xref: /linux/arch/powerpc/kernel/process.c (revision 858259cf7d1c443c836a2022b78cb281f0a9b95e)
1 /*
2  *  arch/ppc/kernel/process.c
3  *
4  *  Derived from "arch/i386/kernel/process.c"
5  *    Copyright (C) 1995  Linus Torvalds
6  *
7  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
8  *  Paul Mackerras (paulus@cs.anu.edu.au)
9  *
10  *  PowerPC version
11  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
12  *
13  *  This program is free software; you can redistribute it and/or
14  *  modify it under the terms of the GNU General Public License
15  *  as published by the Free Software Foundation; either version
16  *  2 of the License, or (at your option) any later version.
17  */
18 
19 #include <linux/config.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/smp_lock.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/user.h>
31 #include <linux/elf.h>
32 #include <linux/init.h>
33 #include <linux/prctl.h>
34 #include <linux/init_task.h>
35 #include <linux/module.h>
36 #include <linux/kallsyms.h>
37 #include <linux/mqueue.h>
38 #include <linux/hardirq.h>
39 #include <linux/utsname.h>
40 #include <linux/kprobes.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #ifdef CONFIG_PPC64
50 #include <asm/firmware.h>
51 #include <asm/time.h>
52 #include <asm/machdep.h>
53 #endif
54 
55 extern unsigned long _get_SP(void);
56 
57 #ifndef CONFIG_SMP
58 struct task_struct *last_task_used_math = NULL;
59 struct task_struct *last_task_used_altivec = NULL;
60 struct task_struct *last_task_used_spe = NULL;
61 #endif
62 
63 /*
64  * Make sure the floating-point register state in the
65  * the thread_struct is up to date for task tsk.
66  */
67 void flush_fp_to_thread(struct task_struct *tsk)
68 {
69 	if (tsk->thread.regs) {
70 		/*
71 		 * We need to disable preemption here because if we didn't,
72 		 * another process could get scheduled after the regs->msr
73 		 * test but before we have finished saving the FP registers
74 		 * to the thread_struct.  That process could take over the
75 		 * FPU, and then when we get scheduled again we would store
76 		 * bogus values for the remaining FP registers.
77 		 */
78 		preempt_disable();
79 		if (tsk->thread.regs->msr & MSR_FP) {
80 #ifdef CONFIG_SMP
81 			/*
82 			 * This should only ever be called for current or
83 			 * for a stopped child process.  Since we save away
84 			 * the FP register state on context switch on SMP,
85 			 * there is something wrong if a stopped child appears
86 			 * to still have its FP state in the CPU registers.
87 			 */
88 			BUG_ON(tsk != current);
89 #endif
90 			giveup_fpu(current);
91 		}
92 		preempt_enable();
93 	}
94 }
95 
96 void enable_kernel_fp(void)
97 {
98 	WARN_ON(preemptible());
99 
100 #ifdef CONFIG_SMP
101 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
102 		giveup_fpu(current);
103 	else
104 		giveup_fpu(NULL);	/* just enables FP for kernel */
105 #else
106 	giveup_fpu(last_task_used_math);
107 #endif /* CONFIG_SMP */
108 }
109 EXPORT_SYMBOL(enable_kernel_fp);
110 
111 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
112 {
113 	if (!tsk->thread.regs)
114 		return 0;
115 	flush_fp_to_thread(current);
116 
117 	memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
118 
119 	return 1;
120 }
121 
122 #ifdef CONFIG_ALTIVEC
123 void enable_kernel_altivec(void)
124 {
125 	WARN_ON(preemptible());
126 
127 #ifdef CONFIG_SMP
128 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
129 		giveup_altivec(current);
130 	else
131 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
132 #else
133 	giveup_altivec(last_task_used_altivec);
134 #endif /* CONFIG_SMP */
135 }
136 EXPORT_SYMBOL(enable_kernel_altivec);
137 
138 /*
139  * Make sure the VMX/Altivec register state in the
140  * the thread_struct is up to date for task tsk.
141  */
142 void flush_altivec_to_thread(struct task_struct *tsk)
143 {
144 	if (tsk->thread.regs) {
145 		preempt_disable();
146 		if (tsk->thread.regs->msr & MSR_VEC) {
147 #ifdef CONFIG_SMP
148 			BUG_ON(tsk != current);
149 #endif
150 			giveup_altivec(current);
151 		}
152 		preempt_enable();
153 	}
154 }
155 
156 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
157 {
158 	flush_altivec_to_thread(current);
159 	memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
160 	return 1;
161 }
162 #endif /* CONFIG_ALTIVEC */
163 
164 #ifdef CONFIG_SPE
165 
166 void enable_kernel_spe(void)
167 {
168 	WARN_ON(preemptible());
169 
170 #ifdef CONFIG_SMP
171 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
172 		giveup_spe(current);
173 	else
174 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
175 #else
176 	giveup_spe(last_task_used_spe);
177 #endif /* __SMP __ */
178 }
179 EXPORT_SYMBOL(enable_kernel_spe);
180 
181 void flush_spe_to_thread(struct task_struct *tsk)
182 {
183 	if (tsk->thread.regs) {
184 		preempt_disable();
185 		if (tsk->thread.regs->msr & MSR_SPE) {
186 #ifdef CONFIG_SMP
187 			BUG_ON(tsk != current);
188 #endif
189 			giveup_spe(current);
190 		}
191 		preempt_enable();
192 	}
193 }
194 
195 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
196 {
197 	flush_spe_to_thread(current);
198 	/* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
199 	memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
200 	return 1;
201 }
202 #endif /* CONFIG_SPE */
203 
204 int set_dabr(unsigned long dabr)
205 {
206 #ifdef CONFIG_PPC64
207 	if (ppc_md.set_dabr)
208 		return ppc_md.set_dabr(dabr);
209 #endif
210 
211 	mtspr(SPRN_DABR, dabr);
212 	return 0;
213 }
214 
215 #ifdef CONFIG_PPC64
216 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
217 static DEFINE_PER_CPU(unsigned long, current_dabr);
218 #endif
219 
220 struct task_struct *__switch_to(struct task_struct *prev,
221 	struct task_struct *new)
222 {
223 	struct thread_struct *new_thread, *old_thread;
224 	unsigned long flags;
225 	struct task_struct *last;
226 
227 #ifdef CONFIG_SMP
228 	/* avoid complexity of lazy save/restore of fpu
229 	 * by just saving it every time we switch out if
230 	 * this task used the fpu during the last quantum.
231 	 *
232 	 * If it tries to use the fpu again, it'll trap and
233 	 * reload its fp regs.  So we don't have to do a restore
234 	 * every switch, just a save.
235 	 *  -- Cort
236 	 */
237 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
238 		giveup_fpu(prev);
239 #ifdef CONFIG_ALTIVEC
240 	/*
241 	 * If the previous thread used altivec in the last quantum
242 	 * (thus changing altivec regs) then save them.
243 	 * We used to check the VRSAVE register but not all apps
244 	 * set it, so we don't rely on it now (and in fact we need
245 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
246 	 *
247 	 * On SMP we always save/restore altivec regs just to avoid the
248 	 * complexity of changing processors.
249 	 *  -- Cort
250 	 */
251 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
252 		giveup_altivec(prev);
253 #endif /* CONFIG_ALTIVEC */
254 #ifdef CONFIG_SPE
255 	/*
256 	 * If the previous thread used spe in the last quantum
257 	 * (thus changing spe regs) then save them.
258 	 *
259 	 * On SMP we always save/restore spe regs just to avoid the
260 	 * complexity of changing processors.
261 	 */
262 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
263 		giveup_spe(prev);
264 #endif /* CONFIG_SPE */
265 
266 #else  /* CONFIG_SMP */
267 #ifdef CONFIG_ALTIVEC
268 	/* Avoid the trap.  On smp this this never happens since
269 	 * we don't set last_task_used_altivec -- Cort
270 	 */
271 	if (new->thread.regs && last_task_used_altivec == new)
272 		new->thread.regs->msr |= MSR_VEC;
273 #endif /* CONFIG_ALTIVEC */
274 #ifdef CONFIG_SPE
275 	/* Avoid the trap.  On smp this this never happens since
276 	 * we don't set last_task_used_spe
277 	 */
278 	if (new->thread.regs && last_task_used_spe == new)
279 		new->thread.regs->msr |= MSR_SPE;
280 #endif /* CONFIG_SPE */
281 
282 #endif /* CONFIG_SMP */
283 
284 #ifdef CONFIG_PPC64	/* for now */
285 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
286 		set_dabr(new->thread.dabr);
287 		__get_cpu_var(current_dabr) = new->thread.dabr;
288 	}
289 
290 	flush_tlb_pending();
291 #endif
292 
293 	new_thread = &new->thread;
294 	old_thread = &current->thread;
295 
296 #ifdef CONFIG_PPC64
297 	/*
298 	 * Collect processor utilization data per process
299 	 */
300 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
301 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
302 		long unsigned start_tb, current_tb;
303 		start_tb = old_thread->start_tb;
304 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
305 		old_thread->accum_tb += (current_tb - start_tb);
306 		new_thread->start_tb = current_tb;
307 	}
308 #endif
309 
310 	local_irq_save(flags);
311 	last = _switch(old_thread, new_thread);
312 
313 	local_irq_restore(flags);
314 
315 	return last;
316 }
317 
318 static int instructions_to_print = 16;
319 
320 #ifdef CONFIG_PPC64
321 #define BAD_PC(pc)	((REGION_ID(pc) != KERNEL_REGION_ID) && \
322 		         (REGION_ID(pc) != VMALLOC_REGION_ID))
323 #else
324 #define BAD_PC(pc)	((pc) < KERNELBASE)
325 #endif
326 
327 static void show_instructions(struct pt_regs *regs)
328 {
329 	int i;
330 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
331 			sizeof(int));
332 
333 	printk("Instruction dump:");
334 
335 	for (i = 0; i < instructions_to_print; i++) {
336 		int instr;
337 
338 		if (!(i % 8))
339 			printk("\n");
340 
341 		if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) {
342 			printk("XXXXXXXX ");
343 		} else {
344 			if (regs->nip == pc)
345 				printk("<%08x> ", instr);
346 			else
347 				printk("%08x ", instr);
348 		}
349 
350 		pc += sizeof(int);
351 	}
352 
353 	printk("\n");
354 }
355 
356 static struct regbit {
357 	unsigned long bit;
358 	const char *name;
359 } msr_bits[] = {
360 	{MSR_EE,	"EE"},
361 	{MSR_PR,	"PR"},
362 	{MSR_FP,	"FP"},
363 	{MSR_ME,	"ME"},
364 	{MSR_IR,	"IR"},
365 	{MSR_DR,	"DR"},
366 	{0,		NULL}
367 };
368 
369 static void printbits(unsigned long val, struct regbit *bits)
370 {
371 	const char *sep = "";
372 
373 	printk("<");
374 	for (; bits->bit; ++bits)
375 		if (val & bits->bit) {
376 			printk("%s%s", sep, bits->name);
377 			sep = ",";
378 		}
379 	printk(">");
380 }
381 
382 #ifdef CONFIG_PPC64
383 #define REG		"%016lX"
384 #define REGS_PER_LINE	4
385 #define LAST_VOLATILE	13
386 #else
387 #define REG		"%08lX"
388 #define REGS_PER_LINE	8
389 #define LAST_VOLATILE	12
390 #endif
391 
392 void show_regs(struct pt_regs * regs)
393 {
394 	int i, trap;
395 
396 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
397 	       regs->nip, regs->link, regs->ctr);
398 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
399 	       regs, regs->trap, print_tainted(), system_utsname.release);
400 	printk("MSR: "REG" ", regs->msr);
401 	printbits(regs->msr, msr_bits);
402 	printk("  CR: %08lX  XER: %08lX\n", regs->ccr, regs->xer);
403 	trap = TRAP(regs);
404 	if (trap == 0x300 || trap == 0x600)
405 		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
406 	printk("TASK = %p[%d] '%s' THREAD: %p",
407 	       current, current->pid, current->comm, current->thread_info);
408 
409 #ifdef CONFIG_SMP
410 	printk(" CPU: %d", smp_processor_id());
411 #endif /* CONFIG_SMP */
412 
413 	for (i = 0;  i < 32;  i++) {
414 		if ((i % REGS_PER_LINE) == 0)
415 			printk("\n" KERN_INFO "GPR%02d: ", i);
416 		printk(REG " ", regs->gpr[i]);
417 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
418 			break;
419 	}
420 	printk("\n");
421 #ifdef CONFIG_KALLSYMS
422 	/*
423 	 * Lookup NIP late so we have the best change of getting the
424 	 * above info out without failing
425 	 */
426 	printk("NIP ["REG"] ", regs->nip);
427 	print_symbol("%s\n", regs->nip);
428 	printk("LR ["REG"] ", regs->link);
429 	print_symbol("%s\n", regs->link);
430 #endif
431 	show_stack(current, (unsigned long *) regs->gpr[1]);
432 	if (!user_mode(regs))
433 		show_instructions(regs);
434 }
435 
436 void exit_thread(void)
437 {
438 	kprobe_flush_task(current);
439 
440 #ifndef CONFIG_SMP
441 	if (last_task_used_math == current)
442 		last_task_used_math = NULL;
443 #ifdef CONFIG_ALTIVEC
444 	if (last_task_used_altivec == current)
445 		last_task_used_altivec = NULL;
446 #endif /* CONFIG_ALTIVEC */
447 #ifdef CONFIG_SPE
448 	if (last_task_used_spe == current)
449 		last_task_used_spe = NULL;
450 #endif
451 #endif /* CONFIG_SMP */
452 }
453 
454 void flush_thread(void)
455 {
456 #ifdef CONFIG_PPC64
457 	struct thread_info *t = current_thread_info();
458 
459 	if (t->flags & _TIF_ABI_PENDING)
460 		t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
461 #endif
462 	kprobe_flush_task(current);
463 
464 #ifndef CONFIG_SMP
465 	if (last_task_used_math == current)
466 		last_task_used_math = NULL;
467 #ifdef CONFIG_ALTIVEC
468 	if (last_task_used_altivec == current)
469 		last_task_used_altivec = NULL;
470 #endif /* CONFIG_ALTIVEC */
471 #ifdef CONFIG_SPE
472 	if (last_task_used_spe == current)
473 		last_task_used_spe = NULL;
474 #endif
475 #endif /* CONFIG_SMP */
476 
477 #ifdef CONFIG_PPC64	/* for now */
478 	if (current->thread.dabr) {
479 		current->thread.dabr = 0;
480 		set_dabr(0);
481 	}
482 #endif
483 }
484 
485 void
486 release_thread(struct task_struct *t)
487 {
488 }
489 
490 /*
491  * This gets called before we allocate a new thread and copy
492  * the current task into it.
493  */
494 void prepare_to_copy(struct task_struct *tsk)
495 {
496 	flush_fp_to_thread(current);
497 	flush_altivec_to_thread(current);
498 	flush_spe_to_thread(current);
499 }
500 
501 /*
502  * Copy a thread..
503  */
504 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
505 		unsigned long unused, struct task_struct *p,
506 		struct pt_regs *regs)
507 {
508 	struct pt_regs *childregs, *kregs;
509 	extern void ret_from_fork(void);
510 	unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE;
511 
512 	CHECK_FULL_REGS(regs);
513 	/* Copy registers */
514 	sp -= sizeof(struct pt_regs);
515 	childregs = (struct pt_regs *) sp;
516 	*childregs = *regs;
517 	if ((childregs->msr & MSR_PR) == 0) {
518 		/* for kernel thread, set `current' and stackptr in new task */
519 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
520 #ifdef CONFIG_PPC32
521 		childregs->gpr[2] = (unsigned long) p;
522 #else
523 		clear_ti_thread_flag(p->thread_info, TIF_32BIT);
524 #endif
525 		p->thread.regs = NULL;	/* no user register state */
526 	} else {
527 		childregs->gpr[1] = usp;
528 		p->thread.regs = childregs;
529 		if (clone_flags & CLONE_SETTLS) {
530 #ifdef CONFIG_PPC64
531 			if (!test_thread_flag(TIF_32BIT))
532 				childregs->gpr[13] = childregs->gpr[6];
533 			else
534 #endif
535 				childregs->gpr[2] = childregs->gpr[6];
536 		}
537 	}
538 	childregs->gpr[3] = 0;  /* Result from fork() */
539 	sp -= STACK_FRAME_OVERHEAD;
540 
541 	/*
542 	 * The way this works is that at some point in the future
543 	 * some task will call _switch to switch to the new task.
544 	 * That will pop off the stack frame created below and start
545 	 * the new task running at ret_from_fork.  The new task will
546 	 * do some house keeping and then return from the fork or clone
547 	 * system call, using the stack frame created above.
548 	 */
549 	sp -= sizeof(struct pt_regs);
550 	kregs = (struct pt_regs *) sp;
551 	sp -= STACK_FRAME_OVERHEAD;
552 	p->thread.ksp = sp;
553 
554 #ifdef CONFIG_PPC64
555 	if (cpu_has_feature(CPU_FTR_SLB)) {
556 		unsigned long sp_vsid = get_kernel_vsid(sp);
557 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
558 
559 		sp_vsid <<= SLB_VSID_SHIFT;
560 		sp_vsid |= SLB_VSID_KERNEL | llp;
561 		p->thread.ksp_vsid = sp_vsid;
562 	}
563 
564 	/*
565 	 * The PPC64 ABI makes use of a TOC to contain function
566 	 * pointers.  The function (ret_from_except) is actually a pointer
567 	 * to the TOC entry.  The first entry is a pointer to the actual
568 	 * function.
569  	 */
570 	kregs->nip = *((unsigned long *)ret_from_fork);
571 #else
572 	kregs->nip = (unsigned long)ret_from_fork;
573 	p->thread.last_syscall = -1;
574 #endif
575 
576 	return 0;
577 }
578 
579 /*
580  * Set up a thread for executing a new program
581  */
582 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
583 {
584 #ifdef CONFIG_PPC64
585 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
586 #endif
587 
588 	set_fs(USER_DS);
589 
590 	/*
591 	 * If we exec out of a kernel thread then thread.regs will not be
592 	 * set.  Do it now.
593 	 */
594 	if (!current->thread.regs) {
595 		unsigned long childregs = (unsigned long)current->thread_info +
596 						THREAD_SIZE;
597 		childregs -= sizeof(struct pt_regs);
598 		current->thread.regs = (struct pt_regs *)childregs;
599 	}
600 
601 	memset(regs->gpr, 0, sizeof(regs->gpr));
602 	regs->ctr = 0;
603 	regs->link = 0;
604 	regs->xer = 0;
605 	regs->ccr = 0;
606 	regs->gpr[1] = sp;
607 
608 #ifdef CONFIG_PPC32
609 	regs->mq = 0;
610 	regs->nip = start;
611 	regs->msr = MSR_USER;
612 #else
613 	if (!test_thread_flag(TIF_32BIT)) {
614 		unsigned long entry, toc;
615 
616 		/* start is a relocated pointer to the function descriptor for
617 		 * the elf _start routine.  The first entry in the function
618 		 * descriptor is the entry address of _start and the second
619 		 * entry is the TOC value we need to use.
620 		 */
621 		__get_user(entry, (unsigned long __user *)start);
622 		__get_user(toc, (unsigned long __user *)start+1);
623 
624 		/* Check whether the e_entry function descriptor entries
625 		 * need to be relocated before we can use them.
626 		 */
627 		if (load_addr != 0) {
628 			entry += load_addr;
629 			toc   += load_addr;
630 		}
631 		regs->nip = entry;
632 		regs->gpr[2] = toc;
633 		regs->msr = MSR_USER64;
634 	} else {
635 		regs->nip = start;
636 		regs->gpr[2] = 0;
637 		regs->msr = MSR_USER32;
638 	}
639 #endif
640 
641 #ifndef CONFIG_SMP
642 	if (last_task_used_math == current)
643 		last_task_used_math = NULL;
644 #ifdef CONFIG_ALTIVEC
645 	if (last_task_used_altivec == current)
646 		last_task_used_altivec = NULL;
647 #endif
648 #ifdef CONFIG_SPE
649 	if (last_task_used_spe == current)
650 		last_task_used_spe = NULL;
651 #endif
652 #endif /* CONFIG_SMP */
653 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
654 	current->thread.fpscr.val = 0;
655 #ifdef CONFIG_ALTIVEC
656 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
657 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
658 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
659 	current->thread.vrsave = 0;
660 	current->thread.used_vr = 0;
661 #endif /* CONFIG_ALTIVEC */
662 #ifdef CONFIG_SPE
663 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
664 	current->thread.acc = 0;
665 	current->thread.spefscr = 0;
666 	current->thread.used_spe = 0;
667 #endif /* CONFIG_SPE */
668 }
669 
670 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
671 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
672 
673 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
674 {
675 	struct pt_regs *regs = tsk->thread.regs;
676 
677 	/* This is a bit hairy.  If we are an SPE enabled  processor
678 	 * (have embedded fp) we store the IEEE exception enable flags in
679 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
680 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
681 	if (val & PR_FP_EXC_SW_ENABLE) {
682 #ifdef CONFIG_SPE
683 		tsk->thread.fpexc_mode = val &
684 			(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
685 		return 0;
686 #else
687 		return -EINVAL;
688 #endif
689 	}
690 
691 	/* on a CONFIG_SPE this does not hurt us.  The bits that
692 	 * __pack_fe01 use do not overlap with bits used for
693 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
694 	 * on CONFIG_SPE implementations are reserved so writing to
695 	 * them does not change anything */
696 	if (val > PR_FP_EXC_PRECISE)
697 		return -EINVAL;
698 	tsk->thread.fpexc_mode = __pack_fe01(val);
699 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
700 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
701 			| tsk->thread.fpexc_mode;
702 	return 0;
703 }
704 
705 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
706 {
707 	unsigned int val;
708 
709 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
710 #ifdef CONFIG_SPE
711 		val = tsk->thread.fpexc_mode;
712 #else
713 		return -EINVAL;
714 #endif
715 	else
716 		val = __unpack_fe01(tsk->thread.fpexc_mode);
717 	return put_user(val, (unsigned int __user *) adr);
718 }
719 
720 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
721 
722 int sys_clone(unsigned long clone_flags, unsigned long usp,
723 	      int __user *parent_tidp, void __user *child_threadptr,
724 	      int __user *child_tidp, int p6,
725 	      struct pt_regs *regs)
726 {
727 	CHECK_FULL_REGS(regs);
728 	if (usp == 0)
729 		usp = regs->gpr[1];	/* stack pointer for child */
730 #ifdef CONFIG_PPC64
731 	if (test_thread_flag(TIF_32BIT)) {
732 		parent_tidp = TRUNC_PTR(parent_tidp);
733 		child_tidp = TRUNC_PTR(child_tidp);
734 	}
735 #endif
736  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
737 }
738 
739 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
740 	     unsigned long p4, unsigned long p5, unsigned long p6,
741 	     struct pt_regs *regs)
742 {
743 	CHECK_FULL_REGS(regs);
744 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
745 }
746 
747 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
748 	      unsigned long p4, unsigned long p5, unsigned long p6,
749 	      struct pt_regs *regs)
750 {
751 	CHECK_FULL_REGS(regs);
752 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
753 			regs, 0, NULL, NULL);
754 }
755 
756 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
757 	       unsigned long a3, unsigned long a4, unsigned long a5,
758 	       struct pt_regs *regs)
759 {
760 	int error;
761 	char *filename;
762 
763 	filename = getname((char __user *) a0);
764 	error = PTR_ERR(filename);
765 	if (IS_ERR(filename))
766 		goto out;
767 	flush_fp_to_thread(current);
768 	flush_altivec_to_thread(current);
769 	flush_spe_to_thread(current);
770 	error = do_execve(filename, (char __user * __user *) a1,
771 			  (char __user * __user *) a2, regs);
772 	if (error == 0) {
773 		task_lock(current);
774 		current->ptrace &= ~PT_DTRACE;
775 		task_unlock(current);
776 	}
777 	putname(filename);
778 out:
779 	return error;
780 }
781 
782 static int validate_sp(unsigned long sp, struct task_struct *p,
783 		       unsigned long nbytes)
784 {
785 	unsigned long stack_page = (unsigned long)p->thread_info;
786 
787 	if (sp >= stack_page + sizeof(struct thread_struct)
788 	    && sp <= stack_page + THREAD_SIZE - nbytes)
789 		return 1;
790 
791 #ifdef CONFIG_IRQSTACKS
792 	stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
793 	if (sp >= stack_page + sizeof(struct thread_struct)
794 	    && sp <= stack_page + THREAD_SIZE - nbytes)
795 		return 1;
796 
797 	stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
798 	if (sp >= stack_page + sizeof(struct thread_struct)
799 	    && sp <= stack_page + THREAD_SIZE - nbytes)
800 		return 1;
801 #endif
802 
803 	return 0;
804 }
805 
806 #ifdef CONFIG_PPC64
807 #define MIN_STACK_FRAME	112	/* same as STACK_FRAME_OVERHEAD, in fact */
808 #define FRAME_LR_SAVE	2
809 #define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
810 #define REGS_MARKER	0x7265677368657265ul
811 #define FRAME_MARKER	12
812 #else
813 #define MIN_STACK_FRAME	16
814 #define FRAME_LR_SAVE	1
815 #define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
816 #define REGS_MARKER	0x72656773ul
817 #define FRAME_MARKER	2
818 #endif
819 
820 unsigned long get_wchan(struct task_struct *p)
821 {
822 	unsigned long ip, sp;
823 	int count = 0;
824 
825 	if (!p || p == current || p->state == TASK_RUNNING)
826 		return 0;
827 
828 	sp = p->thread.ksp;
829 	if (!validate_sp(sp, p, MIN_STACK_FRAME))
830 		return 0;
831 
832 	do {
833 		sp = *(unsigned long *)sp;
834 		if (!validate_sp(sp, p, MIN_STACK_FRAME))
835 			return 0;
836 		if (count > 0) {
837 			ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
838 			if (!in_sched_functions(ip))
839 				return ip;
840 		}
841 	} while (count++ < 16);
842 	return 0;
843 }
844 EXPORT_SYMBOL(get_wchan);
845 
846 static int kstack_depth_to_print = 64;
847 
848 void show_stack(struct task_struct *tsk, unsigned long *stack)
849 {
850 	unsigned long sp, ip, lr, newsp;
851 	int count = 0;
852 	int firstframe = 1;
853 
854 	sp = (unsigned long) stack;
855 	if (tsk == NULL)
856 		tsk = current;
857 	if (sp == 0) {
858 		if (tsk == current)
859 			asm("mr %0,1" : "=r" (sp));
860 		else
861 			sp = tsk->thread.ksp;
862 	}
863 
864 	lr = 0;
865 	printk("Call Trace:\n");
866 	do {
867 		if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
868 			return;
869 
870 		stack = (unsigned long *) sp;
871 		newsp = stack[0];
872 		ip = stack[FRAME_LR_SAVE];
873 		if (!firstframe || ip != lr) {
874 			printk("["REG"] ["REG"] ", sp, ip);
875 			print_symbol("%s", ip);
876 			if (firstframe)
877 				printk(" (unreliable)");
878 			printk("\n");
879 		}
880 		firstframe = 0;
881 
882 		/*
883 		 * See if this is an exception frame.
884 		 * We look for the "regshere" marker in the current frame.
885 		 */
886 		if (validate_sp(sp, tsk, INT_FRAME_SIZE)
887 		    && stack[FRAME_MARKER] == REGS_MARKER) {
888 			struct pt_regs *regs = (struct pt_regs *)
889 				(sp + STACK_FRAME_OVERHEAD);
890 			printk("--- Exception: %lx", regs->trap);
891 			print_symbol(" at %s\n", regs->nip);
892 			lr = regs->link;
893 			print_symbol("    LR = %s\n", lr);
894 			firstframe = 1;
895 		}
896 
897 		sp = newsp;
898 	} while (count++ < kstack_depth_to_print);
899 }
900 
901 void dump_stack(void)
902 {
903 	show_stack(current, NULL);
904 }
905 EXPORT_SYMBOL(dump_stack);
906