1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/init.h> 29 #include <linux/prctl.h> 30 #include <linux/init_task.h> 31 #include <linux/module.h> 32 #include <linux/kallsyms.h> 33 #include <linux/mqueue.h> 34 #include <linux/hardirq.h> 35 #include <linux/utsname.h> 36 #include <linux/kernel_stat.h> 37 38 #include <asm/pgtable.h> 39 #include <asm/uaccess.h> 40 #include <asm/system.h> 41 #include <asm/io.h> 42 #include <asm/processor.h> 43 #include <asm/mmu.h> 44 #include <asm/prom.h> 45 #include <asm/machdep.h> 46 #include <asm/time.h> 47 #include <asm/syscalls.h> 48 #ifdef CONFIG_PPC64 49 #include <asm/firmware.h> 50 #endif 51 #include <linux/kprobes.h> 52 #include <linux/kdebug.h> 53 54 extern unsigned long _get_SP(void); 55 56 #ifndef CONFIG_SMP 57 struct task_struct *last_task_used_math = NULL; 58 struct task_struct *last_task_used_altivec = NULL; 59 struct task_struct *last_task_used_vsx = NULL; 60 struct task_struct *last_task_used_spe = NULL; 61 #endif 62 63 /* 64 * Make sure the floating-point register state in the 65 * the thread_struct is up to date for task tsk. 66 */ 67 void flush_fp_to_thread(struct task_struct *tsk) 68 { 69 if (tsk->thread.regs) { 70 /* 71 * We need to disable preemption here because if we didn't, 72 * another process could get scheduled after the regs->msr 73 * test but before we have finished saving the FP registers 74 * to the thread_struct. That process could take over the 75 * FPU, and then when we get scheduled again we would store 76 * bogus values for the remaining FP registers. 77 */ 78 preempt_disable(); 79 if (tsk->thread.regs->msr & MSR_FP) { 80 #ifdef CONFIG_SMP 81 /* 82 * This should only ever be called for current or 83 * for a stopped child process. Since we save away 84 * the FP register state on context switch on SMP, 85 * there is something wrong if a stopped child appears 86 * to still have its FP state in the CPU registers. 87 */ 88 BUG_ON(tsk != current); 89 #endif 90 giveup_fpu(tsk); 91 } 92 preempt_enable(); 93 } 94 } 95 96 void enable_kernel_fp(void) 97 { 98 WARN_ON(preemptible()); 99 100 #ifdef CONFIG_SMP 101 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 102 giveup_fpu(current); 103 else 104 giveup_fpu(NULL); /* just enables FP for kernel */ 105 #else 106 giveup_fpu(last_task_used_math); 107 #endif /* CONFIG_SMP */ 108 } 109 EXPORT_SYMBOL(enable_kernel_fp); 110 111 #ifdef CONFIG_ALTIVEC 112 void enable_kernel_altivec(void) 113 { 114 WARN_ON(preemptible()); 115 116 #ifdef CONFIG_SMP 117 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 118 giveup_altivec(current); 119 else 120 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ 121 #else 122 giveup_altivec(last_task_used_altivec); 123 #endif /* CONFIG_SMP */ 124 } 125 EXPORT_SYMBOL(enable_kernel_altivec); 126 127 /* 128 * Make sure the VMX/Altivec register state in the 129 * the thread_struct is up to date for task tsk. 130 */ 131 void flush_altivec_to_thread(struct task_struct *tsk) 132 { 133 if (tsk->thread.regs) { 134 preempt_disable(); 135 if (tsk->thread.regs->msr & MSR_VEC) { 136 #ifdef CONFIG_SMP 137 BUG_ON(tsk != current); 138 #endif 139 giveup_altivec(tsk); 140 } 141 preempt_enable(); 142 } 143 } 144 #endif /* CONFIG_ALTIVEC */ 145 146 #ifdef CONFIG_VSX 147 #if 0 148 /* not currently used, but some crazy RAID module might want to later */ 149 void enable_kernel_vsx(void) 150 { 151 WARN_ON(preemptible()); 152 153 #ifdef CONFIG_SMP 154 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) 155 giveup_vsx(current); 156 else 157 giveup_vsx(NULL); /* just enable vsx for kernel - force */ 158 #else 159 giveup_vsx(last_task_used_vsx); 160 #endif /* CONFIG_SMP */ 161 } 162 EXPORT_SYMBOL(enable_kernel_vsx); 163 #endif 164 165 void giveup_vsx(struct task_struct *tsk) 166 { 167 giveup_fpu(tsk); 168 giveup_altivec(tsk); 169 __giveup_vsx(tsk); 170 } 171 172 void flush_vsx_to_thread(struct task_struct *tsk) 173 { 174 if (tsk->thread.regs) { 175 preempt_disable(); 176 if (tsk->thread.regs->msr & MSR_VSX) { 177 #ifdef CONFIG_SMP 178 BUG_ON(tsk != current); 179 #endif 180 giveup_vsx(tsk); 181 } 182 preempt_enable(); 183 } 184 } 185 #endif /* CONFIG_VSX */ 186 187 #ifdef CONFIG_SPE 188 189 void enable_kernel_spe(void) 190 { 191 WARN_ON(preemptible()); 192 193 #ifdef CONFIG_SMP 194 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 195 giveup_spe(current); 196 else 197 giveup_spe(NULL); /* just enable SPE for kernel - force */ 198 #else 199 giveup_spe(last_task_used_spe); 200 #endif /* __SMP __ */ 201 } 202 EXPORT_SYMBOL(enable_kernel_spe); 203 204 void flush_spe_to_thread(struct task_struct *tsk) 205 { 206 if (tsk->thread.regs) { 207 preempt_disable(); 208 if (tsk->thread.regs->msr & MSR_SPE) { 209 #ifdef CONFIG_SMP 210 BUG_ON(tsk != current); 211 #endif 212 giveup_spe(tsk); 213 } 214 preempt_enable(); 215 } 216 } 217 #endif /* CONFIG_SPE */ 218 219 #ifndef CONFIG_SMP 220 /* 221 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 222 * and the current task has some state, discard it. 223 */ 224 void discard_lazy_cpu_state(void) 225 { 226 preempt_disable(); 227 if (last_task_used_math == current) 228 last_task_used_math = NULL; 229 #ifdef CONFIG_ALTIVEC 230 if (last_task_used_altivec == current) 231 last_task_used_altivec = NULL; 232 #endif /* CONFIG_ALTIVEC */ 233 #ifdef CONFIG_VSX 234 if (last_task_used_vsx == current) 235 last_task_used_vsx = NULL; 236 #endif /* CONFIG_VSX */ 237 #ifdef CONFIG_SPE 238 if (last_task_used_spe == current) 239 last_task_used_spe = NULL; 240 #endif 241 preempt_enable(); 242 } 243 #endif /* CONFIG_SMP */ 244 245 void do_dabr(struct pt_regs *regs, unsigned long address, 246 unsigned long error_code) 247 { 248 siginfo_t info; 249 250 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 251 11, SIGSEGV) == NOTIFY_STOP) 252 return; 253 254 if (debugger_dabr_match(regs)) 255 return; 256 257 /* Clear the DAC and struct entries. One shot trigger */ 258 #if defined(CONFIG_BOOKE) 259 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | DBSR_DAC1W 260 | DBCR0_IDM)); 261 #endif 262 263 /* Clear the DABR */ 264 set_dabr(0); 265 266 /* Deliver the signal to userspace */ 267 info.si_signo = SIGTRAP; 268 info.si_errno = 0; 269 info.si_code = TRAP_HWBKPT; 270 info.si_addr = (void __user *)address; 271 force_sig_info(SIGTRAP, &info, current); 272 } 273 274 static DEFINE_PER_CPU(unsigned long, current_dabr); 275 276 int set_dabr(unsigned long dabr) 277 { 278 __get_cpu_var(current_dabr) = dabr; 279 280 if (ppc_md.set_dabr) 281 return ppc_md.set_dabr(dabr); 282 283 /* XXX should we have a CPU_FTR_HAS_DABR ? */ 284 #if defined(CONFIG_PPC64) || defined(CONFIG_6xx) 285 mtspr(SPRN_DABR, dabr); 286 #endif 287 288 #if defined(CONFIG_BOOKE) 289 mtspr(SPRN_DAC1, dabr); 290 #endif 291 292 return 0; 293 } 294 295 #ifdef CONFIG_PPC64 296 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 297 #endif 298 299 struct task_struct *__switch_to(struct task_struct *prev, 300 struct task_struct *new) 301 { 302 struct thread_struct *new_thread, *old_thread; 303 unsigned long flags; 304 struct task_struct *last; 305 306 #ifdef CONFIG_SMP 307 /* avoid complexity of lazy save/restore of fpu 308 * by just saving it every time we switch out if 309 * this task used the fpu during the last quantum. 310 * 311 * If it tries to use the fpu again, it'll trap and 312 * reload its fp regs. So we don't have to do a restore 313 * every switch, just a save. 314 * -- Cort 315 */ 316 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 317 giveup_fpu(prev); 318 #ifdef CONFIG_ALTIVEC 319 /* 320 * If the previous thread used altivec in the last quantum 321 * (thus changing altivec regs) then save them. 322 * We used to check the VRSAVE register but not all apps 323 * set it, so we don't rely on it now (and in fact we need 324 * to save & restore VSCR even if VRSAVE == 0). -- paulus 325 * 326 * On SMP we always save/restore altivec regs just to avoid the 327 * complexity of changing processors. 328 * -- Cort 329 */ 330 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 331 giveup_altivec(prev); 332 #endif /* CONFIG_ALTIVEC */ 333 #ifdef CONFIG_VSX 334 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX)) 335 /* VMX and FPU registers are already save here */ 336 __giveup_vsx(prev); 337 #endif /* CONFIG_VSX */ 338 #ifdef CONFIG_SPE 339 /* 340 * If the previous thread used spe in the last quantum 341 * (thus changing spe regs) then save them. 342 * 343 * On SMP we always save/restore spe regs just to avoid the 344 * complexity of changing processors. 345 */ 346 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 347 giveup_spe(prev); 348 #endif /* CONFIG_SPE */ 349 350 #else /* CONFIG_SMP */ 351 #ifdef CONFIG_ALTIVEC 352 /* Avoid the trap. On smp this this never happens since 353 * we don't set last_task_used_altivec -- Cort 354 */ 355 if (new->thread.regs && last_task_used_altivec == new) 356 new->thread.regs->msr |= MSR_VEC; 357 #endif /* CONFIG_ALTIVEC */ 358 #ifdef CONFIG_VSX 359 if (new->thread.regs && last_task_used_vsx == new) 360 new->thread.regs->msr |= MSR_VSX; 361 #endif /* CONFIG_VSX */ 362 #ifdef CONFIG_SPE 363 /* Avoid the trap. On smp this this never happens since 364 * we don't set last_task_used_spe 365 */ 366 if (new->thread.regs && last_task_used_spe == new) 367 new->thread.regs->msr |= MSR_SPE; 368 #endif /* CONFIG_SPE */ 369 370 #endif /* CONFIG_SMP */ 371 372 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) 373 set_dabr(new->thread.dabr); 374 375 #if defined(CONFIG_BOOKE) 376 /* If new thread DAC (HW breakpoint) is the same then leave it */ 377 if (new->thread.dabr) 378 set_dabr(new->thread.dabr); 379 #endif 380 381 new_thread = &new->thread; 382 old_thread = ¤t->thread; 383 384 #ifdef CONFIG_PPC64 385 /* 386 * Collect processor utilization data per process 387 */ 388 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 389 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 390 long unsigned start_tb, current_tb; 391 start_tb = old_thread->start_tb; 392 cu->current_tb = current_tb = mfspr(SPRN_PURR); 393 old_thread->accum_tb += (current_tb - start_tb); 394 new_thread->start_tb = current_tb; 395 } 396 #endif 397 398 local_irq_save(flags); 399 400 account_system_vtime(current); 401 account_process_vtime(current); 402 calculate_steal_time(); 403 404 /* 405 * We can't take a PMU exception inside _switch() since there is a 406 * window where the kernel stack SLB and the kernel stack are out 407 * of sync. Hard disable here. 408 */ 409 hard_irq_disable(); 410 last = _switch(old_thread, new_thread); 411 412 local_irq_restore(flags); 413 414 return last; 415 } 416 417 static int instructions_to_print = 16; 418 419 static void show_instructions(struct pt_regs *regs) 420 { 421 int i; 422 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 423 sizeof(int)); 424 425 printk("Instruction dump:"); 426 427 for (i = 0; i < instructions_to_print; i++) { 428 int instr; 429 430 if (!(i % 8)) 431 printk("\n"); 432 433 #if !defined(CONFIG_BOOKE) 434 /* If executing with the IMMU off, adjust pc rather 435 * than print XXXXXXXX. 436 */ 437 if (!(regs->msr & MSR_IR)) 438 pc = (unsigned long)phys_to_virt(pc); 439 #endif 440 441 /* We use __get_user here *only* to avoid an OOPS on a 442 * bad address because the pc *should* only be a 443 * kernel address. 444 */ 445 if (!__kernel_text_address(pc) || 446 __get_user(instr, (unsigned int __user *)pc)) { 447 printk("XXXXXXXX "); 448 } else { 449 if (regs->nip == pc) 450 printk("<%08x> ", instr); 451 else 452 printk("%08x ", instr); 453 } 454 455 pc += sizeof(int); 456 } 457 458 printk("\n"); 459 } 460 461 static struct regbit { 462 unsigned long bit; 463 const char *name; 464 } msr_bits[] = { 465 {MSR_EE, "EE"}, 466 {MSR_PR, "PR"}, 467 {MSR_FP, "FP"}, 468 {MSR_VEC, "VEC"}, 469 {MSR_VSX, "VSX"}, 470 {MSR_ME, "ME"}, 471 {MSR_CE, "CE"}, 472 {MSR_DE, "DE"}, 473 {MSR_IR, "IR"}, 474 {MSR_DR, "DR"}, 475 {0, NULL} 476 }; 477 478 static void printbits(unsigned long val, struct regbit *bits) 479 { 480 const char *sep = ""; 481 482 printk("<"); 483 for (; bits->bit; ++bits) 484 if (val & bits->bit) { 485 printk("%s%s", sep, bits->name); 486 sep = ","; 487 } 488 printk(">"); 489 } 490 491 #ifdef CONFIG_PPC64 492 #define REG "%016lx" 493 #define REGS_PER_LINE 4 494 #define LAST_VOLATILE 13 495 #else 496 #define REG "%08lx" 497 #define REGS_PER_LINE 8 498 #define LAST_VOLATILE 12 499 #endif 500 501 void show_regs(struct pt_regs * regs) 502 { 503 int i, trap; 504 505 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 506 regs->nip, regs->link, regs->ctr); 507 printk("REGS: %p TRAP: %04lx %s (%s)\n", 508 regs, regs->trap, print_tainted(), init_utsname()->release); 509 printk("MSR: "REG" ", regs->msr); 510 printbits(regs->msr, msr_bits); 511 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 512 trap = TRAP(regs); 513 if (trap == 0x300 || trap == 0x600) 514 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 515 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr); 516 #else 517 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); 518 #endif 519 printk("TASK = %p[%d] '%s' THREAD: %p", 520 current, task_pid_nr(current), current->comm, task_thread_info(current)); 521 522 #ifdef CONFIG_SMP 523 printk(" CPU: %d", raw_smp_processor_id()); 524 #endif /* CONFIG_SMP */ 525 526 for (i = 0; i < 32; i++) { 527 if ((i % REGS_PER_LINE) == 0) 528 printk("\n" KERN_INFO "GPR%02d: ", i); 529 printk(REG " ", regs->gpr[i]); 530 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 531 break; 532 } 533 printk("\n"); 534 #ifdef CONFIG_KALLSYMS 535 /* 536 * Lookup NIP late so we have the best change of getting the 537 * above info out without failing 538 */ 539 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 540 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 541 #endif 542 show_stack(current, (unsigned long *) regs->gpr[1]); 543 if (!user_mode(regs)) 544 show_instructions(regs); 545 } 546 547 void exit_thread(void) 548 { 549 discard_lazy_cpu_state(); 550 } 551 552 void flush_thread(void) 553 { 554 #ifdef CONFIG_PPC64 555 struct thread_info *t = current_thread_info(); 556 557 if (test_ti_thread_flag(t, TIF_ABI_PENDING)) { 558 clear_ti_thread_flag(t, TIF_ABI_PENDING); 559 if (test_ti_thread_flag(t, TIF_32BIT)) 560 clear_ti_thread_flag(t, TIF_32BIT); 561 else 562 set_ti_thread_flag(t, TIF_32BIT); 563 } 564 #endif 565 566 discard_lazy_cpu_state(); 567 568 if (current->thread.dabr) { 569 current->thread.dabr = 0; 570 set_dabr(0); 571 572 #if defined(CONFIG_BOOKE) 573 current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W); 574 #endif 575 } 576 } 577 578 void 579 release_thread(struct task_struct *t) 580 { 581 } 582 583 /* 584 * This gets called before we allocate a new thread and copy 585 * the current task into it. 586 */ 587 void prepare_to_copy(struct task_struct *tsk) 588 { 589 flush_fp_to_thread(current); 590 flush_altivec_to_thread(current); 591 flush_vsx_to_thread(current); 592 flush_spe_to_thread(current); 593 } 594 595 /* 596 * Copy a thread.. 597 */ 598 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 599 unsigned long unused, struct task_struct *p, 600 struct pt_regs *regs) 601 { 602 struct pt_regs *childregs, *kregs; 603 extern void ret_from_fork(void); 604 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 605 606 CHECK_FULL_REGS(regs); 607 /* Copy registers */ 608 sp -= sizeof(struct pt_regs); 609 childregs = (struct pt_regs *) sp; 610 *childregs = *regs; 611 if ((childregs->msr & MSR_PR) == 0) { 612 /* for kernel thread, set `current' and stackptr in new task */ 613 childregs->gpr[1] = sp + sizeof(struct pt_regs); 614 #ifdef CONFIG_PPC32 615 childregs->gpr[2] = (unsigned long) p; 616 #else 617 clear_tsk_thread_flag(p, TIF_32BIT); 618 #endif 619 p->thread.regs = NULL; /* no user register state */ 620 } else { 621 childregs->gpr[1] = usp; 622 p->thread.regs = childregs; 623 if (clone_flags & CLONE_SETTLS) { 624 #ifdef CONFIG_PPC64 625 if (!test_thread_flag(TIF_32BIT)) 626 childregs->gpr[13] = childregs->gpr[6]; 627 else 628 #endif 629 childregs->gpr[2] = childregs->gpr[6]; 630 } 631 } 632 childregs->gpr[3] = 0; /* Result from fork() */ 633 sp -= STACK_FRAME_OVERHEAD; 634 635 /* 636 * The way this works is that at some point in the future 637 * some task will call _switch to switch to the new task. 638 * That will pop off the stack frame created below and start 639 * the new task running at ret_from_fork. The new task will 640 * do some house keeping and then return from the fork or clone 641 * system call, using the stack frame created above. 642 */ 643 sp -= sizeof(struct pt_regs); 644 kregs = (struct pt_regs *) sp; 645 sp -= STACK_FRAME_OVERHEAD; 646 p->thread.ksp = sp; 647 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 648 _ALIGN_UP(sizeof(struct thread_info), 16); 649 650 #ifdef CONFIG_PPC64 651 if (cpu_has_feature(CPU_FTR_SLB)) { 652 unsigned long sp_vsid; 653 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 654 655 if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) 656 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 657 << SLB_VSID_SHIFT_1T; 658 else 659 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 660 << SLB_VSID_SHIFT; 661 sp_vsid |= SLB_VSID_KERNEL | llp; 662 p->thread.ksp_vsid = sp_vsid; 663 } 664 665 /* 666 * The PPC64 ABI makes use of a TOC to contain function 667 * pointers. The function (ret_from_except) is actually a pointer 668 * to the TOC entry. The first entry is a pointer to the actual 669 * function. 670 */ 671 kregs->nip = *((unsigned long *)ret_from_fork); 672 #else 673 kregs->nip = (unsigned long)ret_from_fork; 674 #endif 675 676 return 0; 677 } 678 679 /* 680 * Set up a thread for executing a new program 681 */ 682 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 683 { 684 #ifdef CONFIG_PPC64 685 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 686 #endif 687 688 set_fs(USER_DS); 689 690 /* 691 * If we exec out of a kernel thread then thread.regs will not be 692 * set. Do it now. 693 */ 694 if (!current->thread.regs) { 695 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 696 current->thread.regs = regs - 1; 697 } 698 699 memset(regs->gpr, 0, sizeof(regs->gpr)); 700 regs->ctr = 0; 701 regs->link = 0; 702 regs->xer = 0; 703 regs->ccr = 0; 704 regs->gpr[1] = sp; 705 706 /* 707 * We have just cleared all the nonvolatile GPRs, so make 708 * FULL_REGS(regs) return true. This is necessary to allow 709 * ptrace to examine the thread immediately after exec. 710 */ 711 regs->trap &= ~1UL; 712 713 #ifdef CONFIG_PPC32 714 regs->mq = 0; 715 regs->nip = start; 716 regs->msr = MSR_USER; 717 #else 718 if (!test_thread_flag(TIF_32BIT)) { 719 unsigned long entry, toc; 720 721 /* start is a relocated pointer to the function descriptor for 722 * the elf _start routine. The first entry in the function 723 * descriptor is the entry address of _start and the second 724 * entry is the TOC value we need to use. 725 */ 726 __get_user(entry, (unsigned long __user *)start); 727 __get_user(toc, (unsigned long __user *)start+1); 728 729 /* Check whether the e_entry function descriptor entries 730 * need to be relocated before we can use them. 731 */ 732 if (load_addr != 0) { 733 entry += load_addr; 734 toc += load_addr; 735 } 736 regs->nip = entry; 737 regs->gpr[2] = toc; 738 regs->msr = MSR_USER64; 739 } else { 740 regs->nip = start; 741 regs->gpr[2] = 0; 742 regs->msr = MSR_USER32; 743 } 744 #endif 745 746 discard_lazy_cpu_state(); 747 #ifdef CONFIG_VSX 748 current->thread.used_vsr = 0; 749 #endif 750 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 751 current->thread.fpscr.val = 0; 752 #ifdef CONFIG_ALTIVEC 753 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 754 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 755 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 756 current->thread.vrsave = 0; 757 current->thread.used_vr = 0; 758 #endif /* CONFIG_ALTIVEC */ 759 #ifdef CONFIG_SPE 760 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 761 current->thread.acc = 0; 762 current->thread.spefscr = 0; 763 current->thread.used_spe = 0; 764 #endif /* CONFIG_SPE */ 765 } 766 767 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 768 | PR_FP_EXC_RES | PR_FP_EXC_INV) 769 770 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 771 { 772 struct pt_regs *regs = tsk->thread.regs; 773 774 /* This is a bit hairy. If we are an SPE enabled processor 775 * (have embedded fp) we store the IEEE exception enable flags in 776 * fpexc_mode. fpexc_mode is also used for setting FP exception 777 * mode (asyn, precise, disabled) for 'Classic' FP. */ 778 if (val & PR_FP_EXC_SW_ENABLE) { 779 #ifdef CONFIG_SPE 780 if (cpu_has_feature(CPU_FTR_SPE)) { 781 tsk->thread.fpexc_mode = val & 782 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 783 return 0; 784 } else { 785 return -EINVAL; 786 } 787 #else 788 return -EINVAL; 789 #endif 790 } 791 792 /* on a CONFIG_SPE this does not hurt us. The bits that 793 * __pack_fe01 use do not overlap with bits used for 794 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 795 * on CONFIG_SPE implementations are reserved so writing to 796 * them does not change anything */ 797 if (val > PR_FP_EXC_PRECISE) 798 return -EINVAL; 799 tsk->thread.fpexc_mode = __pack_fe01(val); 800 if (regs != NULL && (regs->msr & MSR_FP) != 0) 801 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 802 | tsk->thread.fpexc_mode; 803 return 0; 804 } 805 806 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 807 { 808 unsigned int val; 809 810 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 811 #ifdef CONFIG_SPE 812 if (cpu_has_feature(CPU_FTR_SPE)) 813 val = tsk->thread.fpexc_mode; 814 else 815 return -EINVAL; 816 #else 817 return -EINVAL; 818 #endif 819 else 820 val = __unpack_fe01(tsk->thread.fpexc_mode); 821 return put_user(val, (unsigned int __user *) adr); 822 } 823 824 int set_endian(struct task_struct *tsk, unsigned int val) 825 { 826 struct pt_regs *regs = tsk->thread.regs; 827 828 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 829 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 830 return -EINVAL; 831 832 if (regs == NULL) 833 return -EINVAL; 834 835 if (val == PR_ENDIAN_BIG) 836 regs->msr &= ~MSR_LE; 837 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 838 regs->msr |= MSR_LE; 839 else 840 return -EINVAL; 841 842 return 0; 843 } 844 845 int get_endian(struct task_struct *tsk, unsigned long adr) 846 { 847 struct pt_regs *regs = tsk->thread.regs; 848 unsigned int val; 849 850 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 851 !cpu_has_feature(CPU_FTR_REAL_LE)) 852 return -EINVAL; 853 854 if (regs == NULL) 855 return -EINVAL; 856 857 if (regs->msr & MSR_LE) { 858 if (cpu_has_feature(CPU_FTR_REAL_LE)) 859 val = PR_ENDIAN_LITTLE; 860 else 861 val = PR_ENDIAN_PPC_LITTLE; 862 } else 863 val = PR_ENDIAN_BIG; 864 865 return put_user(val, (unsigned int __user *)adr); 866 } 867 868 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 869 { 870 tsk->thread.align_ctl = val; 871 return 0; 872 } 873 874 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 875 { 876 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 877 } 878 879 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) 880 881 int sys_clone(unsigned long clone_flags, unsigned long usp, 882 int __user *parent_tidp, void __user *child_threadptr, 883 int __user *child_tidp, int p6, 884 struct pt_regs *regs) 885 { 886 CHECK_FULL_REGS(regs); 887 if (usp == 0) 888 usp = regs->gpr[1]; /* stack pointer for child */ 889 #ifdef CONFIG_PPC64 890 if (test_thread_flag(TIF_32BIT)) { 891 parent_tidp = TRUNC_PTR(parent_tidp); 892 child_tidp = TRUNC_PTR(child_tidp); 893 } 894 #endif 895 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); 896 } 897 898 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, 899 unsigned long p4, unsigned long p5, unsigned long p6, 900 struct pt_regs *regs) 901 { 902 CHECK_FULL_REGS(regs); 903 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); 904 } 905 906 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, 907 unsigned long p4, unsigned long p5, unsigned long p6, 908 struct pt_regs *regs) 909 { 910 CHECK_FULL_REGS(regs); 911 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], 912 regs, 0, NULL, NULL); 913 } 914 915 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, 916 unsigned long a3, unsigned long a4, unsigned long a5, 917 struct pt_regs *regs) 918 { 919 int error; 920 char *filename; 921 922 filename = getname((char __user *) a0); 923 error = PTR_ERR(filename); 924 if (IS_ERR(filename)) 925 goto out; 926 flush_fp_to_thread(current); 927 flush_altivec_to_thread(current); 928 flush_spe_to_thread(current); 929 error = do_execve(filename, (char __user * __user *) a1, 930 (char __user * __user *) a2, regs); 931 putname(filename); 932 out: 933 return error; 934 } 935 936 #ifdef CONFIG_IRQSTACKS 937 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 938 unsigned long nbytes) 939 { 940 unsigned long stack_page; 941 unsigned long cpu = task_cpu(p); 942 943 /* 944 * Avoid crashing if the stack has overflowed and corrupted 945 * task_cpu(p), which is in the thread_info struct. 946 */ 947 if (cpu < NR_CPUS && cpu_possible(cpu)) { 948 stack_page = (unsigned long) hardirq_ctx[cpu]; 949 if (sp >= stack_page + sizeof(struct thread_struct) 950 && sp <= stack_page + THREAD_SIZE - nbytes) 951 return 1; 952 953 stack_page = (unsigned long) softirq_ctx[cpu]; 954 if (sp >= stack_page + sizeof(struct thread_struct) 955 && sp <= stack_page + THREAD_SIZE - nbytes) 956 return 1; 957 } 958 return 0; 959 } 960 961 #else 962 #define valid_irq_stack(sp, p, nb) 0 963 #endif /* CONFIG_IRQSTACKS */ 964 965 int validate_sp(unsigned long sp, struct task_struct *p, 966 unsigned long nbytes) 967 { 968 unsigned long stack_page = (unsigned long)task_stack_page(p); 969 970 if (sp >= stack_page + sizeof(struct thread_struct) 971 && sp <= stack_page + THREAD_SIZE - nbytes) 972 return 1; 973 974 return valid_irq_stack(sp, p, nbytes); 975 } 976 977 EXPORT_SYMBOL(validate_sp); 978 979 unsigned long get_wchan(struct task_struct *p) 980 { 981 unsigned long ip, sp; 982 int count = 0; 983 984 if (!p || p == current || p->state == TASK_RUNNING) 985 return 0; 986 987 sp = p->thread.ksp; 988 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 989 return 0; 990 991 do { 992 sp = *(unsigned long *)sp; 993 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 994 return 0; 995 if (count > 0) { 996 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 997 if (!in_sched_functions(ip)) 998 return ip; 999 } 1000 } while (count++ < 16); 1001 return 0; 1002 } 1003 1004 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1005 1006 void show_stack(struct task_struct *tsk, unsigned long *stack) 1007 { 1008 unsigned long sp, ip, lr, newsp; 1009 int count = 0; 1010 int firstframe = 1; 1011 1012 sp = (unsigned long) stack; 1013 if (tsk == NULL) 1014 tsk = current; 1015 if (sp == 0) { 1016 if (tsk == current) 1017 asm("mr %0,1" : "=r" (sp)); 1018 else 1019 sp = tsk->thread.ksp; 1020 } 1021 1022 lr = 0; 1023 printk("Call Trace:\n"); 1024 do { 1025 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1026 return; 1027 1028 stack = (unsigned long *) sp; 1029 newsp = stack[0]; 1030 ip = stack[STACK_FRAME_LR_SAVE]; 1031 if (!firstframe || ip != lr) { 1032 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1033 if (firstframe) 1034 printk(" (unreliable)"); 1035 printk("\n"); 1036 } 1037 firstframe = 0; 1038 1039 /* 1040 * See if this is an exception frame. 1041 * We look for the "regshere" marker in the current frame. 1042 */ 1043 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1044 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1045 struct pt_regs *regs = (struct pt_regs *) 1046 (sp + STACK_FRAME_OVERHEAD); 1047 lr = regs->link; 1048 printk("--- Exception: %lx at %pS\n LR = %pS\n", 1049 regs->trap, (void *)regs->nip, (void *)lr); 1050 firstframe = 1; 1051 } 1052 1053 sp = newsp; 1054 } while (count++ < kstack_depth_to_print); 1055 } 1056 1057 void dump_stack(void) 1058 { 1059 show_stack(current, NULL); 1060 } 1061 EXPORT_SYMBOL(dump_stack); 1062 1063 #ifdef CONFIG_PPC64 1064 void ppc64_runlatch_on(void) 1065 { 1066 unsigned long ctrl; 1067 1068 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) { 1069 HMT_medium(); 1070 1071 ctrl = mfspr(SPRN_CTRLF); 1072 ctrl |= CTRL_RUNLATCH; 1073 mtspr(SPRN_CTRLT, ctrl); 1074 1075 set_thread_flag(TIF_RUNLATCH); 1076 } 1077 } 1078 1079 void ppc64_runlatch_off(void) 1080 { 1081 unsigned long ctrl; 1082 1083 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) { 1084 HMT_medium(); 1085 1086 clear_thread_flag(TIF_RUNLATCH); 1087 1088 ctrl = mfspr(SPRN_CTRLF); 1089 ctrl &= ~CTRL_RUNLATCH; 1090 mtspr(SPRN_CTRLT, ctrl); 1091 } 1092 } 1093 #endif 1094 1095 #if THREAD_SHIFT < PAGE_SHIFT 1096 1097 static struct kmem_cache *thread_info_cache; 1098 1099 struct thread_info *alloc_thread_info(struct task_struct *tsk) 1100 { 1101 struct thread_info *ti; 1102 1103 ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL); 1104 if (unlikely(ti == NULL)) 1105 return NULL; 1106 #ifdef CONFIG_DEBUG_STACK_USAGE 1107 memset(ti, 0, THREAD_SIZE); 1108 #endif 1109 return ti; 1110 } 1111 1112 void free_thread_info(struct thread_info *ti) 1113 { 1114 kmem_cache_free(thread_info_cache, ti); 1115 } 1116 1117 void thread_info_cache_init(void) 1118 { 1119 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE, 1120 THREAD_SIZE, 0, NULL); 1121 BUG_ON(thread_info_cache == NULL); 1122 } 1123 1124 #endif /* THREAD_SHIFT < PAGE_SHIFT */ 1125