1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/kernel.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/stddef.h> 23 #include <linux/unistd.h> 24 #include <linux/ptrace.h> 25 #include <linux/slab.h> 26 #include <linux/user.h> 27 #include <linux/elf.h> 28 #include <linux/init.h> 29 #include <linux/prctl.h> 30 #include <linux/init_task.h> 31 #include <linux/export.h> 32 #include <linux/kallsyms.h> 33 #include <linux/mqueue.h> 34 #include <linux/hardirq.h> 35 #include <linux/utsname.h> 36 #include <linux/ftrace.h> 37 #include <linux/kernel_stat.h> 38 #include <linux/personality.h> 39 #include <linux/random.h> 40 #include <linux/hw_breakpoint.h> 41 42 #include <asm/pgtable.h> 43 #include <asm/uaccess.h> 44 #include <asm/io.h> 45 #include <asm/processor.h> 46 #include <asm/mmu.h> 47 #include <asm/prom.h> 48 #include <asm/machdep.h> 49 #include <asm/time.h> 50 #include <asm/runlatch.h> 51 #include <asm/syscalls.h> 52 #include <asm/switch_to.h> 53 #include <asm/tm.h> 54 #include <asm/debug.h> 55 #ifdef CONFIG_PPC64 56 #include <asm/firmware.h> 57 #endif 58 #include <linux/kprobes.h> 59 #include <linux/kdebug.h> 60 61 /* Transactional Memory debug */ 62 #ifdef TM_DEBUG_SW 63 #define TM_DEBUG(x...) printk(KERN_INFO x) 64 #else 65 #define TM_DEBUG(x...) do { } while(0) 66 #endif 67 68 extern unsigned long _get_SP(void); 69 70 #ifndef CONFIG_SMP 71 struct task_struct *last_task_used_math = NULL; 72 struct task_struct *last_task_used_altivec = NULL; 73 struct task_struct *last_task_used_vsx = NULL; 74 struct task_struct *last_task_used_spe = NULL; 75 #endif 76 77 /* 78 * Make sure the floating-point register state in the 79 * the thread_struct is up to date for task tsk. 80 */ 81 void flush_fp_to_thread(struct task_struct *tsk) 82 { 83 if (tsk->thread.regs) { 84 /* 85 * We need to disable preemption here because if we didn't, 86 * another process could get scheduled after the regs->msr 87 * test but before we have finished saving the FP registers 88 * to the thread_struct. That process could take over the 89 * FPU, and then when we get scheduled again we would store 90 * bogus values for the remaining FP registers. 91 */ 92 preempt_disable(); 93 if (tsk->thread.regs->msr & MSR_FP) { 94 #ifdef CONFIG_SMP 95 /* 96 * This should only ever be called for current or 97 * for a stopped child process. Since we save away 98 * the FP register state on context switch on SMP, 99 * there is something wrong if a stopped child appears 100 * to still have its FP state in the CPU registers. 101 */ 102 BUG_ON(tsk != current); 103 #endif 104 giveup_fpu(tsk); 105 } 106 preempt_enable(); 107 } 108 } 109 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 110 111 void enable_kernel_fp(void) 112 { 113 WARN_ON(preemptible()); 114 115 #ifdef CONFIG_SMP 116 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 117 giveup_fpu(current); 118 else 119 giveup_fpu(NULL); /* just enables FP for kernel */ 120 #else 121 giveup_fpu(last_task_used_math); 122 #endif /* CONFIG_SMP */ 123 } 124 EXPORT_SYMBOL(enable_kernel_fp); 125 126 #ifdef CONFIG_ALTIVEC 127 void enable_kernel_altivec(void) 128 { 129 WARN_ON(preemptible()); 130 131 #ifdef CONFIG_SMP 132 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 133 giveup_altivec(current); 134 else 135 giveup_altivec_notask(); 136 #else 137 giveup_altivec(last_task_used_altivec); 138 #endif /* CONFIG_SMP */ 139 } 140 EXPORT_SYMBOL(enable_kernel_altivec); 141 142 /* 143 * Make sure the VMX/Altivec register state in the 144 * the thread_struct is up to date for task tsk. 145 */ 146 void flush_altivec_to_thread(struct task_struct *tsk) 147 { 148 if (tsk->thread.regs) { 149 preempt_disable(); 150 if (tsk->thread.regs->msr & MSR_VEC) { 151 #ifdef CONFIG_SMP 152 BUG_ON(tsk != current); 153 #endif 154 giveup_altivec(tsk); 155 } 156 preempt_enable(); 157 } 158 } 159 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 160 #endif /* CONFIG_ALTIVEC */ 161 162 #ifdef CONFIG_VSX 163 #if 0 164 /* not currently used, but some crazy RAID module might want to later */ 165 void enable_kernel_vsx(void) 166 { 167 WARN_ON(preemptible()); 168 169 #ifdef CONFIG_SMP 170 if (current->thread.regs && (current->thread.regs->msr & MSR_VSX)) 171 giveup_vsx(current); 172 else 173 giveup_vsx(NULL); /* just enable vsx for kernel - force */ 174 #else 175 giveup_vsx(last_task_used_vsx); 176 #endif /* CONFIG_SMP */ 177 } 178 EXPORT_SYMBOL(enable_kernel_vsx); 179 #endif 180 181 void giveup_vsx(struct task_struct *tsk) 182 { 183 giveup_fpu(tsk); 184 giveup_altivec(tsk); 185 __giveup_vsx(tsk); 186 } 187 188 void flush_vsx_to_thread(struct task_struct *tsk) 189 { 190 if (tsk->thread.regs) { 191 preempt_disable(); 192 if (tsk->thread.regs->msr & MSR_VSX) { 193 #ifdef CONFIG_SMP 194 BUG_ON(tsk != current); 195 #endif 196 giveup_vsx(tsk); 197 } 198 preempt_enable(); 199 } 200 } 201 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 202 #endif /* CONFIG_VSX */ 203 204 #ifdef CONFIG_SPE 205 206 void enable_kernel_spe(void) 207 { 208 WARN_ON(preemptible()); 209 210 #ifdef CONFIG_SMP 211 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 212 giveup_spe(current); 213 else 214 giveup_spe(NULL); /* just enable SPE for kernel - force */ 215 #else 216 giveup_spe(last_task_used_spe); 217 #endif /* __SMP __ */ 218 } 219 EXPORT_SYMBOL(enable_kernel_spe); 220 221 void flush_spe_to_thread(struct task_struct *tsk) 222 { 223 if (tsk->thread.regs) { 224 preempt_disable(); 225 if (tsk->thread.regs->msr & MSR_SPE) { 226 #ifdef CONFIG_SMP 227 BUG_ON(tsk != current); 228 #endif 229 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 230 giveup_spe(tsk); 231 } 232 preempt_enable(); 233 } 234 } 235 #endif /* CONFIG_SPE */ 236 237 #ifndef CONFIG_SMP 238 /* 239 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 240 * and the current task has some state, discard it. 241 */ 242 void discard_lazy_cpu_state(void) 243 { 244 preempt_disable(); 245 if (last_task_used_math == current) 246 last_task_used_math = NULL; 247 #ifdef CONFIG_ALTIVEC 248 if (last_task_used_altivec == current) 249 last_task_used_altivec = NULL; 250 #endif /* CONFIG_ALTIVEC */ 251 #ifdef CONFIG_VSX 252 if (last_task_used_vsx == current) 253 last_task_used_vsx = NULL; 254 #endif /* CONFIG_VSX */ 255 #ifdef CONFIG_SPE 256 if (last_task_used_spe == current) 257 last_task_used_spe = NULL; 258 #endif 259 preempt_enable(); 260 } 261 #endif /* CONFIG_SMP */ 262 263 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 264 void do_send_trap(struct pt_regs *regs, unsigned long address, 265 unsigned long error_code, int signal_code, int breakpt) 266 { 267 siginfo_t info; 268 269 current->thread.trap_nr = signal_code; 270 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 271 11, SIGSEGV) == NOTIFY_STOP) 272 return; 273 274 /* Deliver the signal to userspace */ 275 info.si_signo = SIGTRAP; 276 info.si_errno = breakpt; /* breakpoint or watchpoint id */ 277 info.si_code = signal_code; 278 info.si_addr = (void __user *)address; 279 force_sig_info(SIGTRAP, &info, current); 280 } 281 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 282 void do_break (struct pt_regs *regs, unsigned long address, 283 unsigned long error_code) 284 { 285 siginfo_t info; 286 287 current->thread.trap_nr = TRAP_HWBKPT; 288 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 289 11, SIGSEGV) == NOTIFY_STOP) 290 return; 291 292 if (debugger_break_match(regs)) 293 return; 294 295 /* Clear the breakpoint */ 296 hw_breakpoint_disable(); 297 298 /* Deliver the signal to userspace */ 299 info.si_signo = SIGTRAP; 300 info.si_errno = 0; 301 info.si_code = TRAP_HWBKPT; 302 info.si_addr = (void __user *)address; 303 force_sig_info(SIGTRAP, &info, current); 304 } 305 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 306 307 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 308 309 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 310 /* 311 * Set the debug registers back to their default "safe" values. 312 */ 313 static void set_debug_reg_defaults(struct thread_struct *thread) 314 { 315 thread->iac1 = thread->iac2 = 0; 316 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 317 thread->iac3 = thread->iac4 = 0; 318 #endif 319 thread->dac1 = thread->dac2 = 0; 320 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 321 thread->dvc1 = thread->dvc2 = 0; 322 #endif 323 thread->dbcr0 = 0; 324 #ifdef CONFIG_BOOKE 325 /* 326 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 327 */ 328 thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | \ 329 DBCR1_IAC3US | DBCR1_IAC4US; 330 /* 331 * Force Data Address Compare User/Supervisor bits to be User-only 332 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 333 */ 334 thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 335 #else 336 thread->dbcr1 = 0; 337 #endif 338 } 339 340 static void prime_debug_regs(struct thread_struct *thread) 341 { 342 /* 343 * We could have inherited MSR_DE from userspace, since 344 * it doesn't get cleared on exception entry. Make sure 345 * MSR_DE is clear before we enable any debug events. 346 */ 347 mtmsr(mfmsr() & ~MSR_DE); 348 349 mtspr(SPRN_IAC1, thread->iac1); 350 mtspr(SPRN_IAC2, thread->iac2); 351 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 352 mtspr(SPRN_IAC3, thread->iac3); 353 mtspr(SPRN_IAC4, thread->iac4); 354 #endif 355 mtspr(SPRN_DAC1, thread->dac1); 356 mtspr(SPRN_DAC2, thread->dac2); 357 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 358 mtspr(SPRN_DVC1, thread->dvc1); 359 mtspr(SPRN_DVC2, thread->dvc2); 360 #endif 361 mtspr(SPRN_DBCR0, thread->dbcr0); 362 mtspr(SPRN_DBCR1, thread->dbcr1); 363 #ifdef CONFIG_BOOKE 364 mtspr(SPRN_DBCR2, thread->dbcr2); 365 #endif 366 } 367 /* 368 * Unless neither the old or new thread are making use of the 369 * debug registers, set the debug registers from the values 370 * stored in the new thread. 371 */ 372 static void switch_booke_debug_regs(struct thread_struct *new_thread) 373 { 374 if ((current->thread.dbcr0 & DBCR0_IDM) 375 || (new_thread->dbcr0 & DBCR0_IDM)) 376 prime_debug_regs(new_thread); 377 } 378 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 379 #ifndef CONFIG_HAVE_HW_BREAKPOINT 380 static void set_debug_reg_defaults(struct thread_struct *thread) 381 { 382 thread->hw_brk.address = 0; 383 thread->hw_brk.type = 0; 384 set_breakpoint(&thread->hw_brk); 385 } 386 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 387 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 388 389 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 390 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 391 { 392 mtspr(SPRN_DAC1, dabr); 393 #ifdef CONFIG_PPC_47x 394 isync(); 395 #endif 396 return 0; 397 } 398 #elif defined(CONFIG_PPC_BOOK3S) 399 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 400 { 401 mtspr(SPRN_DABR, dabr); 402 if (cpu_has_feature(CPU_FTR_DABRX)) 403 mtspr(SPRN_DABRX, dabrx); 404 return 0; 405 } 406 #else 407 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 408 { 409 return -EINVAL; 410 } 411 #endif 412 413 static inline int set_dabr(struct arch_hw_breakpoint *brk) 414 { 415 unsigned long dabr, dabrx; 416 417 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 418 dabrx = ((brk->type >> 3) & 0x7); 419 420 if (ppc_md.set_dabr) 421 return ppc_md.set_dabr(dabr, dabrx); 422 423 return __set_dabr(dabr, dabrx); 424 } 425 426 static inline int set_dawr(struct arch_hw_breakpoint *brk) 427 { 428 unsigned long dawr, dawrx, mrd; 429 430 dawr = brk->address; 431 432 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 433 << (63 - 58); //* read/write bits */ 434 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 435 << (63 - 59); //* translate */ 436 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 437 >> 3; //* PRIM bits */ 438 /* dawr length is stored in field MDR bits 48:53. Matches range in 439 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 440 0b111111=64DW. 441 brk->len is in bytes. 442 This aligns up to double word size, shifts and does the bias. 443 */ 444 mrd = ((brk->len + 7) >> 3) - 1; 445 dawrx |= (mrd & 0x3f) << (63 - 53); 446 447 if (ppc_md.set_dawr) 448 return ppc_md.set_dawr(dawr, dawrx); 449 mtspr(SPRN_DAWR, dawr); 450 mtspr(SPRN_DAWRX, dawrx); 451 return 0; 452 } 453 454 int set_breakpoint(struct arch_hw_breakpoint *brk) 455 { 456 __get_cpu_var(current_brk) = *brk; 457 458 if (cpu_has_feature(CPU_FTR_DAWR)) 459 return set_dawr(brk); 460 461 return set_dabr(brk); 462 } 463 464 #ifdef CONFIG_PPC64 465 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 466 #endif 467 468 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 469 struct arch_hw_breakpoint *b) 470 { 471 if (a->address != b->address) 472 return false; 473 if (a->type != b->type) 474 return false; 475 if (a->len != b->len) 476 return false; 477 return true; 478 } 479 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 480 static inline void tm_reclaim_task(struct task_struct *tsk) 481 { 482 /* We have to work out if we're switching from/to a task that's in the 483 * middle of a transaction. 484 * 485 * In switching we need to maintain a 2nd register state as 486 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 487 * checkpointed (tbegin) state in ckpt_regs and saves the transactional 488 * (current) FPRs into oldtask->thread.transact_fpr[]. 489 * 490 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 491 */ 492 struct thread_struct *thr = &tsk->thread; 493 494 if (!thr->regs) 495 return; 496 497 if (!MSR_TM_ACTIVE(thr->regs->msr)) 498 goto out_and_saveregs; 499 500 /* Stash the original thread MSR, as giveup_fpu et al will 501 * modify it. We hold onto it to see whether the task used 502 * FP & vector regs. 503 */ 504 thr->tm_orig_msr = thr->regs->msr; 505 506 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 507 "ccr=%lx, msr=%lx, trap=%lx)\n", 508 tsk->pid, thr->regs->nip, 509 thr->regs->ccr, thr->regs->msr, 510 thr->regs->trap); 511 512 tm_reclaim(thr, thr->regs->msr, TM_CAUSE_RESCHED); 513 514 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 515 tsk->pid); 516 517 out_and_saveregs: 518 /* Always save the regs here, even if a transaction's not active. 519 * This context-switches a thread's TM info SPRs. We do it here to 520 * be consistent with the restore path (in recheckpoint) which 521 * cannot happen later in _switch(). 522 */ 523 tm_save_sprs(thr); 524 } 525 526 static inline void tm_recheckpoint_new_task(struct task_struct *new) 527 { 528 unsigned long msr; 529 530 if (!cpu_has_feature(CPU_FTR_TM)) 531 return; 532 533 /* Recheckpoint the registers of the thread we're about to switch to. 534 * 535 * If the task was using FP, we non-lazily reload both the original and 536 * the speculative FP register states. This is because the kernel 537 * doesn't see if/when a TM rollback occurs, so if we take an FP 538 * unavoidable later, we are unable to determine which set of FP regs 539 * need to be restored. 540 */ 541 if (!new->thread.regs) 542 return; 543 544 /* The TM SPRs are restored here, so that TEXASR.FS can be set 545 * before the trecheckpoint and no explosion occurs. 546 */ 547 tm_restore_sprs(&new->thread); 548 549 if (!MSR_TM_ACTIVE(new->thread.regs->msr)) 550 return; 551 msr = new->thread.tm_orig_msr; 552 /* Recheckpoint to restore original checkpointed register state. */ 553 TM_DEBUG("*** tm_recheckpoint of pid %d " 554 "(new->msr 0x%lx, new->origmsr 0x%lx)\n", 555 new->pid, new->thread.regs->msr, msr); 556 557 /* This loads the checkpointed FP/VEC state, if used */ 558 tm_recheckpoint(&new->thread, msr); 559 560 /* This loads the speculative FP/VEC state, if used */ 561 if (msr & MSR_FP) { 562 do_load_up_transact_fpu(&new->thread); 563 new->thread.regs->msr |= 564 (MSR_FP | new->thread.fpexc_mode); 565 } 566 #ifdef CONFIG_ALTIVEC 567 if (msr & MSR_VEC) { 568 do_load_up_transact_altivec(&new->thread); 569 new->thread.regs->msr |= MSR_VEC; 570 } 571 #endif 572 /* We may as well turn on VSX too since all the state is restored now */ 573 if (msr & MSR_VSX) 574 new->thread.regs->msr |= MSR_VSX; 575 576 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 577 "(kernel msr 0x%lx)\n", 578 new->pid, mfmsr()); 579 } 580 581 static inline void __switch_to_tm(struct task_struct *prev) 582 { 583 if (cpu_has_feature(CPU_FTR_TM)) { 584 tm_enable(); 585 tm_reclaim_task(prev); 586 } 587 } 588 #else 589 #define tm_recheckpoint_new_task(new) 590 #define __switch_to_tm(prev) 591 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 592 593 struct task_struct *__switch_to(struct task_struct *prev, 594 struct task_struct *new) 595 { 596 struct thread_struct *new_thread, *old_thread; 597 unsigned long flags; 598 struct task_struct *last; 599 #ifdef CONFIG_PPC_BOOK3S_64 600 struct ppc64_tlb_batch *batch; 601 #endif 602 603 __switch_to_tm(prev); 604 605 #ifdef CONFIG_SMP 606 /* avoid complexity of lazy save/restore of fpu 607 * by just saving it every time we switch out if 608 * this task used the fpu during the last quantum. 609 * 610 * If it tries to use the fpu again, it'll trap and 611 * reload its fp regs. So we don't have to do a restore 612 * every switch, just a save. 613 * -- Cort 614 */ 615 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 616 giveup_fpu(prev); 617 #ifdef CONFIG_ALTIVEC 618 /* 619 * If the previous thread used altivec in the last quantum 620 * (thus changing altivec regs) then save them. 621 * We used to check the VRSAVE register but not all apps 622 * set it, so we don't rely on it now (and in fact we need 623 * to save & restore VSCR even if VRSAVE == 0). -- paulus 624 * 625 * On SMP we always save/restore altivec regs just to avoid the 626 * complexity of changing processors. 627 * -- Cort 628 */ 629 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 630 giveup_altivec(prev); 631 #endif /* CONFIG_ALTIVEC */ 632 #ifdef CONFIG_VSX 633 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX)) 634 /* VMX and FPU registers are already save here */ 635 __giveup_vsx(prev); 636 #endif /* CONFIG_VSX */ 637 #ifdef CONFIG_SPE 638 /* 639 * If the previous thread used spe in the last quantum 640 * (thus changing spe regs) then save them. 641 * 642 * On SMP we always save/restore spe regs just to avoid the 643 * complexity of changing processors. 644 */ 645 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 646 giveup_spe(prev); 647 #endif /* CONFIG_SPE */ 648 649 #else /* CONFIG_SMP */ 650 #ifdef CONFIG_ALTIVEC 651 /* Avoid the trap. On smp this this never happens since 652 * we don't set last_task_used_altivec -- Cort 653 */ 654 if (new->thread.regs && last_task_used_altivec == new) 655 new->thread.regs->msr |= MSR_VEC; 656 #endif /* CONFIG_ALTIVEC */ 657 #ifdef CONFIG_VSX 658 if (new->thread.regs && last_task_used_vsx == new) 659 new->thread.regs->msr |= MSR_VSX; 660 #endif /* CONFIG_VSX */ 661 #ifdef CONFIG_SPE 662 /* Avoid the trap. On smp this this never happens since 663 * we don't set last_task_used_spe 664 */ 665 if (new->thread.regs && last_task_used_spe == new) 666 new->thread.regs->msr |= MSR_SPE; 667 #endif /* CONFIG_SPE */ 668 669 #endif /* CONFIG_SMP */ 670 671 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 672 switch_booke_debug_regs(&new->thread); 673 #else 674 /* 675 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 676 * schedule DABR 677 */ 678 #ifndef CONFIG_HAVE_HW_BREAKPOINT 679 if (unlikely(hw_brk_match(&__get_cpu_var(current_brk), &new->thread.hw_brk))) 680 set_breakpoint(&new->thread.hw_brk); 681 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 682 #endif 683 684 685 new_thread = &new->thread; 686 old_thread = ¤t->thread; 687 688 #ifdef CONFIG_PPC64 689 /* 690 * Collect processor utilization data per process 691 */ 692 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 693 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 694 long unsigned start_tb, current_tb; 695 start_tb = old_thread->start_tb; 696 cu->current_tb = current_tb = mfspr(SPRN_PURR); 697 old_thread->accum_tb += (current_tb - start_tb); 698 new_thread->start_tb = current_tb; 699 } 700 #endif /* CONFIG_PPC64 */ 701 702 #ifdef CONFIG_PPC_BOOK3S_64 703 batch = &__get_cpu_var(ppc64_tlb_batch); 704 if (batch->active) { 705 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 706 if (batch->index) 707 __flush_tlb_pending(batch); 708 batch->active = 0; 709 } 710 #endif /* CONFIG_PPC_BOOK3S_64 */ 711 712 local_irq_save(flags); 713 714 /* 715 * We can't take a PMU exception inside _switch() since there is a 716 * window where the kernel stack SLB and the kernel stack are out 717 * of sync. Hard disable here. 718 */ 719 hard_irq_disable(); 720 721 tm_recheckpoint_new_task(new); 722 723 last = _switch(old_thread, new_thread); 724 725 #ifdef CONFIG_PPC_BOOK3S_64 726 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 727 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 728 batch = &__get_cpu_var(ppc64_tlb_batch); 729 batch->active = 1; 730 } 731 #endif /* CONFIG_PPC_BOOK3S_64 */ 732 733 local_irq_restore(flags); 734 735 return last; 736 } 737 738 static int instructions_to_print = 16; 739 740 static void show_instructions(struct pt_regs *regs) 741 { 742 int i; 743 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 744 sizeof(int)); 745 746 printk("Instruction dump:"); 747 748 for (i = 0; i < instructions_to_print; i++) { 749 int instr; 750 751 if (!(i % 8)) 752 printk("\n"); 753 754 #if !defined(CONFIG_BOOKE) 755 /* If executing with the IMMU off, adjust pc rather 756 * than print XXXXXXXX. 757 */ 758 if (!(regs->msr & MSR_IR)) 759 pc = (unsigned long)phys_to_virt(pc); 760 #endif 761 762 /* We use __get_user here *only* to avoid an OOPS on a 763 * bad address because the pc *should* only be a 764 * kernel address. 765 */ 766 if (!__kernel_text_address(pc) || 767 __get_user(instr, (unsigned int __user *)pc)) { 768 printk(KERN_CONT "XXXXXXXX "); 769 } else { 770 if (regs->nip == pc) 771 printk(KERN_CONT "<%08x> ", instr); 772 else 773 printk(KERN_CONT "%08x ", instr); 774 } 775 776 pc += sizeof(int); 777 } 778 779 printk("\n"); 780 } 781 782 static struct regbit { 783 unsigned long bit; 784 const char *name; 785 } msr_bits[] = { 786 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 787 {MSR_SF, "SF"}, 788 {MSR_HV, "HV"}, 789 #endif 790 {MSR_VEC, "VEC"}, 791 {MSR_VSX, "VSX"}, 792 #ifdef CONFIG_BOOKE 793 {MSR_CE, "CE"}, 794 #endif 795 {MSR_EE, "EE"}, 796 {MSR_PR, "PR"}, 797 {MSR_FP, "FP"}, 798 {MSR_ME, "ME"}, 799 #ifdef CONFIG_BOOKE 800 {MSR_DE, "DE"}, 801 #else 802 {MSR_SE, "SE"}, 803 {MSR_BE, "BE"}, 804 #endif 805 {MSR_IR, "IR"}, 806 {MSR_DR, "DR"}, 807 {MSR_PMM, "PMM"}, 808 #ifndef CONFIG_BOOKE 809 {MSR_RI, "RI"}, 810 {MSR_LE, "LE"}, 811 #endif 812 {0, NULL} 813 }; 814 815 static void printbits(unsigned long val, struct regbit *bits) 816 { 817 const char *sep = ""; 818 819 printk("<"); 820 for (; bits->bit; ++bits) 821 if (val & bits->bit) { 822 printk("%s%s", sep, bits->name); 823 sep = ","; 824 } 825 printk(">"); 826 } 827 828 #ifdef CONFIG_PPC64 829 #define REG "%016lx" 830 #define REGS_PER_LINE 4 831 #define LAST_VOLATILE 13 832 #else 833 #define REG "%08lx" 834 #define REGS_PER_LINE 8 835 #define LAST_VOLATILE 12 836 #endif 837 838 void show_regs(struct pt_regs * regs) 839 { 840 int i, trap; 841 842 show_regs_print_info(KERN_DEFAULT); 843 844 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 845 regs->nip, regs->link, regs->ctr); 846 printk("REGS: %p TRAP: %04lx %s (%s)\n", 847 regs, regs->trap, print_tainted(), init_utsname()->release); 848 printk("MSR: "REG" ", regs->msr); 849 printbits(regs->msr, msr_bits); 850 printk(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 851 #ifdef CONFIG_PPC64 852 printk("SOFTE: %ld\n", regs->softe); 853 #endif 854 trap = TRAP(regs); 855 if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 856 printk("CFAR: "REG"\n", regs->orig_gpr3); 857 if (trap == 0x300 || trap == 0x600) 858 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 859 printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr); 860 #else 861 printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr); 862 #endif 863 864 for (i = 0; i < 32; i++) { 865 if ((i % REGS_PER_LINE) == 0) 866 printk("\nGPR%02d: ", i); 867 printk(REG " ", regs->gpr[i]); 868 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 869 break; 870 } 871 printk("\n"); 872 #ifdef CONFIG_KALLSYMS 873 /* 874 * Lookup NIP late so we have the best change of getting the 875 * above info out without failing 876 */ 877 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 878 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 879 #endif 880 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 881 printk("PACATMSCRATCH [%llx]\n", get_paca()->tm_scratch); 882 #endif 883 show_stack(current, (unsigned long *) regs->gpr[1]); 884 if (!user_mode(regs)) 885 show_instructions(regs); 886 } 887 888 void exit_thread(void) 889 { 890 discard_lazy_cpu_state(); 891 } 892 893 void flush_thread(void) 894 { 895 discard_lazy_cpu_state(); 896 897 #ifdef CONFIG_HAVE_HW_BREAKPOINT 898 flush_ptrace_hw_breakpoint(current); 899 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 900 set_debug_reg_defaults(¤t->thread); 901 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 902 } 903 904 void 905 release_thread(struct task_struct *t) 906 { 907 } 908 909 /* 910 * this gets called so that we can store coprocessor state into memory and 911 * copy the current task into the new thread. 912 */ 913 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 914 { 915 flush_fp_to_thread(src); 916 flush_altivec_to_thread(src); 917 flush_vsx_to_thread(src); 918 flush_spe_to_thread(src); 919 *dst = *src; 920 return 0; 921 } 922 923 /* 924 * Copy a thread.. 925 */ 926 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */ 927 928 int copy_thread(unsigned long clone_flags, unsigned long usp, 929 unsigned long arg, struct task_struct *p) 930 { 931 struct pt_regs *childregs, *kregs; 932 extern void ret_from_fork(void); 933 extern void ret_from_kernel_thread(void); 934 void (*f)(void); 935 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 936 937 /* Copy registers */ 938 sp -= sizeof(struct pt_regs); 939 childregs = (struct pt_regs *) sp; 940 if (unlikely(p->flags & PF_KTHREAD)) { 941 struct thread_info *ti = (void *)task_stack_page(p); 942 memset(childregs, 0, sizeof(struct pt_regs)); 943 childregs->gpr[1] = sp + sizeof(struct pt_regs); 944 childregs->gpr[14] = usp; /* function */ 945 #ifdef CONFIG_PPC64 946 clear_tsk_thread_flag(p, TIF_32BIT); 947 childregs->softe = 1; 948 #endif 949 childregs->gpr[15] = arg; 950 p->thread.regs = NULL; /* no user register state */ 951 ti->flags |= _TIF_RESTOREALL; 952 f = ret_from_kernel_thread; 953 } else { 954 struct pt_regs *regs = current_pt_regs(); 955 CHECK_FULL_REGS(regs); 956 *childregs = *regs; 957 if (usp) 958 childregs->gpr[1] = usp; 959 p->thread.regs = childregs; 960 childregs->gpr[3] = 0; /* Result from fork() */ 961 if (clone_flags & CLONE_SETTLS) { 962 #ifdef CONFIG_PPC64 963 if (!is_32bit_task()) 964 childregs->gpr[13] = childregs->gpr[6]; 965 else 966 #endif 967 childregs->gpr[2] = childregs->gpr[6]; 968 } 969 970 f = ret_from_fork; 971 } 972 sp -= STACK_FRAME_OVERHEAD; 973 974 /* 975 * The way this works is that at some point in the future 976 * some task will call _switch to switch to the new task. 977 * That will pop off the stack frame created below and start 978 * the new task running at ret_from_fork. The new task will 979 * do some house keeping and then return from the fork or clone 980 * system call, using the stack frame created above. 981 */ 982 ((unsigned long *)sp)[0] = 0; 983 sp -= sizeof(struct pt_regs); 984 kregs = (struct pt_regs *) sp; 985 sp -= STACK_FRAME_OVERHEAD; 986 p->thread.ksp = sp; 987 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 988 _ALIGN_UP(sizeof(struct thread_info), 16); 989 990 #ifdef CONFIG_HAVE_HW_BREAKPOINT 991 p->thread.ptrace_bps[0] = NULL; 992 #endif 993 994 #ifdef CONFIG_PPC_STD_MMU_64 995 if (mmu_has_feature(MMU_FTR_SLB)) { 996 unsigned long sp_vsid; 997 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 998 999 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1000 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1001 << SLB_VSID_SHIFT_1T; 1002 else 1003 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1004 << SLB_VSID_SHIFT; 1005 sp_vsid |= SLB_VSID_KERNEL | llp; 1006 p->thread.ksp_vsid = sp_vsid; 1007 } 1008 #endif /* CONFIG_PPC_STD_MMU_64 */ 1009 #ifdef CONFIG_PPC64 1010 if (cpu_has_feature(CPU_FTR_DSCR)) { 1011 p->thread.dscr_inherit = current->thread.dscr_inherit; 1012 p->thread.dscr = current->thread.dscr; 1013 } 1014 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1015 p->thread.ppr = INIT_PPR; 1016 #endif 1017 /* 1018 * The PPC64 ABI makes use of a TOC to contain function 1019 * pointers. The function (ret_from_except) is actually a pointer 1020 * to the TOC entry. The first entry is a pointer to the actual 1021 * function. 1022 */ 1023 #ifdef CONFIG_PPC64 1024 kregs->nip = *((unsigned long *)f); 1025 #else 1026 kregs->nip = (unsigned long)f; 1027 #endif 1028 return 0; 1029 } 1030 1031 /* 1032 * Set up a thread for executing a new program 1033 */ 1034 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1035 { 1036 #ifdef CONFIG_PPC64 1037 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1038 #endif 1039 1040 /* 1041 * If we exec out of a kernel thread then thread.regs will not be 1042 * set. Do it now. 1043 */ 1044 if (!current->thread.regs) { 1045 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1046 current->thread.regs = regs - 1; 1047 } 1048 1049 memset(regs->gpr, 0, sizeof(regs->gpr)); 1050 regs->ctr = 0; 1051 regs->link = 0; 1052 regs->xer = 0; 1053 regs->ccr = 0; 1054 regs->gpr[1] = sp; 1055 1056 /* 1057 * We have just cleared all the nonvolatile GPRs, so make 1058 * FULL_REGS(regs) return true. This is necessary to allow 1059 * ptrace to examine the thread immediately after exec. 1060 */ 1061 regs->trap &= ~1UL; 1062 1063 #ifdef CONFIG_PPC32 1064 regs->mq = 0; 1065 regs->nip = start; 1066 regs->msr = MSR_USER; 1067 #else 1068 if (!is_32bit_task()) { 1069 unsigned long entry, toc; 1070 1071 /* start is a relocated pointer to the function descriptor for 1072 * the elf _start routine. The first entry in the function 1073 * descriptor is the entry address of _start and the second 1074 * entry is the TOC value we need to use. 1075 */ 1076 __get_user(entry, (unsigned long __user *)start); 1077 __get_user(toc, (unsigned long __user *)start+1); 1078 1079 /* Check whether the e_entry function descriptor entries 1080 * need to be relocated before we can use them. 1081 */ 1082 if (load_addr != 0) { 1083 entry += load_addr; 1084 toc += load_addr; 1085 } 1086 regs->nip = entry; 1087 regs->gpr[2] = toc; 1088 regs->msr = MSR_USER64; 1089 } else { 1090 regs->nip = start; 1091 regs->gpr[2] = 0; 1092 regs->msr = MSR_USER32; 1093 } 1094 #endif 1095 discard_lazy_cpu_state(); 1096 #ifdef CONFIG_VSX 1097 current->thread.used_vsr = 0; 1098 #endif 1099 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 1100 current->thread.fpscr.val = 0; 1101 #ifdef CONFIG_ALTIVEC 1102 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 1103 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 1104 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1105 current->thread.vrsave = 0; 1106 current->thread.used_vr = 0; 1107 #endif /* CONFIG_ALTIVEC */ 1108 #ifdef CONFIG_SPE 1109 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1110 current->thread.acc = 0; 1111 current->thread.spefscr = 0; 1112 current->thread.used_spe = 0; 1113 #endif /* CONFIG_SPE */ 1114 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1115 if (cpu_has_feature(CPU_FTR_TM)) 1116 regs->msr |= MSR_TM; 1117 current->thread.tm_tfhar = 0; 1118 current->thread.tm_texasr = 0; 1119 current->thread.tm_tfiar = 0; 1120 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1121 } 1122 1123 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1124 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1125 1126 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1127 { 1128 struct pt_regs *regs = tsk->thread.regs; 1129 1130 /* This is a bit hairy. If we are an SPE enabled processor 1131 * (have embedded fp) we store the IEEE exception enable flags in 1132 * fpexc_mode. fpexc_mode is also used for setting FP exception 1133 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1134 if (val & PR_FP_EXC_SW_ENABLE) { 1135 #ifdef CONFIG_SPE 1136 if (cpu_has_feature(CPU_FTR_SPE)) { 1137 tsk->thread.fpexc_mode = val & 1138 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1139 return 0; 1140 } else { 1141 return -EINVAL; 1142 } 1143 #else 1144 return -EINVAL; 1145 #endif 1146 } 1147 1148 /* on a CONFIG_SPE this does not hurt us. The bits that 1149 * __pack_fe01 use do not overlap with bits used for 1150 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1151 * on CONFIG_SPE implementations are reserved so writing to 1152 * them does not change anything */ 1153 if (val > PR_FP_EXC_PRECISE) 1154 return -EINVAL; 1155 tsk->thread.fpexc_mode = __pack_fe01(val); 1156 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1157 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1158 | tsk->thread.fpexc_mode; 1159 return 0; 1160 } 1161 1162 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1163 { 1164 unsigned int val; 1165 1166 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1167 #ifdef CONFIG_SPE 1168 if (cpu_has_feature(CPU_FTR_SPE)) 1169 val = tsk->thread.fpexc_mode; 1170 else 1171 return -EINVAL; 1172 #else 1173 return -EINVAL; 1174 #endif 1175 else 1176 val = __unpack_fe01(tsk->thread.fpexc_mode); 1177 return put_user(val, (unsigned int __user *) adr); 1178 } 1179 1180 int set_endian(struct task_struct *tsk, unsigned int val) 1181 { 1182 struct pt_regs *regs = tsk->thread.regs; 1183 1184 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1185 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1186 return -EINVAL; 1187 1188 if (regs == NULL) 1189 return -EINVAL; 1190 1191 if (val == PR_ENDIAN_BIG) 1192 regs->msr &= ~MSR_LE; 1193 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1194 regs->msr |= MSR_LE; 1195 else 1196 return -EINVAL; 1197 1198 return 0; 1199 } 1200 1201 int get_endian(struct task_struct *tsk, unsigned long adr) 1202 { 1203 struct pt_regs *regs = tsk->thread.regs; 1204 unsigned int val; 1205 1206 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1207 !cpu_has_feature(CPU_FTR_REAL_LE)) 1208 return -EINVAL; 1209 1210 if (regs == NULL) 1211 return -EINVAL; 1212 1213 if (regs->msr & MSR_LE) { 1214 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1215 val = PR_ENDIAN_LITTLE; 1216 else 1217 val = PR_ENDIAN_PPC_LITTLE; 1218 } else 1219 val = PR_ENDIAN_BIG; 1220 1221 return put_user(val, (unsigned int __user *)adr); 1222 } 1223 1224 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1225 { 1226 tsk->thread.align_ctl = val; 1227 return 0; 1228 } 1229 1230 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1231 { 1232 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1233 } 1234 1235 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1236 unsigned long nbytes) 1237 { 1238 unsigned long stack_page; 1239 unsigned long cpu = task_cpu(p); 1240 1241 /* 1242 * Avoid crashing if the stack has overflowed and corrupted 1243 * task_cpu(p), which is in the thread_info struct. 1244 */ 1245 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1246 stack_page = (unsigned long) hardirq_ctx[cpu]; 1247 if (sp >= stack_page + sizeof(struct thread_struct) 1248 && sp <= stack_page + THREAD_SIZE - nbytes) 1249 return 1; 1250 1251 stack_page = (unsigned long) softirq_ctx[cpu]; 1252 if (sp >= stack_page + sizeof(struct thread_struct) 1253 && sp <= stack_page + THREAD_SIZE - nbytes) 1254 return 1; 1255 } 1256 return 0; 1257 } 1258 1259 int validate_sp(unsigned long sp, struct task_struct *p, 1260 unsigned long nbytes) 1261 { 1262 unsigned long stack_page = (unsigned long)task_stack_page(p); 1263 1264 if (sp >= stack_page + sizeof(struct thread_struct) 1265 && sp <= stack_page + THREAD_SIZE - nbytes) 1266 return 1; 1267 1268 return valid_irq_stack(sp, p, nbytes); 1269 } 1270 1271 EXPORT_SYMBOL(validate_sp); 1272 1273 unsigned long get_wchan(struct task_struct *p) 1274 { 1275 unsigned long ip, sp; 1276 int count = 0; 1277 1278 if (!p || p == current || p->state == TASK_RUNNING) 1279 return 0; 1280 1281 sp = p->thread.ksp; 1282 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1283 return 0; 1284 1285 do { 1286 sp = *(unsigned long *)sp; 1287 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 1288 return 0; 1289 if (count > 0) { 1290 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 1291 if (!in_sched_functions(ip)) 1292 return ip; 1293 } 1294 } while (count++ < 16); 1295 return 0; 1296 } 1297 1298 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 1299 1300 void show_stack(struct task_struct *tsk, unsigned long *stack) 1301 { 1302 unsigned long sp, ip, lr, newsp; 1303 int count = 0; 1304 int firstframe = 1; 1305 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1306 int curr_frame = current->curr_ret_stack; 1307 extern void return_to_handler(void); 1308 unsigned long rth = (unsigned long)return_to_handler; 1309 unsigned long mrth = -1; 1310 #ifdef CONFIG_PPC64 1311 extern void mod_return_to_handler(void); 1312 rth = *(unsigned long *)rth; 1313 mrth = (unsigned long)mod_return_to_handler; 1314 mrth = *(unsigned long *)mrth; 1315 #endif 1316 #endif 1317 1318 sp = (unsigned long) stack; 1319 if (tsk == NULL) 1320 tsk = current; 1321 if (sp == 0) { 1322 if (tsk == current) 1323 asm("mr %0,1" : "=r" (sp)); 1324 else 1325 sp = tsk->thread.ksp; 1326 } 1327 1328 lr = 0; 1329 printk("Call Trace:\n"); 1330 do { 1331 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 1332 return; 1333 1334 stack = (unsigned long *) sp; 1335 newsp = stack[0]; 1336 ip = stack[STACK_FRAME_LR_SAVE]; 1337 if (!firstframe || ip != lr) { 1338 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 1339 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 1340 if ((ip == rth || ip == mrth) && curr_frame >= 0) { 1341 printk(" (%pS)", 1342 (void *)current->ret_stack[curr_frame].ret); 1343 curr_frame--; 1344 } 1345 #endif 1346 if (firstframe) 1347 printk(" (unreliable)"); 1348 printk("\n"); 1349 } 1350 firstframe = 0; 1351 1352 /* 1353 * See if this is an exception frame. 1354 * We look for the "regshere" marker in the current frame. 1355 */ 1356 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 1357 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 1358 struct pt_regs *regs = (struct pt_regs *) 1359 (sp + STACK_FRAME_OVERHEAD); 1360 lr = regs->link; 1361 printk("--- Exception: %lx at %pS\n LR = %pS\n", 1362 regs->trap, (void *)regs->nip, (void *)lr); 1363 firstframe = 1; 1364 } 1365 1366 sp = newsp; 1367 } while (count++ < kstack_depth_to_print); 1368 } 1369 1370 #ifdef CONFIG_PPC64 1371 /* Called with hard IRQs off */ 1372 void notrace __ppc64_runlatch_on(void) 1373 { 1374 struct thread_info *ti = current_thread_info(); 1375 unsigned long ctrl; 1376 1377 ctrl = mfspr(SPRN_CTRLF); 1378 ctrl |= CTRL_RUNLATCH; 1379 mtspr(SPRN_CTRLT, ctrl); 1380 1381 ti->local_flags |= _TLF_RUNLATCH; 1382 } 1383 1384 /* Called with hard IRQs off */ 1385 void notrace __ppc64_runlatch_off(void) 1386 { 1387 struct thread_info *ti = current_thread_info(); 1388 unsigned long ctrl; 1389 1390 ti->local_flags &= ~_TLF_RUNLATCH; 1391 1392 ctrl = mfspr(SPRN_CTRLF); 1393 ctrl &= ~CTRL_RUNLATCH; 1394 mtspr(SPRN_CTRLT, ctrl); 1395 } 1396 #endif /* CONFIG_PPC64 */ 1397 1398 unsigned long arch_align_stack(unsigned long sp) 1399 { 1400 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 1401 sp -= get_random_int() & ~PAGE_MASK; 1402 return sp & ~0xf; 1403 } 1404 1405 static inline unsigned long brk_rnd(void) 1406 { 1407 unsigned long rnd = 0; 1408 1409 /* 8MB for 32bit, 1GB for 64bit */ 1410 if (is_32bit_task()) 1411 rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT))); 1412 else 1413 rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT))); 1414 1415 return rnd << PAGE_SHIFT; 1416 } 1417 1418 unsigned long arch_randomize_brk(struct mm_struct *mm) 1419 { 1420 unsigned long base = mm->brk; 1421 unsigned long ret; 1422 1423 #ifdef CONFIG_PPC_STD_MMU_64 1424 /* 1425 * If we are using 1TB segments and we are allowed to randomise 1426 * the heap, we can put it above 1TB so it is backed by a 1TB 1427 * segment. Otherwise the heap will be in the bottom 1TB 1428 * which always uses 256MB segments and this may result in a 1429 * performance penalty. 1430 */ 1431 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 1432 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 1433 #endif 1434 1435 ret = PAGE_ALIGN(base + brk_rnd()); 1436 1437 if (ret < mm->brk) 1438 return mm->brk; 1439 1440 return ret; 1441 } 1442 1443 unsigned long randomize_et_dyn(unsigned long base) 1444 { 1445 unsigned long ret = PAGE_ALIGN(base + brk_rnd()); 1446 1447 if (ret < base) 1448 return base; 1449 1450 return ret; 1451 } 1452