xref: /linux/arch/powerpc/kernel/process.c (revision 2b64b2ed277ff23e785fbdb65098ee7e1252d64f)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 #include <linux/seq_buf.h>
47 
48 #include <asm/pgtable.h>
49 #include <asm/io.h>
50 #include <asm/processor.h>
51 #include <asm/mmu.h>
52 #include <asm/prom.h>
53 #include <asm/machdep.h>
54 #include <asm/time.h>
55 #include <asm/runlatch.h>
56 #include <asm/syscalls.h>
57 #include <asm/switch_to.h>
58 #include <asm/tm.h>
59 #include <asm/debug.h>
60 #ifdef CONFIG_PPC64
61 #include <asm/firmware.h>
62 #include <asm/hw_irq.h>
63 #endif
64 #include <asm/code-patching.h>
65 #include <asm/exec.h>
66 #include <asm/livepatch.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/asm-prototypes.h>
69 #include <asm/stacktrace.h>
70 
71 #include <linux/kprobes.h>
72 #include <linux/kdebug.h>
73 
74 /* Transactional Memory debug */
75 #ifdef TM_DEBUG_SW
76 #define TM_DEBUG(x...) printk(KERN_INFO x)
77 #else
78 #define TM_DEBUG(x...) do { } while(0)
79 #endif
80 
81 extern unsigned long _get_SP(void);
82 
83 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
84 /*
85  * Are we running in "Suspend disabled" mode? If so we have to block any
86  * sigreturn that would get us into suspended state, and we also warn in some
87  * other paths that we should never reach with suspend disabled.
88  */
89 bool tm_suspend_disabled __ro_after_init = false;
90 
91 static void check_if_tm_restore_required(struct task_struct *tsk)
92 {
93 	/*
94 	 * If we are saving the current thread's registers, and the
95 	 * thread is in a transactional state, set the TIF_RESTORE_TM
96 	 * bit so that we know to restore the registers before
97 	 * returning to userspace.
98 	 */
99 	if (tsk == current && tsk->thread.regs &&
100 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
101 	    !test_thread_flag(TIF_RESTORE_TM)) {
102 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
103 		set_thread_flag(TIF_RESTORE_TM);
104 	}
105 }
106 
107 static bool tm_active_with_fp(struct task_struct *tsk)
108 {
109 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
110 		(tsk->thread.ckpt_regs.msr & MSR_FP);
111 }
112 
113 static bool tm_active_with_altivec(struct task_struct *tsk)
114 {
115 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
116 		(tsk->thread.ckpt_regs.msr & MSR_VEC);
117 }
118 #else
119 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
120 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
121 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
122 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
123 
124 bool strict_msr_control;
125 EXPORT_SYMBOL(strict_msr_control);
126 
127 static int __init enable_strict_msr_control(char *str)
128 {
129 	strict_msr_control = true;
130 	pr_info("Enabling strict facility control\n");
131 
132 	return 0;
133 }
134 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
135 
136 unsigned long msr_check_and_set(unsigned long bits)
137 {
138 	unsigned long oldmsr = mfmsr();
139 	unsigned long newmsr;
140 
141 	newmsr = oldmsr | bits;
142 
143 #ifdef CONFIG_VSX
144 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
145 		newmsr |= MSR_VSX;
146 #endif
147 
148 	if (oldmsr != newmsr)
149 		mtmsr_isync(newmsr);
150 
151 	return newmsr;
152 }
153 EXPORT_SYMBOL_GPL(msr_check_and_set);
154 
155 void __msr_check_and_clear(unsigned long bits)
156 {
157 	unsigned long oldmsr = mfmsr();
158 	unsigned long newmsr;
159 
160 	newmsr = oldmsr & ~bits;
161 
162 #ifdef CONFIG_VSX
163 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
164 		newmsr &= ~MSR_VSX;
165 #endif
166 
167 	if (oldmsr != newmsr)
168 		mtmsr_isync(newmsr);
169 }
170 EXPORT_SYMBOL(__msr_check_and_clear);
171 
172 #ifdef CONFIG_PPC_FPU
173 static void __giveup_fpu(struct task_struct *tsk)
174 {
175 	unsigned long msr;
176 
177 	save_fpu(tsk);
178 	msr = tsk->thread.regs->msr;
179 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
180 #ifdef CONFIG_VSX
181 	if (cpu_has_feature(CPU_FTR_VSX))
182 		msr &= ~MSR_VSX;
183 #endif
184 	tsk->thread.regs->msr = msr;
185 }
186 
187 void giveup_fpu(struct task_struct *tsk)
188 {
189 	check_if_tm_restore_required(tsk);
190 
191 	msr_check_and_set(MSR_FP);
192 	__giveup_fpu(tsk);
193 	msr_check_and_clear(MSR_FP);
194 }
195 EXPORT_SYMBOL(giveup_fpu);
196 
197 /*
198  * Make sure the floating-point register state in the
199  * the thread_struct is up to date for task tsk.
200  */
201 void flush_fp_to_thread(struct task_struct *tsk)
202 {
203 	if (tsk->thread.regs) {
204 		/*
205 		 * We need to disable preemption here because if we didn't,
206 		 * another process could get scheduled after the regs->msr
207 		 * test but before we have finished saving the FP registers
208 		 * to the thread_struct.  That process could take over the
209 		 * FPU, and then when we get scheduled again we would store
210 		 * bogus values for the remaining FP registers.
211 		 */
212 		preempt_disable();
213 		if (tsk->thread.regs->msr & MSR_FP) {
214 			/*
215 			 * This should only ever be called for current or
216 			 * for a stopped child process.  Since we save away
217 			 * the FP register state on context switch,
218 			 * there is something wrong if a stopped child appears
219 			 * to still have its FP state in the CPU registers.
220 			 */
221 			BUG_ON(tsk != current);
222 			giveup_fpu(tsk);
223 		}
224 		preempt_enable();
225 	}
226 }
227 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
228 
229 void enable_kernel_fp(void)
230 {
231 	unsigned long cpumsr;
232 
233 	WARN_ON(preemptible());
234 
235 	cpumsr = msr_check_and_set(MSR_FP);
236 
237 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
238 		check_if_tm_restore_required(current);
239 		/*
240 		 * If a thread has already been reclaimed then the
241 		 * checkpointed registers are on the CPU but have definitely
242 		 * been saved by the reclaim code. Don't need to and *cannot*
243 		 * giveup as this would save  to the 'live' structure not the
244 		 * checkpointed structure.
245 		 */
246 		if (!MSR_TM_ACTIVE(cpumsr) &&
247 		     MSR_TM_ACTIVE(current->thread.regs->msr))
248 			return;
249 		__giveup_fpu(current);
250 	}
251 }
252 EXPORT_SYMBOL(enable_kernel_fp);
253 
254 static int restore_fp(struct task_struct *tsk)
255 {
256 	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
257 		load_fp_state(&current->thread.fp_state);
258 		current->thread.load_fp++;
259 		return 1;
260 	}
261 	return 0;
262 }
263 #else
264 static int restore_fp(struct task_struct *tsk) { return 0; }
265 #endif /* CONFIG_PPC_FPU */
266 
267 #ifdef CONFIG_ALTIVEC
268 #define loadvec(thr) ((thr).load_vec)
269 
270 static void __giveup_altivec(struct task_struct *tsk)
271 {
272 	unsigned long msr;
273 
274 	save_altivec(tsk);
275 	msr = tsk->thread.regs->msr;
276 	msr &= ~MSR_VEC;
277 #ifdef CONFIG_VSX
278 	if (cpu_has_feature(CPU_FTR_VSX))
279 		msr &= ~MSR_VSX;
280 #endif
281 	tsk->thread.regs->msr = msr;
282 }
283 
284 void giveup_altivec(struct task_struct *tsk)
285 {
286 	check_if_tm_restore_required(tsk);
287 
288 	msr_check_and_set(MSR_VEC);
289 	__giveup_altivec(tsk);
290 	msr_check_and_clear(MSR_VEC);
291 }
292 EXPORT_SYMBOL(giveup_altivec);
293 
294 void enable_kernel_altivec(void)
295 {
296 	unsigned long cpumsr;
297 
298 	WARN_ON(preemptible());
299 
300 	cpumsr = msr_check_and_set(MSR_VEC);
301 
302 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
303 		check_if_tm_restore_required(current);
304 		/*
305 		 * If a thread has already been reclaimed then the
306 		 * checkpointed registers are on the CPU but have definitely
307 		 * been saved by the reclaim code. Don't need to and *cannot*
308 		 * giveup as this would save  to the 'live' structure not the
309 		 * checkpointed structure.
310 		 */
311 		if (!MSR_TM_ACTIVE(cpumsr) &&
312 		     MSR_TM_ACTIVE(current->thread.regs->msr))
313 			return;
314 		__giveup_altivec(current);
315 	}
316 }
317 EXPORT_SYMBOL(enable_kernel_altivec);
318 
319 /*
320  * Make sure the VMX/Altivec register state in the
321  * the thread_struct is up to date for task tsk.
322  */
323 void flush_altivec_to_thread(struct task_struct *tsk)
324 {
325 	if (tsk->thread.regs) {
326 		preempt_disable();
327 		if (tsk->thread.regs->msr & MSR_VEC) {
328 			BUG_ON(tsk != current);
329 			giveup_altivec(tsk);
330 		}
331 		preempt_enable();
332 	}
333 }
334 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
335 
336 static int restore_altivec(struct task_struct *tsk)
337 {
338 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
339 		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
340 		load_vr_state(&tsk->thread.vr_state);
341 		tsk->thread.used_vr = 1;
342 		tsk->thread.load_vec++;
343 
344 		return 1;
345 	}
346 	return 0;
347 }
348 #else
349 #define loadvec(thr) 0
350 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
351 #endif /* CONFIG_ALTIVEC */
352 
353 #ifdef CONFIG_VSX
354 static void __giveup_vsx(struct task_struct *tsk)
355 {
356 	unsigned long msr = tsk->thread.regs->msr;
357 
358 	/*
359 	 * We should never be ssetting MSR_VSX without also setting
360 	 * MSR_FP and MSR_VEC
361 	 */
362 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
363 
364 	/* __giveup_fpu will clear MSR_VSX */
365 	if (msr & MSR_FP)
366 		__giveup_fpu(tsk);
367 	if (msr & MSR_VEC)
368 		__giveup_altivec(tsk);
369 }
370 
371 static void giveup_vsx(struct task_struct *tsk)
372 {
373 	check_if_tm_restore_required(tsk);
374 
375 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
376 	__giveup_vsx(tsk);
377 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
378 }
379 
380 void enable_kernel_vsx(void)
381 {
382 	unsigned long cpumsr;
383 
384 	WARN_ON(preemptible());
385 
386 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
387 
388 	if (current->thread.regs &&
389 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
390 		check_if_tm_restore_required(current);
391 		/*
392 		 * If a thread has already been reclaimed then the
393 		 * checkpointed registers are on the CPU but have definitely
394 		 * been saved by the reclaim code. Don't need to and *cannot*
395 		 * giveup as this would save  to the 'live' structure not the
396 		 * checkpointed structure.
397 		 */
398 		if (!MSR_TM_ACTIVE(cpumsr) &&
399 		     MSR_TM_ACTIVE(current->thread.regs->msr))
400 			return;
401 		__giveup_vsx(current);
402 	}
403 }
404 EXPORT_SYMBOL(enable_kernel_vsx);
405 
406 void flush_vsx_to_thread(struct task_struct *tsk)
407 {
408 	if (tsk->thread.regs) {
409 		preempt_disable();
410 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
411 			BUG_ON(tsk != current);
412 			giveup_vsx(tsk);
413 		}
414 		preempt_enable();
415 	}
416 }
417 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
418 
419 static int restore_vsx(struct task_struct *tsk)
420 {
421 	if (cpu_has_feature(CPU_FTR_VSX)) {
422 		tsk->thread.used_vsr = 1;
423 		return 1;
424 	}
425 
426 	return 0;
427 }
428 #else
429 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
430 #endif /* CONFIG_VSX */
431 
432 #ifdef CONFIG_SPE
433 void giveup_spe(struct task_struct *tsk)
434 {
435 	check_if_tm_restore_required(tsk);
436 
437 	msr_check_and_set(MSR_SPE);
438 	__giveup_spe(tsk);
439 	msr_check_and_clear(MSR_SPE);
440 }
441 EXPORT_SYMBOL(giveup_spe);
442 
443 void enable_kernel_spe(void)
444 {
445 	WARN_ON(preemptible());
446 
447 	msr_check_and_set(MSR_SPE);
448 
449 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
450 		check_if_tm_restore_required(current);
451 		__giveup_spe(current);
452 	}
453 }
454 EXPORT_SYMBOL(enable_kernel_spe);
455 
456 void flush_spe_to_thread(struct task_struct *tsk)
457 {
458 	if (tsk->thread.regs) {
459 		preempt_disable();
460 		if (tsk->thread.regs->msr & MSR_SPE) {
461 			BUG_ON(tsk != current);
462 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
463 			giveup_spe(tsk);
464 		}
465 		preempt_enable();
466 	}
467 }
468 #endif /* CONFIG_SPE */
469 
470 static unsigned long msr_all_available;
471 
472 static int __init init_msr_all_available(void)
473 {
474 #ifdef CONFIG_PPC_FPU
475 	msr_all_available |= MSR_FP;
476 #endif
477 #ifdef CONFIG_ALTIVEC
478 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
479 		msr_all_available |= MSR_VEC;
480 #endif
481 #ifdef CONFIG_VSX
482 	if (cpu_has_feature(CPU_FTR_VSX))
483 		msr_all_available |= MSR_VSX;
484 #endif
485 #ifdef CONFIG_SPE
486 	if (cpu_has_feature(CPU_FTR_SPE))
487 		msr_all_available |= MSR_SPE;
488 #endif
489 
490 	return 0;
491 }
492 early_initcall(init_msr_all_available);
493 
494 void giveup_all(struct task_struct *tsk)
495 {
496 	unsigned long usermsr;
497 
498 	if (!tsk->thread.regs)
499 		return;
500 
501 	usermsr = tsk->thread.regs->msr;
502 
503 	if ((usermsr & msr_all_available) == 0)
504 		return;
505 
506 	msr_check_and_set(msr_all_available);
507 	check_if_tm_restore_required(tsk);
508 
509 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
510 
511 #ifdef CONFIG_PPC_FPU
512 	if (usermsr & MSR_FP)
513 		__giveup_fpu(tsk);
514 #endif
515 #ifdef CONFIG_ALTIVEC
516 	if (usermsr & MSR_VEC)
517 		__giveup_altivec(tsk);
518 #endif
519 #ifdef CONFIG_SPE
520 	if (usermsr & MSR_SPE)
521 		__giveup_spe(tsk);
522 #endif
523 
524 	msr_check_and_clear(msr_all_available);
525 }
526 EXPORT_SYMBOL(giveup_all);
527 
528 void restore_math(struct pt_regs *regs)
529 {
530 	unsigned long msr;
531 
532 	if (!MSR_TM_ACTIVE(regs->msr) &&
533 		!current->thread.load_fp && !loadvec(current->thread))
534 		return;
535 
536 	msr = regs->msr;
537 	msr_check_and_set(msr_all_available);
538 
539 	/*
540 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
541 	 * indicates that the registers are hot
542 	 */
543 	if ((!(msr & MSR_FP)) && restore_fp(current))
544 		msr |= MSR_FP | current->thread.fpexc_mode;
545 
546 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
547 		msr |= MSR_VEC;
548 
549 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
550 			restore_vsx(current)) {
551 		msr |= MSR_VSX;
552 	}
553 
554 	msr_check_and_clear(msr_all_available);
555 
556 	regs->msr = msr;
557 }
558 
559 static void save_all(struct task_struct *tsk)
560 {
561 	unsigned long usermsr;
562 
563 	if (!tsk->thread.regs)
564 		return;
565 
566 	usermsr = tsk->thread.regs->msr;
567 
568 	if ((usermsr & msr_all_available) == 0)
569 		return;
570 
571 	msr_check_and_set(msr_all_available);
572 
573 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
574 
575 	if (usermsr & MSR_FP)
576 		save_fpu(tsk);
577 
578 	if (usermsr & MSR_VEC)
579 		save_altivec(tsk);
580 
581 	if (usermsr & MSR_SPE)
582 		__giveup_spe(tsk);
583 
584 	msr_check_and_clear(msr_all_available);
585 	thread_pkey_regs_save(&tsk->thread);
586 }
587 
588 void flush_all_to_thread(struct task_struct *tsk)
589 {
590 	if (tsk->thread.regs) {
591 		preempt_disable();
592 		BUG_ON(tsk != current);
593 #ifdef CONFIG_SPE
594 		if (tsk->thread.regs->msr & MSR_SPE)
595 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
596 #endif
597 		save_all(tsk);
598 
599 		preempt_enable();
600 	}
601 }
602 EXPORT_SYMBOL(flush_all_to_thread);
603 
604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
605 void do_send_trap(struct pt_regs *regs, unsigned long address,
606 		  unsigned long error_code, int breakpt)
607 {
608 	current->thread.trap_nr = TRAP_HWBKPT;
609 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
610 			11, SIGSEGV) == NOTIFY_STOP)
611 		return;
612 
613 	/* Deliver the signal to userspace */
614 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
615 				    (void __user *)address);
616 }
617 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
618 void do_break (struct pt_regs *regs, unsigned long address,
619 		    unsigned long error_code)
620 {
621 	current->thread.trap_nr = TRAP_HWBKPT;
622 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
623 			11, SIGSEGV) == NOTIFY_STOP)
624 		return;
625 
626 	if (debugger_break_match(regs))
627 		return;
628 
629 	/* Clear the breakpoint */
630 	hw_breakpoint_disable();
631 
632 	/* Deliver the signal to userspace */
633 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
634 }
635 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
636 
637 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
638 
639 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
640 /*
641  * Set the debug registers back to their default "safe" values.
642  */
643 static void set_debug_reg_defaults(struct thread_struct *thread)
644 {
645 	thread->debug.iac1 = thread->debug.iac2 = 0;
646 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
647 	thread->debug.iac3 = thread->debug.iac4 = 0;
648 #endif
649 	thread->debug.dac1 = thread->debug.dac2 = 0;
650 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
651 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
652 #endif
653 	thread->debug.dbcr0 = 0;
654 #ifdef CONFIG_BOOKE
655 	/*
656 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
657 	 */
658 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
659 			DBCR1_IAC3US | DBCR1_IAC4US;
660 	/*
661 	 * Force Data Address Compare User/Supervisor bits to be User-only
662 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
663 	 */
664 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
665 #else
666 	thread->debug.dbcr1 = 0;
667 #endif
668 }
669 
670 static void prime_debug_regs(struct debug_reg *debug)
671 {
672 	/*
673 	 * We could have inherited MSR_DE from userspace, since
674 	 * it doesn't get cleared on exception entry.  Make sure
675 	 * MSR_DE is clear before we enable any debug events.
676 	 */
677 	mtmsr(mfmsr() & ~MSR_DE);
678 
679 	mtspr(SPRN_IAC1, debug->iac1);
680 	mtspr(SPRN_IAC2, debug->iac2);
681 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
682 	mtspr(SPRN_IAC3, debug->iac3);
683 	mtspr(SPRN_IAC4, debug->iac4);
684 #endif
685 	mtspr(SPRN_DAC1, debug->dac1);
686 	mtspr(SPRN_DAC2, debug->dac2);
687 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
688 	mtspr(SPRN_DVC1, debug->dvc1);
689 	mtspr(SPRN_DVC2, debug->dvc2);
690 #endif
691 	mtspr(SPRN_DBCR0, debug->dbcr0);
692 	mtspr(SPRN_DBCR1, debug->dbcr1);
693 #ifdef CONFIG_BOOKE
694 	mtspr(SPRN_DBCR2, debug->dbcr2);
695 #endif
696 }
697 /*
698  * Unless neither the old or new thread are making use of the
699  * debug registers, set the debug registers from the values
700  * stored in the new thread.
701  */
702 void switch_booke_debug_regs(struct debug_reg *new_debug)
703 {
704 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
705 		|| (new_debug->dbcr0 & DBCR0_IDM))
706 			prime_debug_regs(new_debug);
707 }
708 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
709 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
710 #ifndef CONFIG_HAVE_HW_BREAKPOINT
711 static void set_breakpoint(struct arch_hw_breakpoint *brk)
712 {
713 	preempt_disable();
714 	__set_breakpoint(brk);
715 	preempt_enable();
716 }
717 
718 static void set_debug_reg_defaults(struct thread_struct *thread)
719 {
720 	thread->hw_brk.address = 0;
721 	thread->hw_brk.type = 0;
722 	if (ppc_breakpoint_available())
723 		set_breakpoint(&thread->hw_brk);
724 }
725 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
726 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
727 
728 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
729 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
730 {
731 	mtspr(SPRN_DAC1, dabr);
732 #ifdef CONFIG_PPC_47x
733 	isync();
734 #endif
735 	return 0;
736 }
737 #elif defined(CONFIG_PPC_BOOK3S)
738 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
739 {
740 	mtspr(SPRN_DABR, dabr);
741 	if (cpu_has_feature(CPU_FTR_DABRX))
742 		mtspr(SPRN_DABRX, dabrx);
743 	return 0;
744 }
745 #elif defined(CONFIG_PPC_8xx)
746 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
747 {
748 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
749 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
750 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
751 
752 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
753 		lctrl1 |= 0xa0000;
754 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
755 		lctrl1 |= 0xf0000;
756 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
757 		lctrl2 = 0;
758 
759 	mtspr(SPRN_LCTRL2, 0);
760 	mtspr(SPRN_CMPE, addr);
761 	mtspr(SPRN_CMPF, addr + 4);
762 	mtspr(SPRN_LCTRL1, lctrl1);
763 	mtspr(SPRN_LCTRL2, lctrl2);
764 
765 	return 0;
766 }
767 #else
768 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
769 {
770 	return -EINVAL;
771 }
772 #endif
773 
774 static inline int set_dabr(struct arch_hw_breakpoint *brk)
775 {
776 	unsigned long dabr, dabrx;
777 
778 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
779 	dabrx = ((brk->type >> 3) & 0x7);
780 
781 	if (ppc_md.set_dabr)
782 		return ppc_md.set_dabr(dabr, dabrx);
783 
784 	return __set_dabr(dabr, dabrx);
785 }
786 
787 static inline int set_dawr(struct arch_hw_breakpoint *brk)
788 {
789 	unsigned long dawr, dawrx, mrd;
790 
791 	dawr = brk->address;
792 
793 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
794 		                   << (63 - 58); //* read/write bits */
795 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
796 		                   << (63 - 59); //* translate */
797 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
798 		                   >> 3; //* PRIM bits */
799 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
800 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
801 	   0b111111=64DW.
802 	   brk->len is in bytes.
803 	   This aligns up to double word size, shifts and does the bias.
804 	*/
805 	mrd = ((brk->len + 7) >> 3) - 1;
806 	dawrx |= (mrd & 0x3f) << (63 - 53);
807 
808 	if (ppc_md.set_dawr)
809 		return ppc_md.set_dawr(dawr, dawrx);
810 	mtspr(SPRN_DAWR, dawr);
811 	mtspr(SPRN_DAWRX, dawrx);
812 	return 0;
813 }
814 
815 void __set_breakpoint(struct arch_hw_breakpoint *brk)
816 {
817 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
818 
819 	if (cpu_has_feature(CPU_FTR_DAWR))
820 		// Power8 or later
821 		set_dawr(brk);
822 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
823 		// Power7 or earlier
824 		set_dabr(brk);
825 	else
826 		// Shouldn't happen due to higher level checks
827 		WARN_ON_ONCE(1);
828 }
829 
830 /* Check if we have DAWR or DABR hardware */
831 bool ppc_breakpoint_available(void)
832 {
833 	if (cpu_has_feature(CPU_FTR_DAWR))
834 		return true; /* POWER8 DAWR */
835 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
836 		return false; /* POWER9 with DAWR disabled */
837 	/* DABR: Everything but POWER8 and POWER9 */
838 	return true;
839 }
840 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
841 
842 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
843 			      struct arch_hw_breakpoint *b)
844 {
845 	if (a->address != b->address)
846 		return false;
847 	if (a->type != b->type)
848 		return false;
849 	if (a->len != b->len)
850 		return false;
851 	return true;
852 }
853 
854 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
855 
856 static inline bool tm_enabled(struct task_struct *tsk)
857 {
858 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
859 }
860 
861 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
862 {
863 	/*
864 	 * Use the current MSR TM suspended bit to track if we have
865 	 * checkpointed state outstanding.
866 	 * On signal delivery, we'd normally reclaim the checkpointed
867 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
868 	 * This will then directly return to userspace without going
869 	 * through __switch_to(). However, if the stack frame is bad,
870 	 * we need to exit this thread which calls __switch_to() which
871 	 * will again attempt to reclaim the already saved tm state.
872 	 * Hence we need to check that we've not already reclaimed
873 	 * this state.
874 	 * We do this using the current MSR, rather tracking it in
875 	 * some specific thread_struct bit, as it has the additional
876 	 * benefit of checking for a potential TM bad thing exception.
877 	 */
878 	if (!MSR_TM_SUSPENDED(mfmsr()))
879 		return;
880 
881 	giveup_all(container_of(thr, struct task_struct, thread));
882 
883 	tm_reclaim(thr, cause);
884 
885 	/*
886 	 * If we are in a transaction and FP is off then we can't have
887 	 * used FP inside that transaction. Hence the checkpointed
888 	 * state is the same as the live state. We need to copy the
889 	 * live state to the checkpointed state so that when the
890 	 * transaction is restored, the checkpointed state is correct
891 	 * and the aborted transaction sees the correct state. We use
892 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
893 	 * determine if it's going to write the checkpointed state or
894 	 * not. So either this will write the checkpointed registers,
895 	 * or reclaim will. Similarly for VMX.
896 	 */
897 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
898 		memcpy(&thr->ckfp_state, &thr->fp_state,
899 		       sizeof(struct thread_fp_state));
900 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
901 		memcpy(&thr->ckvr_state, &thr->vr_state,
902 		       sizeof(struct thread_vr_state));
903 }
904 
905 void tm_reclaim_current(uint8_t cause)
906 {
907 	tm_enable();
908 	tm_reclaim_thread(&current->thread, cause);
909 }
910 
911 static inline void tm_reclaim_task(struct task_struct *tsk)
912 {
913 	/* We have to work out if we're switching from/to a task that's in the
914 	 * middle of a transaction.
915 	 *
916 	 * In switching we need to maintain a 2nd register state as
917 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
918 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
919 	 * ckvr_state
920 	 *
921 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
922 	 */
923 	struct thread_struct *thr = &tsk->thread;
924 
925 	if (!thr->regs)
926 		return;
927 
928 	if (!MSR_TM_ACTIVE(thr->regs->msr))
929 		goto out_and_saveregs;
930 
931 	WARN_ON(tm_suspend_disabled);
932 
933 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
934 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
935 		 tsk->pid, thr->regs->nip,
936 		 thr->regs->ccr, thr->regs->msr,
937 		 thr->regs->trap);
938 
939 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
940 
941 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
942 		 tsk->pid);
943 
944 out_and_saveregs:
945 	/* Always save the regs here, even if a transaction's not active.
946 	 * This context-switches a thread's TM info SPRs.  We do it here to
947 	 * be consistent with the restore path (in recheckpoint) which
948 	 * cannot happen later in _switch().
949 	 */
950 	tm_save_sprs(thr);
951 }
952 
953 extern void __tm_recheckpoint(struct thread_struct *thread);
954 
955 void tm_recheckpoint(struct thread_struct *thread)
956 {
957 	unsigned long flags;
958 
959 	if (!(thread->regs->msr & MSR_TM))
960 		return;
961 
962 	/* We really can't be interrupted here as the TEXASR registers can't
963 	 * change and later in the trecheckpoint code, we have a userspace R1.
964 	 * So let's hard disable over this region.
965 	 */
966 	local_irq_save(flags);
967 	hard_irq_disable();
968 
969 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
970 	 * before the trecheckpoint and no explosion occurs.
971 	 */
972 	tm_restore_sprs(thread);
973 
974 	__tm_recheckpoint(thread);
975 
976 	local_irq_restore(flags);
977 }
978 
979 static inline void tm_recheckpoint_new_task(struct task_struct *new)
980 {
981 	if (!cpu_has_feature(CPU_FTR_TM))
982 		return;
983 
984 	/* Recheckpoint the registers of the thread we're about to switch to.
985 	 *
986 	 * If the task was using FP, we non-lazily reload both the original and
987 	 * the speculative FP register states.  This is because the kernel
988 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
989 	 * unavailable later, we are unable to determine which set of FP regs
990 	 * need to be restored.
991 	 */
992 	if (!tm_enabled(new))
993 		return;
994 
995 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
996 		tm_restore_sprs(&new->thread);
997 		return;
998 	}
999 	/* Recheckpoint to restore original checkpointed register state. */
1000 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1001 		 new->pid, new->thread.regs->msr);
1002 
1003 	tm_recheckpoint(&new->thread);
1004 
1005 	/*
1006 	 * The checkpointed state has been restored but the live state has
1007 	 * not, ensure all the math functionality is turned off to trigger
1008 	 * restore_math() to reload.
1009 	 */
1010 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1011 
1012 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1013 		 "(kernel msr 0x%lx)\n",
1014 		 new->pid, mfmsr());
1015 }
1016 
1017 static inline void __switch_to_tm(struct task_struct *prev,
1018 		struct task_struct *new)
1019 {
1020 	if (cpu_has_feature(CPU_FTR_TM)) {
1021 		if (tm_enabled(prev) || tm_enabled(new))
1022 			tm_enable();
1023 
1024 		if (tm_enabled(prev)) {
1025 			prev->thread.load_tm++;
1026 			tm_reclaim_task(prev);
1027 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1028 				prev->thread.regs->msr &= ~MSR_TM;
1029 		}
1030 
1031 		tm_recheckpoint_new_task(new);
1032 	}
1033 }
1034 
1035 /*
1036  * This is called if we are on the way out to userspace and the
1037  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1038  * FP and/or vector state and does so if necessary.
1039  * If userspace is inside a transaction (whether active or
1040  * suspended) and FP/VMX/VSX instructions have ever been enabled
1041  * inside that transaction, then we have to keep them enabled
1042  * and keep the FP/VMX/VSX state loaded while ever the transaction
1043  * continues.  The reason is that if we didn't, and subsequently
1044  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1045  * we don't know whether it's the same transaction, and thus we
1046  * don't know which of the checkpointed state and the transactional
1047  * state to use.
1048  */
1049 void restore_tm_state(struct pt_regs *regs)
1050 {
1051 	unsigned long msr_diff;
1052 
1053 	/*
1054 	 * This is the only moment we should clear TIF_RESTORE_TM as
1055 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1056 	 * again, anything else could lead to an incorrect ckpt_msr being
1057 	 * saved and therefore incorrect signal contexts.
1058 	 */
1059 	clear_thread_flag(TIF_RESTORE_TM);
1060 	if (!MSR_TM_ACTIVE(regs->msr))
1061 		return;
1062 
1063 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1064 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1065 
1066 	/* Ensure that restore_math() will restore */
1067 	if (msr_diff & MSR_FP)
1068 		current->thread.load_fp = 1;
1069 #ifdef CONFIG_ALTIVEC
1070 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1071 		current->thread.load_vec = 1;
1072 #endif
1073 	restore_math(regs);
1074 
1075 	regs->msr |= msr_diff;
1076 }
1077 
1078 #else
1079 #define tm_recheckpoint_new_task(new)
1080 #define __switch_to_tm(prev, new)
1081 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1082 
1083 static inline void save_sprs(struct thread_struct *t)
1084 {
1085 #ifdef CONFIG_ALTIVEC
1086 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1087 		t->vrsave = mfspr(SPRN_VRSAVE);
1088 #endif
1089 #ifdef CONFIG_PPC_BOOK3S_64
1090 	if (cpu_has_feature(CPU_FTR_DSCR))
1091 		t->dscr = mfspr(SPRN_DSCR);
1092 
1093 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1094 		t->bescr = mfspr(SPRN_BESCR);
1095 		t->ebbhr = mfspr(SPRN_EBBHR);
1096 		t->ebbrr = mfspr(SPRN_EBBRR);
1097 
1098 		t->fscr = mfspr(SPRN_FSCR);
1099 
1100 		/*
1101 		 * Note that the TAR is not available for use in the kernel.
1102 		 * (To provide this, the TAR should be backed up/restored on
1103 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1104 		 * this should be in pt_regs anyway (for debug).)
1105 		 */
1106 		t->tar = mfspr(SPRN_TAR);
1107 	}
1108 #endif
1109 
1110 	thread_pkey_regs_save(t);
1111 }
1112 
1113 static inline void restore_sprs(struct thread_struct *old_thread,
1114 				struct thread_struct *new_thread)
1115 {
1116 #ifdef CONFIG_ALTIVEC
1117 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1118 	    old_thread->vrsave != new_thread->vrsave)
1119 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1120 #endif
1121 #ifdef CONFIG_PPC_BOOK3S_64
1122 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1123 		u64 dscr = get_paca()->dscr_default;
1124 		if (new_thread->dscr_inherit)
1125 			dscr = new_thread->dscr;
1126 
1127 		if (old_thread->dscr != dscr)
1128 			mtspr(SPRN_DSCR, dscr);
1129 	}
1130 
1131 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1132 		if (old_thread->bescr != new_thread->bescr)
1133 			mtspr(SPRN_BESCR, new_thread->bescr);
1134 		if (old_thread->ebbhr != new_thread->ebbhr)
1135 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1136 		if (old_thread->ebbrr != new_thread->ebbrr)
1137 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1138 
1139 		if (old_thread->fscr != new_thread->fscr)
1140 			mtspr(SPRN_FSCR, new_thread->fscr);
1141 
1142 		if (old_thread->tar != new_thread->tar)
1143 			mtspr(SPRN_TAR, new_thread->tar);
1144 	}
1145 
1146 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1147 	    old_thread->tidr != new_thread->tidr)
1148 		mtspr(SPRN_TIDR, new_thread->tidr);
1149 #endif
1150 
1151 	thread_pkey_regs_restore(new_thread, old_thread);
1152 }
1153 
1154 #ifdef CONFIG_PPC_BOOK3S_64
1155 #define CP_SIZE 128
1156 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1157 #endif
1158 
1159 struct task_struct *__switch_to(struct task_struct *prev,
1160 	struct task_struct *new)
1161 {
1162 	struct thread_struct *new_thread, *old_thread;
1163 	struct task_struct *last;
1164 #ifdef CONFIG_PPC_BOOK3S_64
1165 	struct ppc64_tlb_batch *batch;
1166 #endif
1167 
1168 	new_thread = &new->thread;
1169 	old_thread = &current->thread;
1170 
1171 	WARN_ON(!irqs_disabled());
1172 
1173 #ifdef CONFIG_PPC_BOOK3S_64
1174 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1175 	if (batch->active) {
1176 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1177 		if (batch->index)
1178 			__flush_tlb_pending(batch);
1179 		batch->active = 0;
1180 	}
1181 #endif /* CONFIG_PPC_BOOK3S_64 */
1182 
1183 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1184 	switch_booke_debug_regs(&new->thread.debug);
1185 #else
1186 /*
1187  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1188  * schedule DABR
1189  */
1190 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1191 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1192 		__set_breakpoint(&new->thread.hw_brk);
1193 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1194 #endif
1195 
1196 	/*
1197 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1198 	 * change a number of them.
1199 	 */
1200 	save_sprs(&prev->thread);
1201 
1202 	/* Save FPU, Altivec, VSX and SPE state */
1203 	giveup_all(prev);
1204 
1205 	__switch_to_tm(prev, new);
1206 
1207 	if (!radix_enabled()) {
1208 		/*
1209 		 * We can't take a PMU exception inside _switch() since there
1210 		 * is a window where the kernel stack SLB and the kernel stack
1211 		 * are out of sync. Hard disable here.
1212 		 */
1213 		hard_irq_disable();
1214 	}
1215 
1216 	/*
1217 	 * Call restore_sprs() before calling _switch(). If we move it after
1218 	 * _switch() then we miss out on calling it for new tasks. The reason
1219 	 * for this is we manually create a stack frame for new tasks that
1220 	 * directly returns through ret_from_fork() or
1221 	 * ret_from_kernel_thread(). See copy_thread() for details.
1222 	 */
1223 	restore_sprs(old_thread, new_thread);
1224 
1225 	last = _switch(old_thread, new_thread);
1226 
1227 #ifdef CONFIG_PPC_BOOK3S_64
1228 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1229 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1230 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1231 		batch->active = 1;
1232 	}
1233 
1234 	if (current->thread.regs) {
1235 		restore_math(current->thread.regs);
1236 
1237 		/*
1238 		 * The copy-paste buffer can only store into foreign real
1239 		 * addresses, so unprivileged processes can not see the
1240 		 * data or use it in any way unless they have foreign real
1241 		 * mappings. If the new process has the foreign real address
1242 		 * mappings, we must issue a cp_abort to clear any state and
1243 		 * prevent snooping, corruption or a covert channel.
1244 		 */
1245 		if (current->thread.used_vas)
1246 			asm volatile(PPC_CP_ABORT);
1247 	}
1248 #endif /* CONFIG_PPC_BOOK3S_64 */
1249 
1250 	return last;
1251 }
1252 
1253 #define NR_INSN_TO_PRINT	16
1254 
1255 static void show_instructions(struct pt_regs *regs)
1256 {
1257 	int i;
1258 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1259 
1260 	printk("Instruction dump:");
1261 
1262 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1263 		int instr;
1264 
1265 		if (!(i % 8))
1266 			pr_cont("\n");
1267 
1268 #if !defined(CONFIG_BOOKE)
1269 		/* If executing with the IMMU off, adjust pc rather
1270 		 * than print XXXXXXXX.
1271 		 */
1272 		if (!(regs->msr & MSR_IR))
1273 			pc = (unsigned long)phys_to_virt(pc);
1274 #endif
1275 
1276 		if (!__kernel_text_address(pc) ||
1277 		    probe_kernel_address((const void *)pc, instr)) {
1278 			pr_cont("XXXXXXXX ");
1279 		} else {
1280 			if (regs->nip == pc)
1281 				pr_cont("<%08x> ", instr);
1282 			else
1283 				pr_cont("%08x ", instr);
1284 		}
1285 
1286 		pc += sizeof(int);
1287 	}
1288 
1289 	pr_cont("\n");
1290 }
1291 
1292 void show_user_instructions(struct pt_regs *regs)
1293 {
1294 	unsigned long pc;
1295 	int n = NR_INSN_TO_PRINT;
1296 	struct seq_buf s;
1297 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1298 
1299 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1300 
1301 	/*
1302 	 * Make sure the NIP points at userspace, not kernel text/data or
1303 	 * elsewhere.
1304 	 */
1305 	if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1306 		pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1307 			current->comm, current->pid);
1308 		return;
1309 	}
1310 
1311 	seq_buf_init(&s, buf, sizeof(buf));
1312 
1313 	while (n) {
1314 		int i;
1315 
1316 		seq_buf_clear(&s);
1317 
1318 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1319 			int instr;
1320 
1321 			if (probe_kernel_address((const void *)pc, instr)) {
1322 				seq_buf_printf(&s, "XXXXXXXX ");
1323 				continue;
1324 			}
1325 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1326 		}
1327 
1328 		if (!seq_buf_has_overflowed(&s))
1329 			pr_info("%s[%d]: code: %s\n", current->comm,
1330 				current->pid, s.buffer);
1331 	}
1332 }
1333 
1334 struct regbit {
1335 	unsigned long bit;
1336 	const char *name;
1337 };
1338 
1339 static struct regbit msr_bits[] = {
1340 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1341 	{MSR_SF,	"SF"},
1342 	{MSR_HV,	"HV"},
1343 #endif
1344 	{MSR_VEC,	"VEC"},
1345 	{MSR_VSX,	"VSX"},
1346 #ifdef CONFIG_BOOKE
1347 	{MSR_CE,	"CE"},
1348 #endif
1349 	{MSR_EE,	"EE"},
1350 	{MSR_PR,	"PR"},
1351 	{MSR_FP,	"FP"},
1352 	{MSR_ME,	"ME"},
1353 #ifdef CONFIG_BOOKE
1354 	{MSR_DE,	"DE"},
1355 #else
1356 	{MSR_SE,	"SE"},
1357 	{MSR_BE,	"BE"},
1358 #endif
1359 	{MSR_IR,	"IR"},
1360 	{MSR_DR,	"DR"},
1361 	{MSR_PMM,	"PMM"},
1362 #ifndef CONFIG_BOOKE
1363 	{MSR_RI,	"RI"},
1364 	{MSR_LE,	"LE"},
1365 #endif
1366 	{0,		NULL}
1367 };
1368 
1369 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1370 {
1371 	const char *s = "";
1372 
1373 	for (; bits->bit; ++bits)
1374 		if (val & bits->bit) {
1375 			pr_cont("%s%s", s, bits->name);
1376 			s = sep;
1377 		}
1378 }
1379 
1380 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1381 static struct regbit msr_tm_bits[] = {
1382 	{MSR_TS_T,	"T"},
1383 	{MSR_TS_S,	"S"},
1384 	{MSR_TM,	"E"},
1385 	{0,		NULL}
1386 };
1387 
1388 static void print_tm_bits(unsigned long val)
1389 {
1390 /*
1391  * This only prints something if at least one of the TM bit is set.
1392  * Inside the TM[], the output means:
1393  *   E: Enabled		(bit 32)
1394  *   S: Suspended	(bit 33)
1395  *   T: Transactional	(bit 34)
1396  */
1397 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1398 		pr_cont(",TM[");
1399 		print_bits(val, msr_tm_bits, "");
1400 		pr_cont("]");
1401 	}
1402 }
1403 #else
1404 static void print_tm_bits(unsigned long val) {}
1405 #endif
1406 
1407 static void print_msr_bits(unsigned long val)
1408 {
1409 	pr_cont("<");
1410 	print_bits(val, msr_bits, ",");
1411 	print_tm_bits(val);
1412 	pr_cont(">");
1413 }
1414 
1415 #ifdef CONFIG_PPC64
1416 #define REG		"%016lx"
1417 #define REGS_PER_LINE	4
1418 #define LAST_VOLATILE	13
1419 #else
1420 #define REG		"%08lx"
1421 #define REGS_PER_LINE	8
1422 #define LAST_VOLATILE	12
1423 #endif
1424 
1425 void show_regs(struct pt_regs * regs)
1426 {
1427 	int i, trap;
1428 
1429 	show_regs_print_info(KERN_DEFAULT);
1430 
1431 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1432 	       regs->nip, regs->link, regs->ctr);
1433 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1434 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1435 	printk("MSR:  "REG" ", regs->msr);
1436 	print_msr_bits(regs->msr);
1437 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1438 	trap = TRAP(regs);
1439 	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1440 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1441 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1442 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1443 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1444 #else
1445 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1446 #endif
1447 #ifdef CONFIG_PPC64
1448 	pr_cont("IRQMASK: %lx ", regs->softe);
1449 #endif
1450 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1451 	if (MSR_TM_ACTIVE(regs->msr))
1452 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1453 #endif
1454 
1455 	for (i = 0;  i < 32;  i++) {
1456 		if ((i % REGS_PER_LINE) == 0)
1457 			pr_cont("\nGPR%02d: ", i);
1458 		pr_cont(REG " ", regs->gpr[i]);
1459 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1460 			break;
1461 	}
1462 	pr_cont("\n");
1463 #ifdef CONFIG_KALLSYMS
1464 	/*
1465 	 * Lookup NIP late so we have the best change of getting the
1466 	 * above info out without failing
1467 	 */
1468 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1469 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1470 #endif
1471 	show_stack(current, (unsigned long *) regs->gpr[1]);
1472 	if (!user_mode(regs))
1473 		show_instructions(regs);
1474 }
1475 
1476 void flush_thread(void)
1477 {
1478 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1479 	flush_ptrace_hw_breakpoint(current);
1480 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1481 	set_debug_reg_defaults(&current->thread);
1482 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1483 }
1484 
1485 #ifdef CONFIG_PPC_BOOK3S_64
1486 void arch_setup_new_exec(void)
1487 {
1488 	if (radix_enabled())
1489 		return;
1490 	hash__setup_new_exec();
1491 }
1492 #endif
1493 
1494 int set_thread_uses_vas(void)
1495 {
1496 #ifdef CONFIG_PPC_BOOK3S_64
1497 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1498 		return -EINVAL;
1499 
1500 	current->thread.used_vas = 1;
1501 
1502 	/*
1503 	 * Even a process that has no foreign real address mapping can use
1504 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1505 	 * to clear any pending COPY and prevent a covert channel.
1506 	 *
1507 	 * __switch_to() will issue CP_ABORT on future context switches.
1508 	 */
1509 	asm volatile(PPC_CP_ABORT);
1510 
1511 #endif /* CONFIG_PPC_BOOK3S_64 */
1512 	return 0;
1513 }
1514 
1515 #ifdef CONFIG_PPC64
1516 /**
1517  * Assign a TIDR (thread ID) for task @t and set it in the thread
1518  * structure. For now, we only support setting TIDR for 'current' task.
1519  *
1520  * Since the TID value is a truncated form of it PID, it is possible
1521  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1522  * that 2 threads share the same TID and are waiting, one of the following
1523  * cases will happen:
1524  *
1525  * 1. The correct thread is running, the wrong thread is not
1526  * In this situation, the correct thread is woken and proceeds to pass it's
1527  * condition check.
1528  *
1529  * 2. Neither threads are running
1530  * In this situation, neither thread will be woken. When scheduled, the waiting
1531  * threads will execute either a wait, which will return immediately, followed
1532  * by a condition check, which will pass for the correct thread and fail
1533  * for the wrong thread, or they will execute the condition check immediately.
1534  *
1535  * 3. The wrong thread is running, the correct thread is not
1536  * The wrong thread will be woken, but will fail it's condition check and
1537  * re-execute wait. The correct thread, when scheduled, will execute either
1538  * it's condition check (which will pass), or wait, which returns immediately
1539  * when called the first time after the thread is scheduled, followed by it's
1540  * condition check (which will pass).
1541  *
1542  * 4. Both threads are running
1543  * Both threads will be woken. The wrong thread will fail it's condition check
1544  * and execute another wait, while the correct thread will pass it's condition
1545  * check.
1546  *
1547  * @t: the task to set the thread ID for
1548  */
1549 int set_thread_tidr(struct task_struct *t)
1550 {
1551 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1552 		return -EINVAL;
1553 
1554 	if (t != current)
1555 		return -EINVAL;
1556 
1557 	if (t->thread.tidr)
1558 		return 0;
1559 
1560 	t->thread.tidr = (u16)task_pid_nr(t);
1561 	mtspr(SPRN_TIDR, t->thread.tidr);
1562 
1563 	return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(set_thread_tidr);
1566 
1567 #endif /* CONFIG_PPC64 */
1568 
1569 void
1570 release_thread(struct task_struct *t)
1571 {
1572 }
1573 
1574 /*
1575  * this gets called so that we can store coprocessor state into memory and
1576  * copy the current task into the new thread.
1577  */
1578 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1579 {
1580 	flush_all_to_thread(src);
1581 	/*
1582 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1583 	 * flush but it removes the checkpointed state from the current CPU and
1584 	 * transitions the CPU out of TM mode.  Hence we need to call
1585 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1586 	 * checkpointed state back and the TM mode.
1587 	 *
1588 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1589 	 * dst is only important for __switch_to()
1590 	 */
1591 	__switch_to_tm(src, src);
1592 
1593 	*dst = *src;
1594 
1595 	clear_task_ebb(dst);
1596 
1597 	return 0;
1598 }
1599 
1600 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1601 {
1602 #ifdef CONFIG_PPC_BOOK3S_64
1603 	unsigned long sp_vsid;
1604 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1605 
1606 	if (radix_enabled())
1607 		return;
1608 
1609 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1610 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1611 			<< SLB_VSID_SHIFT_1T;
1612 	else
1613 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1614 			<< SLB_VSID_SHIFT;
1615 	sp_vsid |= SLB_VSID_KERNEL | llp;
1616 	p->thread.ksp_vsid = sp_vsid;
1617 #endif
1618 }
1619 
1620 /*
1621  * Copy a thread..
1622  */
1623 
1624 /*
1625  * Copy architecture-specific thread state
1626  */
1627 int copy_thread(unsigned long clone_flags, unsigned long usp,
1628 		unsigned long kthread_arg, struct task_struct *p)
1629 {
1630 	struct pt_regs *childregs, *kregs;
1631 	extern void ret_from_fork(void);
1632 	extern void ret_from_kernel_thread(void);
1633 	void (*f)(void);
1634 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1635 	struct thread_info *ti = task_thread_info(p);
1636 
1637 	klp_init_thread_info(p);
1638 
1639 	/* Copy registers */
1640 	sp -= sizeof(struct pt_regs);
1641 	childregs = (struct pt_regs *) sp;
1642 	if (unlikely(p->flags & PF_KTHREAD)) {
1643 		/* kernel thread */
1644 		memset(childregs, 0, sizeof(struct pt_regs));
1645 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1646 		/* function */
1647 		if (usp)
1648 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1649 #ifdef CONFIG_PPC64
1650 		clear_tsk_thread_flag(p, TIF_32BIT);
1651 		childregs->softe = IRQS_ENABLED;
1652 #endif
1653 		childregs->gpr[15] = kthread_arg;
1654 		p->thread.regs = NULL;	/* no user register state */
1655 		ti->flags |= _TIF_RESTOREALL;
1656 		f = ret_from_kernel_thread;
1657 	} else {
1658 		/* user thread */
1659 		struct pt_regs *regs = current_pt_regs();
1660 		CHECK_FULL_REGS(regs);
1661 		*childregs = *regs;
1662 		if (usp)
1663 			childregs->gpr[1] = usp;
1664 		p->thread.regs = childregs;
1665 		childregs->gpr[3] = 0;  /* Result from fork() */
1666 		if (clone_flags & CLONE_SETTLS) {
1667 #ifdef CONFIG_PPC64
1668 			if (!is_32bit_task())
1669 				childregs->gpr[13] = childregs->gpr[6];
1670 			else
1671 #endif
1672 				childregs->gpr[2] = childregs->gpr[6];
1673 		}
1674 
1675 		f = ret_from_fork;
1676 	}
1677 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1678 	sp -= STACK_FRAME_OVERHEAD;
1679 
1680 	/*
1681 	 * The way this works is that at some point in the future
1682 	 * some task will call _switch to switch to the new task.
1683 	 * That will pop off the stack frame created below and start
1684 	 * the new task running at ret_from_fork.  The new task will
1685 	 * do some house keeping and then return from the fork or clone
1686 	 * system call, using the stack frame created above.
1687 	 */
1688 	((unsigned long *)sp)[0] = 0;
1689 	sp -= sizeof(struct pt_regs);
1690 	kregs = (struct pt_regs *) sp;
1691 	sp -= STACK_FRAME_OVERHEAD;
1692 	p->thread.ksp = sp;
1693 #ifdef CONFIG_PPC32
1694 	p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1695 #endif
1696 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1697 	p->thread.ptrace_bps[0] = NULL;
1698 #endif
1699 
1700 	p->thread.fp_save_area = NULL;
1701 #ifdef CONFIG_ALTIVEC
1702 	p->thread.vr_save_area = NULL;
1703 #endif
1704 
1705 	setup_ksp_vsid(p, sp);
1706 
1707 #ifdef CONFIG_PPC64
1708 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1709 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1710 		p->thread.dscr = mfspr(SPRN_DSCR);
1711 	}
1712 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1713 		childregs->ppr = DEFAULT_PPR;
1714 
1715 	p->thread.tidr = 0;
1716 #endif
1717 	kregs->nip = ppc_function_entry(f);
1718 	return 0;
1719 }
1720 
1721 void preload_new_slb_context(unsigned long start, unsigned long sp);
1722 
1723 /*
1724  * Set up a thread for executing a new program
1725  */
1726 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1727 {
1728 #ifdef CONFIG_PPC64
1729 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1730 
1731 #ifdef CONFIG_PPC_BOOK3S_64
1732 	preload_new_slb_context(start, sp);
1733 #endif
1734 #endif
1735 
1736 	/*
1737 	 * If we exec out of a kernel thread then thread.regs will not be
1738 	 * set.  Do it now.
1739 	 */
1740 	if (!current->thread.regs) {
1741 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1742 		current->thread.regs = regs - 1;
1743 	}
1744 
1745 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1746 	/*
1747 	 * Clear any transactional state, we're exec()ing. The cause is
1748 	 * not important as there will never be a recheckpoint so it's not
1749 	 * user visible.
1750 	 */
1751 	if (MSR_TM_SUSPENDED(mfmsr()))
1752 		tm_reclaim_current(0);
1753 #endif
1754 
1755 	memset(regs->gpr, 0, sizeof(regs->gpr));
1756 	regs->ctr = 0;
1757 	regs->link = 0;
1758 	regs->xer = 0;
1759 	regs->ccr = 0;
1760 	regs->gpr[1] = sp;
1761 
1762 	/*
1763 	 * We have just cleared all the nonvolatile GPRs, so make
1764 	 * FULL_REGS(regs) return true.  This is necessary to allow
1765 	 * ptrace to examine the thread immediately after exec.
1766 	 */
1767 	regs->trap &= ~1UL;
1768 
1769 #ifdef CONFIG_PPC32
1770 	regs->mq = 0;
1771 	regs->nip = start;
1772 	regs->msr = MSR_USER;
1773 #else
1774 	if (!is_32bit_task()) {
1775 		unsigned long entry;
1776 
1777 		if (is_elf2_task()) {
1778 			/* Look ma, no function descriptors! */
1779 			entry = start;
1780 
1781 			/*
1782 			 * Ulrich says:
1783 			 *   The latest iteration of the ABI requires that when
1784 			 *   calling a function (at its global entry point),
1785 			 *   the caller must ensure r12 holds the entry point
1786 			 *   address (so that the function can quickly
1787 			 *   establish addressability).
1788 			 */
1789 			regs->gpr[12] = start;
1790 			/* Make sure that's restored on entry to userspace. */
1791 			set_thread_flag(TIF_RESTOREALL);
1792 		} else {
1793 			unsigned long toc;
1794 
1795 			/* start is a relocated pointer to the function
1796 			 * descriptor for the elf _start routine.  The first
1797 			 * entry in the function descriptor is the entry
1798 			 * address of _start and the second entry is the TOC
1799 			 * value we need to use.
1800 			 */
1801 			__get_user(entry, (unsigned long __user *)start);
1802 			__get_user(toc, (unsigned long __user *)start+1);
1803 
1804 			/* Check whether the e_entry function descriptor entries
1805 			 * need to be relocated before we can use them.
1806 			 */
1807 			if (load_addr != 0) {
1808 				entry += load_addr;
1809 				toc   += load_addr;
1810 			}
1811 			regs->gpr[2] = toc;
1812 		}
1813 		regs->nip = entry;
1814 		regs->msr = MSR_USER64;
1815 	} else {
1816 		regs->nip = start;
1817 		regs->gpr[2] = 0;
1818 		regs->msr = MSR_USER32;
1819 	}
1820 #endif
1821 #ifdef CONFIG_VSX
1822 	current->thread.used_vsr = 0;
1823 #endif
1824 	current->thread.load_slb = 0;
1825 	current->thread.load_fp = 0;
1826 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1827 	current->thread.fp_save_area = NULL;
1828 #ifdef CONFIG_ALTIVEC
1829 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1830 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1831 	current->thread.vr_save_area = NULL;
1832 	current->thread.vrsave = 0;
1833 	current->thread.used_vr = 0;
1834 	current->thread.load_vec = 0;
1835 #endif /* CONFIG_ALTIVEC */
1836 #ifdef CONFIG_SPE
1837 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1838 	current->thread.acc = 0;
1839 	current->thread.spefscr = 0;
1840 	current->thread.used_spe = 0;
1841 #endif /* CONFIG_SPE */
1842 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1843 	current->thread.tm_tfhar = 0;
1844 	current->thread.tm_texasr = 0;
1845 	current->thread.tm_tfiar = 0;
1846 	current->thread.load_tm = 0;
1847 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1848 
1849 	thread_pkey_regs_init(&current->thread);
1850 }
1851 EXPORT_SYMBOL(start_thread);
1852 
1853 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1854 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1855 
1856 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1857 {
1858 	struct pt_regs *regs = tsk->thread.regs;
1859 
1860 	/* This is a bit hairy.  If we are an SPE enabled  processor
1861 	 * (have embedded fp) we store the IEEE exception enable flags in
1862 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1863 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1864 	if (val & PR_FP_EXC_SW_ENABLE) {
1865 #ifdef CONFIG_SPE
1866 		if (cpu_has_feature(CPU_FTR_SPE)) {
1867 			/*
1868 			 * When the sticky exception bits are set
1869 			 * directly by userspace, it must call prctl
1870 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1871 			 * in the existing prctl settings) or
1872 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1873 			 * the bits being set).  <fenv.h> functions
1874 			 * saving and restoring the whole
1875 			 * floating-point environment need to do so
1876 			 * anyway to restore the prctl settings from
1877 			 * the saved environment.
1878 			 */
1879 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1880 			tsk->thread.fpexc_mode = val &
1881 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1882 			return 0;
1883 		} else {
1884 			return -EINVAL;
1885 		}
1886 #else
1887 		return -EINVAL;
1888 #endif
1889 	}
1890 
1891 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1892 	 * __pack_fe01 use do not overlap with bits used for
1893 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1894 	 * on CONFIG_SPE implementations are reserved so writing to
1895 	 * them does not change anything */
1896 	if (val > PR_FP_EXC_PRECISE)
1897 		return -EINVAL;
1898 	tsk->thread.fpexc_mode = __pack_fe01(val);
1899 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1900 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1901 			| tsk->thread.fpexc_mode;
1902 	return 0;
1903 }
1904 
1905 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1906 {
1907 	unsigned int val;
1908 
1909 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1910 #ifdef CONFIG_SPE
1911 		if (cpu_has_feature(CPU_FTR_SPE)) {
1912 			/*
1913 			 * When the sticky exception bits are set
1914 			 * directly by userspace, it must call prctl
1915 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1916 			 * in the existing prctl settings) or
1917 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1918 			 * the bits being set).  <fenv.h> functions
1919 			 * saving and restoring the whole
1920 			 * floating-point environment need to do so
1921 			 * anyway to restore the prctl settings from
1922 			 * the saved environment.
1923 			 */
1924 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1925 			val = tsk->thread.fpexc_mode;
1926 		} else
1927 			return -EINVAL;
1928 #else
1929 		return -EINVAL;
1930 #endif
1931 	else
1932 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1933 	return put_user(val, (unsigned int __user *) adr);
1934 }
1935 
1936 int set_endian(struct task_struct *tsk, unsigned int val)
1937 {
1938 	struct pt_regs *regs = tsk->thread.regs;
1939 
1940 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1941 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1942 		return -EINVAL;
1943 
1944 	if (regs == NULL)
1945 		return -EINVAL;
1946 
1947 	if (val == PR_ENDIAN_BIG)
1948 		regs->msr &= ~MSR_LE;
1949 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1950 		regs->msr |= MSR_LE;
1951 	else
1952 		return -EINVAL;
1953 
1954 	return 0;
1955 }
1956 
1957 int get_endian(struct task_struct *tsk, unsigned long adr)
1958 {
1959 	struct pt_regs *regs = tsk->thread.regs;
1960 	unsigned int val;
1961 
1962 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1963 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1964 		return -EINVAL;
1965 
1966 	if (regs == NULL)
1967 		return -EINVAL;
1968 
1969 	if (regs->msr & MSR_LE) {
1970 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1971 			val = PR_ENDIAN_LITTLE;
1972 		else
1973 			val = PR_ENDIAN_PPC_LITTLE;
1974 	} else
1975 		val = PR_ENDIAN_BIG;
1976 
1977 	return put_user(val, (unsigned int __user *)adr);
1978 }
1979 
1980 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1981 {
1982 	tsk->thread.align_ctl = val;
1983 	return 0;
1984 }
1985 
1986 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1987 {
1988 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1989 }
1990 
1991 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1992 				  unsigned long nbytes)
1993 {
1994 	unsigned long stack_page;
1995 	unsigned long cpu = task_cpu(p);
1996 
1997 	stack_page = (unsigned long)hardirq_ctx[cpu];
1998 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1999 		return 1;
2000 
2001 	stack_page = (unsigned long)softirq_ctx[cpu];
2002 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2003 		return 1;
2004 
2005 	return 0;
2006 }
2007 
2008 int validate_sp(unsigned long sp, struct task_struct *p,
2009 		       unsigned long nbytes)
2010 {
2011 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2012 
2013 	if (sp < THREAD_SIZE)
2014 		return 0;
2015 
2016 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2017 		return 1;
2018 
2019 	return valid_irq_stack(sp, p, nbytes);
2020 }
2021 
2022 EXPORT_SYMBOL(validate_sp);
2023 
2024 static unsigned long __get_wchan(struct task_struct *p)
2025 {
2026 	unsigned long ip, sp;
2027 	int count = 0;
2028 
2029 	if (!p || p == current || p->state == TASK_RUNNING)
2030 		return 0;
2031 
2032 	sp = p->thread.ksp;
2033 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2034 		return 0;
2035 
2036 	do {
2037 		sp = *(unsigned long *)sp;
2038 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2039 		    p->state == TASK_RUNNING)
2040 			return 0;
2041 		if (count > 0) {
2042 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2043 			if (!in_sched_functions(ip))
2044 				return ip;
2045 		}
2046 	} while (count++ < 16);
2047 	return 0;
2048 }
2049 
2050 unsigned long get_wchan(struct task_struct *p)
2051 {
2052 	unsigned long ret;
2053 
2054 	if (!try_get_task_stack(p))
2055 		return 0;
2056 
2057 	ret = __get_wchan(p);
2058 
2059 	put_task_stack(p);
2060 
2061 	return ret;
2062 }
2063 
2064 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2065 
2066 void show_stack(struct task_struct *tsk, unsigned long *stack)
2067 {
2068 	unsigned long sp, ip, lr, newsp;
2069 	int count = 0;
2070 	int firstframe = 1;
2071 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2072 	struct ftrace_ret_stack *ret_stack;
2073 	extern void return_to_handler(void);
2074 	unsigned long rth = (unsigned long)return_to_handler;
2075 	int curr_frame = 0;
2076 #endif
2077 
2078 	if (tsk == NULL)
2079 		tsk = current;
2080 
2081 	if (!try_get_task_stack(tsk))
2082 		return;
2083 
2084 	sp = (unsigned long) stack;
2085 	if (sp == 0) {
2086 		if (tsk == current)
2087 			sp = current_stack_pointer();
2088 		else
2089 			sp = tsk->thread.ksp;
2090 	}
2091 
2092 	lr = 0;
2093 	printk("Call Trace:\n");
2094 	do {
2095 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2096 			break;
2097 
2098 		stack = (unsigned long *) sp;
2099 		newsp = stack[0];
2100 		ip = stack[STACK_FRAME_LR_SAVE];
2101 		if (!firstframe || ip != lr) {
2102 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2103 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2104 			if ((ip == rth) && curr_frame >= 0) {
2105 				ret_stack = ftrace_graph_get_ret_stack(current,
2106 								  curr_frame++);
2107 				if (ret_stack)
2108 					pr_cont(" (%pS)",
2109 						(void *)ret_stack->ret);
2110 				else
2111 					curr_frame = -1;
2112 			}
2113 #endif
2114 			if (firstframe)
2115 				pr_cont(" (unreliable)");
2116 			pr_cont("\n");
2117 		}
2118 		firstframe = 0;
2119 
2120 		/*
2121 		 * See if this is an exception frame.
2122 		 * We look for the "regshere" marker in the current frame.
2123 		 */
2124 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2125 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2126 			struct pt_regs *regs = (struct pt_regs *)
2127 				(sp + STACK_FRAME_OVERHEAD);
2128 			lr = regs->link;
2129 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2130 			       regs->trap, (void *)regs->nip, (void *)lr);
2131 			firstframe = 1;
2132 		}
2133 
2134 		sp = newsp;
2135 	} while (count++ < kstack_depth_to_print);
2136 
2137 	put_task_stack(tsk);
2138 }
2139 
2140 #ifdef CONFIG_PPC64
2141 /* Called with hard IRQs off */
2142 void notrace __ppc64_runlatch_on(void)
2143 {
2144 	struct thread_info *ti = current_thread_info();
2145 
2146 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2147 		/*
2148 		 * Least significant bit (RUN) is the only writable bit of
2149 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2150 		 * earliest ISA where this is the case, but it's convenient.
2151 		 */
2152 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2153 	} else {
2154 		unsigned long ctrl;
2155 
2156 		/*
2157 		 * Some architectures (e.g., Cell) have writable fields other
2158 		 * than RUN, so do the read-modify-write.
2159 		 */
2160 		ctrl = mfspr(SPRN_CTRLF);
2161 		ctrl |= CTRL_RUNLATCH;
2162 		mtspr(SPRN_CTRLT, ctrl);
2163 	}
2164 
2165 	ti->local_flags |= _TLF_RUNLATCH;
2166 }
2167 
2168 /* Called with hard IRQs off */
2169 void notrace __ppc64_runlatch_off(void)
2170 {
2171 	struct thread_info *ti = current_thread_info();
2172 
2173 	ti->local_flags &= ~_TLF_RUNLATCH;
2174 
2175 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2176 		mtspr(SPRN_CTRLT, 0);
2177 	} else {
2178 		unsigned long ctrl;
2179 
2180 		ctrl = mfspr(SPRN_CTRLF);
2181 		ctrl &= ~CTRL_RUNLATCH;
2182 		mtspr(SPRN_CTRLT, ctrl);
2183 	}
2184 }
2185 #endif /* CONFIG_PPC64 */
2186 
2187 unsigned long arch_align_stack(unsigned long sp)
2188 {
2189 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2190 		sp -= get_random_int() & ~PAGE_MASK;
2191 	return sp & ~0xf;
2192 }
2193 
2194 static inline unsigned long brk_rnd(void)
2195 {
2196         unsigned long rnd = 0;
2197 
2198 	/* 8MB for 32bit, 1GB for 64bit */
2199 	if (is_32bit_task())
2200 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2201 	else
2202 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2203 
2204 	return rnd << PAGE_SHIFT;
2205 }
2206 
2207 unsigned long arch_randomize_brk(struct mm_struct *mm)
2208 {
2209 	unsigned long base = mm->brk;
2210 	unsigned long ret;
2211 
2212 #ifdef CONFIG_PPC_BOOK3S_64
2213 	/*
2214 	 * If we are using 1TB segments and we are allowed to randomise
2215 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2216 	 * segment. Otherwise the heap will be in the bottom 1TB
2217 	 * which always uses 256MB segments and this may result in a
2218 	 * performance penalty. We don't need to worry about radix. For
2219 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2220 	 */
2221 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2222 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2223 #endif
2224 
2225 	ret = PAGE_ALIGN(base + brk_rnd());
2226 
2227 	if (ret < mm->brk)
2228 		return mm->brk;
2229 
2230 	return ret;
2231 }
2232 
2233