1 /* 2 * arch/ppc/kernel/process.c 3 * 4 * Derived from "arch/i386/kernel/process.c" 5 * Copyright (C) 1995 Linus Torvalds 6 * 7 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 8 * Paul Mackerras (paulus@cs.anu.edu.au) 9 * 10 * PowerPC version 11 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License 15 * as published by the Free Software Foundation; either version 16 * 2 of the License, or (at your option) any later version. 17 */ 18 19 #include <linux/config.h> 20 #include <linux/errno.h> 21 #include <linux/sched.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/smp_lock.h> 26 #include <linux/stddef.h> 27 #include <linux/unistd.h> 28 #include <linux/ptrace.h> 29 #include <linux/slab.h> 30 #include <linux/user.h> 31 #include <linux/elf.h> 32 #include <linux/init.h> 33 #include <linux/prctl.h> 34 #include <linux/init_task.h> 35 #include <linux/module.h> 36 #include <linux/kallsyms.h> 37 #include <linux/mqueue.h> 38 #include <linux/hardirq.h> 39 #include <linux/utsname.h> 40 #include <linux/kprobes.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/uaccess.h> 44 #include <asm/system.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/mmu.h> 48 #include <asm/prom.h> 49 #ifdef CONFIG_PPC64 50 #include <asm/firmware.h> 51 #include <asm/time.h> 52 #include <asm/machdep.h> 53 #endif 54 55 extern unsigned long _get_SP(void); 56 57 #ifndef CONFIG_SMP 58 struct task_struct *last_task_used_math = NULL; 59 struct task_struct *last_task_used_altivec = NULL; 60 struct task_struct *last_task_used_spe = NULL; 61 #endif 62 63 /* 64 * Make sure the floating-point register state in the 65 * the thread_struct is up to date for task tsk. 66 */ 67 void flush_fp_to_thread(struct task_struct *tsk) 68 { 69 if (tsk->thread.regs) { 70 /* 71 * We need to disable preemption here because if we didn't, 72 * another process could get scheduled after the regs->msr 73 * test but before we have finished saving the FP registers 74 * to the thread_struct. That process could take over the 75 * FPU, and then when we get scheduled again we would store 76 * bogus values for the remaining FP registers. 77 */ 78 preempt_disable(); 79 if (tsk->thread.regs->msr & MSR_FP) { 80 #ifdef CONFIG_SMP 81 /* 82 * This should only ever be called for current or 83 * for a stopped child process. Since we save away 84 * the FP register state on context switch on SMP, 85 * there is something wrong if a stopped child appears 86 * to still have its FP state in the CPU registers. 87 */ 88 BUG_ON(tsk != current); 89 #endif 90 giveup_fpu(current); 91 } 92 preempt_enable(); 93 } 94 } 95 96 void enable_kernel_fp(void) 97 { 98 WARN_ON(preemptible()); 99 100 #ifdef CONFIG_SMP 101 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 102 giveup_fpu(current); 103 else 104 giveup_fpu(NULL); /* just enables FP for kernel */ 105 #else 106 giveup_fpu(last_task_used_math); 107 #endif /* CONFIG_SMP */ 108 } 109 EXPORT_SYMBOL(enable_kernel_fp); 110 111 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) 112 { 113 if (!tsk->thread.regs) 114 return 0; 115 flush_fp_to_thread(current); 116 117 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs)); 118 119 return 1; 120 } 121 122 #ifdef CONFIG_ALTIVEC 123 void enable_kernel_altivec(void) 124 { 125 WARN_ON(preemptible()); 126 127 #ifdef CONFIG_SMP 128 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 129 giveup_altivec(current); 130 else 131 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ 132 #else 133 giveup_altivec(last_task_used_altivec); 134 #endif /* CONFIG_SMP */ 135 } 136 EXPORT_SYMBOL(enable_kernel_altivec); 137 138 /* 139 * Make sure the VMX/Altivec register state in the 140 * the thread_struct is up to date for task tsk. 141 */ 142 void flush_altivec_to_thread(struct task_struct *tsk) 143 { 144 if (tsk->thread.regs) { 145 preempt_disable(); 146 if (tsk->thread.regs->msr & MSR_VEC) { 147 #ifdef CONFIG_SMP 148 BUG_ON(tsk != current); 149 #endif 150 giveup_altivec(current); 151 } 152 preempt_enable(); 153 } 154 } 155 156 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) 157 { 158 flush_altivec_to_thread(current); 159 memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); 160 return 1; 161 } 162 #endif /* CONFIG_ALTIVEC */ 163 164 #ifdef CONFIG_SPE 165 166 void enable_kernel_spe(void) 167 { 168 WARN_ON(preemptible()); 169 170 #ifdef CONFIG_SMP 171 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 172 giveup_spe(current); 173 else 174 giveup_spe(NULL); /* just enable SPE for kernel - force */ 175 #else 176 giveup_spe(last_task_used_spe); 177 #endif /* __SMP __ */ 178 } 179 EXPORT_SYMBOL(enable_kernel_spe); 180 181 void flush_spe_to_thread(struct task_struct *tsk) 182 { 183 if (tsk->thread.regs) { 184 preempt_disable(); 185 if (tsk->thread.regs->msr & MSR_SPE) { 186 #ifdef CONFIG_SMP 187 BUG_ON(tsk != current); 188 #endif 189 giveup_spe(current); 190 } 191 preempt_enable(); 192 } 193 } 194 195 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs) 196 { 197 flush_spe_to_thread(current); 198 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */ 199 memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35); 200 return 1; 201 } 202 #endif /* CONFIG_SPE */ 203 204 int set_dabr(unsigned long dabr) 205 { 206 #ifdef CONFIG_PPC64 207 if (ppc_md.set_dabr) 208 return ppc_md.set_dabr(dabr); 209 #endif 210 211 mtspr(SPRN_DABR, dabr); 212 return 0; 213 } 214 215 #ifdef CONFIG_PPC64 216 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 217 static DEFINE_PER_CPU(unsigned long, current_dabr); 218 #endif 219 220 struct task_struct *__switch_to(struct task_struct *prev, 221 struct task_struct *new) 222 { 223 struct thread_struct *new_thread, *old_thread; 224 unsigned long flags; 225 struct task_struct *last; 226 227 #ifdef CONFIG_SMP 228 /* avoid complexity of lazy save/restore of fpu 229 * by just saving it every time we switch out if 230 * this task used the fpu during the last quantum. 231 * 232 * If it tries to use the fpu again, it'll trap and 233 * reload its fp regs. So we don't have to do a restore 234 * every switch, just a save. 235 * -- Cort 236 */ 237 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 238 giveup_fpu(prev); 239 #ifdef CONFIG_ALTIVEC 240 /* 241 * If the previous thread used altivec in the last quantum 242 * (thus changing altivec regs) then save them. 243 * We used to check the VRSAVE register but not all apps 244 * set it, so we don't rely on it now (and in fact we need 245 * to save & restore VSCR even if VRSAVE == 0). -- paulus 246 * 247 * On SMP we always save/restore altivec regs just to avoid the 248 * complexity of changing processors. 249 * -- Cort 250 */ 251 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 252 giveup_altivec(prev); 253 #endif /* CONFIG_ALTIVEC */ 254 #ifdef CONFIG_SPE 255 /* 256 * If the previous thread used spe in the last quantum 257 * (thus changing spe regs) then save them. 258 * 259 * On SMP we always save/restore spe regs just to avoid the 260 * complexity of changing processors. 261 */ 262 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 263 giveup_spe(prev); 264 #endif /* CONFIG_SPE */ 265 266 #else /* CONFIG_SMP */ 267 #ifdef CONFIG_ALTIVEC 268 /* Avoid the trap. On smp this this never happens since 269 * we don't set last_task_used_altivec -- Cort 270 */ 271 if (new->thread.regs && last_task_used_altivec == new) 272 new->thread.regs->msr |= MSR_VEC; 273 #endif /* CONFIG_ALTIVEC */ 274 #ifdef CONFIG_SPE 275 /* Avoid the trap. On smp this this never happens since 276 * we don't set last_task_used_spe 277 */ 278 if (new->thread.regs && last_task_used_spe == new) 279 new->thread.regs->msr |= MSR_SPE; 280 #endif /* CONFIG_SPE */ 281 282 #endif /* CONFIG_SMP */ 283 284 #ifdef CONFIG_PPC64 /* for now */ 285 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) { 286 set_dabr(new->thread.dabr); 287 __get_cpu_var(current_dabr) = new->thread.dabr; 288 } 289 290 flush_tlb_pending(); 291 #endif 292 293 new_thread = &new->thread; 294 old_thread = ¤t->thread; 295 296 #ifdef CONFIG_PPC64 297 /* 298 * Collect processor utilization data per process 299 */ 300 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 301 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 302 long unsigned start_tb, current_tb; 303 start_tb = old_thread->start_tb; 304 cu->current_tb = current_tb = mfspr(SPRN_PURR); 305 old_thread->accum_tb += (current_tb - start_tb); 306 new_thread->start_tb = current_tb; 307 } 308 #endif 309 310 local_irq_save(flags); 311 last = _switch(old_thread, new_thread); 312 313 local_irq_restore(flags); 314 315 return last; 316 } 317 318 static int instructions_to_print = 16; 319 320 #ifdef CONFIG_PPC64 321 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \ 322 (REGION_ID(pc) != VMALLOC_REGION_ID)) 323 #else 324 #define BAD_PC(pc) ((pc) < KERNELBASE) 325 #endif 326 327 static void show_instructions(struct pt_regs *regs) 328 { 329 int i; 330 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 331 sizeof(int)); 332 333 printk("Instruction dump:"); 334 335 for (i = 0; i < instructions_to_print; i++) { 336 int instr; 337 338 if (!(i % 8)) 339 printk("\n"); 340 341 if (BAD_PC(pc) || __get_user(instr, (unsigned int *)pc)) { 342 printk("XXXXXXXX "); 343 } else { 344 if (regs->nip == pc) 345 printk("<%08x> ", instr); 346 else 347 printk("%08x ", instr); 348 } 349 350 pc += sizeof(int); 351 } 352 353 printk("\n"); 354 } 355 356 static struct regbit { 357 unsigned long bit; 358 const char *name; 359 } msr_bits[] = { 360 {MSR_EE, "EE"}, 361 {MSR_PR, "PR"}, 362 {MSR_FP, "FP"}, 363 {MSR_ME, "ME"}, 364 {MSR_IR, "IR"}, 365 {MSR_DR, "DR"}, 366 {0, NULL} 367 }; 368 369 static void printbits(unsigned long val, struct regbit *bits) 370 { 371 const char *sep = ""; 372 373 printk("<"); 374 for (; bits->bit; ++bits) 375 if (val & bits->bit) { 376 printk("%s%s", sep, bits->name); 377 sep = ","; 378 } 379 printk(">"); 380 } 381 382 #ifdef CONFIG_PPC64 383 #define REG "%016lX" 384 #define REGS_PER_LINE 4 385 #define LAST_VOLATILE 13 386 #else 387 #define REG "%08lX" 388 #define REGS_PER_LINE 8 389 #define LAST_VOLATILE 12 390 #endif 391 392 void show_regs(struct pt_regs * regs) 393 { 394 int i, trap; 395 396 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 397 regs->nip, regs->link, regs->ctr); 398 printk("REGS: %p TRAP: %04lx %s (%s)\n", 399 regs, regs->trap, print_tainted(), system_utsname.release); 400 printk("MSR: "REG" ", regs->msr); 401 printbits(regs->msr, msr_bits); 402 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer); 403 trap = TRAP(regs); 404 if (trap == 0x300 || trap == 0x600) 405 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); 406 printk("TASK = %p[%d] '%s' THREAD: %p", 407 current, current->pid, current->comm, current->thread_info); 408 409 #ifdef CONFIG_SMP 410 printk(" CPU: %d", smp_processor_id()); 411 #endif /* CONFIG_SMP */ 412 413 for (i = 0; i < 32; i++) { 414 if ((i % REGS_PER_LINE) == 0) 415 printk("\n" KERN_INFO "GPR%02d: ", i); 416 printk(REG " ", regs->gpr[i]); 417 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 418 break; 419 } 420 printk("\n"); 421 #ifdef CONFIG_KALLSYMS 422 /* 423 * Lookup NIP late so we have the best change of getting the 424 * above info out without failing 425 */ 426 printk("NIP ["REG"] ", regs->nip); 427 print_symbol("%s\n", regs->nip); 428 printk("LR ["REG"] ", regs->link); 429 print_symbol("%s\n", regs->link); 430 #endif 431 show_stack(current, (unsigned long *) regs->gpr[1]); 432 if (!user_mode(regs)) 433 show_instructions(regs); 434 } 435 436 void exit_thread(void) 437 { 438 kprobe_flush_task(current); 439 440 #ifndef CONFIG_SMP 441 if (last_task_used_math == current) 442 last_task_used_math = NULL; 443 #ifdef CONFIG_ALTIVEC 444 if (last_task_used_altivec == current) 445 last_task_used_altivec = NULL; 446 #endif /* CONFIG_ALTIVEC */ 447 #ifdef CONFIG_SPE 448 if (last_task_used_spe == current) 449 last_task_used_spe = NULL; 450 #endif 451 #endif /* CONFIG_SMP */ 452 } 453 454 void flush_thread(void) 455 { 456 #ifdef CONFIG_PPC64 457 struct thread_info *t = current_thread_info(); 458 459 if (t->flags & _TIF_ABI_PENDING) 460 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT); 461 #endif 462 kprobe_flush_task(current); 463 464 #ifndef CONFIG_SMP 465 if (last_task_used_math == current) 466 last_task_used_math = NULL; 467 #ifdef CONFIG_ALTIVEC 468 if (last_task_used_altivec == current) 469 last_task_used_altivec = NULL; 470 #endif /* CONFIG_ALTIVEC */ 471 #ifdef CONFIG_SPE 472 if (last_task_used_spe == current) 473 last_task_used_spe = NULL; 474 #endif 475 #endif /* CONFIG_SMP */ 476 477 #ifdef CONFIG_PPC64 /* for now */ 478 if (current->thread.dabr) { 479 current->thread.dabr = 0; 480 set_dabr(0); 481 } 482 #endif 483 } 484 485 void 486 release_thread(struct task_struct *t) 487 { 488 } 489 490 /* 491 * This gets called before we allocate a new thread and copy 492 * the current task into it. 493 */ 494 void prepare_to_copy(struct task_struct *tsk) 495 { 496 flush_fp_to_thread(current); 497 flush_altivec_to_thread(current); 498 flush_spe_to_thread(current); 499 } 500 501 /* 502 * Copy a thread.. 503 */ 504 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 505 unsigned long unused, struct task_struct *p, 506 struct pt_regs *regs) 507 { 508 struct pt_regs *childregs, *kregs; 509 extern void ret_from_fork(void); 510 unsigned long sp = (unsigned long)p->thread_info + THREAD_SIZE; 511 512 CHECK_FULL_REGS(regs); 513 /* Copy registers */ 514 sp -= sizeof(struct pt_regs); 515 childregs = (struct pt_regs *) sp; 516 *childregs = *regs; 517 if ((childregs->msr & MSR_PR) == 0) { 518 /* for kernel thread, set `current' and stackptr in new task */ 519 childregs->gpr[1] = sp + sizeof(struct pt_regs); 520 #ifdef CONFIG_PPC32 521 childregs->gpr[2] = (unsigned long) p; 522 #else 523 clear_ti_thread_flag(p->thread_info, TIF_32BIT); 524 #endif 525 p->thread.regs = NULL; /* no user register state */ 526 } else { 527 childregs->gpr[1] = usp; 528 p->thread.regs = childregs; 529 if (clone_flags & CLONE_SETTLS) { 530 #ifdef CONFIG_PPC64 531 if (!test_thread_flag(TIF_32BIT)) 532 childregs->gpr[13] = childregs->gpr[6]; 533 else 534 #endif 535 childregs->gpr[2] = childregs->gpr[6]; 536 } 537 } 538 childregs->gpr[3] = 0; /* Result from fork() */ 539 sp -= STACK_FRAME_OVERHEAD; 540 541 /* 542 * The way this works is that at some point in the future 543 * some task will call _switch to switch to the new task. 544 * That will pop off the stack frame created below and start 545 * the new task running at ret_from_fork. The new task will 546 * do some house keeping and then return from the fork or clone 547 * system call, using the stack frame created above. 548 */ 549 sp -= sizeof(struct pt_regs); 550 kregs = (struct pt_regs *) sp; 551 sp -= STACK_FRAME_OVERHEAD; 552 p->thread.ksp = sp; 553 554 #ifdef CONFIG_PPC64 555 if (cpu_has_feature(CPU_FTR_SLB)) { 556 unsigned long sp_vsid = get_kernel_vsid(sp); 557 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 558 559 sp_vsid <<= SLB_VSID_SHIFT; 560 sp_vsid |= SLB_VSID_KERNEL | llp; 561 p->thread.ksp_vsid = sp_vsid; 562 } 563 564 /* 565 * The PPC64 ABI makes use of a TOC to contain function 566 * pointers. The function (ret_from_except) is actually a pointer 567 * to the TOC entry. The first entry is a pointer to the actual 568 * function. 569 */ 570 kregs->nip = *((unsigned long *)ret_from_fork); 571 #else 572 kregs->nip = (unsigned long)ret_from_fork; 573 p->thread.last_syscall = -1; 574 #endif 575 576 return 0; 577 } 578 579 /* 580 * Set up a thread for executing a new program 581 */ 582 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 583 { 584 #ifdef CONFIG_PPC64 585 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 586 #endif 587 588 set_fs(USER_DS); 589 590 /* 591 * If we exec out of a kernel thread then thread.regs will not be 592 * set. Do it now. 593 */ 594 if (!current->thread.regs) { 595 unsigned long childregs = (unsigned long)current->thread_info + 596 THREAD_SIZE; 597 childregs -= sizeof(struct pt_regs); 598 current->thread.regs = (struct pt_regs *)childregs; 599 } 600 601 memset(regs->gpr, 0, sizeof(regs->gpr)); 602 regs->ctr = 0; 603 regs->link = 0; 604 regs->xer = 0; 605 regs->ccr = 0; 606 regs->gpr[1] = sp; 607 608 #ifdef CONFIG_PPC32 609 regs->mq = 0; 610 regs->nip = start; 611 regs->msr = MSR_USER; 612 #else 613 if (!test_thread_flag(TIF_32BIT)) { 614 unsigned long entry, toc; 615 616 /* start is a relocated pointer to the function descriptor for 617 * the elf _start routine. The first entry in the function 618 * descriptor is the entry address of _start and the second 619 * entry is the TOC value we need to use. 620 */ 621 __get_user(entry, (unsigned long __user *)start); 622 __get_user(toc, (unsigned long __user *)start+1); 623 624 /* Check whether the e_entry function descriptor entries 625 * need to be relocated before we can use them. 626 */ 627 if (load_addr != 0) { 628 entry += load_addr; 629 toc += load_addr; 630 } 631 regs->nip = entry; 632 regs->gpr[2] = toc; 633 regs->msr = MSR_USER64; 634 } else { 635 regs->nip = start; 636 regs->gpr[2] = 0; 637 regs->msr = MSR_USER32; 638 } 639 #endif 640 641 #ifndef CONFIG_SMP 642 if (last_task_used_math == current) 643 last_task_used_math = NULL; 644 #ifdef CONFIG_ALTIVEC 645 if (last_task_used_altivec == current) 646 last_task_used_altivec = NULL; 647 #endif 648 #ifdef CONFIG_SPE 649 if (last_task_used_spe == current) 650 last_task_used_spe = NULL; 651 #endif 652 #endif /* CONFIG_SMP */ 653 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 654 current->thread.fpscr.val = 0; 655 #ifdef CONFIG_ALTIVEC 656 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 657 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 658 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 659 current->thread.vrsave = 0; 660 current->thread.used_vr = 0; 661 #endif /* CONFIG_ALTIVEC */ 662 #ifdef CONFIG_SPE 663 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 664 current->thread.acc = 0; 665 current->thread.spefscr = 0; 666 current->thread.used_spe = 0; 667 #endif /* CONFIG_SPE */ 668 } 669 670 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 671 | PR_FP_EXC_RES | PR_FP_EXC_INV) 672 673 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 674 { 675 struct pt_regs *regs = tsk->thread.regs; 676 677 /* This is a bit hairy. If we are an SPE enabled processor 678 * (have embedded fp) we store the IEEE exception enable flags in 679 * fpexc_mode. fpexc_mode is also used for setting FP exception 680 * mode (asyn, precise, disabled) for 'Classic' FP. */ 681 if (val & PR_FP_EXC_SW_ENABLE) { 682 #ifdef CONFIG_SPE 683 tsk->thread.fpexc_mode = val & 684 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 685 return 0; 686 #else 687 return -EINVAL; 688 #endif 689 } 690 691 /* on a CONFIG_SPE this does not hurt us. The bits that 692 * __pack_fe01 use do not overlap with bits used for 693 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 694 * on CONFIG_SPE implementations are reserved so writing to 695 * them does not change anything */ 696 if (val > PR_FP_EXC_PRECISE) 697 return -EINVAL; 698 tsk->thread.fpexc_mode = __pack_fe01(val); 699 if (regs != NULL && (regs->msr & MSR_FP) != 0) 700 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 701 | tsk->thread.fpexc_mode; 702 return 0; 703 } 704 705 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 706 { 707 unsigned int val; 708 709 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 710 #ifdef CONFIG_SPE 711 val = tsk->thread.fpexc_mode; 712 #else 713 return -EINVAL; 714 #endif 715 else 716 val = __unpack_fe01(tsk->thread.fpexc_mode); 717 return put_user(val, (unsigned int __user *) adr); 718 } 719 720 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) 721 722 int sys_clone(unsigned long clone_flags, unsigned long usp, 723 int __user *parent_tidp, void __user *child_threadptr, 724 int __user *child_tidp, int p6, 725 struct pt_regs *regs) 726 { 727 CHECK_FULL_REGS(regs); 728 if (usp == 0) 729 usp = regs->gpr[1]; /* stack pointer for child */ 730 #ifdef CONFIG_PPC64 731 if (test_thread_flag(TIF_32BIT)) { 732 parent_tidp = TRUNC_PTR(parent_tidp); 733 child_tidp = TRUNC_PTR(child_tidp); 734 } 735 #endif 736 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); 737 } 738 739 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, 740 unsigned long p4, unsigned long p5, unsigned long p6, 741 struct pt_regs *regs) 742 { 743 CHECK_FULL_REGS(regs); 744 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); 745 } 746 747 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, 748 unsigned long p4, unsigned long p5, unsigned long p6, 749 struct pt_regs *regs) 750 { 751 CHECK_FULL_REGS(regs); 752 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], 753 regs, 0, NULL, NULL); 754 } 755 756 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, 757 unsigned long a3, unsigned long a4, unsigned long a5, 758 struct pt_regs *regs) 759 { 760 int error; 761 char *filename; 762 763 filename = getname((char __user *) a0); 764 error = PTR_ERR(filename); 765 if (IS_ERR(filename)) 766 goto out; 767 flush_fp_to_thread(current); 768 flush_altivec_to_thread(current); 769 flush_spe_to_thread(current); 770 error = do_execve(filename, (char __user * __user *) a1, 771 (char __user * __user *) a2, regs); 772 if (error == 0) { 773 task_lock(current); 774 current->ptrace &= ~PT_DTRACE; 775 task_unlock(current); 776 } 777 putname(filename); 778 out: 779 return error; 780 } 781 782 static int validate_sp(unsigned long sp, struct task_struct *p, 783 unsigned long nbytes) 784 { 785 unsigned long stack_page = (unsigned long)p->thread_info; 786 787 if (sp >= stack_page + sizeof(struct thread_struct) 788 && sp <= stack_page + THREAD_SIZE - nbytes) 789 return 1; 790 791 #ifdef CONFIG_IRQSTACKS 792 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)]; 793 if (sp >= stack_page + sizeof(struct thread_struct) 794 && sp <= stack_page + THREAD_SIZE - nbytes) 795 return 1; 796 797 stack_page = (unsigned long) softirq_ctx[task_cpu(p)]; 798 if (sp >= stack_page + sizeof(struct thread_struct) 799 && sp <= stack_page + THREAD_SIZE - nbytes) 800 return 1; 801 #endif 802 803 return 0; 804 } 805 806 #ifdef CONFIG_PPC64 807 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */ 808 #define FRAME_LR_SAVE 2 809 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288) 810 #define REGS_MARKER 0x7265677368657265ul 811 #define FRAME_MARKER 12 812 #else 813 #define MIN_STACK_FRAME 16 814 #define FRAME_LR_SAVE 1 815 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD) 816 #define REGS_MARKER 0x72656773ul 817 #define FRAME_MARKER 2 818 #endif 819 820 unsigned long get_wchan(struct task_struct *p) 821 { 822 unsigned long ip, sp; 823 int count = 0; 824 825 if (!p || p == current || p->state == TASK_RUNNING) 826 return 0; 827 828 sp = p->thread.ksp; 829 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 830 return 0; 831 832 do { 833 sp = *(unsigned long *)sp; 834 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 835 return 0; 836 if (count > 0) { 837 ip = ((unsigned long *)sp)[FRAME_LR_SAVE]; 838 if (!in_sched_functions(ip)) 839 return ip; 840 } 841 } while (count++ < 16); 842 return 0; 843 } 844 EXPORT_SYMBOL(get_wchan); 845 846 static int kstack_depth_to_print = 64; 847 848 void show_stack(struct task_struct *tsk, unsigned long *stack) 849 { 850 unsigned long sp, ip, lr, newsp; 851 int count = 0; 852 int firstframe = 1; 853 854 sp = (unsigned long) stack; 855 if (tsk == NULL) 856 tsk = current; 857 if (sp == 0) { 858 if (tsk == current) 859 asm("mr %0,1" : "=r" (sp)); 860 else 861 sp = tsk->thread.ksp; 862 } 863 864 lr = 0; 865 printk("Call Trace:\n"); 866 do { 867 if (!validate_sp(sp, tsk, MIN_STACK_FRAME)) 868 return; 869 870 stack = (unsigned long *) sp; 871 newsp = stack[0]; 872 ip = stack[FRAME_LR_SAVE]; 873 if (!firstframe || ip != lr) { 874 printk("["REG"] ["REG"] ", sp, ip); 875 print_symbol("%s", ip); 876 if (firstframe) 877 printk(" (unreliable)"); 878 printk("\n"); 879 } 880 firstframe = 0; 881 882 /* 883 * See if this is an exception frame. 884 * We look for the "regshere" marker in the current frame. 885 */ 886 if (validate_sp(sp, tsk, INT_FRAME_SIZE) 887 && stack[FRAME_MARKER] == REGS_MARKER) { 888 struct pt_regs *regs = (struct pt_regs *) 889 (sp + STACK_FRAME_OVERHEAD); 890 printk("--- Exception: %lx", regs->trap); 891 print_symbol(" at %s\n", regs->nip); 892 lr = regs->link; 893 print_symbol(" LR = %s\n", lr); 894 firstframe = 1; 895 } 896 897 sp = newsp; 898 } while (count++ < kstack_depth_to_print); 899 } 900 901 void dump_stack(void) 902 { 903 show_stack(current, NULL); 904 } 905 EXPORT_SYMBOL(dump_stack); 906