst); 1572 1573 return 0; 1574 } 1575 1576 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1577 { 1578 #ifdef CONFIG_PPC_BOOK3S_64 1579 unsigned long sp_vsid; 1580 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1581 1582 if (radix_enabled()) 1583 return; 1584 1585 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1586 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1587 << SLB_VSID_SHIFT_1T; 1588 else 1589 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1590 << SLB_VSID_SHIFT; 1591 sp_vsid |= SLB_VSID_KERNEL | llp; 1592 p->thread.ksp_vsid = sp_vsid; 1593 #endif 1594 } 1595 1596 /* 1597 * Copy a thread.. 1598 */ 1599 1600 /* 1601 * Copy architecture-specific thread state 1602 */ 1603 int copy_thread(unsigned long clone_flags, unsigned long usp, 1604 unsigned long kthread_arg, struct task_struct *p) 1605 { 1606 struct pt_regs *childregs, *kregs; 1607 extern void ret_from_fork(void); 1608 extern void ret_from_kernel_thread(void); 1609 void (*f)(void); 1610 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1611 struct thread_info *ti = task_thread_info(p); 1612 1613 klp_init_thread_info(p); 1614 1615 /* Copy registers */ 1616 sp -= sizeof(struct pt_regs); 1617 childregs = (struct pt_regs *) sp; 1618 if (unlikely(p->flags & PF_KTHREAD)) { 1619 /* kernel thread */ 1620 memset(childregs, 0, sizeof(struct pt_regs)); 1621 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1622 /* function */ 1623 if (usp) 1624 childregs->gpr[14] = ppc_function_entry((void *)usp); 1625 #ifdef CONFIG_PPC64 1626 clear_tsk_thread_flag(p, TIF_32BIT); 1627 childregs->softe = IRQS_ENABLED; 1628 #endif 1629 childregs->gpr[15] = kthread_arg; 1630 p->thread.regs = NULL; /* no user register state */ 1631 ti->flags |= _TIF_RESTOREALL; 1632 f = ret_from_kernel_thread; 1633 } else { 1634 /* user thread */ 1635 struct pt_regs *regs = current_pt_regs(); 1636 CHECK_FULL_REGS(regs); 1637 *childregs = *regs; 1638 if (usp) 1639 childregs->gpr[1] = usp; 1640 p->thread.regs = childregs; 1641 childregs->gpr[3] = 0; /* Result from fork() */ 1642 if (clone_flags & CLONE_SETTLS) { 1643 #ifdef CONFIG_PPC64 1644 if (!is_32bit_task()) 1645 childregs->gpr[13] = childregs->gpr[6]; 1646 else 1647 #endif 1648 childregs->gpr[2] = childregs->gpr[6]; 1649 } 1650 1651 f = ret_from_fork; 1652 } 1653 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1654 sp -= STACK_FRAME_OVERHEAD; 1655 1656 /* 1657 * The way this works is that at some point in the future 1658 * some task will call _switch to switch to the new task. 1659 * That will pop off the stack frame created below and start 1660 * the new task running at ret_from_fork. The new task will 1661 * do some house keeping and then return from the fork or clone 1662 * system call, using the stack frame created above. 1663 */ 1664 ((unsigned long *)sp)[0] = 0; 1665 sp -= sizeof(struct pt_regs); 1666 kregs = (struct pt_regs *) sp; 1667 sp -= STACK_FRAME_OVERHEAD; 1668 p->thread.ksp = sp; 1669 #ifdef CONFIG_PPC32 1670 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1671 #endif 1672 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1673 p->thread.ptrace_bps[0] = NULL; 1674 #endif 1675 1676 p->thread.fp_save_area = NULL; 1677 #ifdef CONFIG_ALTIVEC 1678 p->thread.vr_save_area = NULL; 1679 #endif 1680 1681 setup_ksp_vsid(p, sp); 1682 1683 #ifdef CONFIG_PPC64 1684 if (cpu_has_feature(CPU_FTR_DSCR)) { 1685 p->thread.dscr_inherit = current->thread.dscr_inherit; 1686 p->thread.dscr = mfspr(SPRN_DSCR); 1687 } 1688 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1689 childregs->ppr = DEFAULT_PPR; 1690 1691 p->thread.tidr = 0; 1692 #endif 1693 kregs->nip = ppc_function_entry(f); 1694 return 0; 1695 } 1696 1697 void preload_new_slb_context(unsigned long start, unsigned long sp); 1698 1699 /* 1700 * Set up a thread for executing a new program 1701 */ 1702 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1703 { 1704 #ifdef CONFIG_PPC64 1705 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1706 1707 #ifdef CONFIG_PPC_BOOK3S_64 1708 if (!radix_enabled()) 1709 preload_new_slb_context(start, sp); 1710 #endif 1711 #endif 1712 1713 /* 1714 * If we exec out of a kernel thread then thread.regs will not be 1715 * set. Do it now. 1716 */ 1717 if (!current->thread.regs) { 1718 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1719 current->thread.regs = regs - 1; 1720 } 1721 1722 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1723 /* 1724 * Clear any transactional state, we're exec()ing. The cause is 1725 * not important as there will never be a recheckpoint so it's not 1726 * user visible. 1727 */ 1728 if (MSR_TM_SUSPENDED(mfmsr())) 1729 tm_reclaim_current(0); 1730 #endif 1731 1732 memset(regs->gpr, 0, sizeof(regs->gpr)); 1733 regs->ctr = 0; 1734 regs->link = 0; 1735 regs->xer = 0; 1736 regs->ccr = 0; 1737 regs->gpr[1] = sp; 1738 1739 /* 1740 * We have just cleared all the nonvolatile GPRs, so make 1741 * FULL_REGS(regs) return true. This is necessary to allow 1742 * ptrace to examine the thread immediately after exec. 1743 */ 1744 regs->trap &= ~1UL; 1745 1746 #ifdef CONFIG_PPC32 1747 regs->mq = 0; 1748 regs->nip = start; 1749 regs->msr = MSR_USER; 1750 #else 1751 if (!is_32bit_task()) { 1752 unsigned long entry; 1753 1754 if (is_elf2_task()) { 1755 /* Look ma, no function descriptors! */ 1756 entry = start; 1757 1758 /* 1759 * Ulrich says: 1760 * The latest iteration of the ABI requires that when 1761 * calling a function (at its global entry point), 1762 * the caller must ensure r12 holds the entry point 1763 * address (so that the function can quickly 1764 * establish addressability). 1765 */ 1766 regs->gpr[12] = start; 1767 /* Make sure that's restored on entry to userspace. */ 1768 set_thread_flag(TIF_RESTOREALL); 1769 } else { 1770 unsigned long toc; 1771 1772 /* start is a relocated pointer to the function 1773 * descriptor for the elf _start routine. The first 1774 * entry in the function descriptor is the entry 1775 * address of _start and the second entry is the TOC 1776 * value we need to use. 1777 */ 1778 __get_user(entry, (unsigned long __user *)start); 1779 __get_user(toc, (unsigned long __user *)start+1); 1780 1781 /* Check whether the e_entry function descriptor entries 1782 * need to be relocated before we can use them. 1783 */ 1784 if (load_addr != 0) { 1785 entry += load_addr; 1786 toc += load_addr; 1787 } 1788 regs->gpr[2] = toc; 1789 } 1790 regs->nip = entry; 1791 regs->msr = MSR_USER64; 1792 } else { 1793 regs->nip = start; 1794 regs->gpr[2] = 0; 1795 regs->msr = MSR_USER32; 1796 } 1797 #endif 1798 #ifdef CONFIG_VSX 1799 current->thread.used_vsr = 0; 1800 #endif 1801 current->thread.load_slb = 0; 1802 current->thread.load_fp = 0; 1803 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1804 current->thread.fp_save_area = NULL; 1805 #ifdef CONFIG_ALTIVEC 1806 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1807 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1808 current->thread.vr_save_area = NULL; 1809 current->thread.vrsave = 0; 1810 current->thread.used_vr = 0; 1811 current->thread.load_vec = 0; 1812 #endif /* CONFIG_ALTIVEC */ 1813 #ifdef CONFIG_SPE 1814 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1815 current->thread.acc = 0; 1816 current->thread.spefscr = 0; 1817 current->thread.used_spe = 0; 1818 #endif /* CONFIG_SPE */ 1819 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1820 current->thread.tm_tfhar = 0; 1821 current->thread.tm_texasr = 0; 1822 current->thread.tm_tfiar = 0; 1823 current->thread.load_tm = 0; 1824 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1825 1826 thread_pkey_regs_init(¤t->thread); 1827 } 1828 EXPORT_SYMBOL(start_thread); 1829 1830 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1831 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1832 1833 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1834 { 1835 struct pt_regs *regs = tsk->thread.regs; 1836 1837 /* This is a bit hairy. If we are an SPE enabled processor 1838 * (have embedded fp) we store the IEEE exception enable flags in 1839 * fpexc_mode. fpexc_mode is also used for setting FP exception 1840 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1841 if (val & PR_FP_EXC_SW_ENABLE) { 1842 #ifdef CONFIG_SPE 1843 if (cpu_has_feature(CPU_FTR_SPE)) { 1844 /* 1845 * When the sticky exception bits are set 1846 * directly by userspace, it must call prctl 1847 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1848 * in the existing prctl settings) or 1849 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1850 * the bits being set). <fenv.h> functions 1851 * saving and restoring the whole 1852 * floating-point environment need to do so 1853 * anyway to restore the prctl settings from 1854 * the saved environment. 1855 */ 1856 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1857 tsk->thread.fpexc_mode = val & 1858 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1859 return 0; 1860 } else { 1861 return -EINVAL; 1862 } 1863 #else 1864 return -EINVAL; 1865 #endif 1866 } 1867 1868 /* on a CONFIG_SPE this does not hurt us. The bits that 1869 * __pack_fe01 use do not overlap with bits used for 1870 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1871 * on CONFIG_SPE implementations are reserved so writing to 1872 * them does not change anything */ 1873 if (val > PR_FP_EXC_PRECISE) 1874 return -EINVAL; 1875 tsk->thread.fpexc_mode = __pack_fe01(val); 1876 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1877 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1878 | tsk->thread.fpexc_mode; 1879 return 0; 1880 } 1881 1882 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1883 { 1884 unsigned int val; 1885 1886 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1887 #ifdef CONFIG_SPE 1888 if (cpu_has_feature(CPU_FTR_SPE)) { 1889 /* 1890 * When the sticky exception bits are set 1891 * directly by userspace, it must call prctl 1892 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1893 * in the existing prctl settings) or 1894 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1895 * the bits being set). <fenv.h> functions 1896 * saving and restoring the whole 1897 * floating-point environment need to do so 1898 * anyway to restore the prctl settings from 1899 * the saved environment. 1900 */ 1901 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1902 val = tsk->thread.fpexc_mode; 1903 } else 1904 return -EINVAL; 1905 #else 1906 return -EINVAL; 1907 #endif 1908 else 1909 val = __unpack_fe01(tsk->thread.fpexc_mode); 1910 return put_user(val, (unsigned int __user *) adr); 1911 } 1912 1913 int set_endian(struct task_struct *tsk, unsigned int val) 1914 { 1915 struct pt_regs *regs = tsk->thread.regs; 1916 1917 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1918 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1919 return -EINVAL; 1920 1921 if (regs == NULL) 1922 return -EINVAL; 1923 1924 if (val == PR_ENDIAN_BIG) 1925 regs->msr &= ~MSR_LE; 1926 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1927 regs->msr |= MSR_LE; 1928 else 1929 return -EINVAL; 1930 1931 return 0; 1932 } 1933 1934 int get_endian(struct task_struct *tsk, unsigned long adr) 1935 { 1936 struct pt_regs *regs = tsk->thread.regs; 1937 unsigned int val; 1938 1939 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1940 !cpu_has_feature(CPU_FTR_REAL_LE)) 1941 return -EINVAL; 1942 1943 if (regs == NULL) 1944 return -EINVAL; 1945 1946 if (regs->msr & MSR_LE) { 1947 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1948 val = PR_ENDIAN_LITTLE; 1949 else 1950 val = PR_ENDIAN_PPC_LITTLE; 1951 } else 1952 val = PR_ENDIAN_BIG; 1953 1954 return put_user(val, (unsigned int __user *)adr); 1955 } 1956 1957 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1958 { 1959 tsk->thread.align_ctl = val; 1960 return 0; 1961 } 1962 1963 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1964 { 1965 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1966 } 1967 1968 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1969 unsigned long nbytes) 1970 { 1971 unsigned long stack_page; 1972 unsigned long cpu = task_cpu(p); 1973 1974 stack_page = (unsigned long)hardirq_ctx[cpu]; 1975 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1976 return 1; 1977 1978 stack_page = (unsigned long)softirq_ctx[cpu]; 1979 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1980 return 1; 1981 1982 return 0; 1983 } 1984 1985 int validate_sp(unsigned long sp, struct task_struct *p, 1986 unsigned long nbytes) 1987 { 1988 unsigned long stack_page = (unsigned long)task_stack_page(p); 1989 1990 if (sp < THREAD_SIZE) 1991 return 0; 1992 1993 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1994 return 1; 1995 1996 return valid_irq_stack(sp, p, nbytes); 1997 } 1998 1999 EXPORT_SYMBOL(validate_sp); 2000 2001 static unsigned long __get_wchan(struct task_struct *p) 2002 { 2003 unsigned long ip, sp; 2004 int count = 0; 2005 2006 if (!p || p == current || p->state == TASK_RUNNING) 2007 return 0; 2008 2009 sp = p->thread.ksp; 2010 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2011 return 0; 2012 2013 do { 2014 sp = *(unsigned long *)sp; 2015 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2016 p->state == TASK_RUNNING) 2017 return 0; 2018 if (count > 0) { 2019 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2020 if (!in_sched_functions(ip)) 2021 return ip; 2022 } 2023 } while (count++ < 16); 2024 return 0; 2025 } 2026 2027 unsigned long get_wchan(struct task_struct *p) 2028 { 2029 unsigned long ret; 2030 2031 if (!try_get_task_stack(p)) 2032 return 0; 2033 2034 ret = __get_wchan(p); 2035 2036 put_task_stack(p); 2037 2038 return ret; 2039 } 2040 2041 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2042 2043 void show_stack(struct task_struct *tsk, unsigned long *stack) 2044 { 2045 unsigned long sp, ip, lr, newsp; 2046 int count = 0; 2047 int firstframe = 1; 2048 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2049 struct ftrace_ret_stack *ret_stack; 2050 extern void return_to_handler(void); 2051 unsigned long rth = (unsigned long)return_to_handler; 2052 int curr_frame = 0; 2053 #endif 2054 2055 if (tsk == NULL) 2056 tsk = current; 2057 2058 if (!try_get_task_stack(tsk)) 2059 return; 2060 2061 sp = (unsigned long) stack; 2062 if (sp == 0) { 2063 if (tsk == current) 2064 sp = current_stack_pointer(); 2065 else 2066 sp = tsk->thread.ksp; 2067 } 2068 2069 lr = 0; 2070 printk("Call Trace:\n"); 2071 do { 2072 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2073 break; 2074 2075 stack = (unsigned long *) sp; 2076 newsp = stack[0]; 2077 ip = stack[STACK_FRAME_LR_SAVE]; 2078 if (!firstframe || ip != lr) { 2079 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2080 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2081 if ((ip == rth) && curr_frame >= 0) { 2082 ret_stack = ftrace_graph_get_ret_stack(current, 2083 curr_frame++); 2084 if (ret_stack) 2085 pr_cont(" (%pS)", 2086 (void *)ret_stack->ret); 2087 else 2088 curr_frame = -1; 2089 } 2090 #endif 2091 if (firstframe) 2092 pr_cont(" (unreliable)"); 2093 pr_cont("\n"); 2094 } 2095 firstframe = 0; 2096 2097 /* 2098 * See if this is an exception frame. 2099 * We look for the "regshere" marker in the current frame. 2100 */ 2101 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2102 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2103 struct pt_regs *regs = (struct pt_regs *) 2104 (sp + STACK_FRAME_OVERHEAD); 2105 lr = regs->link; 2106 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2107 regs->trap, (void *)regs->nip, (void *)lr); 2108 firstframe = 1; 2109 } 2110 2111 sp = newsp; 2112 } while (count++ < kstack_depth_to_print); 2113 2114 put_task_stack(tsk); 2115 } 2116 2117 #ifdef CONFIG_PPC64 2118 /* Called with hard IRQs off */ 2119 void notrace __ppc64_runlatch_on(void) 2120 { 2121 struct thread_info *ti = current_thread_info(); 2122 2123 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2124 /* 2125 * Least significant bit (RUN) is the only writable bit of 2126 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2127 * earliest ISA where this is the case, but it's convenient. 2128 */ 2129 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2130 } else { 2131 unsigned long ctrl; 2132 2133 /* 2134 * Some architectures (e.g., Cell) have writable fields other 2135 * than RUN, so do the read-modify-write. 2136 */ 2137 ctrl = mfspr(SPRN_CTRLF); 2138 ctrl |= CTRL_RUNLATCH; 2139 mtspr(SPRN_CTRLT, ctrl); 2140 } 2141 2142 ti->local_flags |= _TLF_RUNLATCH; 2143 } 2144 2145 /* Called with hard IRQs off */ 2146 void notrace __ppc64_runlatch_off(void) 2147 { 2148 struct thread_info *ti = current_thread_info(); 2149 2150 ti->local_flags &= ~_TLF_RUNLATCH; 2151 2152 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2153 mtspr(SPRN_CTRLT, 0); 2154 } else { 2155 unsigned long ctrl; 2156 2157 ctrl = mfspr(SPRN_CTRLF); 2158 ctrl &= ~CTRL_RUNLATCH; 2159 mtspr(SPRN_CTRLT, ctrl); 2160 } 2161 } 2162 #endif /* CONFIG_PPC64 */ 2163 2164 unsigned long arch_align_stack(unsigned long sp) 2165 { 2166 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2167 sp -= get_random_int() & ~PAGE_MASK; 2168 return sp & ~0xf; 2169 } 2170 2171 static inline unsigned long brk_rnd(void) 2172 { 2173 unsigned long rnd = 0; 2174 2175 /* 8MB for 32bit, 1GB for 64bit */ 2176 if (is_32bit_task()) 2177 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2178 else 2179 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2180 2181 return rnd << PAGE_SHIFT; 2182 } 2183 2184 unsigned long arch_randomize_brk(struct mm_struct *mm) 2185 { 2186 unsigned long base = mm->brk; 2187 unsigned long ret; 2188 2189 #ifdef CONFIG_PPC_BOOK3S_64 2190 /* 2191 * If we are using 1TB segments and we are allowed to randomise 2192 * the heap, we can put it above 1TB so it is backed by a 1TB 2193 * segment. Otherwise the heap will be in the bottom 1TB 2194 * which always uses 256MB segments and this may result in a 2195 * performance penalty. We don't need to worry about radix. For 2196 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2197 */ 2198 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2199 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2200 #endif 2201 2202 ret = PAGE_ALIGN(base + brk_rnd()); 2203 2204 if (ret < mm->brk) 2205 return mm->brk; 2206 2207 return ret; 2208 } 2209 2210