xref: /linux/arch/powerpc/kernel/process.c (revision b8d312aa075f33282565467662c4628dae0a2aff)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Derived from "arch/i386/kernel/process.c"
4  *    Copyright (C) 1995  Linus Torvalds
5  *
6  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7  *  Paul Mackerras (paulus@cs.anu.edu.au)
8  *
9  *  PowerPC version
10  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11  */
12 
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43 
44 #include <asm/pgtable.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/runlatch.h>
52 #include <asm/syscalls.h>
53 #include <asm/switch_to.h>
54 #include <asm/tm.h>
55 #include <asm/debug.h>
56 #ifdef CONFIG_PPC64
57 #include <asm/firmware.h>
58 #include <asm/hw_irq.h>
59 #endif
60 #include <asm/code-patching.h>
61 #include <asm/exec.h>
62 #include <asm/livepatch.h>
63 #include <asm/cpu_has_feature.h>
64 #include <asm/asm-prototypes.h>
65 #include <asm/stacktrace.h>
66 #include <asm/hw_breakpoint.h>
67 
68 #include <linux/kprobes.h>
69 #include <linux/kdebug.h>
70 
71 /* Transactional Memory debug */
72 #ifdef TM_DEBUG_SW
73 #define TM_DEBUG(x...) printk(KERN_INFO x)
74 #else
75 #define TM_DEBUG(x...) do { } while(0)
76 #endif
77 
78 extern unsigned long _get_SP(void);
79 
80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
81 /*
82  * Are we running in "Suspend disabled" mode? If so we have to block any
83  * sigreturn that would get us into suspended state, and we also warn in some
84  * other paths that we should never reach with suspend disabled.
85  */
86 bool tm_suspend_disabled __ro_after_init = false;
87 
88 static void check_if_tm_restore_required(struct task_struct *tsk)
89 {
90 	/*
91 	 * If we are saving the current thread's registers, and the
92 	 * thread is in a transactional state, set the TIF_RESTORE_TM
93 	 * bit so that we know to restore the registers before
94 	 * returning to userspace.
95 	 */
96 	if (tsk == current && tsk->thread.regs &&
97 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
98 	    !test_thread_flag(TIF_RESTORE_TM)) {
99 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
100 		set_thread_flag(TIF_RESTORE_TM);
101 	}
102 }
103 
104 static bool tm_active_with_fp(struct task_struct *tsk)
105 {
106 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
107 		(tsk->thread.ckpt_regs.msr & MSR_FP);
108 }
109 
110 static bool tm_active_with_altivec(struct task_struct *tsk)
111 {
112 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
113 		(tsk->thread.ckpt_regs.msr & MSR_VEC);
114 }
115 #else
116 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
117 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
118 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
119 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
120 
121 bool strict_msr_control;
122 EXPORT_SYMBOL(strict_msr_control);
123 
124 static int __init enable_strict_msr_control(char *str)
125 {
126 	strict_msr_control = true;
127 	pr_info("Enabling strict facility control\n");
128 
129 	return 0;
130 }
131 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
132 
133 /* notrace because it's called by restore_math */
134 unsigned long notrace msr_check_and_set(unsigned long bits)
135 {
136 	unsigned long oldmsr = mfmsr();
137 	unsigned long newmsr;
138 
139 	newmsr = oldmsr | bits;
140 
141 #ifdef CONFIG_VSX
142 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
143 		newmsr |= MSR_VSX;
144 #endif
145 
146 	if (oldmsr != newmsr)
147 		mtmsr_isync(newmsr);
148 
149 	return newmsr;
150 }
151 EXPORT_SYMBOL_GPL(msr_check_and_set);
152 
153 /* notrace because it's called by restore_math */
154 void notrace __msr_check_and_clear(unsigned long bits)
155 {
156 	unsigned long oldmsr = mfmsr();
157 	unsigned long newmsr;
158 
159 	newmsr = oldmsr & ~bits;
160 
161 #ifdef CONFIG_VSX
162 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
163 		newmsr &= ~MSR_VSX;
164 #endif
165 
166 	if (oldmsr != newmsr)
167 		mtmsr_isync(newmsr);
168 }
169 EXPORT_SYMBOL(__msr_check_and_clear);
170 
171 #ifdef CONFIG_PPC_FPU
172 static void __giveup_fpu(struct task_struct *tsk)
173 {
174 	unsigned long msr;
175 
176 	save_fpu(tsk);
177 	msr = tsk->thread.regs->msr;
178 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
179 #ifdef CONFIG_VSX
180 	if (cpu_has_feature(CPU_FTR_VSX))
181 		msr &= ~MSR_VSX;
182 #endif
183 	tsk->thread.regs->msr = msr;
184 }
185 
186 void giveup_fpu(struct task_struct *tsk)
187 {
188 	check_if_tm_restore_required(tsk);
189 
190 	msr_check_and_set(MSR_FP);
191 	__giveup_fpu(tsk);
192 	msr_check_and_clear(MSR_FP);
193 }
194 EXPORT_SYMBOL(giveup_fpu);
195 
196 /*
197  * Make sure the floating-point register state in the
198  * the thread_struct is up to date for task tsk.
199  */
200 void flush_fp_to_thread(struct task_struct *tsk)
201 {
202 	if (tsk->thread.regs) {
203 		/*
204 		 * We need to disable preemption here because if we didn't,
205 		 * another process could get scheduled after the regs->msr
206 		 * test but before we have finished saving the FP registers
207 		 * to the thread_struct.  That process could take over the
208 		 * FPU, and then when we get scheduled again we would store
209 		 * bogus values for the remaining FP registers.
210 		 */
211 		preempt_disable();
212 		if (tsk->thread.regs->msr & MSR_FP) {
213 			/*
214 			 * This should only ever be called for current or
215 			 * for a stopped child process.  Since we save away
216 			 * the FP register state on context switch,
217 			 * there is something wrong if a stopped child appears
218 			 * to still have its FP state in the CPU registers.
219 			 */
220 			BUG_ON(tsk != current);
221 			giveup_fpu(tsk);
222 		}
223 		preempt_enable();
224 	}
225 }
226 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
227 
228 void enable_kernel_fp(void)
229 {
230 	unsigned long cpumsr;
231 
232 	WARN_ON(preemptible());
233 
234 	cpumsr = msr_check_and_set(MSR_FP);
235 
236 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
237 		check_if_tm_restore_required(current);
238 		/*
239 		 * If a thread has already been reclaimed then the
240 		 * checkpointed registers are on the CPU but have definitely
241 		 * been saved by the reclaim code. Don't need to and *cannot*
242 		 * giveup as this would save  to the 'live' structure not the
243 		 * checkpointed structure.
244 		 */
245 		if (!MSR_TM_ACTIVE(cpumsr) &&
246 		     MSR_TM_ACTIVE(current->thread.regs->msr))
247 			return;
248 		__giveup_fpu(current);
249 	}
250 }
251 EXPORT_SYMBOL(enable_kernel_fp);
252 
253 static int restore_fp(struct task_struct *tsk)
254 {
255 	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
256 		load_fp_state(&current->thread.fp_state);
257 		current->thread.load_fp++;
258 		return 1;
259 	}
260 	return 0;
261 }
262 #else
263 static int restore_fp(struct task_struct *tsk) { return 0; }
264 #endif /* CONFIG_PPC_FPU */
265 
266 #ifdef CONFIG_ALTIVEC
267 #define loadvec(thr) ((thr).load_vec)
268 
269 static void __giveup_altivec(struct task_struct *tsk)
270 {
271 	unsigned long msr;
272 
273 	save_altivec(tsk);
274 	msr = tsk->thread.regs->msr;
275 	msr &= ~MSR_VEC;
276 #ifdef CONFIG_VSX
277 	if (cpu_has_feature(CPU_FTR_VSX))
278 		msr &= ~MSR_VSX;
279 #endif
280 	tsk->thread.regs->msr = msr;
281 }
282 
283 void giveup_altivec(struct task_struct *tsk)
284 {
285 	check_if_tm_restore_required(tsk);
286 
287 	msr_check_and_set(MSR_VEC);
288 	__giveup_altivec(tsk);
289 	msr_check_and_clear(MSR_VEC);
290 }
291 EXPORT_SYMBOL(giveup_altivec);
292 
293 void enable_kernel_altivec(void)
294 {
295 	unsigned long cpumsr;
296 
297 	WARN_ON(preemptible());
298 
299 	cpumsr = msr_check_and_set(MSR_VEC);
300 
301 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
302 		check_if_tm_restore_required(current);
303 		/*
304 		 * If a thread has already been reclaimed then the
305 		 * checkpointed registers are on the CPU but have definitely
306 		 * been saved by the reclaim code. Don't need to and *cannot*
307 		 * giveup as this would save  to the 'live' structure not the
308 		 * checkpointed structure.
309 		 */
310 		if (!MSR_TM_ACTIVE(cpumsr) &&
311 		     MSR_TM_ACTIVE(current->thread.regs->msr))
312 			return;
313 		__giveup_altivec(current);
314 	}
315 }
316 EXPORT_SYMBOL(enable_kernel_altivec);
317 
318 /*
319  * Make sure the VMX/Altivec register state in the
320  * the thread_struct is up to date for task tsk.
321  */
322 void flush_altivec_to_thread(struct task_struct *tsk)
323 {
324 	if (tsk->thread.regs) {
325 		preempt_disable();
326 		if (tsk->thread.regs->msr & MSR_VEC) {
327 			BUG_ON(tsk != current);
328 			giveup_altivec(tsk);
329 		}
330 		preempt_enable();
331 	}
332 }
333 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
334 
335 static int restore_altivec(struct task_struct *tsk)
336 {
337 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
338 		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
339 		load_vr_state(&tsk->thread.vr_state);
340 		tsk->thread.used_vr = 1;
341 		tsk->thread.load_vec++;
342 
343 		return 1;
344 	}
345 	return 0;
346 }
347 #else
348 #define loadvec(thr) 0
349 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
350 #endif /* CONFIG_ALTIVEC */
351 
352 #ifdef CONFIG_VSX
353 static void __giveup_vsx(struct task_struct *tsk)
354 {
355 	unsigned long msr = tsk->thread.regs->msr;
356 
357 	/*
358 	 * We should never be ssetting MSR_VSX without also setting
359 	 * MSR_FP and MSR_VEC
360 	 */
361 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
362 
363 	/* __giveup_fpu will clear MSR_VSX */
364 	if (msr & MSR_FP)
365 		__giveup_fpu(tsk);
366 	if (msr & MSR_VEC)
367 		__giveup_altivec(tsk);
368 }
369 
370 static void giveup_vsx(struct task_struct *tsk)
371 {
372 	check_if_tm_restore_required(tsk);
373 
374 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
375 	__giveup_vsx(tsk);
376 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
377 }
378 
379 void enable_kernel_vsx(void)
380 {
381 	unsigned long cpumsr;
382 
383 	WARN_ON(preemptible());
384 
385 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
386 
387 	if (current->thread.regs &&
388 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
389 		check_if_tm_restore_required(current);
390 		/*
391 		 * If a thread has already been reclaimed then the
392 		 * checkpointed registers are on the CPU but have definitely
393 		 * been saved by the reclaim code. Don't need to and *cannot*
394 		 * giveup as this would save  to the 'live' structure not the
395 		 * checkpointed structure.
396 		 */
397 		if (!MSR_TM_ACTIVE(cpumsr) &&
398 		     MSR_TM_ACTIVE(current->thread.regs->msr))
399 			return;
400 		__giveup_vsx(current);
401 	}
402 }
403 EXPORT_SYMBOL(enable_kernel_vsx);
404 
405 void flush_vsx_to_thread(struct task_struct *tsk)
406 {
407 	if (tsk->thread.regs) {
408 		preempt_disable();
409 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
410 			BUG_ON(tsk != current);
411 			giveup_vsx(tsk);
412 		}
413 		preempt_enable();
414 	}
415 }
416 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
417 
418 static int restore_vsx(struct task_struct *tsk)
419 {
420 	if (cpu_has_feature(CPU_FTR_VSX)) {
421 		tsk->thread.used_vsr = 1;
422 		return 1;
423 	}
424 
425 	return 0;
426 }
427 #else
428 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
429 #endif /* CONFIG_VSX */
430 
431 #ifdef CONFIG_SPE
432 void giveup_spe(struct task_struct *tsk)
433 {
434 	check_if_tm_restore_required(tsk);
435 
436 	msr_check_and_set(MSR_SPE);
437 	__giveup_spe(tsk);
438 	msr_check_and_clear(MSR_SPE);
439 }
440 EXPORT_SYMBOL(giveup_spe);
441 
442 void enable_kernel_spe(void)
443 {
444 	WARN_ON(preemptible());
445 
446 	msr_check_and_set(MSR_SPE);
447 
448 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
449 		check_if_tm_restore_required(current);
450 		__giveup_spe(current);
451 	}
452 }
453 EXPORT_SYMBOL(enable_kernel_spe);
454 
455 void flush_spe_to_thread(struct task_struct *tsk)
456 {
457 	if (tsk->thread.regs) {
458 		preempt_disable();
459 		if (tsk->thread.regs->msr & MSR_SPE) {
460 			BUG_ON(tsk != current);
461 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
462 			giveup_spe(tsk);
463 		}
464 		preempt_enable();
465 	}
466 }
467 #endif /* CONFIG_SPE */
468 
469 static unsigned long msr_all_available;
470 
471 static int __init init_msr_all_available(void)
472 {
473 #ifdef CONFIG_PPC_FPU
474 	msr_all_available |= MSR_FP;
475 #endif
476 #ifdef CONFIG_ALTIVEC
477 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
478 		msr_all_available |= MSR_VEC;
479 #endif
480 #ifdef CONFIG_VSX
481 	if (cpu_has_feature(CPU_FTR_VSX))
482 		msr_all_available |= MSR_VSX;
483 #endif
484 #ifdef CONFIG_SPE
485 	if (cpu_has_feature(CPU_FTR_SPE))
486 		msr_all_available |= MSR_SPE;
487 #endif
488 
489 	return 0;
490 }
491 early_initcall(init_msr_all_available);
492 
493 void giveup_all(struct task_struct *tsk)
494 {
495 	unsigned long usermsr;
496 
497 	if (!tsk->thread.regs)
498 		return;
499 
500 	usermsr = tsk->thread.regs->msr;
501 
502 	if ((usermsr & msr_all_available) == 0)
503 		return;
504 
505 	msr_check_and_set(msr_all_available);
506 	check_if_tm_restore_required(tsk);
507 
508 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
509 
510 #ifdef CONFIG_PPC_FPU
511 	if (usermsr & MSR_FP)
512 		__giveup_fpu(tsk);
513 #endif
514 #ifdef CONFIG_ALTIVEC
515 	if (usermsr & MSR_VEC)
516 		__giveup_altivec(tsk);
517 #endif
518 #ifdef CONFIG_SPE
519 	if (usermsr & MSR_SPE)
520 		__giveup_spe(tsk);
521 #endif
522 
523 	msr_check_and_clear(msr_all_available);
524 }
525 EXPORT_SYMBOL(giveup_all);
526 
527 /*
528  * The exception exit path calls restore_math() with interrupts hard disabled
529  * but the soft irq state not "reconciled". ftrace code that calls
530  * local_irq_save/restore causes warnings.
531  *
532  * Rather than complicate the exit path, just don't trace restore_math. This
533  * could be done by having ftrace entry code check for this un-reconciled
534  * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
535  * temporarily fix it up for the duration of the ftrace call.
536  */
537 void notrace restore_math(struct pt_regs *regs)
538 {
539 	unsigned long msr;
540 
541 	if (!MSR_TM_ACTIVE(regs->msr) &&
542 		!current->thread.load_fp && !loadvec(current->thread))
543 		return;
544 
545 	msr = regs->msr;
546 	msr_check_and_set(msr_all_available);
547 
548 	/*
549 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
550 	 * indicates that the registers are hot
551 	 */
552 	if ((!(msr & MSR_FP)) && restore_fp(current))
553 		msr |= MSR_FP | current->thread.fpexc_mode;
554 
555 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
556 		msr |= MSR_VEC;
557 
558 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
559 			restore_vsx(current)) {
560 		msr |= MSR_VSX;
561 	}
562 
563 	msr_check_and_clear(msr_all_available);
564 
565 	regs->msr = msr;
566 }
567 
568 static void save_all(struct task_struct *tsk)
569 {
570 	unsigned long usermsr;
571 
572 	if (!tsk->thread.regs)
573 		return;
574 
575 	usermsr = tsk->thread.regs->msr;
576 
577 	if ((usermsr & msr_all_available) == 0)
578 		return;
579 
580 	msr_check_and_set(msr_all_available);
581 
582 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
583 
584 	if (usermsr & MSR_FP)
585 		save_fpu(tsk);
586 
587 	if (usermsr & MSR_VEC)
588 		save_altivec(tsk);
589 
590 	if (usermsr & MSR_SPE)
591 		__giveup_spe(tsk);
592 
593 	msr_check_and_clear(msr_all_available);
594 	thread_pkey_regs_save(&tsk->thread);
595 }
596 
597 void flush_all_to_thread(struct task_struct *tsk)
598 {
599 	if (tsk->thread.regs) {
600 		preempt_disable();
601 		BUG_ON(tsk != current);
602 #ifdef CONFIG_SPE
603 		if (tsk->thread.regs->msr & MSR_SPE)
604 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
605 #endif
606 		save_all(tsk);
607 
608 		preempt_enable();
609 	}
610 }
611 EXPORT_SYMBOL(flush_all_to_thread);
612 
613 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
614 void do_send_trap(struct pt_regs *regs, unsigned long address,
615 		  unsigned long error_code, int breakpt)
616 {
617 	current->thread.trap_nr = TRAP_HWBKPT;
618 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
619 			11, SIGSEGV) == NOTIFY_STOP)
620 		return;
621 
622 	/* Deliver the signal to userspace */
623 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
624 				    (void __user *)address);
625 }
626 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
627 void do_break (struct pt_regs *regs, unsigned long address,
628 		    unsigned long error_code)
629 {
630 	current->thread.trap_nr = TRAP_HWBKPT;
631 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
632 			11, SIGSEGV) == NOTIFY_STOP)
633 		return;
634 
635 	if (debugger_break_match(regs))
636 		return;
637 
638 	/* Clear the breakpoint */
639 	hw_breakpoint_disable();
640 
641 	/* Deliver the signal to userspace */
642 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
643 }
644 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
645 
646 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
647 
648 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
649 /*
650  * Set the debug registers back to their default "safe" values.
651  */
652 static void set_debug_reg_defaults(struct thread_struct *thread)
653 {
654 	thread->debug.iac1 = thread->debug.iac2 = 0;
655 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
656 	thread->debug.iac3 = thread->debug.iac4 = 0;
657 #endif
658 	thread->debug.dac1 = thread->debug.dac2 = 0;
659 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
660 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
661 #endif
662 	thread->debug.dbcr0 = 0;
663 #ifdef CONFIG_BOOKE
664 	/*
665 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
666 	 */
667 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
668 			DBCR1_IAC3US | DBCR1_IAC4US;
669 	/*
670 	 * Force Data Address Compare User/Supervisor bits to be User-only
671 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
672 	 */
673 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
674 #else
675 	thread->debug.dbcr1 = 0;
676 #endif
677 }
678 
679 static void prime_debug_regs(struct debug_reg *debug)
680 {
681 	/*
682 	 * We could have inherited MSR_DE from userspace, since
683 	 * it doesn't get cleared on exception entry.  Make sure
684 	 * MSR_DE is clear before we enable any debug events.
685 	 */
686 	mtmsr(mfmsr() & ~MSR_DE);
687 
688 	mtspr(SPRN_IAC1, debug->iac1);
689 	mtspr(SPRN_IAC2, debug->iac2);
690 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
691 	mtspr(SPRN_IAC3, debug->iac3);
692 	mtspr(SPRN_IAC4, debug->iac4);
693 #endif
694 	mtspr(SPRN_DAC1, debug->dac1);
695 	mtspr(SPRN_DAC2, debug->dac2);
696 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
697 	mtspr(SPRN_DVC1, debug->dvc1);
698 	mtspr(SPRN_DVC2, debug->dvc2);
699 #endif
700 	mtspr(SPRN_DBCR0, debug->dbcr0);
701 	mtspr(SPRN_DBCR1, debug->dbcr1);
702 #ifdef CONFIG_BOOKE
703 	mtspr(SPRN_DBCR2, debug->dbcr2);
704 #endif
705 }
706 /*
707  * Unless neither the old or new thread are making use of the
708  * debug registers, set the debug registers from the values
709  * stored in the new thread.
710  */
711 void switch_booke_debug_regs(struct debug_reg *new_debug)
712 {
713 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
714 		|| (new_debug->dbcr0 & DBCR0_IDM))
715 			prime_debug_regs(new_debug);
716 }
717 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
718 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
719 #ifndef CONFIG_HAVE_HW_BREAKPOINT
720 static void set_breakpoint(struct arch_hw_breakpoint *brk)
721 {
722 	preempt_disable();
723 	__set_breakpoint(brk);
724 	preempt_enable();
725 }
726 
727 static void set_debug_reg_defaults(struct thread_struct *thread)
728 {
729 	thread->hw_brk.address = 0;
730 	thread->hw_brk.type = 0;
731 	if (ppc_breakpoint_available())
732 		set_breakpoint(&thread->hw_brk);
733 }
734 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
735 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
736 
737 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740 	mtspr(SPRN_DAC1, dabr);
741 #ifdef CONFIG_PPC_47x
742 	isync();
743 #endif
744 	return 0;
745 }
746 #elif defined(CONFIG_PPC_BOOK3S)
747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748 {
749 	mtspr(SPRN_DABR, dabr);
750 	if (cpu_has_feature(CPU_FTR_DABRX))
751 		mtspr(SPRN_DABRX, dabrx);
752 	return 0;
753 }
754 #elif defined(CONFIG_PPC_8xx)
755 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
756 {
757 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
758 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
759 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
760 
761 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
762 		lctrl1 |= 0xa0000;
763 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
764 		lctrl1 |= 0xf0000;
765 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
766 		lctrl2 = 0;
767 
768 	mtspr(SPRN_LCTRL2, 0);
769 	mtspr(SPRN_CMPE, addr);
770 	mtspr(SPRN_CMPF, addr + 4);
771 	mtspr(SPRN_LCTRL1, lctrl1);
772 	mtspr(SPRN_LCTRL2, lctrl2);
773 
774 	return 0;
775 }
776 #else
777 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
778 {
779 	return -EINVAL;
780 }
781 #endif
782 
783 static inline int set_dabr(struct arch_hw_breakpoint *brk)
784 {
785 	unsigned long dabr, dabrx;
786 
787 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
788 	dabrx = ((brk->type >> 3) & 0x7);
789 
790 	if (ppc_md.set_dabr)
791 		return ppc_md.set_dabr(dabr, dabrx);
792 
793 	return __set_dabr(dabr, dabrx);
794 }
795 
796 void __set_breakpoint(struct arch_hw_breakpoint *brk)
797 {
798 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
799 
800 	if (dawr_enabled())
801 		// Power8 or later
802 		set_dawr(brk);
803 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
804 		// Power7 or earlier
805 		set_dabr(brk);
806 	else
807 		// Shouldn't happen due to higher level checks
808 		WARN_ON_ONCE(1);
809 }
810 
811 /* Check if we have DAWR or DABR hardware */
812 bool ppc_breakpoint_available(void)
813 {
814 	if (dawr_enabled())
815 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
816 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
817 		return false; /* POWER9 with DAWR disabled */
818 	/* DABR: Everything but POWER8 and POWER9 */
819 	return true;
820 }
821 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
822 
823 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
824 			      struct arch_hw_breakpoint *b)
825 {
826 	if (a->address != b->address)
827 		return false;
828 	if (a->type != b->type)
829 		return false;
830 	if (a->len != b->len)
831 		return false;
832 	return true;
833 }
834 
835 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
836 
837 static inline bool tm_enabled(struct task_struct *tsk)
838 {
839 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
840 }
841 
842 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
843 {
844 	/*
845 	 * Use the current MSR TM suspended bit to track if we have
846 	 * checkpointed state outstanding.
847 	 * On signal delivery, we'd normally reclaim the checkpointed
848 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
849 	 * This will then directly return to userspace without going
850 	 * through __switch_to(). However, if the stack frame is bad,
851 	 * we need to exit this thread which calls __switch_to() which
852 	 * will again attempt to reclaim the already saved tm state.
853 	 * Hence we need to check that we've not already reclaimed
854 	 * this state.
855 	 * We do this using the current MSR, rather tracking it in
856 	 * some specific thread_struct bit, as it has the additional
857 	 * benefit of checking for a potential TM bad thing exception.
858 	 */
859 	if (!MSR_TM_SUSPENDED(mfmsr()))
860 		return;
861 
862 	giveup_all(container_of(thr, struct task_struct, thread));
863 
864 	tm_reclaim(thr, cause);
865 
866 	/*
867 	 * If we are in a transaction and FP is off then we can't have
868 	 * used FP inside that transaction. Hence the checkpointed
869 	 * state is the same as the live state. We need to copy the
870 	 * live state to the checkpointed state so that when the
871 	 * transaction is restored, the checkpointed state is correct
872 	 * and the aborted transaction sees the correct state. We use
873 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
874 	 * determine if it's going to write the checkpointed state or
875 	 * not. So either this will write the checkpointed registers,
876 	 * or reclaim will. Similarly for VMX.
877 	 */
878 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
879 		memcpy(&thr->ckfp_state, &thr->fp_state,
880 		       sizeof(struct thread_fp_state));
881 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
882 		memcpy(&thr->ckvr_state, &thr->vr_state,
883 		       sizeof(struct thread_vr_state));
884 }
885 
886 void tm_reclaim_current(uint8_t cause)
887 {
888 	tm_enable();
889 	tm_reclaim_thread(&current->thread, cause);
890 }
891 
892 static inline void tm_reclaim_task(struct task_struct *tsk)
893 {
894 	/* We have to work out if we're switching from/to a task that's in the
895 	 * middle of a transaction.
896 	 *
897 	 * In switching we need to maintain a 2nd register state as
898 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
899 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
900 	 * ckvr_state
901 	 *
902 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
903 	 */
904 	struct thread_struct *thr = &tsk->thread;
905 
906 	if (!thr->regs)
907 		return;
908 
909 	if (!MSR_TM_ACTIVE(thr->regs->msr))
910 		goto out_and_saveregs;
911 
912 	WARN_ON(tm_suspend_disabled);
913 
914 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
915 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
916 		 tsk->pid, thr->regs->nip,
917 		 thr->regs->ccr, thr->regs->msr,
918 		 thr->regs->trap);
919 
920 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
921 
922 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
923 		 tsk->pid);
924 
925 out_and_saveregs:
926 	/* Always save the regs here, even if a transaction's not active.
927 	 * This context-switches a thread's TM info SPRs.  We do it here to
928 	 * be consistent with the restore path (in recheckpoint) which
929 	 * cannot happen later in _switch().
930 	 */
931 	tm_save_sprs(thr);
932 }
933 
934 extern void __tm_recheckpoint(struct thread_struct *thread);
935 
936 void tm_recheckpoint(struct thread_struct *thread)
937 {
938 	unsigned long flags;
939 
940 	if (!(thread->regs->msr & MSR_TM))
941 		return;
942 
943 	/* We really can't be interrupted here as the TEXASR registers can't
944 	 * change and later in the trecheckpoint code, we have a userspace R1.
945 	 * So let's hard disable over this region.
946 	 */
947 	local_irq_save(flags);
948 	hard_irq_disable();
949 
950 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
951 	 * before the trecheckpoint and no explosion occurs.
952 	 */
953 	tm_restore_sprs(thread);
954 
955 	__tm_recheckpoint(thread);
956 
957 	local_irq_restore(flags);
958 }
959 
960 static inline void tm_recheckpoint_new_task(struct task_struct *new)
961 {
962 	if (!cpu_has_feature(CPU_FTR_TM))
963 		return;
964 
965 	/* Recheckpoint the registers of the thread we're about to switch to.
966 	 *
967 	 * If the task was using FP, we non-lazily reload both the original and
968 	 * the speculative FP register states.  This is because the kernel
969 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
970 	 * unavailable later, we are unable to determine which set of FP regs
971 	 * need to be restored.
972 	 */
973 	if (!tm_enabled(new))
974 		return;
975 
976 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
977 		tm_restore_sprs(&new->thread);
978 		return;
979 	}
980 	/* Recheckpoint to restore original checkpointed register state. */
981 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
982 		 new->pid, new->thread.regs->msr);
983 
984 	tm_recheckpoint(&new->thread);
985 
986 	/*
987 	 * The checkpointed state has been restored but the live state has
988 	 * not, ensure all the math functionality is turned off to trigger
989 	 * restore_math() to reload.
990 	 */
991 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
992 
993 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
994 		 "(kernel msr 0x%lx)\n",
995 		 new->pid, mfmsr());
996 }
997 
998 static inline void __switch_to_tm(struct task_struct *prev,
999 		struct task_struct *new)
1000 {
1001 	if (cpu_has_feature(CPU_FTR_TM)) {
1002 		if (tm_enabled(prev) || tm_enabled(new))
1003 			tm_enable();
1004 
1005 		if (tm_enabled(prev)) {
1006 			prev->thread.load_tm++;
1007 			tm_reclaim_task(prev);
1008 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1009 				prev->thread.regs->msr &= ~MSR_TM;
1010 		}
1011 
1012 		tm_recheckpoint_new_task(new);
1013 	}
1014 }
1015 
1016 /*
1017  * This is called if we are on the way out to userspace and the
1018  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1019  * FP and/or vector state and does so if necessary.
1020  * If userspace is inside a transaction (whether active or
1021  * suspended) and FP/VMX/VSX instructions have ever been enabled
1022  * inside that transaction, then we have to keep them enabled
1023  * and keep the FP/VMX/VSX state loaded while ever the transaction
1024  * continues.  The reason is that if we didn't, and subsequently
1025  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1026  * we don't know whether it's the same transaction, and thus we
1027  * don't know which of the checkpointed state and the transactional
1028  * state to use.
1029  */
1030 void restore_tm_state(struct pt_regs *regs)
1031 {
1032 	unsigned long msr_diff;
1033 
1034 	/*
1035 	 * This is the only moment we should clear TIF_RESTORE_TM as
1036 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1037 	 * again, anything else could lead to an incorrect ckpt_msr being
1038 	 * saved and therefore incorrect signal contexts.
1039 	 */
1040 	clear_thread_flag(TIF_RESTORE_TM);
1041 	if (!MSR_TM_ACTIVE(regs->msr))
1042 		return;
1043 
1044 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1045 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1046 
1047 	/* Ensure that restore_math() will restore */
1048 	if (msr_diff & MSR_FP)
1049 		current->thread.load_fp = 1;
1050 #ifdef CONFIG_ALTIVEC
1051 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1052 		current->thread.load_vec = 1;
1053 #endif
1054 	restore_math(regs);
1055 
1056 	regs->msr |= msr_diff;
1057 }
1058 
1059 #else
1060 #define tm_recheckpoint_new_task(new)
1061 #define __switch_to_tm(prev, new)
1062 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1063 
1064 static inline void save_sprs(struct thread_struct *t)
1065 {
1066 #ifdef CONFIG_ALTIVEC
1067 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1068 		t->vrsave = mfspr(SPRN_VRSAVE);
1069 #endif
1070 #ifdef CONFIG_PPC_BOOK3S_64
1071 	if (cpu_has_feature(CPU_FTR_DSCR))
1072 		t->dscr = mfspr(SPRN_DSCR);
1073 
1074 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1075 		t->bescr = mfspr(SPRN_BESCR);
1076 		t->ebbhr = mfspr(SPRN_EBBHR);
1077 		t->ebbrr = mfspr(SPRN_EBBRR);
1078 
1079 		t->fscr = mfspr(SPRN_FSCR);
1080 
1081 		/*
1082 		 * Note that the TAR is not available for use in the kernel.
1083 		 * (To provide this, the TAR should be backed up/restored on
1084 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1085 		 * this should be in pt_regs anyway (for debug).)
1086 		 */
1087 		t->tar = mfspr(SPRN_TAR);
1088 	}
1089 #endif
1090 
1091 	thread_pkey_regs_save(t);
1092 }
1093 
1094 static inline void restore_sprs(struct thread_struct *old_thread,
1095 				struct thread_struct *new_thread)
1096 {
1097 #ifdef CONFIG_ALTIVEC
1098 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1099 	    old_thread->vrsave != new_thread->vrsave)
1100 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1101 #endif
1102 #ifdef CONFIG_PPC_BOOK3S_64
1103 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1104 		u64 dscr = get_paca()->dscr_default;
1105 		if (new_thread->dscr_inherit)
1106 			dscr = new_thread->dscr;
1107 
1108 		if (old_thread->dscr != dscr)
1109 			mtspr(SPRN_DSCR, dscr);
1110 	}
1111 
1112 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1113 		if (old_thread->bescr != new_thread->bescr)
1114 			mtspr(SPRN_BESCR, new_thread->bescr);
1115 		if (old_thread->ebbhr != new_thread->ebbhr)
1116 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1117 		if (old_thread->ebbrr != new_thread->ebbrr)
1118 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1119 
1120 		if (old_thread->fscr != new_thread->fscr)
1121 			mtspr(SPRN_FSCR, new_thread->fscr);
1122 
1123 		if (old_thread->tar != new_thread->tar)
1124 			mtspr(SPRN_TAR, new_thread->tar);
1125 	}
1126 
1127 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1128 	    old_thread->tidr != new_thread->tidr)
1129 		mtspr(SPRN_TIDR, new_thread->tidr);
1130 #endif
1131 
1132 	thread_pkey_regs_restore(new_thread, old_thread);
1133 }
1134 
1135 struct task_struct *__switch_to(struct task_struct *prev,
1136 	struct task_struct *new)
1137 {
1138 	struct thread_struct *new_thread, *old_thread;
1139 	struct task_struct *last;
1140 #ifdef CONFIG_PPC_BOOK3S_64
1141 	struct ppc64_tlb_batch *batch;
1142 #endif
1143 
1144 	new_thread = &new->thread;
1145 	old_thread = &current->thread;
1146 
1147 	WARN_ON(!irqs_disabled());
1148 
1149 #ifdef CONFIG_PPC_BOOK3S_64
1150 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1151 	if (batch->active) {
1152 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1153 		if (batch->index)
1154 			__flush_tlb_pending(batch);
1155 		batch->active = 0;
1156 	}
1157 #endif /* CONFIG_PPC_BOOK3S_64 */
1158 
1159 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1160 	switch_booke_debug_regs(&new->thread.debug);
1161 #else
1162 /*
1163  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1164  * schedule DABR
1165  */
1166 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1167 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1168 		__set_breakpoint(&new->thread.hw_brk);
1169 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1170 #endif
1171 
1172 	/*
1173 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1174 	 * change a number of them.
1175 	 */
1176 	save_sprs(&prev->thread);
1177 
1178 	/* Save FPU, Altivec, VSX and SPE state */
1179 	giveup_all(prev);
1180 
1181 	__switch_to_tm(prev, new);
1182 
1183 	if (!radix_enabled()) {
1184 		/*
1185 		 * We can't take a PMU exception inside _switch() since there
1186 		 * is a window where the kernel stack SLB and the kernel stack
1187 		 * are out of sync. Hard disable here.
1188 		 */
1189 		hard_irq_disable();
1190 	}
1191 
1192 	/*
1193 	 * Call restore_sprs() before calling _switch(). If we move it after
1194 	 * _switch() then we miss out on calling it for new tasks. The reason
1195 	 * for this is we manually create a stack frame for new tasks that
1196 	 * directly returns through ret_from_fork() or
1197 	 * ret_from_kernel_thread(). See copy_thread() for details.
1198 	 */
1199 	restore_sprs(old_thread, new_thread);
1200 
1201 	last = _switch(old_thread, new_thread);
1202 
1203 #ifdef CONFIG_PPC_BOOK3S_64
1204 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1205 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1206 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1207 		batch->active = 1;
1208 	}
1209 
1210 	if (current->thread.regs) {
1211 		restore_math(current->thread.regs);
1212 
1213 		/*
1214 		 * The copy-paste buffer can only store into foreign real
1215 		 * addresses, so unprivileged processes can not see the
1216 		 * data or use it in any way unless they have foreign real
1217 		 * mappings. If the new process has the foreign real address
1218 		 * mappings, we must issue a cp_abort to clear any state and
1219 		 * prevent snooping, corruption or a covert channel.
1220 		 */
1221 		if (current->thread.used_vas)
1222 			asm volatile(PPC_CP_ABORT);
1223 	}
1224 #endif /* CONFIG_PPC_BOOK3S_64 */
1225 
1226 	return last;
1227 }
1228 
1229 #define NR_INSN_TO_PRINT	16
1230 
1231 static void show_instructions(struct pt_regs *regs)
1232 {
1233 	int i;
1234 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1235 
1236 	printk("Instruction dump:");
1237 
1238 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1239 		int instr;
1240 
1241 		if (!(i % 8))
1242 			pr_cont("\n");
1243 
1244 #if !defined(CONFIG_BOOKE)
1245 		/* If executing with the IMMU off, adjust pc rather
1246 		 * than print XXXXXXXX.
1247 		 */
1248 		if (!(regs->msr & MSR_IR))
1249 			pc = (unsigned long)phys_to_virt(pc);
1250 #endif
1251 
1252 		if (!__kernel_text_address(pc) ||
1253 		    probe_kernel_address((const void *)pc, instr)) {
1254 			pr_cont("XXXXXXXX ");
1255 		} else {
1256 			if (regs->nip == pc)
1257 				pr_cont("<%08x> ", instr);
1258 			else
1259 				pr_cont("%08x ", instr);
1260 		}
1261 
1262 		pc += sizeof(int);
1263 	}
1264 
1265 	pr_cont("\n");
1266 }
1267 
1268 void show_user_instructions(struct pt_regs *regs)
1269 {
1270 	unsigned long pc;
1271 	int n = NR_INSN_TO_PRINT;
1272 	struct seq_buf s;
1273 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1274 
1275 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1276 
1277 	/*
1278 	 * Make sure the NIP points at userspace, not kernel text/data or
1279 	 * elsewhere.
1280 	 */
1281 	if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1282 		pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1283 			current->comm, current->pid);
1284 		return;
1285 	}
1286 
1287 	seq_buf_init(&s, buf, sizeof(buf));
1288 
1289 	while (n) {
1290 		int i;
1291 
1292 		seq_buf_clear(&s);
1293 
1294 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1295 			int instr;
1296 
1297 			if (probe_kernel_address((const void *)pc, instr)) {
1298 				seq_buf_printf(&s, "XXXXXXXX ");
1299 				continue;
1300 			}
1301 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1302 		}
1303 
1304 		if (!seq_buf_has_overflowed(&s))
1305 			pr_info("%s[%d]: code: %s\n", current->comm,
1306 				current->pid, s.buffer);
1307 	}
1308 }
1309 
1310 struct regbit {
1311 	unsigned long bit;
1312 	const char *name;
1313 };
1314 
1315 static struct regbit msr_bits[] = {
1316 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1317 	{MSR_SF,	"SF"},
1318 	{MSR_HV,	"HV"},
1319 #endif
1320 	{MSR_VEC,	"VEC"},
1321 	{MSR_VSX,	"VSX"},
1322 #ifdef CONFIG_BOOKE
1323 	{MSR_CE,	"CE"},
1324 #endif
1325 	{MSR_EE,	"EE"},
1326 	{MSR_PR,	"PR"},
1327 	{MSR_FP,	"FP"},
1328 	{MSR_ME,	"ME"},
1329 #ifdef CONFIG_BOOKE
1330 	{MSR_DE,	"DE"},
1331 #else
1332 	{MSR_SE,	"SE"},
1333 	{MSR_BE,	"BE"},
1334 #endif
1335 	{MSR_IR,	"IR"},
1336 	{MSR_DR,	"DR"},
1337 	{MSR_PMM,	"PMM"},
1338 #ifndef CONFIG_BOOKE
1339 	{MSR_RI,	"RI"},
1340 	{MSR_LE,	"LE"},
1341 #endif
1342 	{0,		NULL}
1343 };
1344 
1345 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1346 {
1347 	const char *s = "";
1348 
1349 	for (; bits->bit; ++bits)
1350 		if (val & bits->bit) {
1351 			pr_cont("%s%s", s, bits->name);
1352 			s = sep;
1353 		}
1354 }
1355 
1356 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1357 static struct regbit msr_tm_bits[] = {
1358 	{MSR_TS_T,	"T"},
1359 	{MSR_TS_S,	"S"},
1360 	{MSR_TM,	"E"},
1361 	{0,		NULL}
1362 };
1363 
1364 static void print_tm_bits(unsigned long val)
1365 {
1366 /*
1367  * This only prints something if at least one of the TM bit is set.
1368  * Inside the TM[], the output means:
1369  *   E: Enabled		(bit 32)
1370  *   S: Suspended	(bit 33)
1371  *   T: Transactional	(bit 34)
1372  */
1373 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1374 		pr_cont(",TM[");
1375 		print_bits(val, msr_tm_bits, "");
1376 		pr_cont("]");
1377 	}
1378 }
1379 #else
1380 static void print_tm_bits(unsigned long val) {}
1381 #endif
1382 
1383 static void print_msr_bits(unsigned long val)
1384 {
1385 	pr_cont("<");
1386 	print_bits(val, msr_bits, ",");
1387 	print_tm_bits(val);
1388 	pr_cont(">");
1389 }
1390 
1391 #ifdef CONFIG_PPC64
1392 #define REG		"%016lx"
1393 #define REGS_PER_LINE	4
1394 #define LAST_VOLATILE	13
1395 #else
1396 #define REG		"%08lx"
1397 #define REGS_PER_LINE	8
1398 #define LAST_VOLATILE	12
1399 #endif
1400 
1401 void show_regs(struct pt_regs * regs)
1402 {
1403 	int i, trap;
1404 
1405 	show_regs_print_info(KERN_DEFAULT);
1406 
1407 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1408 	       regs->nip, regs->link, regs->ctr);
1409 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1410 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1411 	printk("MSR:  "REG" ", regs->msr);
1412 	print_msr_bits(regs->msr);
1413 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1414 	trap = TRAP(regs);
1415 	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1416 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1417 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1418 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1419 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1420 #else
1421 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1422 #endif
1423 #ifdef CONFIG_PPC64
1424 	pr_cont("IRQMASK: %lx ", regs->softe);
1425 #endif
1426 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1427 	if (MSR_TM_ACTIVE(regs->msr))
1428 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1429 #endif
1430 
1431 	for (i = 0;  i < 32;  i++) {
1432 		if ((i % REGS_PER_LINE) == 0)
1433 			pr_cont("\nGPR%02d: ", i);
1434 		pr_cont(REG " ", regs->gpr[i]);
1435 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1436 			break;
1437 	}
1438 	pr_cont("\n");
1439 #ifdef CONFIG_KALLSYMS
1440 	/*
1441 	 * Lookup NIP late so we have the best change of getting the
1442 	 * above info out without failing
1443 	 */
1444 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1445 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1446 #endif
1447 	show_stack(current, (unsigned long *) regs->gpr[1]);
1448 	if (!user_mode(regs))
1449 		show_instructions(regs);
1450 }
1451 
1452 void flush_thread(void)
1453 {
1454 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1455 	flush_ptrace_hw_breakpoint(current);
1456 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1457 	set_debug_reg_defaults(&current->thread);
1458 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1459 }
1460 
1461 #ifdef CONFIG_PPC_BOOK3S_64
1462 void arch_setup_new_exec(void)
1463 {
1464 	if (radix_enabled())
1465 		return;
1466 	hash__setup_new_exec();
1467 }
1468 #endif
1469 
1470 int set_thread_uses_vas(void)
1471 {
1472 #ifdef CONFIG_PPC_BOOK3S_64
1473 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1474 		return -EINVAL;
1475 
1476 	current->thread.used_vas = 1;
1477 
1478 	/*
1479 	 * Even a process that has no foreign real address mapping can use
1480 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1481 	 * to clear any pending COPY and prevent a covert channel.
1482 	 *
1483 	 * __switch_to() will issue CP_ABORT on future context switches.
1484 	 */
1485 	asm volatile(PPC_CP_ABORT);
1486 
1487 #endif /* CONFIG_PPC_BOOK3S_64 */
1488 	return 0;
1489 }
1490 
1491 #ifdef CONFIG_PPC64
1492 /**
1493  * Assign a TIDR (thread ID) for task @t and set it in the thread
1494  * structure. For now, we only support setting TIDR for 'current' task.
1495  *
1496  * Since the TID value is a truncated form of it PID, it is possible
1497  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1498  * that 2 threads share the same TID and are waiting, one of the following
1499  * cases will happen:
1500  *
1501  * 1. The correct thread is running, the wrong thread is not
1502  * In this situation, the correct thread is woken and proceeds to pass it's
1503  * condition check.
1504  *
1505  * 2. Neither threads are running
1506  * In this situation, neither thread will be woken. When scheduled, the waiting
1507  * threads will execute either a wait, which will return immediately, followed
1508  * by a condition check, which will pass for the correct thread and fail
1509  * for the wrong thread, or they will execute the condition check immediately.
1510  *
1511  * 3. The wrong thread is running, the correct thread is not
1512  * The wrong thread will be woken, but will fail it's condition check and
1513  * re-execute wait. The correct thread, when scheduled, will execute either
1514  * it's condition check (which will pass), or wait, which returns immediately
1515  * when called the first time after the thread is scheduled, followed by it's
1516  * condition check (which will pass).
1517  *
1518  * 4. Both threads are running
1519  * Both threads will be woken. The wrong thread will fail it's condition check
1520  * and execute another wait, while the correct thread will pass it's condition
1521  * check.
1522  *
1523  * @t: the task to set the thread ID for
1524  */
1525 int set_thread_tidr(struct task_struct *t)
1526 {
1527 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1528 		return -EINVAL;
1529 
1530 	if (t != current)
1531 		return -EINVAL;
1532 
1533 	if (t->thread.tidr)
1534 		return 0;
1535 
1536 	t->thread.tidr = (u16)task_pid_nr(t);
1537 	mtspr(SPRN_TIDR, t->thread.tidr);
1538 
1539 	return 0;
1540 }
1541 EXPORT_SYMBOL_GPL(set_thread_tidr);
1542 
1543 #endif /* CONFIG_PPC64 */
1544 
1545 void
1546 release_thread(struct task_struct *t)
1547 {
1548 }
1549 
1550 /*
1551  * this gets called so that we can store coprocessor state into memory and
1552  * copy the current task into the new thread.
1553  */
1554 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1555 {
1556 	flush_all_to_thread(src);
1557 	/*
1558 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1559 	 * flush but it removes the checkpointed state from the current CPU and
1560 	 * transitions the CPU out of TM mode.  Hence we need to call
1561 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1562 	 * checkpointed state back and the TM mode.
1563 	 *
1564 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1565 	 * dst is only important for __switch_to()
1566 	 */
1567 	__switch_to_tm(src, src);
1568 
1569 	*dst = *src;
1570 
1571 	clear_task_ebb(dst);
1572 
1573 	return 0;
1574 }
1575 
1576 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1577 {
1578 #ifdef CONFIG_PPC_BOOK3S_64
1579 	unsigned long sp_vsid;
1580 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1581 
1582 	if (radix_enabled())
1583 		return;
1584 
1585 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1586 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1587 			<< SLB_VSID_SHIFT_1T;
1588 	else
1589 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1590 			<< SLB_VSID_SHIFT;
1591 	sp_vsid |= SLB_VSID_KERNEL | llp;
1592 	p->thread.ksp_vsid = sp_vsid;
1593 #endif
1594 }
1595 
1596 /*
1597  * Copy a thread..
1598  */
1599 
1600 /*
1601  * Copy architecture-specific thread state
1602  */
1603 int copy_thread(unsigned long clone_flags, unsigned long usp,
1604 		unsigned long kthread_arg, struct task_struct *p)
1605 {
1606 	struct pt_regs *childregs, *kregs;
1607 	extern void ret_from_fork(void);
1608 	extern void ret_from_kernel_thread(void);
1609 	void (*f)(void);
1610 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1611 	struct thread_info *ti = task_thread_info(p);
1612 
1613 	klp_init_thread_info(p);
1614 
1615 	/* Copy registers */
1616 	sp -= sizeof(struct pt_regs);
1617 	childregs = (struct pt_regs *) sp;
1618 	if (unlikely(p->flags & PF_KTHREAD)) {
1619 		/* kernel thread */
1620 		memset(childregs, 0, sizeof(struct pt_regs));
1621 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1622 		/* function */
1623 		if (usp)
1624 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1625 #ifdef CONFIG_PPC64
1626 		clear_tsk_thread_flag(p, TIF_32BIT);
1627 		childregs->softe = IRQS_ENABLED;
1628 #endif
1629 		childregs->gpr[15] = kthread_arg;
1630 		p->thread.regs = NULL;	/* no user register state */
1631 		ti->flags |= _TIF_RESTOREALL;
1632 		f = ret_from_kernel_thread;
1633 	} else {
1634 		/* user thread */
1635 		struct pt_regs *regs = current_pt_regs();
1636 		CHECK_FULL_REGS(regs);
1637 		*childregs = *regs;
1638 		if (usp)
1639 			childregs->gpr[1] = usp;
1640 		p->thread.regs = childregs;
1641 		childregs->gpr[3] = 0;  /* Result from fork() */
1642 		if (clone_flags & CLONE_SETTLS) {
1643 #ifdef CONFIG_PPC64
1644 			if (!is_32bit_task())
1645 				childregs->gpr[13] = childregs->gpr[6];
1646 			else
1647 #endif
1648 				childregs->gpr[2] = childregs->gpr[6];
1649 		}
1650 
1651 		f = ret_from_fork;
1652 	}
1653 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1654 	sp -= STACK_FRAME_OVERHEAD;
1655 
1656 	/*
1657 	 * The way this works is that at some point in the future
1658 	 * some task will call _switch to switch to the new task.
1659 	 * That will pop off the stack frame created below and start
1660 	 * the new task running at ret_from_fork.  The new task will
1661 	 * do some house keeping and then return from the fork or clone
1662 	 * system call, using the stack frame created above.
1663 	 */
1664 	((unsigned long *)sp)[0] = 0;
1665 	sp -= sizeof(struct pt_regs);
1666 	kregs = (struct pt_regs *) sp;
1667 	sp -= STACK_FRAME_OVERHEAD;
1668 	p->thread.ksp = sp;
1669 #ifdef CONFIG_PPC32
1670 	p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1671 #endif
1672 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1673 	p->thread.ptrace_bps[0] = NULL;
1674 #endif
1675 
1676 	p->thread.fp_save_area = NULL;
1677 #ifdef CONFIG_ALTIVEC
1678 	p->thread.vr_save_area = NULL;
1679 #endif
1680 
1681 	setup_ksp_vsid(p, sp);
1682 
1683 #ifdef CONFIG_PPC64
1684 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1685 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1686 		p->thread.dscr = mfspr(SPRN_DSCR);
1687 	}
1688 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1689 		childregs->ppr = DEFAULT_PPR;
1690 
1691 	p->thread.tidr = 0;
1692 #endif
1693 	kregs->nip = ppc_function_entry(f);
1694 	return 0;
1695 }
1696 
1697 void preload_new_slb_context(unsigned long start, unsigned long sp);
1698 
1699 /*
1700  * Set up a thread for executing a new program
1701  */
1702 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1703 {
1704 #ifdef CONFIG_PPC64
1705 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1706 
1707 #ifdef CONFIG_PPC_BOOK3S_64
1708 	if (!radix_enabled())
1709 		preload_new_slb_context(start, sp);
1710 #endif
1711 #endif
1712 
1713 	/*
1714 	 * If we exec out of a kernel thread then thread.regs will not be
1715 	 * set.  Do it now.
1716 	 */
1717 	if (!current->thread.regs) {
1718 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1719 		current->thread.regs = regs - 1;
1720 	}
1721 
1722 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1723 	/*
1724 	 * Clear any transactional state, we're exec()ing. The cause is
1725 	 * not important as there will never be a recheckpoint so it's not
1726 	 * user visible.
1727 	 */
1728 	if (MSR_TM_SUSPENDED(mfmsr()))
1729 		tm_reclaim_current(0);
1730 #endif
1731 
1732 	memset(regs->gpr, 0, sizeof(regs->gpr));
1733 	regs->ctr = 0;
1734 	regs->link = 0;
1735 	regs->xer = 0;
1736 	regs->ccr = 0;
1737 	regs->gpr[1] = sp;
1738 
1739 	/*
1740 	 * We have just cleared all the nonvolatile GPRs, so make
1741 	 * FULL_REGS(regs) return true.  This is necessary to allow
1742 	 * ptrace to examine the thread immediately after exec.
1743 	 */
1744 	regs->trap &= ~1UL;
1745 
1746 #ifdef CONFIG_PPC32
1747 	regs->mq = 0;
1748 	regs->nip = start;
1749 	regs->msr = MSR_USER;
1750 #else
1751 	if (!is_32bit_task()) {
1752 		unsigned long entry;
1753 
1754 		if (is_elf2_task()) {
1755 			/* Look ma, no function descriptors! */
1756 			entry = start;
1757 
1758 			/*
1759 			 * Ulrich says:
1760 			 *   The latest iteration of the ABI requires that when
1761 			 *   calling a function (at its global entry point),
1762 			 *   the caller must ensure r12 holds the entry point
1763 			 *   address (so that the function can quickly
1764 			 *   establish addressability).
1765 			 */
1766 			regs->gpr[12] = start;
1767 			/* Make sure that's restored on entry to userspace. */
1768 			set_thread_flag(TIF_RESTOREALL);
1769 		} else {
1770 			unsigned long toc;
1771 
1772 			/* start is a relocated pointer to the function
1773 			 * descriptor for the elf _start routine.  The first
1774 			 * entry in the function descriptor is the entry
1775 			 * address of _start and the second entry is the TOC
1776 			 * value we need to use.
1777 			 */
1778 			__get_user(entry, (unsigned long __user *)start);
1779 			__get_user(toc, (unsigned long __user *)start+1);
1780 
1781 			/* Check whether the e_entry function descriptor entries
1782 			 * need to be relocated before we can use them.
1783 			 */
1784 			if (load_addr != 0) {
1785 				entry += load_addr;
1786 				toc   += load_addr;
1787 			}
1788 			regs->gpr[2] = toc;
1789 		}
1790 		regs->nip = entry;
1791 		regs->msr = MSR_USER64;
1792 	} else {
1793 		regs->nip = start;
1794 		regs->gpr[2] = 0;
1795 		regs->msr = MSR_USER32;
1796 	}
1797 #endif
1798 #ifdef CONFIG_VSX
1799 	current->thread.used_vsr = 0;
1800 #endif
1801 	current->thread.load_slb = 0;
1802 	current->thread.load_fp = 0;
1803 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1804 	current->thread.fp_save_area = NULL;
1805 #ifdef CONFIG_ALTIVEC
1806 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1807 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1808 	current->thread.vr_save_area = NULL;
1809 	current->thread.vrsave = 0;
1810 	current->thread.used_vr = 0;
1811 	current->thread.load_vec = 0;
1812 #endif /* CONFIG_ALTIVEC */
1813 #ifdef CONFIG_SPE
1814 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1815 	current->thread.acc = 0;
1816 	current->thread.spefscr = 0;
1817 	current->thread.used_spe = 0;
1818 #endif /* CONFIG_SPE */
1819 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1820 	current->thread.tm_tfhar = 0;
1821 	current->thread.tm_texasr = 0;
1822 	current->thread.tm_tfiar = 0;
1823 	current->thread.load_tm = 0;
1824 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1825 
1826 	thread_pkey_regs_init(&current->thread);
1827 }
1828 EXPORT_SYMBOL(start_thread);
1829 
1830 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1831 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1832 
1833 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1834 {
1835 	struct pt_regs *regs = tsk->thread.regs;
1836 
1837 	/* This is a bit hairy.  If we are an SPE enabled  processor
1838 	 * (have embedded fp) we store the IEEE exception enable flags in
1839 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1840 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1841 	if (val & PR_FP_EXC_SW_ENABLE) {
1842 #ifdef CONFIG_SPE
1843 		if (cpu_has_feature(CPU_FTR_SPE)) {
1844 			/*
1845 			 * When the sticky exception bits are set
1846 			 * directly by userspace, it must call prctl
1847 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1848 			 * in the existing prctl settings) or
1849 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1850 			 * the bits being set).  <fenv.h> functions
1851 			 * saving and restoring the whole
1852 			 * floating-point environment need to do so
1853 			 * anyway to restore the prctl settings from
1854 			 * the saved environment.
1855 			 */
1856 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1857 			tsk->thread.fpexc_mode = val &
1858 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1859 			return 0;
1860 		} else {
1861 			return -EINVAL;
1862 		}
1863 #else
1864 		return -EINVAL;
1865 #endif
1866 	}
1867 
1868 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1869 	 * __pack_fe01 use do not overlap with bits used for
1870 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1871 	 * on CONFIG_SPE implementations are reserved so writing to
1872 	 * them does not change anything */
1873 	if (val > PR_FP_EXC_PRECISE)
1874 		return -EINVAL;
1875 	tsk->thread.fpexc_mode = __pack_fe01(val);
1876 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1877 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1878 			| tsk->thread.fpexc_mode;
1879 	return 0;
1880 }
1881 
1882 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1883 {
1884 	unsigned int val;
1885 
1886 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1887 #ifdef CONFIG_SPE
1888 		if (cpu_has_feature(CPU_FTR_SPE)) {
1889 			/*
1890 			 * When the sticky exception bits are set
1891 			 * directly by userspace, it must call prctl
1892 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1893 			 * in the existing prctl settings) or
1894 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1895 			 * the bits being set).  <fenv.h> functions
1896 			 * saving and restoring the whole
1897 			 * floating-point environment need to do so
1898 			 * anyway to restore the prctl settings from
1899 			 * the saved environment.
1900 			 */
1901 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1902 			val = tsk->thread.fpexc_mode;
1903 		} else
1904 			return -EINVAL;
1905 #else
1906 		return -EINVAL;
1907 #endif
1908 	else
1909 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1910 	return put_user(val, (unsigned int __user *) adr);
1911 }
1912 
1913 int set_endian(struct task_struct *tsk, unsigned int val)
1914 {
1915 	struct pt_regs *regs = tsk->thread.regs;
1916 
1917 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1918 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1919 		return -EINVAL;
1920 
1921 	if (regs == NULL)
1922 		return -EINVAL;
1923 
1924 	if (val == PR_ENDIAN_BIG)
1925 		regs->msr &= ~MSR_LE;
1926 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1927 		regs->msr |= MSR_LE;
1928 	else
1929 		return -EINVAL;
1930 
1931 	return 0;
1932 }
1933 
1934 int get_endian(struct task_struct *tsk, unsigned long adr)
1935 {
1936 	struct pt_regs *regs = tsk->thread.regs;
1937 	unsigned int val;
1938 
1939 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1940 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1941 		return -EINVAL;
1942 
1943 	if (regs == NULL)
1944 		return -EINVAL;
1945 
1946 	if (regs->msr & MSR_LE) {
1947 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1948 			val = PR_ENDIAN_LITTLE;
1949 		else
1950 			val = PR_ENDIAN_PPC_LITTLE;
1951 	} else
1952 		val = PR_ENDIAN_BIG;
1953 
1954 	return put_user(val, (unsigned int __user *)adr);
1955 }
1956 
1957 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1958 {
1959 	tsk->thread.align_ctl = val;
1960 	return 0;
1961 }
1962 
1963 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1964 {
1965 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1966 }
1967 
1968 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1969 				  unsigned long nbytes)
1970 {
1971 	unsigned long stack_page;
1972 	unsigned long cpu = task_cpu(p);
1973 
1974 	stack_page = (unsigned long)hardirq_ctx[cpu];
1975 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1976 		return 1;
1977 
1978 	stack_page = (unsigned long)softirq_ctx[cpu];
1979 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1980 		return 1;
1981 
1982 	return 0;
1983 }
1984 
1985 int validate_sp(unsigned long sp, struct task_struct *p,
1986 		       unsigned long nbytes)
1987 {
1988 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1989 
1990 	if (sp < THREAD_SIZE)
1991 		return 0;
1992 
1993 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1994 		return 1;
1995 
1996 	return valid_irq_stack(sp, p, nbytes);
1997 }
1998 
1999 EXPORT_SYMBOL(validate_sp);
2000 
2001 static unsigned long __get_wchan(struct task_struct *p)
2002 {
2003 	unsigned long ip, sp;
2004 	int count = 0;
2005 
2006 	if (!p || p == current || p->state == TASK_RUNNING)
2007 		return 0;
2008 
2009 	sp = p->thread.ksp;
2010 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2011 		return 0;
2012 
2013 	do {
2014 		sp = *(unsigned long *)sp;
2015 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2016 		    p->state == TASK_RUNNING)
2017 			return 0;
2018 		if (count > 0) {
2019 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2020 			if (!in_sched_functions(ip))
2021 				return ip;
2022 		}
2023 	} while (count++ < 16);
2024 	return 0;
2025 }
2026 
2027 unsigned long get_wchan(struct task_struct *p)
2028 {
2029 	unsigned long ret;
2030 
2031 	if (!try_get_task_stack(p))
2032 		return 0;
2033 
2034 	ret = __get_wchan(p);
2035 
2036 	put_task_stack(p);
2037 
2038 	return ret;
2039 }
2040 
2041 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2042 
2043 void show_stack(struct task_struct *tsk, unsigned long *stack)
2044 {
2045 	unsigned long sp, ip, lr, newsp;
2046 	int count = 0;
2047 	int firstframe = 1;
2048 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2049 	struct ftrace_ret_stack *ret_stack;
2050 	extern void return_to_handler(void);
2051 	unsigned long rth = (unsigned long)return_to_handler;
2052 	int curr_frame = 0;
2053 #endif
2054 
2055 	if (tsk == NULL)
2056 		tsk = current;
2057 
2058 	if (!try_get_task_stack(tsk))
2059 		return;
2060 
2061 	sp = (unsigned long) stack;
2062 	if (sp == 0) {
2063 		if (tsk == current)
2064 			sp = current_stack_pointer();
2065 		else
2066 			sp = tsk->thread.ksp;
2067 	}
2068 
2069 	lr = 0;
2070 	printk("Call Trace:\n");
2071 	do {
2072 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2073 			break;
2074 
2075 		stack = (unsigned long *) sp;
2076 		newsp = stack[0];
2077 		ip = stack[STACK_FRAME_LR_SAVE];
2078 		if (!firstframe || ip != lr) {
2079 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2080 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2081 			if ((ip == rth) && curr_frame >= 0) {
2082 				ret_stack = ftrace_graph_get_ret_stack(current,
2083 								  curr_frame++);
2084 				if (ret_stack)
2085 					pr_cont(" (%pS)",
2086 						(void *)ret_stack->ret);
2087 				else
2088 					curr_frame = -1;
2089 			}
2090 #endif
2091 			if (firstframe)
2092 				pr_cont(" (unreliable)");
2093 			pr_cont("\n");
2094 		}
2095 		firstframe = 0;
2096 
2097 		/*
2098 		 * See if this is an exception frame.
2099 		 * We look for the "regshere" marker in the current frame.
2100 		 */
2101 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2102 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2103 			struct pt_regs *regs = (struct pt_regs *)
2104 				(sp + STACK_FRAME_OVERHEAD);
2105 			lr = regs->link;
2106 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2107 			       regs->trap, (void *)regs->nip, (void *)lr);
2108 			firstframe = 1;
2109 		}
2110 
2111 		sp = newsp;
2112 	} while (count++ < kstack_depth_to_print);
2113 
2114 	put_task_stack(tsk);
2115 }
2116 
2117 #ifdef CONFIG_PPC64
2118 /* Called with hard IRQs off */
2119 void notrace __ppc64_runlatch_on(void)
2120 {
2121 	struct thread_info *ti = current_thread_info();
2122 
2123 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2124 		/*
2125 		 * Least significant bit (RUN) is the only writable bit of
2126 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2127 		 * earliest ISA where this is the case, but it's convenient.
2128 		 */
2129 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2130 	} else {
2131 		unsigned long ctrl;
2132 
2133 		/*
2134 		 * Some architectures (e.g., Cell) have writable fields other
2135 		 * than RUN, so do the read-modify-write.
2136 		 */
2137 		ctrl = mfspr(SPRN_CTRLF);
2138 		ctrl |= CTRL_RUNLATCH;
2139 		mtspr(SPRN_CTRLT, ctrl);
2140 	}
2141 
2142 	ti->local_flags |= _TLF_RUNLATCH;
2143 }
2144 
2145 /* Called with hard IRQs off */
2146 void notrace __ppc64_runlatch_off(void)
2147 {
2148 	struct thread_info *ti = current_thread_info();
2149 
2150 	ti->local_flags &= ~_TLF_RUNLATCH;
2151 
2152 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2153 		mtspr(SPRN_CTRLT, 0);
2154 	} else {
2155 		unsigned long ctrl;
2156 
2157 		ctrl = mfspr(SPRN_CTRLF);
2158 		ctrl &= ~CTRL_RUNLATCH;
2159 		mtspr(SPRN_CTRLT, ctrl);
2160 	}
2161 }
2162 #endif /* CONFIG_PPC64 */
2163 
2164 unsigned long arch_align_stack(unsigned long sp)
2165 {
2166 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2167 		sp -= get_random_int() & ~PAGE_MASK;
2168 	return sp & ~0xf;
2169 }
2170 
2171 static inline unsigned long brk_rnd(void)
2172 {
2173         unsigned long rnd = 0;
2174 
2175 	/* 8MB for 32bit, 1GB for 64bit */
2176 	if (is_32bit_task())
2177 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2178 	else
2179 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2180 
2181 	return rnd << PAGE_SHIFT;
2182 }
2183 
2184 unsigned long arch_randomize_brk(struct mm_struct *mm)
2185 {
2186 	unsigned long base = mm->brk;
2187 	unsigned long ret;
2188 
2189 #ifdef CONFIG_PPC_BOOK3S_64
2190 	/*
2191 	 * If we are using 1TB segments and we are allowed to randomise
2192 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2193 	 * segment. Otherwise the heap will be in the bottom 1TB
2194 	 * which always uses 256MB segments and this may result in a
2195 	 * performance penalty. We don't need to worry about radix. For
2196 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2197 	 */
2198 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2199 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2200 #endif
2201 
2202 	ret = PAGE_ALIGN(base + brk_rnd());
2203 
2204 	if (ret < mm->brk)
2205 		return mm->brk;
2206 
2207 	return ret;
2208 }
2209 
2210