1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Derived from "arch/i386/kernel/process.c" 4 * Copyright (C) 1995 Linus Torvalds 5 * 6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 7 * Paul Mackerras (paulus@cs.anu.edu.au) 8 * 9 * PowerPC version 10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 11 */ 12 13 #include <linux/errno.h> 14 #include <linux/sched.h> 15 #include <linux/sched/debug.h> 16 #include <linux/sched/task.h> 17 #include <linux/sched/task_stack.h> 18 #include <linux/kernel.h> 19 #include <linux/mm.h> 20 #include <linux/smp.h> 21 #include <linux/stddef.h> 22 #include <linux/unistd.h> 23 #include <linux/ptrace.h> 24 #include <linux/slab.h> 25 #include <linux/user.h> 26 #include <linux/elf.h> 27 #include <linux/prctl.h> 28 #include <linux/init_task.h> 29 #include <linux/export.h> 30 #include <linux/kallsyms.h> 31 #include <linux/mqueue.h> 32 #include <linux/hardirq.h> 33 #include <linux/utsname.h> 34 #include <linux/ftrace.h> 35 #include <linux/kernel_stat.h> 36 #include <linux/personality.h> 37 #include <linux/random.h> 38 #include <linux/hw_breakpoint.h> 39 #include <linux/uaccess.h> 40 #include <linux/elf-randomize.h> 41 #include <linux/pkeys.h> 42 #include <linux/seq_buf.h> 43 44 #include <asm/pgtable.h> 45 #include <asm/io.h> 46 #include <asm/processor.h> 47 #include <asm/mmu.h> 48 #include <asm/prom.h> 49 #include <asm/machdep.h> 50 #include <asm/time.h> 51 #include <asm/runlatch.h> 52 #include <asm/syscalls.h> 53 #include <asm/switch_to.h> 54 #include <asm/tm.h> 55 #include <asm/debug.h> 56 #ifdef CONFIG_PPC64 57 #include <asm/firmware.h> 58 #include <asm/hw_irq.h> 59 #endif 60 #include <asm/code-patching.h> 61 #include <asm/exec.h> 62 #include <asm/livepatch.h> 63 #include <asm/cpu_has_feature.h> 64 #include <asm/asm-prototypes.h> 65 #include <asm/stacktrace.h> 66 #include <asm/hw_breakpoint.h> 67 68 #include <linux/kprobes.h> 69 #include <linux/kdebug.h> 70 71 /* Transactional Memory debug */ 72 #ifdef TM_DEBUG_SW 73 #define TM_DEBUG(x...) printk(KERN_INFO x) 74 #else 75 #define TM_DEBUG(x...) do { } while(0) 76 #endif 77 78 extern unsigned long _get_SP(void); 79 80 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 81 /* 82 * Are we running in "Suspend disabled" mode? If so we have to block any 83 * sigreturn that would get us into suspended state, and we also warn in some 84 * other paths that we should never reach with suspend disabled. 85 */ 86 bool tm_suspend_disabled __ro_after_init = false; 87 88 static void check_if_tm_restore_required(struct task_struct *tsk) 89 { 90 /* 91 * If we are saving the current thread's registers, and the 92 * thread is in a transactional state, set the TIF_RESTORE_TM 93 * bit so that we know to restore the registers before 94 * returning to userspace. 95 */ 96 if (tsk == current && tsk->thread.regs && 97 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 98 !test_thread_flag(TIF_RESTORE_TM)) { 99 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 100 set_thread_flag(TIF_RESTORE_TM); 101 } 102 } 103 104 #else 105 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 106 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 107 108 bool strict_msr_control; 109 EXPORT_SYMBOL(strict_msr_control); 110 111 static int __init enable_strict_msr_control(char *str) 112 { 113 strict_msr_control = true; 114 pr_info("Enabling strict facility control\n"); 115 116 return 0; 117 } 118 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 119 120 /* notrace because it's called by restore_math */ 121 unsigned long notrace msr_check_and_set(unsigned long bits) 122 { 123 unsigned long oldmsr = mfmsr(); 124 unsigned long newmsr; 125 126 newmsr = oldmsr | bits; 127 128 #ifdef CONFIG_VSX 129 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 130 newmsr |= MSR_VSX; 131 #endif 132 133 if (oldmsr != newmsr) 134 mtmsr_isync(newmsr); 135 136 return newmsr; 137 } 138 EXPORT_SYMBOL_GPL(msr_check_and_set); 139 140 /* notrace because it's called by restore_math */ 141 void notrace __msr_check_and_clear(unsigned long bits) 142 { 143 unsigned long oldmsr = mfmsr(); 144 unsigned long newmsr; 145 146 newmsr = oldmsr & ~bits; 147 148 #ifdef CONFIG_VSX 149 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 150 newmsr &= ~MSR_VSX; 151 #endif 152 153 if (oldmsr != newmsr) 154 mtmsr_isync(newmsr); 155 } 156 EXPORT_SYMBOL(__msr_check_and_clear); 157 158 #ifdef CONFIG_PPC_FPU 159 static void __giveup_fpu(struct task_struct *tsk) 160 { 161 unsigned long msr; 162 163 save_fpu(tsk); 164 msr = tsk->thread.regs->msr; 165 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 166 #ifdef CONFIG_VSX 167 if (cpu_has_feature(CPU_FTR_VSX)) 168 msr &= ~MSR_VSX; 169 #endif 170 tsk->thread.regs->msr = msr; 171 } 172 173 void giveup_fpu(struct task_struct *tsk) 174 { 175 check_if_tm_restore_required(tsk); 176 177 msr_check_and_set(MSR_FP); 178 __giveup_fpu(tsk); 179 msr_check_and_clear(MSR_FP); 180 } 181 EXPORT_SYMBOL(giveup_fpu); 182 183 /* 184 * Make sure the floating-point register state in the 185 * the thread_struct is up to date for task tsk. 186 */ 187 void flush_fp_to_thread(struct task_struct *tsk) 188 { 189 if (tsk->thread.regs) { 190 /* 191 * We need to disable preemption here because if we didn't, 192 * another process could get scheduled after the regs->msr 193 * test but before we have finished saving the FP registers 194 * to the thread_struct. That process could take over the 195 * FPU, and then when we get scheduled again we would store 196 * bogus values for the remaining FP registers. 197 */ 198 preempt_disable(); 199 if (tsk->thread.regs->msr & MSR_FP) { 200 /* 201 * This should only ever be called for current or 202 * for a stopped child process. Since we save away 203 * the FP register state on context switch, 204 * there is something wrong if a stopped child appears 205 * to still have its FP state in the CPU registers. 206 */ 207 BUG_ON(tsk != current); 208 giveup_fpu(tsk); 209 } 210 preempt_enable(); 211 } 212 } 213 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 214 215 void enable_kernel_fp(void) 216 { 217 unsigned long cpumsr; 218 219 WARN_ON(preemptible()); 220 221 cpumsr = msr_check_and_set(MSR_FP); 222 223 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 224 check_if_tm_restore_required(current); 225 /* 226 * If a thread has already been reclaimed then the 227 * checkpointed registers are on the CPU but have definitely 228 * been saved by the reclaim code. Don't need to and *cannot* 229 * giveup as this would save to the 'live' structure not the 230 * checkpointed structure. 231 */ 232 if (!MSR_TM_ACTIVE(cpumsr) && 233 MSR_TM_ACTIVE(current->thread.regs->msr)) 234 return; 235 __giveup_fpu(current); 236 } 237 } 238 EXPORT_SYMBOL(enable_kernel_fp); 239 #endif /* CONFIG_PPC_FPU */ 240 241 #ifdef CONFIG_ALTIVEC 242 static void __giveup_altivec(struct task_struct *tsk) 243 { 244 unsigned long msr; 245 246 save_altivec(tsk); 247 msr = tsk->thread.regs->msr; 248 msr &= ~MSR_VEC; 249 #ifdef CONFIG_VSX 250 if (cpu_has_feature(CPU_FTR_VSX)) 251 msr &= ~MSR_VSX; 252 #endif 253 tsk->thread.regs->msr = msr; 254 } 255 256 void giveup_altivec(struct task_struct *tsk) 257 { 258 check_if_tm_restore_required(tsk); 259 260 msr_check_and_set(MSR_VEC); 261 __giveup_altivec(tsk); 262 msr_check_and_clear(MSR_VEC); 263 } 264 EXPORT_SYMBOL(giveup_altivec); 265 266 void enable_kernel_altivec(void) 267 { 268 unsigned long cpumsr; 269 270 WARN_ON(preemptible()); 271 272 cpumsr = msr_check_and_set(MSR_VEC); 273 274 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 275 check_if_tm_restore_required(current); 276 /* 277 * If a thread has already been reclaimed then the 278 * checkpointed registers are on the CPU but have definitely 279 * been saved by the reclaim code. Don't need to and *cannot* 280 * giveup as this would save to the 'live' structure not the 281 * checkpointed structure. 282 */ 283 if (!MSR_TM_ACTIVE(cpumsr) && 284 MSR_TM_ACTIVE(current->thread.regs->msr)) 285 return; 286 __giveup_altivec(current); 287 } 288 } 289 EXPORT_SYMBOL(enable_kernel_altivec); 290 291 /* 292 * Make sure the VMX/Altivec register state in the 293 * the thread_struct is up to date for task tsk. 294 */ 295 void flush_altivec_to_thread(struct task_struct *tsk) 296 { 297 if (tsk->thread.regs) { 298 preempt_disable(); 299 if (tsk->thread.regs->msr & MSR_VEC) { 300 BUG_ON(tsk != current); 301 giveup_altivec(tsk); 302 } 303 preempt_enable(); 304 } 305 } 306 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 307 #endif /* CONFIG_ALTIVEC */ 308 309 #ifdef CONFIG_VSX 310 static void __giveup_vsx(struct task_struct *tsk) 311 { 312 unsigned long msr = tsk->thread.regs->msr; 313 314 /* 315 * We should never be ssetting MSR_VSX without also setting 316 * MSR_FP and MSR_VEC 317 */ 318 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 319 320 /* __giveup_fpu will clear MSR_VSX */ 321 if (msr & MSR_FP) 322 __giveup_fpu(tsk); 323 if (msr & MSR_VEC) 324 __giveup_altivec(tsk); 325 } 326 327 static void giveup_vsx(struct task_struct *tsk) 328 { 329 check_if_tm_restore_required(tsk); 330 331 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 332 __giveup_vsx(tsk); 333 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 334 } 335 336 void enable_kernel_vsx(void) 337 { 338 unsigned long cpumsr; 339 340 WARN_ON(preemptible()); 341 342 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 343 344 if (current->thread.regs && 345 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 346 check_if_tm_restore_required(current); 347 /* 348 * If a thread has already been reclaimed then the 349 * checkpointed registers are on the CPU but have definitely 350 * been saved by the reclaim code. Don't need to and *cannot* 351 * giveup as this would save to the 'live' structure not the 352 * checkpointed structure. 353 */ 354 if (!MSR_TM_ACTIVE(cpumsr) && 355 MSR_TM_ACTIVE(current->thread.regs->msr)) 356 return; 357 __giveup_vsx(current); 358 } 359 } 360 EXPORT_SYMBOL(enable_kernel_vsx); 361 362 void flush_vsx_to_thread(struct task_struct *tsk) 363 { 364 if (tsk->thread.regs) { 365 preempt_disable(); 366 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 367 BUG_ON(tsk != current); 368 giveup_vsx(tsk); 369 } 370 preempt_enable(); 371 } 372 } 373 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 374 #endif /* CONFIG_VSX */ 375 376 #ifdef CONFIG_SPE 377 void giveup_spe(struct task_struct *tsk) 378 { 379 check_if_tm_restore_required(tsk); 380 381 msr_check_and_set(MSR_SPE); 382 __giveup_spe(tsk); 383 msr_check_and_clear(MSR_SPE); 384 } 385 EXPORT_SYMBOL(giveup_spe); 386 387 void enable_kernel_spe(void) 388 { 389 WARN_ON(preemptible()); 390 391 msr_check_and_set(MSR_SPE); 392 393 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 394 check_if_tm_restore_required(current); 395 __giveup_spe(current); 396 } 397 } 398 EXPORT_SYMBOL(enable_kernel_spe); 399 400 void flush_spe_to_thread(struct task_struct *tsk) 401 { 402 if (tsk->thread.regs) { 403 preempt_disable(); 404 if (tsk->thread.regs->msr & MSR_SPE) { 405 BUG_ON(tsk != current); 406 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 407 giveup_spe(tsk); 408 } 409 preempt_enable(); 410 } 411 } 412 #endif /* CONFIG_SPE */ 413 414 static unsigned long msr_all_available; 415 416 static int __init init_msr_all_available(void) 417 { 418 #ifdef CONFIG_PPC_FPU 419 msr_all_available |= MSR_FP; 420 #endif 421 #ifdef CONFIG_ALTIVEC 422 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 423 msr_all_available |= MSR_VEC; 424 #endif 425 #ifdef CONFIG_VSX 426 if (cpu_has_feature(CPU_FTR_VSX)) 427 msr_all_available |= MSR_VSX; 428 #endif 429 #ifdef CONFIG_SPE 430 if (cpu_has_feature(CPU_FTR_SPE)) 431 msr_all_available |= MSR_SPE; 432 #endif 433 434 return 0; 435 } 436 early_initcall(init_msr_all_available); 437 438 void giveup_all(struct task_struct *tsk) 439 { 440 unsigned long usermsr; 441 442 if (!tsk->thread.regs) 443 return; 444 445 check_if_tm_restore_required(tsk); 446 447 usermsr = tsk->thread.regs->msr; 448 449 if ((usermsr & msr_all_available) == 0) 450 return; 451 452 msr_check_and_set(msr_all_available); 453 454 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 455 456 #ifdef CONFIG_PPC_FPU 457 if (usermsr & MSR_FP) 458 __giveup_fpu(tsk); 459 #endif 460 #ifdef CONFIG_ALTIVEC 461 if (usermsr & MSR_VEC) 462 __giveup_altivec(tsk); 463 #endif 464 #ifdef CONFIG_SPE 465 if (usermsr & MSR_SPE) 466 __giveup_spe(tsk); 467 #endif 468 469 msr_check_and_clear(msr_all_available); 470 } 471 EXPORT_SYMBOL(giveup_all); 472 473 #ifdef CONFIG_PPC_BOOK3S_64 474 #ifdef CONFIG_PPC_FPU 475 static int restore_fp(struct task_struct *tsk) 476 { 477 if (tsk->thread.load_fp) { 478 load_fp_state(¤t->thread.fp_state); 479 current->thread.load_fp++; 480 return 1; 481 } 482 return 0; 483 } 484 #else 485 static int restore_fp(struct task_struct *tsk) { return 0; } 486 #endif /* CONFIG_PPC_FPU */ 487 488 #ifdef CONFIG_ALTIVEC 489 #define loadvec(thr) ((thr).load_vec) 490 static int restore_altivec(struct task_struct *tsk) 491 { 492 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (tsk->thread.load_vec)) { 493 load_vr_state(&tsk->thread.vr_state); 494 tsk->thread.used_vr = 1; 495 tsk->thread.load_vec++; 496 497 return 1; 498 } 499 return 0; 500 } 501 #else 502 #define loadvec(thr) 0 503 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 504 #endif /* CONFIG_ALTIVEC */ 505 506 #ifdef CONFIG_VSX 507 static int restore_vsx(struct task_struct *tsk) 508 { 509 if (cpu_has_feature(CPU_FTR_VSX)) { 510 tsk->thread.used_vsr = 1; 511 return 1; 512 } 513 514 return 0; 515 } 516 #else 517 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 518 #endif /* CONFIG_VSX */ 519 520 /* 521 * The exception exit path calls restore_math() with interrupts hard disabled 522 * but the soft irq state not "reconciled". ftrace code that calls 523 * local_irq_save/restore causes warnings. 524 * 525 * Rather than complicate the exit path, just don't trace restore_math. This 526 * could be done by having ftrace entry code check for this un-reconciled 527 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and 528 * temporarily fix it up for the duration of the ftrace call. 529 */ 530 void notrace restore_math(struct pt_regs *regs) 531 { 532 unsigned long msr; 533 534 if (!MSR_TM_ACTIVE(regs->msr) && 535 !current->thread.load_fp && !loadvec(current->thread)) 536 return; 537 538 msr = regs->msr; 539 msr_check_and_set(msr_all_available); 540 541 /* 542 * Only reload if the bit is not set in the user MSR, the bit BEING set 543 * indicates that the registers are hot 544 */ 545 if ((!(msr & MSR_FP)) && restore_fp(current)) 546 msr |= MSR_FP | current->thread.fpexc_mode; 547 548 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 549 msr |= MSR_VEC; 550 551 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 552 restore_vsx(current)) { 553 msr |= MSR_VSX; 554 } 555 556 msr_check_and_clear(msr_all_available); 557 558 regs->msr = msr; 559 } 560 #endif 561 562 static void save_all(struct task_struct *tsk) 563 { 564 unsigned long usermsr; 565 566 if (!tsk->thread.regs) 567 return; 568 569 usermsr = tsk->thread.regs->msr; 570 571 if ((usermsr & msr_all_available) == 0) 572 return; 573 574 msr_check_and_set(msr_all_available); 575 576 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 577 578 if (usermsr & MSR_FP) 579 save_fpu(tsk); 580 581 if (usermsr & MSR_VEC) 582 save_altivec(tsk); 583 584 if (usermsr & MSR_SPE) 585 __giveup_spe(tsk); 586 587 msr_check_and_clear(msr_all_available); 588 thread_pkey_regs_save(&tsk->thread); 589 } 590 591 void flush_all_to_thread(struct task_struct *tsk) 592 { 593 if (tsk->thread.regs) { 594 preempt_disable(); 595 BUG_ON(tsk != current); 596 #ifdef CONFIG_SPE 597 if (tsk->thread.regs->msr & MSR_SPE) 598 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 599 #endif 600 save_all(tsk); 601 602 preempt_enable(); 603 } 604 } 605 EXPORT_SYMBOL(flush_all_to_thread); 606 607 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 608 void do_send_trap(struct pt_regs *regs, unsigned long address, 609 unsigned long error_code, int breakpt) 610 { 611 current->thread.trap_nr = TRAP_HWBKPT; 612 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 613 11, SIGSEGV) == NOTIFY_STOP) 614 return; 615 616 /* Deliver the signal to userspace */ 617 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 618 (void __user *)address); 619 } 620 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 621 void do_break (struct pt_regs *regs, unsigned long address, 622 unsigned long error_code) 623 { 624 current->thread.trap_nr = TRAP_HWBKPT; 625 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 626 11, SIGSEGV) == NOTIFY_STOP) 627 return; 628 629 if (debugger_break_match(regs)) 630 return; 631 632 /* Clear the breakpoint */ 633 hw_breakpoint_disable(); 634 635 /* Deliver the signal to userspace */ 636 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address); 637 } 638 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 639 640 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 641 642 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 643 /* 644 * Set the debug registers back to their default "safe" values. 645 */ 646 static void set_debug_reg_defaults(struct thread_struct *thread) 647 { 648 thread->debug.iac1 = thread->debug.iac2 = 0; 649 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 650 thread->debug.iac3 = thread->debug.iac4 = 0; 651 #endif 652 thread->debug.dac1 = thread->debug.dac2 = 0; 653 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 654 thread->debug.dvc1 = thread->debug.dvc2 = 0; 655 #endif 656 thread->debug.dbcr0 = 0; 657 #ifdef CONFIG_BOOKE 658 /* 659 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 660 */ 661 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 662 DBCR1_IAC3US | DBCR1_IAC4US; 663 /* 664 * Force Data Address Compare User/Supervisor bits to be User-only 665 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 666 */ 667 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 668 #else 669 thread->debug.dbcr1 = 0; 670 #endif 671 } 672 673 static void prime_debug_regs(struct debug_reg *debug) 674 { 675 /* 676 * We could have inherited MSR_DE from userspace, since 677 * it doesn't get cleared on exception entry. Make sure 678 * MSR_DE is clear before we enable any debug events. 679 */ 680 mtmsr(mfmsr() & ~MSR_DE); 681 682 mtspr(SPRN_IAC1, debug->iac1); 683 mtspr(SPRN_IAC2, debug->iac2); 684 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 685 mtspr(SPRN_IAC3, debug->iac3); 686 mtspr(SPRN_IAC4, debug->iac4); 687 #endif 688 mtspr(SPRN_DAC1, debug->dac1); 689 mtspr(SPRN_DAC2, debug->dac2); 690 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 691 mtspr(SPRN_DVC1, debug->dvc1); 692 mtspr(SPRN_DVC2, debug->dvc2); 693 #endif 694 mtspr(SPRN_DBCR0, debug->dbcr0); 695 mtspr(SPRN_DBCR1, debug->dbcr1); 696 #ifdef CONFIG_BOOKE 697 mtspr(SPRN_DBCR2, debug->dbcr2); 698 #endif 699 } 700 /* 701 * Unless neither the old or new thread are making use of the 702 * debug registers, set the debug registers from the values 703 * stored in the new thread. 704 */ 705 void switch_booke_debug_regs(struct debug_reg *new_debug) 706 { 707 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 708 || (new_debug->dbcr0 & DBCR0_IDM)) 709 prime_debug_regs(new_debug); 710 } 711 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 712 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 713 #ifndef CONFIG_HAVE_HW_BREAKPOINT 714 static void set_breakpoint(struct arch_hw_breakpoint *brk) 715 { 716 preempt_disable(); 717 __set_breakpoint(brk); 718 preempt_enable(); 719 } 720 721 static void set_debug_reg_defaults(struct thread_struct *thread) 722 { 723 thread->hw_brk.address = 0; 724 thread->hw_brk.type = 0; 725 thread->hw_brk.len = 0; 726 thread->hw_brk.hw_len = 0; 727 if (ppc_breakpoint_available()) 728 set_breakpoint(&thread->hw_brk); 729 } 730 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 731 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 732 733 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 734 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 735 { 736 mtspr(SPRN_DAC1, dabr); 737 #ifdef CONFIG_PPC_47x 738 isync(); 739 #endif 740 return 0; 741 } 742 #elif defined(CONFIG_PPC_BOOK3S) 743 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 744 { 745 mtspr(SPRN_DABR, dabr); 746 if (cpu_has_feature(CPU_FTR_DABRX)) 747 mtspr(SPRN_DABRX, dabrx); 748 return 0; 749 } 750 #else 751 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 752 { 753 return -EINVAL; 754 } 755 #endif 756 757 static inline int set_dabr(struct arch_hw_breakpoint *brk) 758 { 759 unsigned long dabr, dabrx; 760 761 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 762 dabrx = ((brk->type >> 3) & 0x7); 763 764 if (ppc_md.set_dabr) 765 return ppc_md.set_dabr(dabr, dabrx); 766 767 return __set_dabr(dabr, dabrx); 768 } 769 770 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk) 771 { 772 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW | 773 LCTRL1_CRWF_RW; 774 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN; 775 unsigned long start_addr = brk->address & ~HW_BREAKPOINT_ALIGN; 776 unsigned long end_addr = (brk->address + brk->len - 1) | HW_BREAKPOINT_ALIGN; 777 778 if (start_addr == 0) 779 lctrl2 |= LCTRL2_LW0LA_F; 780 else if (end_addr == ~0U) 781 lctrl2 |= LCTRL2_LW0LA_E; 782 else 783 lctrl2 |= LCTRL2_LW0LA_EandF; 784 785 mtspr(SPRN_LCTRL2, 0); 786 787 if ((brk->type & HW_BRK_TYPE_RDWR) == 0) 788 return 0; 789 790 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 791 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO; 792 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 793 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO; 794 795 mtspr(SPRN_CMPE, start_addr - 1); 796 mtspr(SPRN_CMPF, end_addr + 1); 797 mtspr(SPRN_LCTRL1, lctrl1); 798 mtspr(SPRN_LCTRL2, lctrl2); 799 800 return 0; 801 } 802 803 void __set_breakpoint(struct arch_hw_breakpoint *brk) 804 { 805 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 806 807 if (dawr_enabled()) 808 // Power8 or later 809 set_dawr(brk); 810 else if (IS_ENABLED(CONFIG_PPC_8xx)) 811 set_breakpoint_8xx(brk); 812 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 813 // Power7 or earlier 814 set_dabr(brk); 815 else 816 // Shouldn't happen due to higher level checks 817 WARN_ON_ONCE(1); 818 } 819 820 /* Check if we have DAWR or DABR hardware */ 821 bool ppc_breakpoint_available(void) 822 { 823 if (dawr_enabled()) 824 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 825 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 826 return false; /* POWER9 with DAWR disabled */ 827 /* DABR: Everything but POWER8 and POWER9 */ 828 return true; 829 } 830 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 831 832 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 833 struct arch_hw_breakpoint *b) 834 { 835 if (a->address != b->address) 836 return false; 837 if (a->type != b->type) 838 return false; 839 if (a->len != b->len) 840 return false; 841 /* no need to check hw_len. it's calculated from address and len */ 842 return true; 843 } 844 845 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 846 847 static inline bool tm_enabled(struct task_struct *tsk) 848 { 849 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 850 } 851 852 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 853 { 854 /* 855 * Use the current MSR TM suspended bit to track if we have 856 * checkpointed state outstanding. 857 * On signal delivery, we'd normally reclaim the checkpointed 858 * state to obtain stack pointer (see:get_tm_stackpointer()). 859 * This will then directly return to userspace without going 860 * through __switch_to(). However, if the stack frame is bad, 861 * we need to exit this thread which calls __switch_to() which 862 * will again attempt to reclaim the already saved tm state. 863 * Hence we need to check that we've not already reclaimed 864 * this state. 865 * We do this using the current MSR, rather tracking it in 866 * some specific thread_struct bit, as it has the additional 867 * benefit of checking for a potential TM bad thing exception. 868 */ 869 if (!MSR_TM_SUSPENDED(mfmsr())) 870 return; 871 872 giveup_all(container_of(thr, struct task_struct, thread)); 873 874 tm_reclaim(thr, cause); 875 876 /* 877 * If we are in a transaction and FP is off then we can't have 878 * used FP inside that transaction. Hence the checkpointed 879 * state is the same as the live state. We need to copy the 880 * live state to the checkpointed state so that when the 881 * transaction is restored, the checkpointed state is correct 882 * and the aborted transaction sees the correct state. We use 883 * ckpt_regs.msr here as that's what tm_reclaim will use to 884 * determine if it's going to write the checkpointed state or 885 * not. So either this will write the checkpointed registers, 886 * or reclaim will. Similarly for VMX. 887 */ 888 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 889 memcpy(&thr->ckfp_state, &thr->fp_state, 890 sizeof(struct thread_fp_state)); 891 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 892 memcpy(&thr->ckvr_state, &thr->vr_state, 893 sizeof(struct thread_vr_state)); 894 } 895 896 void tm_reclaim_current(uint8_t cause) 897 { 898 tm_enable(); 899 tm_reclaim_thread(¤t->thread, cause); 900 } 901 902 static inline void tm_reclaim_task(struct task_struct *tsk) 903 { 904 /* We have to work out if we're switching from/to a task that's in the 905 * middle of a transaction. 906 * 907 * In switching we need to maintain a 2nd register state as 908 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 909 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 910 * ckvr_state 911 * 912 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 913 */ 914 struct thread_struct *thr = &tsk->thread; 915 916 if (!thr->regs) 917 return; 918 919 if (!MSR_TM_ACTIVE(thr->regs->msr)) 920 goto out_and_saveregs; 921 922 WARN_ON(tm_suspend_disabled); 923 924 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 925 "ccr=%lx, msr=%lx, trap=%lx)\n", 926 tsk->pid, thr->regs->nip, 927 thr->regs->ccr, thr->regs->msr, 928 thr->regs->trap); 929 930 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 931 932 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 933 tsk->pid); 934 935 out_and_saveregs: 936 /* Always save the regs here, even if a transaction's not active. 937 * This context-switches a thread's TM info SPRs. We do it here to 938 * be consistent with the restore path (in recheckpoint) which 939 * cannot happen later in _switch(). 940 */ 941 tm_save_sprs(thr); 942 } 943 944 extern void __tm_recheckpoint(struct thread_struct *thread); 945 946 void tm_recheckpoint(struct thread_struct *thread) 947 { 948 unsigned long flags; 949 950 if (!(thread->regs->msr & MSR_TM)) 951 return; 952 953 /* We really can't be interrupted here as the TEXASR registers can't 954 * change and later in the trecheckpoint code, we have a userspace R1. 955 * So let's hard disable over this region. 956 */ 957 local_irq_save(flags); 958 hard_irq_disable(); 959 960 /* The TM SPRs are restored here, so that TEXASR.FS can be set 961 * before the trecheckpoint and no explosion occurs. 962 */ 963 tm_restore_sprs(thread); 964 965 __tm_recheckpoint(thread); 966 967 local_irq_restore(flags); 968 } 969 970 static inline void tm_recheckpoint_new_task(struct task_struct *new) 971 { 972 if (!cpu_has_feature(CPU_FTR_TM)) 973 return; 974 975 /* Recheckpoint the registers of the thread we're about to switch to. 976 * 977 * If the task was using FP, we non-lazily reload both the original and 978 * the speculative FP register states. This is because the kernel 979 * doesn't see if/when a TM rollback occurs, so if we take an FP 980 * unavailable later, we are unable to determine which set of FP regs 981 * need to be restored. 982 */ 983 if (!tm_enabled(new)) 984 return; 985 986 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 987 tm_restore_sprs(&new->thread); 988 return; 989 } 990 /* Recheckpoint to restore original checkpointed register state. */ 991 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 992 new->pid, new->thread.regs->msr); 993 994 tm_recheckpoint(&new->thread); 995 996 /* 997 * The checkpointed state has been restored but the live state has 998 * not, ensure all the math functionality is turned off to trigger 999 * restore_math() to reload. 1000 */ 1001 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1002 1003 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1004 "(kernel msr 0x%lx)\n", 1005 new->pid, mfmsr()); 1006 } 1007 1008 static inline void __switch_to_tm(struct task_struct *prev, 1009 struct task_struct *new) 1010 { 1011 if (cpu_has_feature(CPU_FTR_TM)) { 1012 if (tm_enabled(prev) || tm_enabled(new)) 1013 tm_enable(); 1014 1015 if (tm_enabled(prev)) { 1016 prev->thread.load_tm++; 1017 tm_reclaim_task(prev); 1018 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1019 prev->thread.regs->msr &= ~MSR_TM; 1020 } 1021 1022 tm_recheckpoint_new_task(new); 1023 } 1024 } 1025 1026 /* 1027 * This is called if we are on the way out to userspace and the 1028 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1029 * FP and/or vector state and does so if necessary. 1030 * If userspace is inside a transaction (whether active or 1031 * suspended) and FP/VMX/VSX instructions have ever been enabled 1032 * inside that transaction, then we have to keep them enabled 1033 * and keep the FP/VMX/VSX state loaded while ever the transaction 1034 * continues. The reason is that if we didn't, and subsequently 1035 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1036 * we don't know whether it's the same transaction, and thus we 1037 * don't know which of the checkpointed state and the transactional 1038 * state to use. 1039 */ 1040 void restore_tm_state(struct pt_regs *regs) 1041 { 1042 unsigned long msr_diff; 1043 1044 /* 1045 * This is the only moment we should clear TIF_RESTORE_TM as 1046 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1047 * again, anything else could lead to an incorrect ckpt_msr being 1048 * saved and therefore incorrect signal contexts. 1049 */ 1050 clear_thread_flag(TIF_RESTORE_TM); 1051 if (!MSR_TM_ACTIVE(regs->msr)) 1052 return; 1053 1054 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1055 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1056 1057 /* Ensure that restore_math() will restore */ 1058 if (msr_diff & MSR_FP) 1059 current->thread.load_fp = 1; 1060 #ifdef CONFIG_ALTIVEC 1061 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1062 current->thread.load_vec = 1; 1063 #endif 1064 restore_math(regs); 1065 1066 regs->msr |= msr_diff; 1067 } 1068 1069 #else 1070 #define tm_recheckpoint_new_task(new) 1071 #define __switch_to_tm(prev, new) 1072 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1073 1074 static inline void save_sprs(struct thread_struct *t) 1075 { 1076 #ifdef CONFIG_ALTIVEC 1077 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1078 t->vrsave = mfspr(SPRN_VRSAVE); 1079 #endif 1080 #ifdef CONFIG_PPC_BOOK3S_64 1081 if (cpu_has_feature(CPU_FTR_DSCR)) 1082 t->dscr = mfspr(SPRN_DSCR); 1083 1084 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1085 t->bescr = mfspr(SPRN_BESCR); 1086 t->ebbhr = mfspr(SPRN_EBBHR); 1087 t->ebbrr = mfspr(SPRN_EBBRR); 1088 1089 t->fscr = mfspr(SPRN_FSCR); 1090 1091 /* 1092 * Note that the TAR is not available for use in the kernel. 1093 * (To provide this, the TAR should be backed up/restored on 1094 * exception entry/exit instead, and be in pt_regs. FIXME, 1095 * this should be in pt_regs anyway (for debug).) 1096 */ 1097 t->tar = mfspr(SPRN_TAR); 1098 } 1099 #endif 1100 1101 thread_pkey_regs_save(t); 1102 } 1103 1104 static inline void restore_sprs(struct thread_struct *old_thread, 1105 struct thread_struct *new_thread) 1106 { 1107 #ifdef CONFIG_ALTIVEC 1108 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1109 old_thread->vrsave != new_thread->vrsave) 1110 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1111 #endif 1112 #ifdef CONFIG_PPC_BOOK3S_64 1113 if (cpu_has_feature(CPU_FTR_DSCR)) { 1114 u64 dscr = get_paca()->dscr_default; 1115 if (new_thread->dscr_inherit) 1116 dscr = new_thread->dscr; 1117 1118 if (old_thread->dscr != dscr) 1119 mtspr(SPRN_DSCR, dscr); 1120 } 1121 1122 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1123 if (old_thread->bescr != new_thread->bescr) 1124 mtspr(SPRN_BESCR, new_thread->bescr); 1125 if (old_thread->ebbhr != new_thread->ebbhr) 1126 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1127 if (old_thread->ebbrr != new_thread->ebbrr) 1128 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1129 1130 if (old_thread->fscr != new_thread->fscr) 1131 mtspr(SPRN_FSCR, new_thread->fscr); 1132 1133 if (old_thread->tar != new_thread->tar) 1134 mtspr(SPRN_TAR, new_thread->tar); 1135 } 1136 1137 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1138 old_thread->tidr != new_thread->tidr) 1139 mtspr(SPRN_TIDR, new_thread->tidr); 1140 #endif 1141 1142 thread_pkey_regs_restore(new_thread, old_thread); 1143 } 1144 1145 struct task_struct *__switch_to(struct task_struct *prev, 1146 struct task_struct *new) 1147 { 1148 struct thread_struct *new_thread, *old_thread; 1149 struct task_struct *last; 1150 #ifdef CONFIG_PPC_BOOK3S_64 1151 struct ppc64_tlb_batch *batch; 1152 #endif 1153 1154 new_thread = &new->thread; 1155 old_thread = ¤t->thread; 1156 1157 WARN_ON(!irqs_disabled()); 1158 1159 #ifdef CONFIG_PPC_BOOK3S_64 1160 batch = this_cpu_ptr(&ppc64_tlb_batch); 1161 if (batch->active) { 1162 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1163 if (batch->index) 1164 __flush_tlb_pending(batch); 1165 batch->active = 0; 1166 } 1167 #endif /* CONFIG_PPC_BOOK3S_64 */ 1168 1169 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1170 switch_booke_debug_regs(&new->thread.debug); 1171 #else 1172 /* 1173 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1174 * schedule DABR 1175 */ 1176 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1177 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1178 __set_breakpoint(&new->thread.hw_brk); 1179 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1180 #endif 1181 1182 /* 1183 * We need to save SPRs before treclaim/trecheckpoint as these will 1184 * change a number of them. 1185 */ 1186 save_sprs(&prev->thread); 1187 1188 /* Save FPU, Altivec, VSX and SPE state */ 1189 giveup_all(prev); 1190 1191 __switch_to_tm(prev, new); 1192 1193 if (!radix_enabled()) { 1194 /* 1195 * We can't take a PMU exception inside _switch() since there 1196 * is a window where the kernel stack SLB and the kernel stack 1197 * are out of sync. Hard disable here. 1198 */ 1199 hard_irq_disable(); 1200 } 1201 1202 /* 1203 * Call restore_sprs() before calling _switch(). If we move it after 1204 * _switch() then we miss out on calling it for new tasks. The reason 1205 * for this is we manually create a stack frame for new tasks that 1206 * directly returns through ret_from_fork() or 1207 * ret_from_kernel_thread(). See copy_thread() for details. 1208 */ 1209 restore_sprs(old_thread, new_thread); 1210 1211 last = _switch(old_thread, new_thread); 1212 1213 #ifdef CONFIG_PPC_BOOK3S_64 1214 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1215 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1216 batch = this_cpu_ptr(&ppc64_tlb_batch); 1217 batch->active = 1; 1218 } 1219 1220 if (current->thread.regs) { 1221 restore_math(current->thread.regs); 1222 1223 /* 1224 * The copy-paste buffer can only store into foreign real 1225 * addresses, so unprivileged processes can not see the 1226 * data or use it in any way unless they have foreign real 1227 * mappings. If the new process has the foreign real address 1228 * mappings, we must issue a cp_abort to clear any state and 1229 * prevent snooping, corruption or a covert channel. 1230 */ 1231 if (current->thread.used_vas) 1232 asm volatile(PPC_CP_ABORT); 1233 } 1234 #endif /* CONFIG_PPC_BOOK3S_64 */ 1235 1236 return last; 1237 } 1238 1239 #define NR_INSN_TO_PRINT 16 1240 1241 static void show_instructions(struct pt_regs *regs) 1242 { 1243 int i; 1244 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1245 1246 printk("Instruction dump:"); 1247 1248 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1249 int instr; 1250 1251 if (!(i % 8)) 1252 pr_cont("\n"); 1253 1254 #if !defined(CONFIG_BOOKE) 1255 /* If executing with the IMMU off, adjust pc rather 1256 * than print XXXXXXXX. 1257 */ 1258 if (!(regs->msr & MSR_IR)) 1259 pc = (unsigned long)phys_to_virt(pc); 1260 #endif 1261 1262 if (!__kernel_text_address(pc) || 1263 probe_kernel_address((const void *)pc, instr)) { 1264 pr_cont("XXXXXXXX "); 1265 } else { 1266 if (regs->nip == pc) 1267 pr_cont("<%08x> ", instr); 1268 else 1269 pr_cont("%08x ", instr); 1270 } 1271 1272 pc += sizeof(int); 1273 } 1274 1275 pr_cont("\n"); 1276 } 1277 1278 void show_user_instructions(struct pt_regs *regs) 1279 { 1280 unsigned long pc; 1281 int n = NR_INSN_TO_PRINT; 1282 struct seq_buf s; 1283 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1284 1285 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1286 1287 seq_buf_init(&s, buf, sizeof(buf)); 1288 1289 while (n) { 1290 int i; 1291 1292 seq_buf_clear(&s); 1293 1294 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1295 int instr; 1296 1297 if (probe_user_read(&instr, (void __user *)pc, sizeof(instr))) { 1298 seq_buf_printf(&s, "XXXXXXXX "); 1299 continue; 1300 } 1301 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1302 } 1303 1304 if (!seq_buf_has_overflowed(&s)) 1305 pr_info("%s[%d]: code: %s\n", current->comm, 1306 current->pid, s.buffer); 1307 } 1308 } 1309 1310 struct regbit { 1311 unsigned long bit; 1312 const char *name; 1313 }; 1314 1315 static struct regbit msr_bits[] = { 1316 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1317 {MSR_SF, "SF"}, 1318 {MSR_HV, "HV"}, 1319 #endif 1320 {MSR_VEC, "VEC"}, 1321 {MSR_VSX, "VSX"}, 1322 #ifdef CONFIG_BOOKE 1323 {MSR_CE, "CE"}, 1324 #endif 1325 {MSR_EE, "EE"}, 1326 {MSR_PR, "PR"}, 1327 {MSR_FP, "FP"}, 1328 {MSR_ME, "ME"}, 1329 #ifdef CONFIG_BOOKE 1330 {MSR_DE, "DE"}, 1331 #else 1332 {MSR_SE, "SE"}, 1333 {MSR_BE, "BE"}, 1334 #endif 1335 {MSR_IR, "IR"}, 1336 {MSR_DR, "DR"}, 1337 {MSR_PMM, "PMM"}, 1338 #ifndef CONFIG_BOOKE 1339 {MSR_RI, "RI"}, 1340 {MSR_LE, "LE"}, 1341 #endif 1342 {0, NULL} 1343 }; 1344 1345 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1346 { 1347 const char *s = ""; 1348 1349 for (; bits->bit; ++bits) 1350 if (val & bits->bit) { 1351 pr_cont("%s%s", s, bits->name); 1352 s = sep; 1353 } 1354 } 1355 1356 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1357 static struct regbit msr_tm_bits[] = { 1358 {MSR_TS_T, "T"}, 1359 {MSR_TS_S, "S"}, 1360 {MSR_TM, "E"}, 1361 {0, NULL} 1362 }; 1363 1364 static void print_tm_bits(unsigned long val) 1365 { 1366 /* 1367 * This only prints something if at least one of the TM bit is set. 1368 * Inside the TM[], the output means: 1369 * E: Enabled (bit 32) 1370 * S: Suspended (bit 33) 1371 * T: Transactional (bit 34) 1372 */ 1373 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1374 pr_cont(",TM["); 1375 print_bits(val, msr_tm_bits, ""); 1376 pr_cont("]"); 1377 } 1378 } 1379 #else 1380 static void print_tm_bits(unsigned long val) {} 1381 #endif 1382 1383 static void print_msr_bits(unsigned long val) 1384 { 1385 pr_cont("<"); 1386 print_bits(val, msr_bits, ","); 1387 print_tm_bits(val); 1388 pr_cont(">"); 1389 } 1390 1391 #ifdef CONFIG_PPC64 1392 #define REG "%016lx" 1393 #define REGS_PER_LINE 4 1394 #define LAST_VOLATILE 13 1395 #else 1396 #define REG "%08lx" 1397 #define REGS_PER_LINE 8 1398 #define LAST_VOLATILE 12 1399 #endif 1400 1401 void show_regs(struct pt_regs * regs) 1402 { 1403 int i, trap; 1404 1405 show_regs_print_info(KERN_DEFAULT); 1406 1407 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1408 regs->nip, regs->link, regs->ctr); 1409 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1410 regs, regs->trap, print_tainted(), init_utsname()->release); 1411 printk("MSR: "REG" ", regs->msr); 1412 print_msr_bits(regs->msr); 1413 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1414 trap = TRAP(regs); 1415 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1416 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1417 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1418 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1419 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1420 #else 1421 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1422 #endif 1423 #ifdef CONFIG_PPC64 1424 pr_cont("IRQMASK: %lx ", regs->softe); 1425 #endif 1426 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1427 if (MSR_TM_ACTIVE(regs->msr)) 1428 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1429 #endif 1430 1431 for (i = 0; i < 32; i++) { 1432 if ((i % REGS_PER_LINE) == 0) 1433 pr_cont("\nGPR%02d: ", i); 1434 pr_cont(REG " ", regs->gpr[i]); 1435 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1436 break; 1437 } 1438 pr_cont("\n"); 1439 #ifdef CONFIG_KALLSYMS 1440 /* 1441 * Lookup NIP late so we have the best change of getting the 1442 * above info out without failing 1443 */ 1444 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1445 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1446 #endif 1447 show_stack(current, (unsigned long *) regs->gpr[1]); 1448 if (!user_mode(regs)) 1449 show_instructions(regs); 1450 } 1451 1452 void flush_thread(void) 1453 { 1454 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1455 flush_ptrace_hw_breakpoint(current); 1456 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1457 set_debug_reg_defaults(¤t->thread); 1458 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1459 } 1460 1461 #ifdef CONFIG_PPC_BOOK3S_64 1462 void arch_setup_new_exec(void) 1463 { 1464 if (radix_enabled()) 1465 return; 1466 hash__setup_new_exec(); 1467 } 1468 #endif 1469 1470 int set_thread_uses_vas(void) 1471 { 1472 #ifdef CONFIG_PPC_BOOK3S_64 1473 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1474 return -EINVAL; 1475 1476 current->thread.used_vas = 1; 1477 1478 /* 1479 * Even a process that has no foreign real address mapping can use 1480 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1481 * to clear any pending COPY and prevent a covert channel. 1482 * 1483 * __switch_to() will issue CP_ABORT on future context switches. 1484 */ 1485 asm volatile(PPC_CP_ABORT); 1486 1487 #endif /* CONFIG_PPC_BOOK3S_64 */ 1488 return 0; 1489 } 1490 1491 #ifdef CONFIG_PPC64 1492 /** 1493 * Assign a TIDR (thread ID) for task @t and set it in the thread 1494 * structure. For now, we only support setting TIDR for 'current' task. 1495 * 1496 * Since the TID value is a truncated form of it PID, it is possible 1497 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1498 * that 2 threads share the same TID and are waiting, one of the following 1499 * cases will happen: 1500 * 1501 * 1. The correct thread is running, the wrong thread is not 1502 * In this situation, the correct thread is woken and proceeds to pass it's 1503 * condition check. 1504 * 1505 * 2. Neither threads are running 1506 * In this situation, neither thread will be woken. When scheduled, the waiting 1507 * threads will execute either a wait, which will return immediately, followed 1508 * by a condition check, which will pass for the correct thread and fail 1509 * for the wrong thread, or they will execute the condition check immediately. 1510 * 1511 * 3. The wrong thread is running, the correct thread is not 1512 * The wrong thread will be woken, but will fail it's condition check and 1513 * re-execute wait. The correct thread, when scheduled, will execute either 1514 * it's condition check (which will pass), or wait, which returns immediately 1515 * when called the first time after the thread is scheduled, followed by it's 1516 * condition check (which will pass). 1517 * 1518 * 4. Both threads are running 1519 * Both threads will be woken. The wrong thread will fail it's condition check 1520 * and execute another wait, while the correct thread will pass it's condition 1521 * check. 1522 * 1523 * @t: the task to set the thread ID for 1524 */ 1525 int set_thread_tidr(struct task_struct *t) 1526 { 1527 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1528 return -EINVAL; 1529 1530 if (t != current) 1531 return -EINVAL; 1532 1533 if (t->thread.tidr) 1534 return 0; 1535 1536 t->thread.tidr = (u16)task_pid_nr(t); 1537 mtspr(SPRN_TIDR, t->thread.tidr); 1538 1539 return 0; 1540 } 1541 EXPORT_SYMBOL_GPL(set_thread_tidr); 1542 1543 #endif /* CONFIG_PPC64 */ 1544 1545 void 1546 release_thread(struct task_struct *t) 1547 { 1548 } 1549 1550 /* 1551 * this gets called so that we can store coprocessor state into memory and 1552 * copy the current task into the new thread. 1553 */ 1554 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1555 { 1556 flush_all_to_thread(src); 1557 /* 1558 * Flush TM state out so we can copy it. __switch_to_tm() does this 1559 * flush but it removes the checkpointed state from the current CPU and 1560 * transitions the CPU out of TM mode. Hence we need to call 1561 * tm_recheckpoint_new_task() (on the same task) to restore the 1562 * checkpointed state back and the TM mode. 1563 * 1564 * Can't pass dst because it isn't ready. Doesn't matter, passing 1565 * dst is only important for __switch_to() 1566 */ 1567 __switch_to_tm(src, src); 1568 1569 *dst = *src; 1570 1571 clear_task_ebb(dst); 1572 1573 return 0; 1574 } 1575 1576 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1577 { 1578 #ifdef CONFIG_PPC_BOOK3S_64 1579 unsigned long sp_vsid; 1580 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1581 1582 if (radix_enabled()) 1583 return; 1584 1585 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1586 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1587 << SLB_VSID_SHIFT_1T; 1588 else 1589 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1590 << SLB_VSID_SHIFT; 1591 sp_vsid |= SLB_VSID_KERNEL | llp; 1592 p->thread.ksp_vsid = sp_vsid; 1593 #endif 1594 } 1595 1596 /* 1597 * Copy a thread.. 1598 */ 1599 1600 /* 1601 * Copy architecture-specific thread state 1602 */ 1603 int copy_thread_tls(unsigned long clone_flags, unsigned long usp, 1604 unsigned long kthread_arg, struct task_struct *p, 1605 unsigned long tls) 1606 { 1607 struct pt_regs *childregs, *kregs; 1608 extern void ret_from_fork(void); 1609 extern void ret_from_kernel_thread(void); 1610 void (*f)(void); 1611 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1612 struct thread_info *ti = task_thread_info(p); 1613 1614 klp_init_thread_info(p); 1615 1616 /* Copy registers */ 1617 sp -= sizeof(struct pt_regs); 1618 childregs = (struct pt_regs *) sp; 1619 if (unlikely(p->flags & PF_KTHREAD)) { 1620 /* kernel thread */ 1621 memset(childregs, 0, sizeof(struct pt_regs)); 1622 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1623 /* function */ 1624 if (usp) 1625 childregs->gpr[14] = ppc_function_entry((void *)usp); 1626 #ifdef CONFIG_PPC64 1627 clear_tsk_thread_flag(p, TIF_32BIT); 1628 childregs->softe = IRQS_ENABLED; 1629 #endif 1630 childregs->gpr[15] = kthread_arg; 1631 p->thread.regs = NULL; /* no user register state */ 1632 ti->flags |= _TIF_RESTOREALL; 1633 f = ret_from_kernel_thread; 1634 } else { 1635 /* user thread */ 1636 struct pt_regs *regs = current_pt_regs(); 1637 CHECK_FULL_REGS(regs); 1638 *childregs = *regs; 1639 if (usp) 1640 childregs->gpr[1] = usp; 1641 p->thread.regs = childregs; 1642 childregs->gpr[3] = 0; /* Result from fork() */ 1643 if (clone_flags & CLONE_SETTLS) { 1644 if (!is_32bit_task()) 1645 childregs->gpr[13] = tls; 1646 else 1647 childregs->gpr[2] = tls; 1648 } 1649 1650 f = ret_from_fork; 1651 } 1652 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1653 sp -= STACK_FRAME_OVERHEAD; 1654 1655 /* 1656 * The way this works is that at some point in the future 1657 * some task will call _switch to switch to the new task. 1658 * That will pop off the stack frame created below and start 1659 * the new task running at ret_from_fork. The new task will 1660 * do some house keeping and then return from the fork or clone 1661 * system call, using the stack frame created above. 1662 */ 1663 ((unsigned long *)sp)[0] = 0; 1664 sp -= sizeof(struct pt_regs); 1665 kregs = (struct pt_regs *) sp; 1666 sp -= STACK_FRAME_OVERHEAD; 1667 p->thread.ksp = sp; 1668 #ifdef CONFIG_PPC32 1669 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1670 #endif 1671 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1672 p->thread.ptrace_bps[0] = NULL; 1673 #endif 1674 1675 p->thread.fp_save_area = NULL; 1676 #ifdef CONFIG_ALTIVEC 1677 p->thread.vr_save_area = NULL; 1678 #endif 1679 1680 setup_ksp_vsid(p, sp); 1681 1682 #ifdef CONFIG_PPC64 1683 if (cpu_has_feature(CPU_FTR_DSCR)) { 1684 p->thread.dscr_inherit = current->thread.dscr_inherit; 1685 p->thread.dscr = mfspr(SPRN_DSCR); 1686 } 1687 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1688 childregs->ppr = DEFAULT_PPR; 1689 1690 p->thread.tidr = 0; 1691 #endif 1692 kregs->nip = ppc_function_entry(f); 1693 return 0; 1694 } 1695 1696 void preload_new_slb_context(unsigned long start, unsigned long sp); 1697 1698 /* 1699 * Set up a thread for executing a new program 1700 */ 1701 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1702 { 1703 #ifdef CONFIG_PPC64 1704 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1705 1706 #ifdef CONFIG_PPC_BOOK3S_64 1707 if (!radix_enabled()) 1708 preload_new_slb_context(start, sp); 1709 #endif 1710 #endif 1711 1712 /* 1713 * If we exec out of a kernel thread then thread.regs will not be 1714 * set. Do it now. 1715 */ 1716 if (!current->thread.regs) { 1717 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1718 current->thread.regs = regs - 1; 1719 } 1720 1721 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1722 /* 1723 * Clear any transactional state, we're exec()ing. The cause is 1724 * not important as there will never be a recheckpoint so it's not 1725 * user visible. 1726 */ 1727 if (MSR_TM_SUSPENDED(mfmsr())) 1728 tm_reclaim_current(0); 1729 #endif 1730 1731 memset(regs->gpr, 0, sizeof(regs->gpr)); 1732 regs->ctr = 0; 1733 regs->link = 0; 1734 regs->xer = 0; 1735 regs->ccr = 0; 1736 regs->gpr[1] = sp; 1737 1738 /* 1739 * We have just cleared all the nonvolatile GPRs, so make 1740 * FULL_REGS(regs) return true. This is necessary to allow 1741 * ptrace to examine the thread immediately after exec. 1742 */ 1743 regs->trap &= ~1UL; 1744 1745 #ifdef CONFIG_PPC32 1746 regs->mq = 0; 1747 regs->nip = start; 1748 regs->msr = MSR_USER; 1749 #else 1750 if (!is_32bit_task()) { 1751 unsigned long entry; 1752 1753 if (is_elf2_task()) { 1754 /* Look ma, no function descriptors! */ 1755 entry = start; 1756 1757 /* 1758 * Ulrich says: 1759 * The latest iteration of the ABI requires that when 1760 * calling a function (at its global entry point), 1761 * the caller must ensure r12 holds the entry point 1762 * address (so that the function can quickly 1763 * establish addressability). 1764 */ 1765 regs->gpr[12] = start; 1766 /* Make sure that's restored on entry to userspace. */ 1767 set_thread_flag(TIF_RESTOREALL); 1768 } else { 1769 unsigned long toc; 1770 1771 /* start is a relocated pointer to the function 1772 * descriptor for the elf _start routine. The first 1773 * entry in the function descriptor is the entry 1774 * address of _start and the second entry is the TOC 1775 * value we need to use. 1776 */ 1777 __get_user(entry, (unsigned long __user *)start); 1778 __get_user(toc, (unsigned long __user *)start+1); 1779 1780 /* Check whether the e_entry function descriptor entries 1781 * need to be relocated before we can use them. 1782 */ 1783 if (load_addr != 0) { 1784 entry += load_addr; 1785 toc += load_addr; 1786 } 1787 regs->gpr[2] = toc; 1788 } 1789 regs->nip = entry; 1790 regs->msr = MSR_USER64; 1791 } else { 1792 regs->nip = start; 1793 regs->gpr[2] = 0; 1794 regs->msr = MSR_USER32; 1795 } 1796 #endif 1797 #ifdef CONFIG_VSX 1798 current->thread.used_vsr = 0; 1799 #endif 1800 current->thread.load_slb = 0; 1801 current->thread.load_fp = 0; 1802 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1803 current->thread.fp_save_area = NULL; 1804 #ifdef CONFIG_ALTIVEC 1805 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1806 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1807 current->thread.vr_save_area = NULL; 1808 current->thread.vrsave = 0; 1809 current->thread.used_vr = 0; 1810 current->thread.load_vec = 0; 1811 #endif /* CONFIG_ALTIVEC */ 1812 #ifdef CONFIG_SPE 1813 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1814 current->thread.acc = 0; 1815 current->thread.spefscr = 0; 1816 current->thread.used_spe = 0; 1817 #endif /* CONFIG_SPE */ 1818 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1819 current->thread.tm_tfhar = 0; 1820 current->thread.tm_texasr = 0; 1821 current->thread.tm_tfiar = 0; 1822 current->thread.load_tm = 0; 1823 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1824 1825 thread_pkey_regs_init(¤t->thread); 1826 } 1827 EXPORT_SYMBOL(start_thread); 1828 1829 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1830 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1831 1832 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1833 { 1834 struct pt_regs *regs = tsk->thread.regs; 1835 1836 /* This is a bit hairy. If we are an SPE enabled processor 1837 * (have embedded fp) we store the IEEE exception enable flags in 1838 * fpexc_mode. fpexc_mode is also used for setting FP exception 1839 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1840 if (val & PR_FP_EXC_SW_ENABLE) { 1841 #ifdef CONFIG_SPE 1842 if (cpu_has_feature(CPU_FTR_SPE)) { 1843 /* 1844 * When the sticky exception bits are set 1845 * directly by userspace, it must call prctl 1846 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1847 * in the existing prctl settings) or 1848 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1849 * the bits being set). <fenv.h> functions 1850 * saving and restoring the whole 1851 * floating-point environment need to do so 1852 * anyway to restore the prctl settings from 1853 * the saved environment. 1854 */ 1855 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1856 tsk->thread.fpexc_mode = val & 1857 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1858 return 0; 1859 } else { 1860 return -EINVAL; 1861 } 1862 #else 1863 return -EINVAL; 1864 #endif 1865 } 1866 1867 /* on a CONFIG_SPE this does not hurt us. The bits that 1868 * __pack_fe01 use do not overlap with bits used for 1869 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1870 * on CONFIG_SPE implementations are reserved so writing to 1871 * them does not change anything */ 1872 if (val > PR_FP_EXC_PRECISE) 1873 return -EINVAL; 1874 tsk->thread.fpexc_mode = __pack_fe01(val); 1875 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1876 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1877 | tsk->thread.fpexc_mode; 1878 return 0; 1879 } 1880 1881 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1882 { 1883 unsigned int val; 1884 1885 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1886 #ifdef CONFIG_SPE 1887 if (cpu_has_feature(CPU_FTR_SPE)) { 1888 /* 1889 * When the sticky exception bits are set 1890 * directly by userspace, it must call prctl 1891 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1892 * in the existing prctl settings) or 1893 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1894 * the bits being set). <fenv.h> functions 1895 * saving and restoring the whole 1896 * floating-point environment need to do so 1897 * anyway to restore the prctl settings from 1898 * the saved environment. 1899 */ 1900 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1901 val = tsk->thread.fpexc_mode; 1902 } else 1903 return -EINVAL; 1904 #else 1905 return -EINVAL; 1906 #endif 1907 else 1908 val = __unpack_fe01(tsk->thread.fpexc_mode); 1909 return put_user(val, (unsigned int __user *) adr); 1910 } 1911 1912 int set_endian(struct task_struct *tsk, unsigned int val) 1913 { 1914 struct pt_regs *regs = tsk->thread.regs; 1915 1916 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1917 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1918 return -EINVAL; 1919 1920 if (regs == NULL) 1921 return -EINVAL; 1922 1923 if (val == PR_ENDIAN_BIG) 1924 regs->msr &= ~MSR_LE; 1925 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1926 regs->msr |= MSR_LE; 1927 else 1928 return -EINVAL; 1929 1930 return 0; 1931 } 1932 1933 int get_endian(struct task_struct *tsk, unsigned long adr) 1934 { 1935 struct pt_regs *regs = tsk->thread.regs; 1936 unsigned int val; 1937 1938 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1939 !cpu_has_feature(CPU_FTR_REAL_LE)) 1940 return -EINVAL; 1941 1942 if (regs == NULL) 1943 return -EINVAL; 1944 1945 if (regs->msr & MSR_LE) { 1946 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1947 val = PR_ENDIAN_LITTLE; 1948 else 1949 val = PR_ENDIAN_PPC_LITTLE; 1950 } else 1951 val = PR_ENDIAN_BIG; 1952 1953 return put_user(val, (unsigned int __user *)adr); 1954 } 1955 1956 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1957 { 1958 tsk->thread.align_ctl = val; 1959 return 0; 1960 } 1961 1962 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1963 { 1964 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1965 } 1966 1967 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1968 unsigned long nbytes) 1969 { 1970 unsigned long stack_page; 1971 unsigned long cpu = task_cpu(p); 1972 1973 stack_page = (unsigned long)hardirq_ctx[cpu]; 1974 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1975 return 1; 1976 1977 stack_page = (unsigned long)softirq_ctx[cpu]; 1978 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1979 return 1; 1980 1981 return 0; 1982 } 1983 1984 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p, 1985 unsigned long nbytes) 1986 { 1987 #ifdef CONFIG_PPC64 1988 unsigned long stack_page; 1989 unsigned long cpu = task_cpu(p); 1990 1991 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE; 1992 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1993 return 1; 1994 1995 # ifdef CONFIG_PPC_BOOK3S_64 1996 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE; 1997 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1998 return 1; 1999 2000 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE; 2001 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2002 return 1; 2003 # endif 2004 #endif 2005 2006 return 0; 2007 } 2008 2009 2010 int validate_sp(unsigned long sp, struct task_struct *p, 2011 unsigned long nbytes) 2012 { 2013 unsigned long stack_page = (unsigned long)task_stack_page(p); 2014 2015 if (sp < THREAD_SIZE) 2016 return 0; 2017 2018 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2019 return 1; 2020 2021 if (valid_irq_stack(sp, p, nbytes)) 2022 return 1; 2023 2024 return valid_emergency_stack(sp, p, nbytes); 2025 } 2026 2027 EXPORT_SYMBOL(validate_sp); 2028 2029 static unsigned long __get_wchan(struct task_struct *p) 2030 { 2031 unsigned long ip, sp; 2032 int count = 0; 2033 2034 if (!p || p == current || p->state == TASK_RUNNING) 2035 return 0; 2036 2037 sp = p->thread.ksp; 2038 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2039 return 0; 2040 2041 do { 2042 sp = *(unsigned long *)sp; 2043 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2044 p->state == TASK_RUNNING) 2045 return 0; 2046 if (count > 0) { 2047 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2048 if (!in_sched_functions(ip)) 2049 return ip; 2050 } 2051 } while (count++ < 16); 2052 return 0; 2053 } 2054 2055 unsigned long get_wchan(struct task_struct *p) 2056 { 2057 unsigned long ret; 2058 2059 if (!try_get_task_stack(p)) 2060 return 0; 2061 2062 ret = __get_wchan(p); 2063 2064 put_task_stack(p); 2065 2066 return ret; 2067 } 2068 2069 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2070 2071 void show_stack(struct task_struct *tsk, unsigned long *stack) 2072 { 2073 unsigned long sp, ip, lr, newsp; 2074 int count = 0; 2075 int firstframe = 1; 2076 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2077 unsigned long ret_addr; 2078 int ftrace_idx = 0; 2079 #endif 2080 2081 if (tsk == NULL) 2082 tsk = current; 2083 2084 if (!try_get_task_stack(tsk)) 2085 return; 2086 2087 sp = (unsigned long) stack; 2088 if (sp == 0) { 2089 if (tsk == current) 2090 sp = current_stack_frame(); 2091 else 2092 sp = tsk->thread.ksp; 2093 } 2094 2095 lr = 0; 2096 printk("Call Trace:\n"); 2097 do { 2098 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2099 break; 2100 2101 stack = (unsigned long *) sp; 2102 newsp = stack[0]; 2103 ip = stack[STACK_FRAME_LR_SAVE]; 2104 if (!firstframe || ip != lr) { 2105 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2106 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2107 ret_addr = ftrace_graph_ret_addr(current, 2108 &ftrace_idx, ip, stack); 2109 if (ret_addr != ip) 2110 pr_cont(" (%pS)", (void *)ret_addr); 2111 #endif 2112 if (firstframe) 2113 pr_cont(" (unreliable)"); 2114 pr_cont("\n"); 2115 } 2116 firstframe = 0; 2117 2118 /* 2119 * See if this is an exception frame. 2120 * We look for the "regshere" marker in the current frame. 2121 */ 2122 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2123 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2124 struct pt_regs *regs = (struct pt_regs *) 2125 (sp + STACK_FRAME_OVERHEAD); 2126 lr = regs->link; 2127 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2128 regs->trap, (void *)regs->nip, (void *)lr); 2129 firstframe = 1; 2130 } 2131 2132 sp = newsp; 2133 } while (count++ < kstack_depth_to_print); 2134 2135 put_task_stack(tsk); 2136 } 2137 2138 #ifdef CONFIG_PPC64 2139 /* Called with hard IRQs off */ 2140 void notrace __ppc64_runlatch_on(void) 2141 { 2142 struct thread_info *ti = current_thread_info(); 2143 2144 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2145 /* 2146 * Least significant bit (RUN) is the only writable bit of 2147 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2148 * earliest ISA where this is the case, but it's convenient. 2149 */ 2150 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2151 } else { 2152 unsigned long ctrl; 2153 2154 /* 2155 * Some architectures (e.g., Cell) have writable fields other 2156 * than RUN, so do the read-modify-write. 2157 */ 2158 ctrl = mfspr(SPRN_CTRLF); 2159 ctrl |= CTRL_RUNLATCH; 2160 mtspr(SPRN_CTRLT, ctrl); 2161 } 2162 2163 ti->local_flags |= _TLF_RUNLATCH; 2164 } 2165 2166 /* Called with hard IRQs off */ 2167 void notrace __ppc64_runlatch_off(void) 2168 { 2169 struct thread_info *ti = current_thread_info(); 2170 2171 ti->local_flags &= ~_TLF_RUNLATCH; 2172 2173 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2174 mtspr(SPRN_CTRLT, 0); 2175 } else { 2176 unsigned long ctrl; 2177 2178 ctrl = mfspr(SPRN_CTRLF); 2179 ctrl &= ~CTRL_RUNLATCH; 2180 mtspr(SPRN_CTRLT, ctrl); 2181 } 2182 } 2183 #endif /* CONFIG_PPC64 */ 2184 2185 unsigned long arch_align_stack(unsigned long sp) 2186 { 2187 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2188 sp -= get_random_int() & ~PAGE_MASK; 2189 return sp & ~0xf; 2190 } 2191 2192 static inline unsigned long brk_rnd(void) 2193 { 2194 unsigned long rnd = 0; 2195 2196 /* 8MB for 32bit, 1GB for 64bit */ 2197 if (is_32bit_task()) 2198 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2199 else 2200 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2201 2202 return rnd << PAGE_SHIFT; 2203 } 2204 2205 unsigned long arch_randomize_brk(struct mm_struct *mm) 2206 { 2207 unsigned long base = mm->brk; 2208 unsigned long ret; 2209 2210 #ifdef CONFIG_PPC_BOOK3S_64 2211 /* 2212 * If we are using 1TB segments and we are allowed to randomise 2213 * the heap, we can put it above 1TB so it is backed by a 1TB 2214 * segment. Otherwise the heap will be in the bottom 1TB 2215 * which always uses 256MB segments and this may result in a 2216 * performance penalty. We don't need to worry about radix. For 2217 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2218 */ 2219 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2220 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2221 #endif 2222 2223 ret = PAGE_ALIGN(base + brk_rnd()); 2224 2225 if (ret < mm->brk) 2226 return mm->brk; 2227 2228 return ret; 2229 } 2230 2231