xref: /linux/arch/powerpc/kernel/process.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/config.h>
18 #include <linux/errno.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/smp_lock.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/slab.h>
28 #include <linux/user.h>
29 #include <linux/elf.h>
30 #include <linux/init.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/module.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 
39 #include <asm/pgtable.h>
40 #include <asm/uaccess.h>
41 #include <asm/system.h>
42 #include <asm/io.h>
43 #include <asm/processor.h>
44 #include <asm/mmu.h>
45 #include <asm/prom.h>
46 #include <asm/machdep.h>
47 #include <asm/time.h>
48 #include <asm/syscalls.h>
49 #ifdef CONFIG_PPC64
50 #include <asm/firmware.h>
51 #endif
52 
53 extern unsigned long _get_SP(void);
54 
55 #ifndef CONFIG_SMP
56 struct task_struct *last_task_used_math = NULL;
57 struct task_struct *last_task_used_altivec = NULL;
58 struct task_struct *last_task_used_spe = NULL;
59 #endif
60 
61 /*
62  * Make sure the floating-point register state in the
63  * the thread_struct is up to date for task tsk.
64  */
65 void flush_fp_to_thread(struct task_struct *tsk)
66 {
67 	if (tsk->thread.regs) {
68 		/*
69 		 * We need to disable preemption here because if we didn't,
70 		 * another process could get scheduled after the regs->msr
71 		 * test but before we have finished saving the FP registers
72 		 * to the thread_struct.  That process could take over the
73 		 * FPU, and then when we get scheduled again we would store
74 		 * bogus values for the remaining FP registers.
75 		 */
76 		preempt_disable();
77 		if (tsk->thread.regs->msr & MSR_FP) {
78 #ifdef CONFIG_SMP
79 			/*
80 			 * This should only ever be called for current or
81 			 * for a stopped child process.  Since we save away
82 			 * the FP register state on context switch on SMP,
83 			 * there is something wrong if a stopped child appears
84 			 * to still have its FP state in the CPU registers.
85 			 */
86 			BUG_ON(tsk != current);
87 #endif
88 			giveup_fpu(current);
89 		}
90 		preempt_enable();
91 	}
92 }
93 
94 void enable_kernel_fp(void)
95 {
96 	WARN_ON(preemptible());
97 
98 #ifdef CONFIG_SMP
99 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
100 		giveup_fpu(current);
101 	else
102 		giveup_fpu(NULL);	/* just enables FP for kernel */
103 #else
104 	giveup_fpu(last_task_used_math);
105 #endif /* CONFIG_SMP */
106 }
107 EXPORT_SYMBOL(enable_kernel_fp);
108 
109 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs)
110 {
111 	if (!tsk->thread.regs)
112 		return 0;
113 	flush_fp_to_thread(current);
114 
115 	memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs));
116 
117 	return 1;
118 }
119 
120 #ifdef CONFIG_ALTIVEC
121 void enable_kernel_altivec(void)
122 {
123 	WARN_ON(preemptible());
124 
125 #ifdef CONFIG_SMP
126 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
127 		giveup_altivec(current);
128 	else
129 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
130 #else
131 	giveup_altivec(last_task_used_altivec);
132 #endif /* CONFIG_SMP */
133 }
134 EXPORT_SYMBOL(enable_kernel_altivec);
135 
136 /*
137  * Make sure the VMX/Altivec register state in the
138  * the thread_struct is up to date for task tsk.
139  */
140 void flush_altivec_to_thread(struct task_struct *tsk)
141 {
142 	if (tsk->thread.regs) {
143 		preempt_disable();
144 		if (tsk->thread.regs->msr & MSR_VEC) {
145 #ifdef CONFIG_SMP
146 			BUG_ON(tsk != current);
147 #endif
148 			giveup_altivec(current);
149 		}
150 		preempt_enable();
151 	}
152 }
153 
154 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs)
155 {
156 	flush_altivec_to_thread(current);
157 	memcpy(vrregs, &current->thread.vr[0], sizeof(*vrregs));
158 	return 1;
159 }
160 #endif /* CONFIG_ALTIVEC */
161 
162 #ifdef CONFIG_SPE
163 
164 void enable_kernel_spe(void)
165 {
166 	WARN_ON(preemptible());
167 
168 #ifdef CONFIG_SMP
169 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
170 		giveup_spe(current);
171 	else
172 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
173 #else
174 	giveup_spe(last_task_used_spe);
175 #endif /* __SMP __ */
176 }
177 EXPORT_SYMBOL(enable_kernel_spe);
178 
179 void flush_spe_to_thread(struct task_struct *tsk)
180 {
181 	if (tsk->thread.regs) {
182 		preempt_disable();
183 		if (tsk->thread.regs->msr & MSR_SPE) {
184 #ifdef CONFIG_SMP
185 			BUG_ON(tsk != current);
186 #endif
187 			giveup_spe(current);
188 		}
189 		preempt_enable();
190 	}
191 }
192 
193 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs)
194 {
195 	flush_spe_to_thread(current);
196 	/* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */
197 	memcpy(evrregs, &current->thread.evr[0], sizeof(u32) * 35);
198 	return 1;
199 }
200 #endif /* CONFIG_SPE */
201 
202 #ifndef CONFIG_SMP
203 /*
204  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
205  * and the current task has some state, discard it.
206  */
207 void discard_lazy_cpu_state(void)
208 {
209 	preempt_disable();
210 	if (last_task_used_math == current)
211 		last_task_used_math = NULL;
212 #ifdef CONFIG_ALTIVEC
213 	if (last_task_used_altivec == current)
214 		last_task_used_altivec = NULL;
215 #endif /* CONFIG_ALTIVEC */
216 #ifdef CONFIG_SPE
217 	if (last_task_used_spe == current)
218 		last_task_used_spe = NULL;
219 #endif
220 	preempt_enable();
221 }
222 #endif /* CONFIG_SMP */
223 
224 #ifdef CONFIG_PPC_MERGE		/* XXX for now */
225 int set_dabr(unsigned long dabr)
226 {
227 	if (ppc_md.set_dabr)
228 		return ppc_md.set_dabr(dabr);
229 
230 	mtspr(SPRN_DABR, dabr);
231 	return 0;
232 }
233 #endif
234 
235 #ifdef CONFIG_PPC64
236 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
237 static DEFINE_PER_CPU(unsigned long, current_dabr);
238 #endif
239 
240 struct task_struct *__switch_to(struct task_struct *prev,
241 	struct task_struct *new)
242 {
243 	struct thread_struct *new_thread, *old_thread;
244 	unsigned long flags;
245 	struct task_struct *last;
246 
247 #ifdef CONFIG_SMP
248 	/* avoid complexity of lazy save/restore of fpu
249 	 * by just saving it every time we switch out if
250 	 * this task used the fpu during the last quantum.
251 	 *
252 	 * If it tries to use the fpu again, it'll trap and
253 	 * reload its fp regs.  So we don't have to do a restore
254 	 * every switch, just a save.
255 	 *  -- Cort
256 	 */
257 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
258 		giveup_fpu(prev);
259 #ifdef CONFIG_ALTIVEC
260 	/*
261 	 * If the previous thread used altivec in the last quantum
262 	 * (thus changing altivec regs) then save them.
263 	 * We used to check the VRSAVE register but not all apps
264 	 * set it, so we don't rely on it now (and in fact we need
265 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
266 	 *
267 	 * On SMP we always save/restore altivec regs just to avoid the
268 	 * complexity of changing processors.
269 	 *  -- Cort
270 	 */
271 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
272 		giveup_altivec(prev);
273 #endif /* CONFIG_ALTIVEC */
274 #ifdef CONFIG_SPE
275 	/*
276 	 * If the previous thread used spe in the last quantum
277 	 * (thus changing spe regs) then save them.
278 	 *
279 	 * On SMP we always save/restore spe regs just to avoid the
280 	 * complexity of changing processors.
281 	 */
282 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
283 		giveup_spe(prev);
284 #endif /* CONFIG_SPE */
285 
286 #else  /* CONFIG_SMP */
287 #ifdef CONFIG_ALTIVEC
288 	/* Avoid the trap.  On smp this this never happens since
289 	 * we don't set last_task_used_altivec -- Cort
290 	 */
291 	if (new->thread.regs && last_task_used_altivec == new)
292 		new->thread.regs->msr |= MSR_VEC;
293 #endif /* CONFIG_ALTIVEC */
294 #ifdef CONFIG_SPE
295 	/* Avoid the trap.  On smp this this never happens since
296 	 * we don't set last_task_used_spe
297 	 */
298 	if (new->thread.regs && last_task_used_spe == new)
299 		new->thread.regs->msr |= MSR_SPE;
300 #endif /* CONFIG_SPE */
301 
302 #endif /* CONFIG_SMP */
303 
304 #ifdef CONFIG_PPC64	/* for now */
305 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) {
306 		set_dabr(new->thread.dabr);
307 		__get_cpu_var(current_dabr) = new->thread.dabr;
308 	}
309 
310 	flush_tlb_pending();
311 #endif
312 
313 	new_thread = &new->thread;
314 	old_thread = &current->thread;
315 
316 #ifdef CONFIG_PPC64
317 	/*
318 	 * Collect processor utilization data per process
319 	 */
320 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
321 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
322 		long unsigned start_tb, current_tb;
323 		start_tb = old_thread->start_tb;
324 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
325 		old_thread->accum_tb += (current_tb - start_tb);
326 		new_thread->start_tb = current_tb;
327 	}
328 #endif
329 
330 	local_irq_save(flags);
331 
332 	account_system_vtime(current);
333 	account_process_vtime(current);
334 	calculate_steal_time();
335 
336 	last = _switch(old_thread, new_thread);
337 
338 	local_irq_restore(flags);
339 
340 	return last;
341 }
342 
343 static int instructions_to_print = 16;
344 
345 #ifdef CONFIG_PPC64
346 #define BAD_PC(pc)	((REGION_ID(pc) != KERNEL_REGION_ID) && \
347 		         (REGION_ID(pc) != VMALLOC_REGION_ID))
348 #else
349 #define BAD_PC(pc)	((pc) < KERNELBASE)
350 #endif
351 
352 static void show_instructions(struct pt_regs *regs)
353 {
354 	int i;
355 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
356 			sizeof(int));
357 
358 	printk("Instruction dump:");
359 
360 	for (i = 0; i < instructions_to_print; i++) {
361 		int instr;
362 
363 		if (!(i % 8))
364 			printk("\n");
365 
366 		/* We use __get_user here *only* to avoid an OOPS on a
367 		 * bad address because the pc *should* only be a
368 		 * kernel address.
369 		 */
370 		if (BAD_PC(pc) || __get_user(instr, (unsigned int __user *)pc)) {
371 			printk("XXXXXXXX ");
372 		} else {
373 			if (regs->nip == pc)
374 				printk("<%08x> ", instr);
375 			else
376 				printk("%08x ", instr);
377 		}
378 
379 		pc += sizeof(int);
380 	}
381 
382 	printk("\n");
383 }
384 
385 static struct regbit {
386 	unsigned long bit;
387 	const char *name;
388 } msr_bits[] = {
389 	{MSR_EE,	"EE"},
390 	{MSR_PR,	"PR"},
391 	{MSR_FP,	"FP"},
392 	{MSR_ME,	"ME"},
393 	{MSR_IR,	"IR"},
394 	{MSR_DR,	"DR"},
395 	{0,		NULL}
396 };
397 
398 static void printbits(unsigned long val, struct regbit *bits)
399 {
400 	const char *sep = "";
401 
402 	printk("<");
403 	for (; bits->bit; ++bits)
404 		if (val & bits->bit) {
405 			printk("%s%s", sep, bits->name);
406 			sep = ",";
407 		}
408 	printk(">");
409 }
410 
411 #ifdef CONFIG_PPC64
412 #define REG		"%016lX"
413 #define REGS_PER_LINE	4
414 #define LAST_VOLATILE	13
415 #else
416 #define REG		"%08lX"
417 #define REGS_PER_LINE	8
418 #define LAST_VOLATILE	12
419 #endif
420 
421 void show_regs(struct pt_regs * regs)
422 {
423 	int i, trap;
424 
425 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
426 	       regs->nip, regs->link, regs->ctr);
427 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
428 	       regs, regs->trap, print_tainted(), system_utsname.release);
429 	printk("MSR: "REG" ", regs->msr);
430 	printbits(regs->msr, msr_bits);
431 	printk("  CR: %08lX  XER: %08lX\n", regs->ccr, regs->xer);
432 	trap = TRAP(regs);
433 	if (trap == 0x300 || trap == 0x600)
434 		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
435 	printk("TASK = %p[%d] '%s' THREAD: %p",
436 	       current, current->pid, current->comm, task_thread_info(current));
437 
438 #ifdef CONFIG_SMP
439 	printk(" CPU: %d", smp_processor_id());
440 #endif /* CONFIG_SMP */
441 
442 	for (i = 0;  i < 32;  i++) {
443 		if ((i % REGS_PER_LINE) == 0)
444 			printk("\n" KERN_INFO "GPR%02d: ", i);
445 		printk(REG " ", regs->gpr[i]);
446 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
447 			break;
448 	}
449 	printk("\n");
450 #ifdef CONFIG_KALLSYMS
451 	/*
452 	 * Lookup NIP late so we have the best change of getting the
453 	 * above info out without failing
454 	 */
455 	printk("NIP ["REG"] ", regs->nip);
456 	print_symbol("%s\n", regs->nip);
457 	printk("LR ["REG"] ", regs->link);
458 	print_symbol("%s\n", regs->link);
459 #endif
460 	show_stack(current, (unsigned long *) regs->gpr[1]);
461 	if (!user_mode(regs))
462 		show_instructions(regs);
463 }
464 
465 void exit_thread(void)
466 {
467 	discard_lazy_cpu_state();
468 }
469 
470 void flush_thread(void)
471 {
472 #ifdef CONFIG_PPC64
473 	struct thread_info *t = current_thread_info();
474 
475 	if (t->flags & _TIF_ABI_PENDING)
476 		t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT);
477 #endif
478 
479 	discard_lazy_cpu_state();
480 
481 #ifdef CONFIG_PPC64	/* for now */
482 	if (current->thread.dabr) {
483 		current->thread.dabr = 0;
484 		set_dabr(0);
485 	}
486 #endif
487 }
488 
489 void
490 release_thread(struct task_struct *t)
491 {
492 }
493 
494 /*
495  * This gets called before we allocate a new thread and copy
496  * the current task into it.
497  */
498 void prepare_to_copy(struct task_struct *tsk)
499 {
500 	flush_fp_to_thread(current);
501 	flush_altivec_to_thread(current);
502 	flush_spe_to_thread(current);
503 }
504 
505 /*
506  * Copy a thread..
507  */
508 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
509 		unsigned long unused, struct task_struct *p,
510 		struct pt_regs *regs)
511 {
512 	struct pt_regs *childregs, *kregs;
513 	extern void ret_from_fork(void);
514 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
515 
516 	CHECK_FULL_REGS(regs);
517 	/* Copy registers */
518 	sp -= sizeof(struct pt_regs);
519 	childregs = (struct pt_regs *) sp;
520 	*childregs = *regs;
521 	if ((childregs->msr & MSR_PR) == 0) {
522 		/* for kernel thread, set `current' and stackptr in new task */
523 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
524 #ifdef CONFIG_PPC32
525 		childregs->gpr[2] = (unsigned long) p;
526 #else
527 		clear_tsk_thread_flag(p, TIF_32BIT);
528 #endif
529 		p->thread.regs = NULL;	/* no user register state */
530 	} else {
531 		childregs->gpr[1] = usp;
532 		p->thread.regs = childregs;
533 		if (clone_flags & CLONE_SETTLS) {
534 #ifdef CONFIG_PPC64
535 			if (!test_thread_flag(TIF_32BIT))
536 				childregs->gpr[13] = childregs->gpr[6];
537 			else
538 #endif
539 				childregs->gpr[2] = childregs->gpr[6];
540 		}
541 	}
542 	childregs->gpr[3] = 0;  /* Result from fork() */
543 	sp -= STACK_FRAME_OVERHEAD;
544 
545 	/*
546 	 * The way this works is that at some point in the future
547 	 * some task will call _switch to switch to the new task.
548 	 * That will pop off the stack frame created below and start
549 	 * the new task running at ret_from_fork.  The new task will
550 	 * do some house keeping and then return from the fork or clone
551 	 * system call, using the stack frame created above.
552 	 */
553 	sp -= sizeof(struct pt_regs);
554 	kregs = (struct pt_regs *) sp;
555 	sp -= STACK_FRAME_OVERHEAD;
556 	p->thread.ksp = sp;
557 
558 #ifdef CONFIG_PPC64
559 	if (cpu_has_feature(CPU_FTR_SLB)) {
560 		unsigned long sp_vsid = get_kernel_vsid(sp);
561 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
562 
563 		sp_vsid <<= SLB_VSID_SHIFT;
564 		sp_vsid |= SLB_VSID_KERNEL | llp;
565 		p->thread.ksp_vsid = sp_vsid;
566 	}
567 
568 	/*
569 	 * The PPC64 ABI makes use of a TOC to contain function
570 	 * pointers.  The function (ret_from_except) is actually a pointer
571 	 * to the TOC entry.  The first entry is a pointer to the actual
572 	 * function.
573  	 */
574 	kregs->nip = *((unsigned long *)ret_from_fork);
575 #else
576 	kregs->nip = (unsigned long)ret_from_fork;
577 	p->thread.last_syscall = -1;
578 #endif
579 
580 	return 0;
581 }
582 
583 /*
584  * Set up a thread for executing a new program
585  */
586 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
587 {
588 #ifdef CONFIG_PPC64
589 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
590 #endif
591 
592 	set_fs(USER_DS);
593 
594 	/*
595 	 * If we exec out of a kernel thread then thread.regs will not be
596 	 * set.  Do it now.
597 	 */
598 	if (!current->thread.regs) {
599 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
600 		current->thread.regs = regs - 1;
601 	}
602 
603 	memset(regs->gpr, 0, sizeof(regs->gpr));
604 	regs->ctr = 0;
605 	regs->link = 0;
606 	regs->xer = 0;
607 	regs->ccr = 0;
608 	regs->gpr[1] = sp;
609 
610 #ifdef CONFIG_PPC32
611 	regs->mq = 0;
612 	regs->nip = start;
613 	regs->msr = MSR_USER;
614 #else
615 	if (!test_thread_flag(TIF_32BIT)) {
616 		unsigned long entry, toc;
617 
618 		/* start is a relocated pointer to the function descriptor for
619 		 * the elf _start routine.  The first entry in the function
620 		 * descriptor is the entry address of _start and the second
621 		 * entry is the TOC value we need to use.
622 		 */
623 		__get_user(entry, (unsigned long __user *)start);
624 		__get_user(toc, (unsigned long __user *)start+1);
625 
626 		/* Check whether the e_entry function descriptor entries
627 		 * need to be relocated before we can use them.
628 		 */
629 		if (load_addr != 0) {
630 			entry += load_addr;
631 			toc   += load_addr;
632 		}
633 		regs->nip = entry;
634 		regs->gpr[2] = toc;
635 		regs->msr = MSR_USER64;
636 	} else {
637 		regs->nip = start;
638 		regs->gpr[2] = 0;
639 		regs->msr = MSR_USER32;
640 	}
641 #endif
642 
643 	discard_lazy_cpu_state();
644 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
645 	current->thread.fpscr.val = 0;
646 #ifdef CONFIG_ALTIVEC
647 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
648 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
649 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
650 	current->thread.vrsave = 0;
651 	current->thread.used_vr = 0;
652 #endif /* CONFIG_ALTIVEC */
653 #ifdef CONFIG_SPE
654 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
655 	current->thread.acc = 0;
656 	current->thread.spefscr = 0;
657 	current->thread.used_spe = 0;
658 #endif /* CONFIG_SPE */
659 }
660 
661 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
662 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
663 
664 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
665 {
666 	struct pt_regs *regs = tsk->thread.regs;
667 
668 	/* This is a bit hairy.  If we are an SPE enabled  processor
669 	 * (have embedded fp) we store the IEEE exception enable flags in
670 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
671 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
672 	if (val & PR_FP_EXC_SW_ENABLE) {
673 #ifdef CONFIG_SPE
674 		tsk->thread.fpexc_mode = val &
675 			(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
676 		return 0;
677 #else
678 		return -EINVAL;
679 #endif
680 	}
681 
682 	/* on a CONFIG_SPE this does not hurt us.  The bits that
683 	 * __pack_fe01 use do not overlap with bits used for
684 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
685 	 * on CONFIG_SPE implementations are reserved so writing to
686 	 * them does not change anything */
687 	if (val > PR_FP_EXC_PRECISE)
688 		return -EINVAL;
689 	tsk->thread.fpexc_mode = __pack_fe01(val);
690 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
691 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
692 			| tsk->thread.fpexc_mode;
693 	return 0;
694 }
695 
696 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
697 {
698 	unsigned int val;
699 
700 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
701 #ifdef CONFIG_SPE
702 		val = tsk->thread.fpexc_mode;
703 #else
704 		return -EINVAL;
705 #endif
706 	else
707 		val = __unpack_fe01(tsk->thread.fpexc_mode);
708 	return put_user(val, (unsigned int __user *) adr);
709 }
710 
711 int set_endian(struct task_struct *tsk, unsigned int val)
712 {
713 	struct pt_regs *regs = tsk->thread.regs;
714 
715 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
716 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
717 		return -EINVAL;
718 
719 	if (regs == NULL)
720 		return -EINVAL;
721 
722 	if (val == PR_ENDIAN_BIG)
723 		regs->msr &= ~MSR_LE;
724 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
725 		regs->msr |= MSR_LE;
726 	else
727 		return -EINVAL;
728 
729 	return 0;
730 }
731 
732 int get_endian(struct task_struct *tsk, unsigned long adr)
733 {
734 	struct pt_regs *regs = tsk->thread.regs;
735 	unsigned int val;
736 
737 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
738 	    !cpu_has_feature(CPU_FTR_REAL_LE))
739 		return -EINVAL;
740 
741 	if (regs == NULL)
742 		return -EINVAL;
743 
744 	if (regs->msr & MSR_LE) {
745 		if (cpu_has_feature(CPU_FTR_REAL_LE))
746 			val = PR_ENDIAN_LITTLE;
747 		else
748 			val = PR_ENDIAN_PPC_LITTLE;
749 	} else
750 		val = PR_ENDIAN_BIG;
751 
752 	return put_user(val, (unsigned int __user *)adr);
753 }
754 
755 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
756 {
757 	tsk->thread.align_ctl = val;
758 	return 0;
759 }
760 
761 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
762 {
763 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
764 }
765 
766 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
767 
768 int sys_clone(unsigned long clone_flags, unsigned long usp,
769 	      int __user *parent_tidp, void __user *child_threadptr,
770 	      int __user *child_tidp, int p6,
771 	      struct pt_regs *regs)
772 {
773 	CHECK_FULL_REGS(regs);
774 	if (usp == 0)
775 		usp = regs->gpr[1];	/* stack pointer for child */
776 #ifdef CONFIG_PPC64
777 	if (test_thread_flag(TIF_32BIT)) {
778 		parent_tidp = TRUNC_PTR(parent_tidp);
779 		child_tidp = TRUNC_PTR(child_tidp);
780 	}
781 #endif
782  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
783 }
784 
785 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
786 	     unsigned long p4, unsigned long p5, unsigned long p6,
787 	     struct pt_regs *regs)
788 {
789 	CHECK_FULL_REGS(regs);
790 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
791 }
792 
793 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
794 	      unsigned long p4, unsigned long p5, unsigned long p6,
795 	      struct pt_regs *regs)
796 {
797 	CHECK_FULL_REGS(regs);
798 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
799 			regs, 0, NULL, NULL);
800 }
801 
802 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
803 	       unsigned long a3, unsigned long a4, unsigned long a5,
804 	       struct pt_regs *regs)
805 {
806 	int error;
807 	char *filename;
808 
809 	filename = getname((char __user *) a0);
810 	error = PTR_ERR(filename);
811 	if (IS_ERR(filename))
812 		goto out;
813 	flush_fp_to_thread(current);
814 	flush_altivec_to_thread(current);
815 	flush_spe_to_thread(current);
816 	error = do_execve(filename, (char __user * __user *) a1,
817 			  (char __user * __user *) a2, regs);
818 	if (error == 0) {
819 		task_lock(current);
820 		current->ptrace &= ~PT_DTRACE;
821 		task_unlock(current);
822 	}
823 	putname(filename);
824 out:
825 	return error;
826 }
827 
828 int validate_sp(unsigned long sp, struct task_struct *p,
829 		       unsigned long nbytes)
830 {
831 	unsigned long stack_page = (unsigned long)task_stack_page(p);
832 
833 	if (sp >= stack_page + sizeof(struct thread_struct)
834 	    && sp <= stack_page + THREAD_SIZE - nbytes)
835 		return 1;
836 
837 #ifdef CONFIG_IRQSTACKS
838 	stack_page = (unsigned long) hardirq_ctx[task_cpu(p)];
839 	if (sp >= stack_page + sizeof(struct thread_struct)
840 	    && sp <= stack_page + THREAD_SIZE - nbytes)
841 		return 1;
842 
843 	stack_page = (unsigned long) softirq_ctx[task_cpu(p)];
844 	if (sp >= stack_page + sizeof(struct thread_struct)
845 	    && sp <= stack_page + THREAD_SIZE - nbytes)
846 		return 1;
847 #endif
848 
849 	return 0;
850 }
851 
852 #ifdef CONFIG_PPC64
853 #define MIN_STACK_FRAME	112	/* same as STACK_FRAME_OVERHEAD, in fact */
854 #define FRAME_LR_SAVE	2
855 #define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288)
856 #define REGS_MARKER	0x7265677368657265ul
857 #define FRAME_MARKER	12
858 #else
859 #define MIN_STACK_FRAME	16
860 #define FRAME_LR_SAVE	1
861 #define INT_FRAME_SIZE	(sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD)
862 #define REGS_MARKER	0x72656773ul
863 #define FRAME_MARKER	2
864 #endif
865 
866 EXPORT_SYMBOL(validate_sp);
867 
868 unsigned long get_wchan(struct task_struct *p)
869 {
870 	unsigned long ip, sp;
871 	int count = 0;
872 
873 	if (!p || p == current || p->state == TASK_RUNNING)
874 		return 0;
875 
876 	sp = p->thread.ksp;
877 	if (!validate_sp(sp, p, MIN_STACK_FRAME))
878 		return 0;
879 
880 	do {
881 		sp = *(unsigned long *)sp;
882 		if (!validate_sp(sp, p, MIN_STACK_FRAME))
883 			return 0;
884 		if (count > 0) {
885 			ip = ((unsigned long *)sp)[FRAME_LR_SAVE];
886 			if (!in_sched_functions(ip))
887 				return ip;
888 		}
889 	} while (count++ < 16);
890 	return 0;
891 }
892 
893 static int kstack_depth_to_print = 64;
894 
895 void show_stack(struct task_struct *tsk, unsigned long *stack)
896 {
897 	unsigned long sp, ip, lr, newsp;
898 	int count = 0;
899 	int firstframe = 1;
900 
901 	sp = (unsigned long) stack;
902 	if (tsk == NULL)
903 		tsk = current;
904 	if (sp == 0) {
905 		if (tsk == current)
906 			asm("mr %0,1" : "=r" (sp));
907 		else
908 			sp = tsk->thread.ksp;
909 	}
910 
911 	lr = 0;
912 	printk("Call Trace:\n");
913 	do {
914 		if (!validate_sp(sp, tsk, MIN_STACK_FRAME))
915 			return;
916 
917 		stack = (unsigned long *) sp;
918 		newsp = stack[0];
919 		ip = stack[FRAME_LR_SAVE];
920 		if (!firstframe || ip != lr) {
921 			printk("["REG"] ["REG"] ", sp, ip);
922 			print_symbol("%s", ip);
923 			if (firstframe)
924 				printk(" (unreliable)");
925 			printk("\n");
926 		}
927 		firstframe = 0;
928 
929 		/*
930 		 * See if this is an exception frame.
931 		 * We look for the "regshere" marker in the current frame.
932 		 */
933 		if (validate_sp(sp, tsk, INT_FRAME_SIZE)
934 		    && stack[FRAME_MARKER] == REGS_MARKER) {
935 			struct pt_regs *regs = (struct pt_regs *)
936 				(sp + STACK_FRAME_OVERHEAD);
937 			printk("--- Exception: %lx", regs->trap);
938 			print_symbol(" at %s\n", regs->nip);
939 			lr = regs->link;
940 			print_symbol("    LR = %s\n", lr);
941 			firstframe = 1;
942 		}
943 
944 		sp = newsp;
945 	} while (count++ < kstack_depth_to_print);
946 }
947 
948 void dump_stack(void)
949 {
950 	show_stack(current, NULL);
951 }
952 EXPORT_SYMBOL(dump_stack);
953 
954 #ifdef CONFIG_PPC64
955 void ppc64_runlatch_on(void)
956 {
957 	unsigned long ctrl;
958 
959 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
960 		HMT_medium();
961 
962 		ctrl = mfspr(SPRN_CTRLF);
963 		ctrl |= CTRL_RUNLATCH;
964 		mtspr(SPRN_CTRLT, ctrl);
965 
966 		set_thread_flag(TIF_RUNLATCH);
967 	}
968 }
969 
970 void ppc64_runlatch_off(void)
971 {
972 	unsigned long ctrl;
973 
974 	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
975 		HMT_medium();
976 
977 		clear_thread_flag(TIF_RUNLATCH);
978 
979 		ctrl = mfspr(SPRN_CTRLF);
980 		ctrl &= ~CTRL_RUNLATCH;
981 		mtspr(SPRN_CTRLT, ctrl);
982 	}
983 }
984 #endif
985