1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/config.h> 18 #include <linux/errno.h> 19 #include <linux/sched.h> 20 #include <linux/kernel.h> 21 #include <linux/mm.h> 22 #include <linux/smp.h> 23 #include <linux/smp_lock.h> 24 #include <linux/stddef.h> 25 #include <linux/unistd.h> 26 #include <linux/ptrace.h> 27 #include <linux/slab.h> 28 #include <linux/user.h> 29 #include <linux/elf.h> 30 #include <linux/init.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/module.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 39 #include <asm/pgtable.h> 40 #include <asm/uaccess.h> 41 #include <asm/system.h> 42 #include <asm/io.h> 43 #include <asm/processor.h> 44 #include <asm/mmu.h> 45 #include <asm/prom.h> 46 #include <asm/machdep.h> 47 #include <asm/time.h> 48 #include <asm/syscalls.h> 49 #ifdef CONFIG_PPC64 50 #include <asm/firmware.h> 51 #endif 52 53 extern unsigned long _get_SP(void); 54 55 #ifndef CONFIG_SMP 56 struct task_struct *last_task_used_math = NULL; 57 struct task_struct *last_task_used_altivec = NULL; 58 struct task_struct *last_task_used_spe = NULL; 59 #endif 60 61 /* 62 * Make sure the floating-point register state in the 63 * the thread_struct is up to date for task tsk. 64 */ 65 void flush_fp_to_thread(struct task_struct *tsk) 66 { 67 if (tsk->thread.regs) { 68 /* 69 * We need to disable preemption here because if we didn't, 70 * another process could get scheduled after the regs->msr 71 * test but before we have finished saving the FP registers 72 * to the thread_struct. That process could take over the 73 * FPU, and then when we get scheduled again we would store 74 * bogus values for the remaining FP registers. 75 */ 76 preempt_disable(); 77 if (tsk->thread.regs->msr & MSR_FP) { 78 #ifdef CONFIG_SMP 79 /* 80 * This should only ever be called for current or 81 * for a stopped child process. Since we save away 82 * the FP register state on context switch on SMP, 83 * there is something wrong if a stopped child appears 84 * to still have its FP state in the CPU registers. 85 */ 86 BUG_ON(tsk != current); 87 #endif 88 giveup_fpu(current); 89 } 90 preempt_enable(); 91 } 92 } 93 94 void enable_kernel_fp(void) 95 { 96 WARN_ON(preemptible()); 97 98 #ifdef CONFIG_SMP 99 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) 100 giveup_fpu(current); 101 else 102 giveup_fpu(NULL); /* just enables FP for kernel */ 103 #else 104 giveup_fpu(last_task_used_math); 105 #endif /* CONFIG_SMP */ 106 } 107 EXPORT_SYMBOL(enable_kernel_fp); 108 109 int dump_task_fpu(struct task_struct *tsk, elf_fpregset_t *fpregs) 110 { 111 if (!tsk->thread.regs) 112 return 0; 113 flush_fp_to_thread(current); 114 115 memcpy(fpregs, &tsk->thread.fpr[0], sizeof(*fpregs)); 116 117 return 1; 118 } 119 120 #ifdef CONFIG_ALTIVEC 121 void enable_kernel_altivec(void) 122 { 123 WARN_ON(preemptible()); 124 125 #ifdef CONFIG_SMP 126 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) 127 giveup_altivec(current); 128 else 129 giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ 130 #else 131 giveup_altivec(last_task_used_altivec); 132 #endif /* CONFIG_SMP */ 133 } 134 EXPORT_SYMBOL(enable_kernel_altivec); 135 136 /* 137 * Make sure the VMX/Altivec register state in the 138 * the thread_struct is up to date for task tsk. 139 */ 140 void flush_altivec_to_thread(struct task_struct *tsk) 141 { 142 if (tsk->thread.regs) { 143 preempt_disable(); 144 if (tsk->thread.regs->msr & MSR_VEC) { 145 #ifdef CONFIG_SMP 146 BUG_ON(tsk != current); 147 #endif 148 giveup_altivec(current); 149 } 150 preempt_enable(); 151 } 152 } 153 154 int dump_task_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) 155 { 156 flush_altivec_to_thread(current); 157 memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); 158 return 1; 159 } 160 #endif /* CONFIG_ALTIVEC */ 161 162 #ifdef CONFIG_SPE 163 164 void enable_kernel_spe(void) 165 { 166 WARN_ON(preemptible()); 167 168 #ifdef CONFIG_SMP 169 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) 170 giveup_spe(current); 171 else 172 giveup_spe(NULL); /* just enable SPE for kernel - force */ 173 #else 174 giveup_spe(last_task_used_spe); 175 #endif /* __SMP __ */ 176 } 177 EXPORT_SYMBOL(enable_kernel_spe); 178 179 void flush_spe_to_thread(struct task_struct *tsk) 180 { 181 if (tsk->thread.regs) { 182 preempt_disable(); 183 if (tsk->thread.regs->msr & MSR_SPE) { 184 #ifdef CONFIG_SMP 185 BUG_ON(tsk != current); 186 #endif 187 giveup_spe(current); 188 } 189 preempt_enable(); 190 } 191 } 192 193 int dump_spe(struct pt_regs *regs, elf_vrregset_t *evrregs) 194 { 195 flush_spe_to_thread(current); 196 /* We copy u32 evr[32] + u64 acc + u32 spefscr -> 35 */ 197 memcpy(evrregs, ¤t->thread.evr[0], sizeof(u32) * 35); 198 return 1; 199 } 200 #endif /* CONFIG_SPE */ 201 202 #ifndef CONFIG_SMP 203 /* 204 * If we are doing lazy switching of CPU state (FP, altivec or SPE), 205 * and the current task has some state, discard it. 206 */ 207 void discard_lazy_cpu_state(void) 208 { 209 preempt_disable(); 210 if (last_task_used_math == current) 211 last_task_used_math = NULL; 212 #ifdef CONFIG_ALTIVEC 213 if (last_task_used_altivec == current) 214 last_task_used_altivec = NULL; 215 #endif /* CONFIG_ALTIVEC */ 216 #ifdef CONFIG_SPE 217 if (last_task_used_spe == current) 218 last_task_used_spe = NULL; 219 #endif 220 preempt_enable(); 221 } 222 #endif /* CONFIG_SMP */ 223 224 #ifdef CONFIG_PPC_MERGE /* XXX for now */ 225 int set_dabr(unsigned long dabr) 226 { 227 if (ppc_md.set_dabr) 228 return ppc_md.set_dabr(dabr); 229 230 mtspr(SPRN_DABR, dabr); 231 return 0; 232 } 233 #endif 234 235 #ifdef CONFIG_PPC64 236 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array); 237 static DEFINE_PER_CPU(unsigned long, current_dabr); 238 #endif 239 240 struct task_struct *__switch_to(struct task_struct *prev, 241 struct task_struct *new) 242 { 243 struct thread_struct *new_thread, *old_thread; 244 unsigned long flags; 245 struct task_struct *last; 246 247 #ifdef CONFIG_SMP 248 /* avoid complexity of lazy save/restore of fpu 249 * by just saving it every time we switch out if 250 * this task used the fpu during the last quantum. 251 * 252 * If it tries to use the fpu again, it'll trap and 253 * reload its fp regs. So we don't have to do a restore 254 * every switch, just a save. 255 * -- Cort 256 */ 257 if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP)) 258 giveup_fpu(prev); 259 #ifdef CONFIG_ALTIVEC 260 /* 261 * If the previous thread used altivec in the last quantum 262 * (thus changing altivec regs) then save them. 263 * We used to check the VRSAVE register but not all apps 264 * set it, so we don't rely on it now (and in fact we need 265 * to save & restore VSCR even if VRSAVE == 0). -- paulus 266 * 267 * On SMP we always save/restore altivec regs just to avoid the 268 * complexity of changing processors. 269 * -- Cort 270 */ 271 if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) 272 giveup_altivec(prev); 273 #endif /* CONFIG_ALTIVEC */ 274 #ifdef CONFIG_SPE 275 /* 276 * If the previous thread used spe in the last quantum 277 * (thus changing spe regs) then save them. 278 * 279 * On SMP we always save/restore spe regs just to avoid the 280 * complexity of changing processors. 281 */ 282 if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE))) 283 giveup_spe(prev); 284 #endif /* CONFIG_SPE */ 285 286 #else /* CONFIG_SMP */ 287 #ifdef CONFIG_ALTIVEC 288 /* Avoid the trap. On smp this this never happens since 289 * we don't set last_task_used_altivec -- Cort 290 */ 291 if (new->thread.regs && last_task_used_altivec == new) 292 new->thread.regs->msr |= MSR_VEC; 293 #endif /* CONFIG_ALTIVEC */ 294 #ifdef CONFIG_SPE 295 /* Avoid the trap. On smp this this never happens since 296 * we don't set last_task_used_spe 297 */ 298 if (new->thread.regs && last_task_used_spe == new) 299 new->thread.regs->msr |= MSR_SPE; 300 #endif /* CONFIG_SPE */ 301 302 #endif /* CONFIG_SMP */ 303 304 #ifdef CONFIG_PPC64 /* for now */ 305 if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr)) { 306 set_dabr(new->thread.dabr); 307 __get_cpu_var(current_dabr) = new->thread.dabr; 308 } 309 310 flush_tlb_pending(); 311 #endif 312 313 new_thread = &new->thread; 314 old_thread = ¤t->thread; 315 316 #ifdef CONFIG_PPC64 317 /* 318 * Collect processor utilization data per process 319 */ 320 if (firmware_has_feature(FW_FEATURE_SPLPAR)) { 321 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); 322 long unsigned start_tb, current_tb; 323 start_tb = old_thread->start_tb; 324 cu->current_tb = current_tb = mfspr(SPRN_PURR); 325 old_thread->accum_tb += (current_tb - start_tb); 326 new_thread->start_tb = current_tb; 327 } 328 #endif 329 330 local_irq_save(flags); 331 332 account_system_vtime(current); 333 account_process_vtime(current); 334 calculate_steal_time(); 335 336 last = _switch(old_thread, new_thread); 337 338 local_irq_restore(flags); 339 340 return last; 341 } 342 343 static int instructions_to_print = 16; 344 345 #ifdef CONFIG_PPC64 346 #define BAD_PC(pc) ((REGION_ID(pc) != KERNEL_REGION_ID) && \ 347 (REGION_ID(pc) != VMALLOC_REGION_ID)) 348 #else 349 #define BAD_PC(pc) ((pc) < KERNELBASE) 350 #endif 351 352 static void show_instructions(struct pt_regs *regs) 353 { 354 int i; 355 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 356 sizeof(int)); 357 358 printk("Instruction dump:"); 359 360 for (i = 0; i < instructions_to_print; i++) { 361 int instr; 362 363 if (!(i % 8)) 364 printk("\n"); 365 366 /* We use __get_user here *only* to avoid an OOPS on a 367 * bad address because the pc *should* only be a 368 * kernel address. 369 */ 370 if (BAD_PC(pc) || __get_user(instr, (unsigned int __user *)pc)) { 371 printk("XXXXXXXX "); 372 } else { 373 if (regs->nip == pc) 374 printk("<%08x> ", instr); 375 else 376 printk("%08x ", instr); 377 } 378 379 pc += sizeof(int); 380 } 381 382 printk("\n"); 383 } 384 385 static struct regbit { 386 unsigned long bit; 387 const char *name; 388 } msr_bits[] = { 389 {MSR_EE, "EE"}, 390 {MSR_PR, "PR"}, 391 {MSR_FP, "FP"}, 392 {MSR_ME, "ME"}, 393 {MSR_IR, "IR"}, 394 {MSR_DR, "DR"}, 395 {0, NULL} 396 }; 397 398 static void printbits(unsigned long val, struct regbit *bits) 399 { 400 const char *sep = ""; 401 402 printk("<"); 403 for (; bits->bit; ++bits) 404 if (val & bits->bit) { 405 printk("%s%s", sep, bits->name); 406 sep = ","; 407 } 408 printk(">"); 409 } 410 411 #ifdef CONFIG_PPC64 412 #define REG "%016lX" 413 #define REGS_PER_LINE 4 414 #define LAST_VOLATILE 13 415 #else 416 #define REG "%08lX" 417 #define REGS_PER_LINE 8 418 #define LAST_VOLATILE 12 419 #endif 420 421 void show_regs(struct pt_regs * regs) 422 { 423 int i, trap; 424 425 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 426 regs->nip, regs->link, regs->ctr); 427 printk("REGS: %p TRAP: %04lx %s (%s)\n", 428 regs, regs->trap, print_tainted(), system_utsname.release); 429 printk("MSR: "REG" ", regs->msr); 430 printbits(regs->msr, msr_bits); 431 printk(" CR: %08lX XER: %08lX\n", regs->ccr, regs->xer); 432 trap = TRAP(regs); 433 if (trap == 0x300 || trap == 0x600) 434 printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr); 435 printk("TASK = %p[%d] '%s' THREAD: %p", 436 current, current->pid, current->comm, task_thread_info(current)); 437 438 #ifdef CONFIG_SMP 439 printk(" CPU: %d", smp_processor_id()); 440 #endif /* CONFIG_SMP */ 441 442 for (i = 0; i < 32; i++) { 443 if ((i % REGS_PER_LINE) == 0) 444 printk("\n" KERN_INFO "GPR%02d: ", i); 445 printk(REG " ", regs->gpr[i]); 446 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 447 break; 448 } 449 printk("\n"); 450 #ifdef CONFIG_KALLSYMS 451 /* 452 * Lookup NIP late so we have the best change of getting the 453 * above info out without failing 454 */ 455 printk("NIP ["REG"] ", regs->nip); 456 print_symbol("%s\n", regs->nip); 457 printk("LR ["REG"] ", regs->link); 458 print_symbol("%s\n", regs->link); 459 #endif 460 show_stack(current, (unsigned long *) regs->gpr[1]); 461 if (!user_mode(regs)) 462 show_instructions(regs); 463 } 464 465 void exit_thread(void) 466 { 467 discard_lazy_cpu_state(); 468 } 469 470 void flush_thread(void) 471 { 472 #ifdef CONFIG_PPC64 473 struct thread_info *t = current_thread_info(); 474 475 if (t->flags & _TIF_ABI_PENDING) 476 t->flags ^= (_TIF_ABI_PENDING | _TIF_32BIT); 477 #endif 478 479 discard_lazy_cpu_state(); 480 481 #ifdef CONFIG_PPC64 /* for now */ 482 if (current->thread.dabr) { 483 current->thread.dabr = 0; 484 set_dabr(0); 485 } 486 #endif 487 } 488 489 void 490 release_thread(struct task_struct *t) 491 { 492 } 493 494 /* 495 * This gets called before we allocate a new thread and copy 496 * the current task into it. 497 */ 498 void prepare_to_copy(struct task_struct *tsk) 499 { 500 flush_fp_to_thread(current); 501 flush_altivec_to_thread(current); 502 flush_spe_to_thread(current); 503 } 504 505 /* 506 * Copy a thread.. 507 */ 508 int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, 509 unsigned long unused, struct task_struct *p, 510 struct pt_regs *regs) 511 { 512 struct pt_regs *childregs, *kregs; 513 extern void ret_from_fork(void); 514 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 515 516 CHECK_FULL_REGS(regs); 517 /* Copy registers */ 518 sp -= sizeof(struct pt_regs); 519 childregs = (struct pt_regs *) sp; 520 *childregs = *regs; 521 if ((childregs->msr & MSR_PR) == 0) { 522 /* for kernel thread, set `current' and stackptr in new task */ 523 childregs->gpr[1] = sp + sizeof(struct pt_regs); 524 #ifdef CONFIG_PPC32 525 childregs->gpr[2] = (unsigned long) p; 526 #else 527 clear_tsk_thread_flag(p, TIF_32BIT); 528 #endif 529 p->thread.regs = NULL; /* no user register state */ 530 } else { 531 childregs->gpr[1] = usp; 532 p->thread.regs = childregs; 533 if (clone_flags & CLONE_SETTLS) { 534 #ifdef CONFIG_PPC64 535 if (!test_thread_flag(TIF_32BIT)) 536 childregs->gpr[13] = childregs->gpr[6]; 537 else 538 #endif 539 childregs->gpr[2] = childregs->gpr[6]; 540 } 541 } 542 childregs->gpr[3] = 0; /* Result from fork() */ 543 sp -= STACK_FRAME_OVERHEAD; 544 545 /* 546 * The way this works is that at some point in the future 547 * some task will call _switch to switch to the new task. 548 * That will pop off the stack frame created below and start 549 * the new task running at ret_from_fork. The new task will 550 * do some house keeping and then return from the fork or clone 551 * system call, using the stack frame created above. 552 */ 553 sp -= sizeof(struct pt_regs); 554 kregs = (struct pt_regs *) sp; 555 sp -= STACK_FRAME_OVERHEAD; 556 p->thread.ksp = sp; 557 558 #ifdef CONFIG_PPC64 559 if (cpu_has_feature(CPU_FTR_SLB)) { 560 unsigned long sp_vsid = get_kernel_vsid(sp); 561 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 562 563 sp_vsid <<= SLB_VSID_SHIFT; 564 sp_vsid |= SLB_VSID_KERNEL | llp; 565 p->thread.ksp_vsid = sp_vsid; 566 } 567 568 /* 569 * The PPC64 ABI makes use of a TOC to contain function 570 * pointers. The function (ret_from_except) is actually a pointer 571 * to the TOC entry. The first entry is a pointer to the actual 572 * function. 573 */ 574 kregs->nip = *((unsigned long *)ret_from_fork); 575 #else 576 kregs->nip = (unsigned long)ret_from_fork; 577 p->thread.last_syscall = -1; 578 #endif 579 580 return 0; 581 } 582 583 /* 584 * Set up a thread for executing a new program 585 */ 586 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 587 { 588 #ifdef CONFIG_PPC64 589 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 590 #endif 591 592 set_fs(USER_DS); 593 594 /* 595 * If we exec out of a kernel thread then thread.regs will not be 596 * set. Do it now. 597 */ 598 if (!current->thread.regs) { 599 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 600 current->thread.regs = regs - 1; 601 } 602 603 memset(regs->gpr, 0, sizeof(regs->gpr)); 604 regs->ctr = 0; 605 regs->link = 0; 606 regs->xer = 0; 607 regs->ccr = 0; 608 regs->gpr[1] = sp; 609 610 #ifdef CONFIG_PPC32 611 regs->mq = 0; 612 regs->nip = start; 613 regs->msr = MSR_USER; 614 #else 615 if (!test_thread_flag(TIF_32BIT)) { 616 unsigned long entry, toc; 617 618 /* start is a relocated pointer to the function descriptor for 619 * the elf _start routine. The first entry in the function 620 * descriptor is the entry address of _start and the second 621 * entry is the TOC value we need to use. 622 */ 623 __get_user(entry, (unsigned long __user *)start); 624 __get_user(toc, (unsigned long __user *)start+1); 625 626 /* Check whether the e_entry function descriptor entries 627 * need to be relocated before we can use them. 628 */ 629 if (load_addr != 0) { 630 entry += load_addr; 631 toc += load_addr; 632 } 633 regs->nip = entry; 634 regs->gpr[2] = toc; 635 regs->msr = MSR_USER64; 636 } else { 637 regs->nip = start; 638 regs->gpr[2] = 0; 639 regs->msr = MSR_USER32; 640 } 641 #endif 642 643 discard_lazy_cpu_state(); 644 memset(current->thread.fpr, 0, sizeof(current->thread.fpr)); 645 current->thread.fpscr.val = 0; 646 #ifdef CONFIG_ALTIVEC 647 memset(current->thread.vr, 0, sizeof(current->thread.vr)); 648 memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr)); 649 current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */ 650 current->thread.vrsave = 0; 651 current->thread.used_vr = 0; 652 #endif /* CONFIG_ALTIVEC */ 653 #ifdef CONFIG_SPE 654 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 655 current->thread.acc = 0; 656 current->thread.spefscr = 0; 657 current->thread.used_spe = 0; 658 #endif /* CONFIG_SPE */ 659 } 660 661 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 662 | PR_FP_EXC_RES | PR_FP_EXC_INV) 663 664 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 665 { 666 struct pt_regs *regs = tsk->thread.regs; 667 668 /* This is a bit hairy. If we are an SPE enabled processor 669 * (have embedded fp) we store the IEEE exception enable flags in 670 * fpexc_mode. fpexc_mode is also used for setting FP exception 671 * mode (asyn, precise, disabled) for 'Classic' FP. */ 672 if (val & PR_FP_EXC_SW_ENABLE) { 673 #ifdef CONFIG_SPE 674 tsk->thread.fpexc_mode = val & 675 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 676 return 0; 677 #else 678 return -EINVAL; 679 #endif 680 } 681 682 /* on a CONFIG_SPE this does not hurt us. The bits that 683 * __pack_fe01 use do not overlap with bits used for 684 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 685 * on CONFIG_SPE implementations are reserved so writing to 686 * them does not change anything */ 687 if (val > PR_FP_EXC_PRECISE) 688 return -EINVAL; 689 tsk->thread.fpexc_mode = __pack_fe01(val); 690 if (regs != NULL && (regs->msr & MSR_FP) != 0) 691 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 692 | tsk->thread.fpexc_mode; 693 return 0; 694 } 695 696 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 697 { 698 unsigned int val; 699 700 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 701 #ifdef CONFIG_SPE 702 val = tsk->thread.fpexc_mode; 703 #else 704 return -EINVAL; 705 #endif 706 else 707 val = __unpack_fe01(tsk->thread.fpexc_mode); 708 return put_user(val, (unsigned int __user *) adr); 709 } 710 711 int set_endian(struct task_struct *tsk, unsigned int val) 712 { 713 struct pt_regs *regs = tsk->thread.regs; 714 715 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 716 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 717 return -EINVAL; 718 719 if (regs == NULL) 720 return -EINVAL; 721 722 if (val == PR_ENDIAN_BIG) 723 regs->msr &= ~MSR_LE; 724 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 725 regs->msr |= MSR_LE; 726 else 727 return -EINVAL; 728 729 return 0; 730 } 731 732 int get_endian(struct task_struct *tsk, unsigned long adr) 733 { 734 struct pt_regs *regs = tsk->thread.regs; 735 unsigned int val; 736 737 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 738 !cpu_has_feature(CPU_FTR_REAL_LE)) 739 return -EINVAL; 740 741 if (regs == NULL) 742 return -EINVAL; 743 744 if (regs->msr & MSR_LE) { 745 if (cpu_has_feature(CPU_FTR_REAL_LE)) 746 val = PR_ENDIAN_LITTLE; 747 else 748 val = PR_ENDIAN_PPC_LITTLE; 749 } else 750 val = PR_ENDIAN_BIG; 751 752 return put_user(val, (unsigned int __user *)adr); 753 } 754 755 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 756 { 757 tsk->thread.align_ctl = val; 758 return 0; 759 } 760 761 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 762 { 763 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 764 } 765 766 #define TRUNC_PTR(x) ((typeof(x))(((unsigned long)(x)) & 0xffffffff)) 767 768 int sys_clone(unsigned long clone_flags, unsigned long usp, 769 int __user *parent_tidp, void __user *child_threadptr, 770 int __user *child_tidp, int p6, 771 struct pt_regs *regs) 772 { 773 CHECK_FULL_REGS(regs); 774 if (usp == 0) 775 usp = regs->gpr[1]; /* stack pointer for child */ 776 #ifdef CONFIG_PPC64 777 if (test_thread_flag(TIF_32BIT)) { 778 parent_tidp = TRUNC_PTR(parent_tidp); 779 child_tidp = TRUNC_PTR(child_tidp); 780 } 781 #endif 782 return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp); 783 } 784 785 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3, 786 unsigned long p4, unsigned long p5, unsigned long p6, 787 struct pt_regs *regs) 788 { 789 CHECK_FULL_REGS(regs); 790 return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL); 791 } 792 793 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3, 794 unsigned long p4, unsigned long p5, unsigned long p6, 795 struct pt_regs *regs) 796 { 797 CHECK_FULL_REGS(regs); 798 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], 799 regs, 0, NULL, NULL); 800 } 801 802 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, 803 unsigned long a3, unsigned long a4, unsigned long a5, 804 struct pt_regs *regs) 805 { 806 int error; 807 char *filename; 808 809 filename = getname((char __user *) a0); 810 error = PTR_ERR(filename); 811 if (IS_ERR(filename)) 812 goto out; 813 flush_fp_to_thread(current); 814 flush_altivec_to_thread(current); 815 flush_spe_to_thread(current); 816 error = do_execve(filename, (char __user * __user *) a1, 817 (char __user * __user *) a2, regs); 818 if (error == 0) { 819 task_lock(current); 820 current->ptrace &= ~PT_DTRACE; 821 task_unlock(current); 822 } 823 putname(filename); 824 out: 825 return error; 826 } 827 828 int validate_sp(unsigned long sp, struct task_struct *p, 829 unsigned long nbytes) 830 { 831 unsigned long stack_page = (unsigned long)task_stack_page(p); 832 833 if (sp >= stack_page + sizeof(struct thread_struct) 834 && sp <= stack_page + THREAD_SIZE - nbytes) 835 return 1; 836 837 #ifdef CONFIG_IRQSTACKS 838 stack_page = (unsigned long) hardirq_ctx[task_cpu(p)]; 839 if (sp >= stack_page + sizeof(struct thread_struct) 840 && sp <= stack_page + THREAD_SIZE - nbytes) 841 return 1; 842 843 stack_page = (unsigned long) softirq_ctx[task_cpu(p)]; 844 if (sp >= stack_page + sizeof(struct thread_struct) 845 && sp <= stack_page + THREAD_SIZE - nbytes) 846 return 1; 847 #endif 848 849 return 0; 850 } 851 852 #ifdef CONFIG_PPC64 853 #define MIN_STACK_FRAME 112 /* same as STACK_FRAME_OVERHEAD, in fact */ 854 #define FRAME_LR_SAVE 2 855 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD + 288) 856 #define REGS_MARKER 0x7265677368657265ul 857 #define FRAME_MARKER 12 858 #else 859 #define MIN_STACK_FRAME 16 860 #define FRAME_LR_SAVE 1 861 #define INT_FRAME_SIZE (sizeof(struct pt_regs) + STACK_FRAME_OVERHEAD) 862 #define REGS_MARKER 0x72656773ul 863 #define FRAME_MARKER 2 864 #endif 865 866 EXPORT_SYMBOL(validate_sp); 867 868 unsigned long get_wchan(struct task_struct *p) 869 { 870 unsigned long ip, sp; 871 int count = 0; 872 873 if (!p || p == current || p->state == TASK_RUNNING) 874 return 0; 875 876 sp = p->thread.ksp; 877 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 878 return 0; 879 880 do { 881 sp = *(unsigned long *)sp; 882 if (!validate_sp(sp, p, MIN_STACK_FRAME)) 883 return 0; 884 if (count > 0) { 885 ip = ((unsigned long *)sp)[FRAME_LR_SAVE]; 886 if (!in_sched_functions(ip)) 887 return ip; 888 } 889 } while (count++ < 16); 890 return 0; 891 } 892 893 static int kstack_depth_to_print = 64; 894 895 void show_stack(struct task_struct *tsk, unsigned long *stack) 896 { 897 unsigned long sp, ip, lr, newsp; 898 int count = 0; 899 int firstframe = 1; 900 901 sp = (unsigned long) stack; 902 if (tsk == NULL) 903 tsk = current; 904 if (sp == 0) { 905 if (tsk == current) 906 asm("mr %0,1" : "=r" (sp)); 907 else 908 sp = tsk->thread.ksp; 909 } 910 911 lr = 0; 912 printk("Call Trace:\n"); 913 do { 914 if (!validate_sp(sp, tsk, MIN_STACK_FRAME)) 915 return; 916 917 stack = (unsigned long *) sp; 918 newsp = stack[0]; 919 ip = stack[FRAME_LR_SAVE]; 920 if (!firstframe || ip != lr) { 921 printk("["REG"] ["REG"] ", sp, ip); 922 print_symbol("%s", ip); 923 if (firstframe) 924 printk(" (unreliable)"); 925 printk("\n"); 926 } 927 firstframe = 0; 928 929 /* 930 * See if this is an exception frame. 931 * We look for the "regshere" marker in the current frame. 932 */ 933 if (validate_sp(sp, tsk, INT_FRAME_SIZE) 934 && stack[FRAME_MARKER] == REGS_MARKER) { 935 struct pt_regs *regs = (struct pt_regs *) 936 (sp + STACK_FRAME_OVERHEAD); 937 printk("--- Exception: %lx", regs->trap); 938 print_symbol(" at %s\n", regs->nip); 939 lr = regs->link; 940 print_symbol(" LR = %s\n", lr); 941 firstframe = 1; 942 } 943 944 sp = newsp; 945 } while (count++ < kstack_depth_to_print); 946 } 947 948 void dump_stack(void) 949 { 950 show_stack(current, NULL); 951 } 952 EXPORT_SYMBOL(dump_stack); 953 954 #ifdef CONFIG_PPC64 955 void ppc64_runlatch_on(void) 956 { 957 unsigned long ctrl; 958 959 if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) { 960 HMT_medium(); 961 962 ctrl = mfspr(SPRN_CTRLF); 963 ctrl |= CTRL_RUNLATCH; 964 mtspr(SPRN_CTRLT, ctrl); 965 966 set_thread_flag(TIF_RUNLATCH); 967 } 968 } 969 970 void ppc64_runlatch_off(void) 971 { 972 unsigned long ctrl; 973 974 if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) { 975 HMT_medium(); 976 977 clear_thread_flag(TIF_RUNLATCH); 978 979 ctrl = mfspr(SPRN_CTRLF); 980 ctrl &= ~CTRL_RUNLATCH; 981 mtspr(SPRN_CTRLT, ctrl); 982 } 983 } 984 #endif 985