1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 #include <linux/pkeys.h> 46 #include <linux/seq_buf.h> 47 48 #include <asm/pgtable.h> 49 #include <asm/io.h> 50 #include <asm/processor.h> 51 #include <asm/mmu.h> 52 #include <asm/prom.h> 53 #include <asm/machdep.h> 54 #include <asm/time.h> 55 #include <asm/runlatch.h> 56 #include <asm/syscalls.h> 57 #include <asm/switch_to.h> 58 #include <asm/tm.h> 59 #include <asm/debug.h> 60 #ifdef CONFIG_PPC64 61 #include <asm/firmware.h> 62 #include <asm/hw_irq.h> 63 #endif 64 #include <asm/code-patching.h> 65 #include <asm/exec.h> 66 #include <asm/livepatch.h> 67 #include <asm/cpu_has_feature.h> 68 #include <asm/asm-prototypes.h> 69 #include <asm/stacktrace.h> 70 #include <asm/hw_breakpoint.h> 71 72 #include <linux/kprobes.h> 73 #include <linux/kdebug.h> 74 75 /* Transactional Memory debug */ 76 #ifdef TM_DEBUG_SW 77 #define TM_DEBUG(x...) printk(KERN_INFO x) 78 #else 79 #define TM_DEBUG(x...) do { } while(0) 80 #endif 81 82 extern unsigned long _get_SP(void); 83 84 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 85 /* 86 * Are we running in "Suspend disabled" mode? If so we have to block any 87 * sigreturn that would get us into suspended state, and we also warn in some 88 * other paths that we should never reach with suspend disabled. 89 */ 90 bool tm_suspend_disabled __ro_after_init = false; 91 92 static void check_if_tm_restore_required(struct task_struct *tsk) 93 { 94 /* 95 * If we are saving the current thread's registers, and the 96 * thread is in a transactional state, set the TIF_RESTORE_TM 97 * bit so that we know to restore the registers before 98 * returning to userspace. 99 */ 100 if (tsk == current && tsk->thread.regs && 101 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 102 !test_thread_flag(TIF_RESTORE_TM)) { 103 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 104 set_thread_flag(TIF_RESTORE_TM); 105 } 106 } 107 108 static bool tm_active_with_fp(struct task_struct *tsk) 109 { 110 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 111 (tsk->thread.ckpt_regs.msr & MSR_FP); 112 } 113 114 static bool tm_active_with_altivec(struct task_struct *tsk) 115 { 116 return MSR_TM_ACTIVE(tsk->thread.regs->msr) && 117 (tsk->thread.ckpt_regs.msr & MSR_VEC); 118 } 119 #else 120 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 121 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 122 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 124 125 bool strict_msr_control; 126 EXPORT_SYMBOL(strict_msr_control); 127 128 static int __init enable_strict_msr_control(char *str) 129 { 130 strict_msr_control = true; 131 pr_info("Enabling strict facility control\n"); 132 133 return 0; 134 } 135 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 136 137 unsigned long msr_check_and_set(unsigned long bits) 138 { 139 unsigned long oldmsr = mfmsr(); 140 unsigned long newmsr; 141 142 newmsr = oldmsr | bits; 143 144 #ifdef CONFIG_VSX 145 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 146 newmsr |= MSR_VSX; 147 #endif 148 149 if (oldmsr != newmsr) 150 mtmsr_isync(newmsr); 151 152 return newmsr; 153 } 154 EXPORT_SYMBOL_GPL(msr_check_and_set); 155 156 void __msr_check_and_clear(unsigned long bits) 157 { 158 unsigned long oldmsr = mfmsr(); 159 unsigned long newmsr; 160 161 newmsr = oldmsr & ~bits; 162 163 #ifdef CONFIG_VSX 164 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 165 newmsr &= ~MSR_VSX; 166 #endif 167 168 if (oldmsr != newmsr) 169 mtmsr_isync(newmsr); 170 } 171 EXPORT_SYMBOL(__msr_check_and_clear); 172 173 #ifdef CONFIG_PPC_FPU 174 static void __giveup_fpu(struct task_struct *tsk) 175 { 176 unsigned long msr; 177 178 save_fpu(tsk); 179 msr = tsk->thread.regs->msr; 180 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1); 181 #ifdef CONFIG_VSX 182 if (cpu_has_feature(CPU_FTR_VSX)) 183 msr &= ~MSR_VSX; 184 #endif 185 tsk->thread.regs->msr = msr; 186 } 187 188 void giveup_fpu(struct task_struct *tsk) 189 { 190 check_if_tm_restore_required(tsk); 191 192 msr_check_and_set(MSR_FP); 193 __giveup_fpu(tsk); 194 msr_check_and_clear(MSR_FP); 195 } 196 EXPORT_SYMBOL(giveup_fpu); 197 198 /* 199 * Make sure the floating-point register state in the 200 * the thread_struct is up to date for task tsk. 201 */ 202 void flush_fp_to_thread(struct task_struct *tsk) 203 { 204 if (tsk->thread.regs) { 205 /* 206 * We need to disable preemption here because if we didn't, 207 * another process could get scheduled after the regs->msr 208 * test but before we have finished saving the FP registers 209 * to the thread_struct. That process could take over the 210 * FPU, and then when we get scheduled again we would store 211 * bogus values for the remaining FP registers. 212 */ 213 preempt_disable(); 214 if (tsk->thread.regs->msr & MSR_FP) { 215 /* 216 * This should only ever be called for current or 217 * for a stopped child process. Since we save away 218 * the FP register state on context switch, 219 * there is something wrong if a stopped child appears 220 * to still have its FP state in the CPU registers. 221 */ 222 BUG_ON(tsk != current); 223 giveup_fpu(tsk); 224 } 225 preempt_enable(); 226 } 227 } 228 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 229 230 void enable_kernel_fp(void) 231 { 232 unsigned long cpumsr; 233 234 WARN_ON(preemptible()); 235 236 cpumsr = msr_check_and_set(MSR_FP); 237 238 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 239 check_if_tm_restore_required(current); 240 /* 241 * If a thread has already been reclaimed then the 242 * checkpointed registers are on the CPU but have definitely 243 * been saved by the reclaim code. Don't need to and *cannot* 244 * giveup as this would save to the 'live' structure not the 245 * checkpointed structure. 246 */ 247 if (!MSR_TM_ACTIVE(cpumsr) && 248 MSR_TM_ACTIVE(current->thread.regs->msr)) 249 return; 250 __giveup_fpu(current); 251 } 252 } 253 EXPORT_SYMBOL(enable_kernel_fp); 254 255 static int restore_fp(struct task_struct *tsk) 256 { 257 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 258 load_fp_state(¤t->thread.fp_state); 259 current->thread.load_fp++; 260 return 1; 261 } 262 return 0; 263 } 264 #else 265 static int restore_fp(struct task_struct *tsk) { return 0; } 266 #endif /* CONFIG_PPC_FPU */ 267 268 #ifdef CONFIG_ALTIVEC 269 #define loadvec(thr) ((thr).load_vec) 270 271 static void __giveup_altivec(struct task_struct *tsk) 272 { 273 unsigned long msr; 274 275 save_altivec(tsk); 276 msr = tsk->thread.regs->msr; 277 msr &= ~MSR_VEC; 278 #ifdef CONFIG_VSX 279 if (cpu_has_feature(CPU_FTR_VSX)) 280 msr &= ~MSR_VSX; 281 #endif 282 tsk->thread.regs->msr = msr; 283 } 284 285 void giveup_altivec(struct task_struct *tsk) 286 { 287 check_if_tm_restore_required(tsk); 288 289 msr_check_and_set(MSR_VEC); 290 __giveup_altivec(tsk); 291 msr_check_and_clear(MSR_VEC); 292 } 293 EXPORT_SYMBOL(giveup_altivec); 294 295 void enable_kernel_altivec(void) 296 { 297 unsigned long cpumsr; 298 299 WARN_ON(preemptible()); 300 301 cpumsr = msr_check_and_set(MSR_VEC); 302 303 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 304 check_if_tm_restore_required(current); 305 /* 306 * If a thread has already been reclaimed then the 307 * checkpointed registers are on the CPU but have definitely 308 * been saved by the reclaim code. Don't need to and *cannot* 309 * giveup as this would save to the 'live' structure not the 310 * checkpointed structure. 311 */ 312 if (!MSR_TM_ACTIVE(cpumsr) && 313 MSR_TM_ACTIVE(current->thread.regs->msr)) 314 return; 315 __giveup_altivec(current); 316 } 317 } 318 EXPORT_SYMBOL(enable_kernel_altivec); 319 320 /* 321 * Make sure the VMX/Altivec register state in the 322 * the thread_struct is up to date for task tsk. 323 */ 324 void flush_altivec_to_thread(struct task_struct *tsk) 325 { 326 if (tsk->thread.regs) { 327 preempt_disable(); 328 if (tsk->thread.regs->msr & MSR_VEC) { 329 BUG_ON(tsk != current); 330 giveup_altivec(tsk); 331 } 332 preempt_enable(); 333 } 334 } 335 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 336 337 static int restore_altivec(struct task_struct *tsk) 338 { 339 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 340 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 341 load_vr_state(&tsk->thread.vr_state); 342 tsk->thread.used_vr = 1; 343 tsk->thread.load_vec++; 344 345 return 1; 346 } 347 return 0; 348 } 349 #else 350 #define loadvec(thr) 0 351 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 352 #endif /* CONFIG_ALTIVEC */ 353 354 #ifdef CONFIG_VSX 355 static void __giveup_vsx(struct task_struct *tsk) 356 { 357 unsigned long msr = tsk->thread.regs->msr; 358 359 /* 360 * We should never be ssetting MSR_VSX without also setting 361 * MSR_FP and MSR_VEC 362 */ 363 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 364 365 /* __giveup_fpu will clear MSR_VSX */ 366 if (msr & MSR_FP) 367 __giveup_fpu(tsk); 368 if (msr & MSR_VEC) 369 __giveup_altivec(tsk); 370 } 371 372 static void giveup_vsx(struct task_struct *tsk) 373 { 374 check_if_tm_restore_required(tsk); 375 376 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 377 __giveup_vsx(tsk); 378 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 379 } 380 381 void enable_kernel_vsx(void) 382 { 383 unsigned long cpumsr; 384 385 WARN_ON(preemptible()); 386 387 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 388 389 if (current->thread.regs && 390 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 391 check_if_tm_restore_required(current); 392 /* 393 * If a thread has already been reclaimed then the 394 * checkpointed registers are on the CPU but have definitely 395 * been saved by the reclaim code. Don't need to and *cannot* 396 * giveup as this would save to the 'live' structure not the 397 * checkpointed structure. 398 */ 399 if (!MSR_TM_ACTIVE(cpumsr) && 400 MSR_TM_ACTIVE(current->thread.regs->msr)) 401 return; 402 __giveup_vsx(current); 403 } 404 } 405 EXPORT_SYMBOL(enable_kernel_vsx); 406 407 void flush_vsx_to_thread(struct task_struct *tsk) 408 { 409 if (tsk->thread.regs) { 410 preempt_disable(); 411 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 412 BUG_ON(tsk != current); 413 giveup_vsx(tsk); 414 } 415 preempt_enable(); 416 } 417 } 418 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 419 420 static int restore_vsx(struct task_struct *tsk) 421 { 422 if (cpu_has_feature(CPU_FTR_VSX)) { 423 tsk->thread.used_vsr = 1; 424 return 1; 425 } 426 427 return 0; 428 } 429 #else 430 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 431 #endif /* CONFIG_VSX */ 432 433 #ifdef CONFIG_SPE 434 void giveup_spe(struct task_struct *tsk) 435 { 436 check_if_tm_restore_required(tsk); 437 438 msr_check_and_set(MSR_SPE); 439 __giveup_spe(tsk); 440 msr_check_and_clear(MSR_SPE); 441 } 442 EXPORT_SYMBOL(giveup_spe); 443 444 void enable_kernel_spe(void) 445 { 446 WARN_ON(preemptible()); 447 448 msr_check_and_set(MSR_SPE); 449 450 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 451 check_if_tm_restore_required(current); 452 __giveup_spe(current); 453 } 454 } 455 EXPORT_SYMBOL(enable_kernel_spe); 456 457 void flush_spe_to_thread(struct task_struct *tsk) 458 { 459 if (tsk->thread.regs) { 460 preempt_disable(); 461 if (tsk->thread.regs->msr & MSR_SPE) { 462 BUG_ON(tsk != current); 463 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 464 giveup_spe(tsk); 465 } 466 preempt_enable(); 467 } 468 } 469 #endif /* CONFIG_SPE */ 470 471 static unsigned long msr_all_available; 472 473 static int __init init_msr_all_available(void) 474 { 475 #ifdef CONFIG_PPC_FPU 476 msr_all_available |= MSR_FP; 477 #endif 478 #ifdef CONFIG_ALTIVEC 479 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 480 msr_all_available |= MSR_VEC; 481 #endif 482 #ifdef CONFIG_VSX 483 if (cpu_has_feature(CPU_FTR_VSX)) 484 msr_all_available |= MSR_VSX; 485 #endif 486 #ifdef CONFIG_SPE 487 if (cpu_has_feature(CPU_FTR_SPE)) 488 msr_all_available |= MSR_SPE; 489 #endif 490 491 return 0; 492 } 493 early_initcall(init_msr_all_available); 494 495 void giveup_all(struct task_struct *tsk) 496 { 497 unsigned long usermsr; 498 499 if (!tsk->thread.regs) 500 return; 501 502 usermsr = tsk->thread.regs->msr; 503 504 if ((usermsr & msr_all_available) == 0) 505 return; 506 507 msr_check_and_set(msr_all_available); 508 check_if_tm_restore_required(tsk); 509 510 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 511 512 #ifdef CONFIG_PPC_FPU 513 if (usermsr & MSR_FP) 514 __giveup_fpu(tsk); 515 #endif 516 #ifdef CONFIG_ALTIVEC 517 if (usermsr & MSR_VEC) 518 __giveup_altivec(tsk); 519 #endif 520 #ifdef CONFIG_SPE 521 if (usermsr & MSR_SPE) 522 __giveup_spe(tsk); 523 #endif 524 525 msr_check_and_clear(msr_all_available); 526 } 527 EXPORT_SYMBOL(giveup_all); 528 529 void restore_math(struct pt_regs *regs) 530 { 531 unsigned long msr; 532 533 if (!MSR_TM_ACTIVE(regs->msr) && 534 !current->thread.load_fp && !loadvec(current->thread)) 535 return; 536 537 msr = regs->msr; 538 msr_check_and_set(msr_all_available); 539 540 /* 541 * Only reload if the bit is not set in the user MSR, the bit BEING set 542 * indicates that the registers are hot 543 */ 544 if ((!(msr & MSR_FP)) && restore_fp(current)) 545 msr |= MSR_FP | current->thread.fpexc_mode; 546 547 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 548 msr |= MSR_VEC; 549 550 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 551 restore_vsx(current)) { 552 msr |= MSR_VSX; 553 } 554 555 msr_check_and_clear(msr_all_available); 556 557 regs->msr = msr; 558 } 559 560 static void save_all(struct task_struct *tsk) 561 { 562 unsigned long usermsr; 563 564 if (!tsk->thread.regs) 565 return; 566 567 usermsr = tsk->thread.regs->msr; 568 569 if ((usermsr & msr_all_available) == 0) 570 return; 571 572 msr_check_and_set(msr_all_available); 573 574 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 575 576 if (usermsr & MSR_FP) 577 save_fpu(tsk); 578 579 if (usermsr & MSR_VEC) 580 save_altivec(tsk); 581 582 if (usermsr & MSR_SPE) 583 __giveup_spe(tsk); 584 585 msr_check_and_clear(msr_all_available); 586 thread_pkey_regs_save(&tsk->thread); 587 } 588 589 void flush_all_to_thread(struct task_struct *tsk) 590 { 591 if (tsk->thread.regs) { 592 preempt_disable(); 593 BUG_ON(tsk != current); 594 #ifdef CONFIG_SPE 595 if (tsk->thread.regs->msr & MSR_SPE) 596 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 597 #endif 598 save_all(tsk); 599 600 preempt_enable(); 601 } 602 } 603 EXPORT_SYMBOL(flush_all_to_thread); 604 605 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 606 void do_send_trap(struct pt_regs *regs, unsigned long address, 607 unsigned long error_code, int breakpt) 608 { 609 current->thread.trap_nr = TRAP_HWBKPT; 610 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 611 11, SIGSEGV) == NOTIFY_STOP) 612 return; 613 614 /* Deliver the signal to userspace */ 615 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 616 (void __user *)address); 617 } 618 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 619 void do_break (struct pt_regs *regs, unsigned long address, 620 unsigned long error_code) 621 { 622 current->thread.trap_nr = TRAP_HWBKPT; 623 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 624 11, SIGSEGV) == NOTIFY_STOP) 625 return; 626 627 if (debugger_break_match(regs)) 628 return; 629 630 /* Clear the breakpoint */ 631 hw_breakpoint_disable(); 632 633 /* Deliver the signal to userspace */ 634 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current); 635 } 636 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 637 638 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 639 640 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 641 /* 642 * Set the debug registers back to their default "safe" values. 643 */ 644 static void set_debug_reg_defaults(struct thread_struct *thread) 645 { 646 thread->debug.iac1 = thread->debug.iac2 = 0; 647 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 648 thread->debug.iac3 = thread->debug.iac4 = 0; 649 #endif 650 thread->debug.dac1 = thread->debug.dac2 = 0; 651 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 652 thread->debug.dvc1 = thread->debug.dvc2 = 0; 653 #endif 654 thread->debug.dbcr0 = 0; 655 #ifdef CONFIG_BOOKE 656 /* 657 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 658 */ 659 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 660 DBCR1_IAC3US | DBCR1_IAC4US; 661 /* 662 * Force Data Address Compare User/Supervisor bits to be User-only 663 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 664 */ 665 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 666 #else 667 thread->debug.dbcr1 = 0; 668 #endif 669 } 670 671 static void prime_debug_regs(struct debug_reg *debug) 672 { 673 /* 674 * We could have inherited MSR_DE from userspace, since 675 * it doesn't get cleared on exception entry. Make sure 676 * MSR_DE is clear before we enable any debug events. 677 */ 678 mtmsr(mfmsr() & ~MSR_DE); 679 680 mtspr(SPRN_IAC1, debug->iac1); 681 mtspr(SPRN_IAC2, debug->iac2); 682 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 683 mtspr(SPRN_IAC3, debug->iac3); 684 mtspr(SPRN_IAC4, debug->iac4); 685 #endif 686 mtspr(SPRN_DAC1, debug->dac1); 687 mtspr(SPRN_DAC2, debug->dac2); 688 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 689 mtspr(SPRN_DVC1, debug->dvc1); 690 mtspr(SPRN_DVC2, debug->dvc2); 691 #endif 692 mtspr(SPRN_DBCR0, debug->dbcr0); 693 mtspr(SPRN_DBCR1, debug->dbcr1); 694 #ifdef CONFIG_BOOKE 695 mtspr(SPRN_DBCR2, debug->dbcr2); 696 #endif 697 } 698 /* 699 * Unless neither the old or new thread are making use of the 700 * debug registers, set the debug registers from the values 701 * stored in the new thread. 702 */ 703 void switch_booke_debug_regs(struct debug_reg *new_debug) 704 { 705 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 706 || (new_debug->dbcr0 & DBCR0_IDM)) 707 prime_debug_regs(new_debug); 708 } 709 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 710 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 711 #ifndef CONFIG_HAVE_HW_BREAKPOINT 712 static void set_breakpoint(struct arch_hw_breakpoint *brk) 713 { 714 preempt_disable(); 715 __set_breakpoint(brk); 716 preempt_enable(); 717 } 718 719 static void set_debug_reg_defaults(struct thread_struct *thread) 720 { 721 thread->hw_brk.address = 0; 722 thread->hw_brk.type = 0; 723 if (ppc_breakpoint_available()) 724 set_breakpoint(&thread->hw_brk); 725 } 726 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 727 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 728 729 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 730 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 731 { 732 mtspr(SPRN_DAC1, dabr); 733 #ifdef CONFIG_PPC_47x 734 isync(); 735 #endif 736 return 0; 737 } 738 #elif defined(CONFIG_PPC_BOOK3S) 739 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 740 { 741 mtspr(SPRN_DABR, dabr); 742 if (cpu_has_feature(CPU_FTR_DABRX)) 743 mtspr(SPRN_DABRX, dabrx); 744 return 0; 745 } 746 #elif defined(CONFIG_PPC_8xx) 747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 748 { 749 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 750 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 751 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 752 753 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 754 lctrl1 |= 0xa0000; 755 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 756 lctrl1 |= 0xf0000; 757 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 758 lctrl2 = 0; 759 760 mtspr(SPRN_LCTRL2, 0); 761 mtspr(SPRN_CMPE, addr); 762 mtspr(SPRN_CMPF, addr + 4); 763 mtspr(SPRN_LCTRL1, lctrl1); 764 mtspr(SPRN_LCTRL2, lctrl2); 765 766 return 0; 767 } 768 #else 769 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 770 { 771 return -EINVAL; 772 } 773 #endif 774 775 static inline int set_dabr(struct arch_hw_breakpoint *brk) 776 { 777 unsigned long dabr, dabrx; 778 779 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 780 dabrx = ((brk->type >> 3) & 0x7); 781 782 if (ppc_md.set_dabr) 783 return ppc_md.set_dabr(dabr, dabrx); 784 785 return __set_dabr(dabr, dabrx); 786 } 787 788 int set_dawr(struct arch_hw_breakpoint *brk) 789 { 790 unsigned long dawr, dawrx, mrd; 791 792 dawr = brk->address; 793 794 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 795 << (63 - 58); //* read/write bits */ 796 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 797 << (63 - 59); //* translate */ 798 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 799 >> 3; //* PRIM bits */ 800 /* dawr length is stored in field MDR bits 48:53. Matches range in 801 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 802 0b111111=64DW. 803 brk->len is in bytes. 804 This aligns up to double word size, shifts and does the bias. 805 */ 806 mrd = ((brk->len + 7) >> 3) - 1; 807 dawrx |= (mrd & 0x3f) << (63 - 53); 808 809 if (ppc_md.set_dawr) 810 return ppc_md.set_dawr(dawr, dawrx); 811 mtspr(SPRN_DAWR, dawr); 812 mtspr(SPRN_DAWRX, dawrx); 813 return 0; 814 } 815 816 void __set_breakpoint(struct arch_hw_breakpoint *brk) 817 { 818 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 819 820 if (dawr_enabled()) 821 // Power8 or later 822 set_dawr(brk); 823 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 824 // Power7 or earlier 825 set_dabr(brk); 826 else 827 // Shouldn't happen due to higher level checks 828 WARN_ON_ONCE(1); 829 } 830 831 /* Check if we have DAWR or DABR hardware */ 832 bool ppc_breakpoint_available(void) 833 { 834 if (dawr_enabled()) 835 return true; /* POWER8 DAWR or POWER9 forced DAWR */ 836 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 837 return false; /* POWER9 with DAWR disabled */ 838 /* DABR: Everything but POWER8 and POWER9 */ 839 return true; 840 } 841 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 842 843 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 844 struct arch_hw_breakpoint *b) 845 { 846 if (a->address != b->address) 847 return false; 848 if (a->type != b->type) 849 return false; 850 if (a->len != b->len) 851 return false; 852 return true; 853 } 854 855 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 856 857 static inline bool tm_enabled(struct task_struct *tsk) 858 { 859 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 860 } 861 862 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 863 { 864 /* 865 * Use the current MSR TM suspended bit to track if we have 866 * checkpointed state outstanding. 867 * On signal delivery, we'd normally reclaim the checkpointed 868 * state to obtain stack pointer (see:get_tm_stackpointer()). 869 * This will then directly return to userspace without going 870 * through __switch_to(). However, if the stack frame is bad, 871 * we need to exit this thread which calls __switch_to() which 872 * will again attempt to reclaim the already saved tm state. 873 * Hence we need to check that we've not already reclaimed 874 * this state. 875 * We do this using the current MSR, rather tracking it in 876 * some specific thread_struct bit, as it has the additional 877 * benefit of checking for a potential TM bad thing exception. 878 */ 879 if (!MSR_TM_SUSPENDED(mfmsr())) 880 return; 881 882 giveup_all(container_of(thr, struct task_struct, thread)); 883 884 tm_reclaim(thr, cause); 885 886 /* 887 * If we are in a transaction and FP is off then we can't have 888 * used FP inside that transaction. Hence the checkpointed 889 * state is the same as the live state. We need to copy the 890 * live state to the checkpointed state so that when the 891 * transaction is restored, the checkpointed state is correct 892 * and the aborted transaction sees the correct state. We use 893 * ckpt_regs.msr here as that's what tm_reclaim will use to 894 * determine if it's going to write the checkpointed state or 895 * not. So either this will write the checkpointed registers, 896 * or reclaim will. Similarly for VMX. 897 */ 898 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 899 memcpy(&thr->ckfp_state, &thr->fp_state, 900 sizeof(struct thread_fp_state)); 901 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 902 memcpy(&thr->ckvr_state, &thr->vr_state, 903 sizeof(struct thread_vr_state)); 904 } 905 906 void tm_reclaim_current(uint8_t cause) 907 { 908 tm_enable(); 909 tm_reclaim_thread(¤t->thread, cause); 910 } 911 912 static inline void tm_reclaim_task(struct task_struct *tsk) 913 { 914 /* We have to work out if we're switching from/to a task that's in the 915 * middle of a transaction. 916 * 917 * In switching we need to maintain a 2nd register state as 918 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 919 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 920 * ckvr_state 921 * 922 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 923 */ 924 struct thread_struct *thr = &tsk->thread; 925 926 if (!thr->regs) 927 return; 928 929 if (!MSR_TM_ACTIVE(thr->regs->msr)) 930 goto out_and_saveregs; 931 932 WARN_ON(tm_suspend_disabled); 933 934 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 935 "ccr=%lx, msr=%lx, trap=%lx)\n", 936 tsk->pid, thr->regs->nip, 937 thr->regs->ccr, thr->regs->msr, 938 thr->regs->trap); 939 940 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 941 942 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 943 tsk->pid); 944 945 out_and_saveregs: 946 /* Always save the regs here, even if a transaction's not active. 947 * This context-switches a thread's TM info SPRs. We do it here to 948 * be consistent with the restore path (in recheckpoint) which 949 * cannot happen later in _switch(). 950 */ 951 tm_save_sprs(thr); 952 } 953 954 extern void __tm_recheckpoint(struct thread_struct *thread); 955 956 void tm_recheckpoint(struct thread_struct *thread) 957 { 958 unsigned long flags; 959 960 if (!(thread->regs->msr & MSR_TM)) 961 return; 962 963 /* We really can't be interrupted here as the TEXASR registers can't 964 * change and later in the trecheckpoint code, we have a userspace R1. 965 * So let's hard disable over this region. 966 */ 967 local_irq_save(flags); 968 hard_irq_disable(); 969 970 /* The TM SPRs are restored here, so that TEXASR.FS can be set 971 * before the trecheckpoint and no explosion occurs. 972 */ 973 tm_restore_sprs(thread); 974 975 __tm_recheckpoint(thread); 976 977 local_irq_restore(flags); 978 } 979 980 static inline void tm_recheckpoint_new_task(struct task_struct *new) 981 { 982 if (!cpu_has_feature(CPU_FTR_TM)) 983 return; 984 985 /* Recheckpoint the registers of the thread we're about to switch to. 986 * 987 * If the task was using FP, we non-lazily reload both the original and 988 * the speculative FP register states. This is because the kernel 989 * doesn't see if/when a TM rollback occurs, so if we take an FP 990 * unavailable later, we are unable to determine which set of FP regs 991 * need to be restored. 992 */ 993 if (!tm_enabled(new)) 994 return; 995 996 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 997 tm_restore_sprs(&new->thread); 998 return; 999 } 1000 /* Recheckpoint to restore original checkpointed register state. */ 1001 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1002 new->pid, new->thread.regs->msr); 1003 1004 tm_recheckpoint(&new->thread); 1005 1006 /* 1007 * The checkpointed state has been restored but the live state has 1008 * not, ensure all the math functionality is turned off to trigger 1009 * restore_math() to reload. 1010 */ 1011 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1012 1013 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1014 "(kernel msr 0x%lx)\n", 1015 new->pid, mfmsr()); 1016 } 1017 1018 static inline void __switch_to_tm(struct task_struct *prev, 1019 struct task_struct *new) 1020 { 1021 if (cpu_has_feature(CPU_FTR_TM)) { 1022 if (tm_enabled(prev) || tm_enabled(new)) 1023 tm_enable(); 1024 1025 if (tm_enabled(prev)) { 1026 prev->thread.load_tm++; 1027 tm_reclaim_task(prev); 1028 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1029 prev->thread.regs->msr &= ~MSR_TM; 1030 } 1031 1032 tm_recheckpoint_new_task(new); 1033 } 1034 } 1035 1036 /* 1037 * This is called if we are on the way out to userspace and the 1038 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1039 * FP and/or vector state and does so if necessary. 1040 * If userspace is inside a transaction (whether active or 1041 * suspended) and FP/VMX/VSX instructions have ever been enabled 1042 * inside that transaction, then we have to keep them enabled 1043 * and keep the FP/VMX/VSX state loaded while ever the transaction 1044 * continues. The reason is that if we didn't, and subsequently 1045 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1046 * we don't know whether it's the same transaction, and thus we 1047 * don't know which of the checkpointed state and the transactional 1048 * state to use. 1049 */ 1050 void restore_tm_state(struct pt_regs *regs) 1051 { 1052 unsigned long msr_diff; 1053 1054 /* 1055 * This is the only moment we should clear TIF_RESTORE_TM as 1056 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1057 * again, anything else could lead to an incorrect ckpt_msr being 1058 * saved and therefore incorrect signal contexts. 1059 */ 1060 clear_thread_flag(TIF_RESTORE_TM); 1061 if (!MSR_TM_ACTIVE(regs->msr)) 1062 return; 1063 1064 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1065 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1066 1067 /* Ensure that restore_math() will restore */ 1068 if (msr_diff & MSR_FP) 1069 current->thread.load_fp = 1; 1070 #ifdef CONFIG_ALTIVEC 1071 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1072 current->thread.load_vec = 1; 1073 #endif 1074 restore_math(regs); 1075 1076 regs->msr |= msr_diff; 1077 } 1078 1079 #else 1080 #define tm_recheckpoint_new_task(new) 1081 #define __switch_to_tm(prev, new) 1082 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1083 1084 static inline void save_sprs(struct thread_struct *t) 1085 { 1086 #ifdef CONFIG_ALTIVEC 1087 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1088 t->vrsave = mfspr(SPRN_VRSAVE); 1089 #endif 1090 #ifdef CONFIG_PPC_BOOK3S_64 1091 if (cpu_has_feature(CPU_FTR_DSCR)) 1092 t->dscr = mfspr(SPRN_DSCR); 1093 1094 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1095 t->bescr = mfspr(SPRN_BESCR); 1096 t->ebbhr = mfspr(SPRN_EBBHR); 1097 t->ebbrr = mfspr(SPRN_EBBRR); 1098 1099 t->fscr = mfspr(SPRN_FSCR); 1100 1101 /* 1102 * Note that the TAR is not available for use in the kernel. 1103 * (To provide this, the TAR should be backed up/restored on 1104 * exception entry/exit instead, and be in pt_regs. FIXME, 1105 * this should be in pt_regs anyway (for debug).) 1106 */ 1107 t->tar = mfspr(SPRN_TAR); 1108 } 1109 #endif 1110 1111 thread_pkey_regs_save(t); 1112 } 1113 1114 static inline void restore_sprs(struct thread_struct *old_thread, 1115 struct thread_struct *new_thread) 1116 { 1117 #ifdef CONFIG_ALTIVEC 1118 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1119 old_thread->vrsave != new_thread->vrsave) 1120 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1121 #endif 1122 #ifdef CONFIG_PPC_BOOK3S_64 1123 if (cpu_has_feature(CPU_FTR_DSCR)) { 1124 u64 dscr = get_paca()->dscr_default; 1125 if (new_thread->dscr_inherit) 1126 dscr = new_thread->dscr; 1127 1128 if (old_thread->dscr != dscr) 1129 mtspr(SPRN_DSCR, dscr); 1130 } 1131 1132 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1133 if (old_thread->bescr != new_thread->bescr) 1134 mtspr(SPRN_BESCR, new_thread->bescr); 1135 if (old_thread->ebbhr != new_thread->ebbhr) 1136 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1137 if (old_thread->ebbrr != new_thread->ebbrr) 1138 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1139 1140 if (old_thread->fscr != new_thread->fscr) 1141 mtspr(SPRN_FSCR, new_thread->fscr); 1142 1143 if (old_thread->tar != new_thread->tar) 1144 mtspr(SPRN_TAR, new_thread->tar); 1145 } 1146 1147 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1148 old_thread->tidr != new_thread->tidr) 1149 mtspr(SPRN_TIDR, new_thread->tidr); 1150 #endif 1151 1152 thread_pkey_regs_restore(new_thread, old_thread); 1153 } 1154 1155 struct task_struct *__switch_to(struct task_struct *prev, 1156 struct task_struct *new) 1157 { 1158 struct thread_struct *new_thread, *old_thread; 1159 struct task_struct *last; 1160 #ifdef CONFIG_PPC_BOOK3S_64 1161 struct ppc64_tlb_batch *batch; 1162 #endif 1163 1164 new_thread = &new->thread; 1165 old_thread = ¤t->thread; 1166 1167 WARN_ON(!irqs_disabled()); 1168 1169 #ifdef CONFIG_PPC_BOOK3S_64 1170 batch = this_cpu_ptr(&ppc64_tlb_batch); 1171 if (batch->active) { 1172 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1173 if (batch->index) 1174 __flush_tlb_pending(batch); 1175 batch->active = 0; 1176 } 1177 #endif /* CONFIG_PPC_BOOK3S_64 */ 1178 1179 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1180 switch_booke_debug_regs(&new->thread.debug); 1181 #else 1182 /* 1183 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1184 * schedule DABR 1185 */ 1186 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1187 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1188 __set_breakpoint(&new->thread.hw_brk); 1189 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1190 #endif 1191 1192 /* 1193 * We need to save SPRs before treclaim/trecheckpoint as these will 1194 * change a number of them. 1195 */ 1196 save_sprs(&prev->thread); 1197 1198 /* Save FPU, Altivec, VSX and SPE state */ 1199 giveup_all(prev); 1200 1201 __switch_to_tm(prev, new); 1202 1203 if (!radix_enabled()) { 1204 /* 1205 * We can't take a PMU exception inside _switch() since there 1206 * is a window where the kernel stack SLB and the kernel stack 1207 * are out of sync. Hard disable here. 1208 */ 1209 hard_irq_disable(); 1210 } 1211 1212 /* 1213 * Call restore_sprs() before calling _switch(). If we move it after 1214 * _switch() then we miss out on calling it for new tasks. The reason 1215 * for this is we manually create a stack frame for new tasks that 1216 * directly returns through ret_from_fork() or 1217 * ret_from_kernel_thread(). See copy_thread() for details. 1218 */ 1219 restore_sprs(old_thread, new_thread); 1220 1221 last = _switch(old_thread, new_thread); 1222 1223 #ifdef CONFIG_PPC_BOOK3S_64 1224 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1225 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1226 batch = this_cpu_ptr(&ppc64_tlb_batch); 1227 batch->active = 1; 1228 } 1229 1230 if (current->thread.regs) { 1231 restore_math(current->thread.regs); 1232 1233 /* 1234 * The copy-paste buffer can only store into foreign real 1235 * addresses, so unprivileged processes can not see the 1236 * data or use it in any way unless they have foreign real 1237 * mappings. If the new process has the foreign real address 1238 * mappings, we must issue a cp_abort to clear any state and 1239 * prevent snooping, corruption or a covert channel. 1240 */ 1241 if (current->thread.used_vas) 1242 asm volatile(PPC_CP_ABORT); 1243 } 1244 #endif /* CONFIG_PPC_BOOK3S_64 */ 1245 1246 return last; 1247 } 1248 1249 #define NR_INSN_TO_PRINT 16 1250 1251 static void show_instructions(struct pt_regs *regs) 1252 { 1253 int i; 1254 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1255 1256 printk("Instruction dump:"); 1257 1258 for (i = 0; i < NR_INSN_TO_PRINT; i++) { 1259 int instr; 1260 1261 if (!(i % 8)) 1262 pr_cont("\n"); 1263 1264 #if !defined(CONFIG_BOOKE) 1265 /* If executing with the IMMU off, adjust pc rather 1266 * than print XXXXXXXX. 1267 */ 1268 if (!(regs->msr & MSR_IR)) 1269 pc = (unsigned long)phys_to_virt(pc); 1270 #endif 1271 1272 if (!__kernel_text_address(pc) || 1273 probe_kernel_address((const void *)pc, instr)) { 1274 pr_cont("XXXXXXXX "); 1275 } else { 1276 if (regs->nip == pc) 1277 pr_cont("<%08x> ", instr); 1278 else 1279 pr_cont("%08x ", instr); 1280 } 1281 1282 pc += sizeof(int); 1283 } 1284 1285 pr_cont("\n"); 1286 } 1287 1288 void show_user_instructions(struct pt_regs *regs) 1289 { 1290 unsigned long pc; 1291 int n = NR_INSN_TO_PRINT; 1292 struct seq_buf s; 1293 char buf[96]; /* enough for 8 times 9 + 2 chars */ 1294 1295 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int)); 1296 1297 /* 1298 * Make sure the NIP points at userspace, not kernel text/data or 1299 * elsewhere. 1300 */ 1301 if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) { 1302 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1303 current->comm, current->pid); 1304 return; 1305 } 1306 1307 seq_buf_init(&s, buf, sizeof(buf)); 1308 1309 while (n) { 1310 int i; 1311 1312 seq_buf_clear(&s); 1313 1314 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) { 1315 int instr; 1316 1317 if (probe_kernel_address((const void *)pc, instr)) { 1318 seq_buf_printf(&s, "XXXXXXXX "); 1319 continue; 1320 } 1321 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr); 1322 } 1323 1324 if (!seq_buf_has_overflowed(&s)) 1325 pr_info("%s[%d]: code: %s\n", current->comm, 1326 current->pid, s.buffer); 1327 } 1328 } 1329 1330 struct regbit { 1331 unsigned long bit; 1332 const char *name; 1333 }; 1334 1335 static struct regbit msr_bits[] = { 1336 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1337 {MSR_SF, "SF"}, 1338 {MSR_HV, "HV"}, 1339 #endif 1340 {MSR_VEC, "VEC"}, 1341 {MSR_VSX, "VSX"}, 1342 #ifdef CONFIG_BOOKE 1343 {MSR_CE, "CE"}, 1344 #endif 1345 {MSR_EE, "EE"}, 1346 {MSR_PR, "PR"}, 1347 {MSR_FP, "FP"}, 1348 {MSR_ME, "ME"}, 1349 #ifdef CONFIG_BOOKE 1350 {MSR_DE, "DE"}, 1351 #else 1352 {MSR_SE, "SE"}, 1353 {MSR_BE, "BE"}, 1354 #endif 1355 {MSR_IR, "IR"}, 1356 {MSR_DR, "DR"}, 1357 {MSR_PMM, "PMM"}, 1358 #ifndef CONFIG_BOOKE 1359 {MSR_RI, "RI"}, 1360 {MSR_LE, "LE"}, 1361 #endif 1362 {0, NULL} 1363 }; 1364 1365 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1366 { 1367 const char *s = ""; 1368 1369 for (; bits->bit; ++bits) 1370 if (val & bits->bit) { 1371 pr_cont("%s%s", s, bits->name); 1372 s = sep; 1373 } 1374 } 1375 1376 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1377 static struct regbit msr_tm_bits[] = { 1378 {MSR_TS_T, "T"}, 1379 {MSR_TS_S, "S"}, 1380 {MSR_TM, "E"}, 1381 {0, NULL} 1382 }; 1383 1384 static void print_tm_bits(unsigned long val) 1385 { 1386 /* 1387 * This only prints something if at least one of the TM bit is set. 1388 * Inside the TM[], the output means: 1389 * E: Enabled (bit 32) 1390 * S: Suspended (bit 33) 1391 * T: Transactional (bit 34) 1392 */ 1393 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1394 pr_cont(",TM["); 1395 print_bits(val, msr_tm_bits, ""); 1396 pr_cont("]"); 1397 } 1398 } 1399 #else 1400 static void print_tm_bits(unsigned long val) {} 1401 #endif 1402 1403 static void print_msr_bits(unsigned long val) 1404 { 1405 pr_cont("<"); 1406 print_bits(val, msr_bits, ","); 1407 print_tm_bits(val); 1408 pr_cont(">"); 1409 } 1410 1411 #ifdef CONFIG_PPC64 1412 #define REG "%016lx" 1413 #define REGS_PER_LINE 4 1414 #define LAST_VOLATILE 13 1415 #else 1416 #define REG "%08lx" 1417 #define REGS_PER_LINE 8 1418 #define LAST_VOLATILE 12 1419 #endif 1420 1421 void show_regs(struct pt_regs * regs) 1422 { 1423 int i, trap; 1424 1425 show_regs_print_info(KERN_DEFAULT); 1426 1427 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1428 regs->nip, regs->link, regs->ctr); 1429 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1430 regs, regs->trap, print_tainted(), init_utsname()->release); 1431 printk("MSR: "REG" ", regs->msr); 1432 print_msr_bits(regs->msr); 1433 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1434 trap = TRAP(regs); 1435 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1436 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1437 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1438 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1439 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1440 #else 1441 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1442 #endif 1443 #ifdef CONFIG_PPC64 1444 pr_cont("IRQMASK: %lx ", regs->softe); 1445 #endif 1446 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1447 if (MSR_TM_ACTIVE(regs->msr)) 1448 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1449 #endif 1450 1451 for (i = 0; i < 32; i++) { 1452 if ((i % REGS_PER_LINE) == 0) 1453 pr_cont("\nGPR%02d: ", i); 1454 pr_cont(REG " ", regs->gpr[i]); 1455 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1456 break; 1457 } 1458 pr_cont("\n"); 1459 #ifdef CONFIG_KALLSYMS 1460 /* 1461 * Lookup NIP late so we have the best change of getting the 1462 * above info out without failing 1463 */ 1464 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1465 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1466 #endif 1467 show_stack(current, (unsigned long *) regs->gpr[1]); 1468 if (!user_mode(regs)) 1469 show_instructions(regs); 1470 } 1471 1472 void flush_thread(void) 1473 { 1474 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1475 flush_ptrace_hw_breakpoint(current); 1476 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1477 set_debug_reg_defaults(¤t->thread); 1478 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1479 } 1480 1481 #ifdef CONFIG_PPC_BOOK3S_64 1482 void arch_setup_new_exec(void) 1483 { 1484 if (radix_enabled()) 1485 return; 1486 hash__setup_new_exec(); 1487 } 1488 #endif 1489 1490 int set_thread_uses_vas(void) 1491 { 1492 #ifdef CONFIG_PPC_BOOK3S_64 1493 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1494 return -EINVAL; 1495 1496 current->thread.used_vas = 1; 1497 1498 /* 1499 * Even a process that has no foreign real address mapping can use 1500 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1501 * to clear any pending COPY and prevent a covert channel. 1502 * 1503 * __switch_to() will issue CP_ABORT on future context switches. 1504 */ 1505 asm volatile(PPC_CP_ABORT); 1506 1507 #endif /* CONFIG_PPC_BOOK3S_64 */ 1508 return 0; 1509 } 1510 1511 #ifdef CONFIG_PPC64 1512 /** 1513 * Assign a TIDR (thread ID) for task @t and set it in the thread 1514 * structure. For now, we only support setting TIDR for 'current' task. 1515 * 1516 * Since the TID value is a truncated form of it PID, it is possible 1517 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1518 * that 2 threads share the same TID and are waiting, one of the following 1519 * cases will happen: 1520 * 1521 * 1. The correct thread is running, the wrong thread is not 1522 * In this situation, the correct thread is woken and proceeds to pass it's 1523 * condition check. 1524 * 1525 * 2. Neither threads are running 1526 * In this situation, neither thread will be woken. When scheduled, the waiting 1527 * threads will execute either a wait, which will return immediately, followed 1528 * by a condition check, which will pass for the correct thread and fail 1529 * for the wrong thread, or they will execute the condition check immediately. 1530 * 1531 * 3. The wrong thread is running, the correct thread is not 1532 * The wrong thread will be woken, but will fail it's condition check and 1533 * re-execute wait. The correct thread, when scheduled, will execute either 1534 * it's condition check (which will pass), or wait, which returns immediately 1535 * when called the first time after the thread is scheduled, followed by it's 1536 * condition check (which will pass). 1537 * 1538 * 4. Both threads are running 1539 * Both threads will be woken. The wrong thread will fail it's condition check 1540 * and execute another wait, while the correct thread will pass it's condition 1541 * check. 1542 * 1543 * @t: the task to set the thread ID for 1544 */ 1545 int set_thread_tidr(struct task_struct *t) 1546 { 1547 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1548 return -EINVAL; 1549 1550 if (t != current) 1551 return -EINVAL; 1552 1553 if (t->thread.tidr) 1554 return 0; 1555 1556 t->thread.tidr = (u16)task_pid_nr(t); 1557 mtspr(SPRN_TIDR, t->thread.tidr); 1558 1559 return 0; 1560 } 1561 EXPORT_SYMBOL_GPL(set_thread_tidr); 1562 1563 #endif /* CONFIG_PPC64 */ 1564 1565 void 1566 release_thread(struct task_struct *t) 1567 { 1568 } 1569 1570 /* 1571 * this gets called so that we can store coprocessor state into memory and 1572 * copy the current task into the new thread. 1573 */ 1574 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1575 { 1576 flush_all_to_thread(src); 1577 /* 1578 * Flush TM state out so we can copy it. __switch_to_tm() does this 1579 * flush but it removes the checkpointed state from the current CPU and 1580 * transitions the CPU out of TM mode. Hence we need to call 1581 * tm_recheckpoint_new_task() (on the same task) to restore the 1582 * checkpointed state back and the TM mode. 1583 * 1584 * Can't pass dst because it isn't ready. Doesn't matter, passing 1585 * dst is only important for __switch_to() 1586 */ 1587 __switch_to_tm(src, src); 1588 1589 *dst = *src; 1590 1591 clear_task_ebb(dst); 1592 1593 return 0; 1594 } 1595 1596 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1597 { 1598 #ifdef CONFIG_PPC_BOOK3S_64 1599 unsigned long sp_vsid; 1600 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1601 1602 if (radix_enabled()) 1603 return; 1604 1605 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1606 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1607 << SLB_VSID_SHIFT_1T; 1608 else 1609 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1610 << SLB_VSID_SHIFT; 1611 sp_vsid |= SLB_VSID_KERNEL | llp; 1612 p->thread.ksp_vsid = sp_vsid; 1613 #endif 1614 } 1615 1616 /* 1617 * Copy a thread.. 1618 */ 1619 1620 /* 1621 * Copy architecture-specific thread state 1622 */ 1623 int copy_thread(unsigned long clone_flags, unsigned long usp, 1624 unsigned long kthread_arg, struct task_struct *p) 1625 { 1626 struct pt_regs *childregs, *kregs; 1627 extern void ret_from_fork(void); 1628 extern void ret_from_kernel_thread(void); 1629 void (*f)(void); 1630 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1631 struct thread_info *ti = task_thread_info(p); 1632 1633 klp_init_thread_info(p); 1634 1635 /* Copy registers */ 1636 sp -= sizeof(struct pt_regs); 1637 childregs = (struct pt_regs *) sp; 1638 if (unlikely(p->flags & PF_KTHREAD)) { 1639 /* kernel thread */ 1640 memset(childregs, 0, sizeof(struct pt_regs)); 1641 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1642 /* function */ 1643 if (usp) 1644 childregs->gpr[14] = ppc_function_entry((void *)usp); 1645 #ifdef CONFIG_PPC64 1646 clear_tsk_thread_flag(p, TIF_32BIT); 1647 childregs->softe = IRQS_ENABLED; 1648 #endif 1649 childregs->gpr[15] = kthread_arg; 1650 p->thread.regs = NULL; /* no user register state */ 1651 ti->flags |= _TIF_RESTOREALL; 1652 f = ret_from_kernel_thread; 1653 } else { 1654 /* user thread */ 1655 struct pt_regs *regs = current_pt_regs(); 1656 CHECK_FULL_REGS(regs); 1657 *childregs = *regs; 1658 if (usp) 1659 childregs->gpr[1] = usp; 1660 p->thread.regs = childregs; 1661 childregs->gpr[3] = 0; /* Result from fork() */ 1662 if (clone_flags & CLONE_SETTLS) { 1663 #ifdef CONFIG_PPC64 1664 if (!is_32bit_task()) 1665 childregs->gpr[13] = childregs->gpr[6]; 1666 else 1667 #endif 1668 childregs->gpr[2] = childregs->gpr[6]; 1669 } 1670 1671 f = ret_from_fork; 1672 } 1673 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1674 sp -= STACK_FRAME_OVERHEAD; 1675 1676 /* 1677 * The way this works is that at some point in the future 1678 * some task will call _switch to switch to the new task. 1679 * That will pop off the stack frame created below and start 1680 * the new task running at ret_from_fork. The new task will 1681 * do some house keeping and then return from the fork or clone 1682 * system call, using the stack frame created above. 1683 */ 1684 ((unsigned long *)sp)[0] = 0; 1685 sp -= sizeof(struct pt_regs); 1686 kregs = (struct pt_regs *) sp; 1687 sp -= STACK_FRAME_OVERHEAD; 1688 p->thread.ksp = sp; 1689 #ifdef CONFIG_PPC32 1690 p->thread.ksp_limit = (unsigned long)end_of_stack(p); 1691 #endif 1692 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1693 p->thread.ptrace_bps[0] = NULL; 1694 #endif 1695 1696 p->thread.fp_save_area = NULL; 1697 #ifdef CONFIG_ALTIVEC 1698 p->thread.vr_save_area = NULL; 1699 #endif 1700 1701 setup_ksp_vsid(p, sp); 1702 1703 #ifdef CONFIG_PPC64 1704 if (cpu_has_feature(CPU_FTR_DSCR)) { 1705 p->thread.dscr_inherit = current->thread.dscr_inherit; 1706 p->thread.dscr = mfspr(SPRN_DSCR); 1707 } 1708 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1709 childregs->ppr = DEFAULT_PPR; 1710 1711 p->thread.tidr = 0; 1712 #endif 1713 kregs->nip = ppc_function_entry(f); 1714 return 0; 1715 } 1716 1717 void preload_new_slb_context(unsigned long start, unsigned long sp); 1718 1719 /* 1720 * Set up a thread for executing a new program 1721 */ 1722 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1723 { 1724 #ifdef CONFIG_PPC64 1725 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1726 1727 #ifdef CONFIG_PPC_BOOK3S_64 1728 if (!radix_enabled()) 1729 preload_new_slb_context(start, sp); 1730 #endif 1731 #endif 1732 1733 /* 1734 * If we exec out of a kernel thread then thread.regs will not be 1735 * set. Do it now. 1736 */ 1737 if (!current->thread.regs) { 1738 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1739 current->thread.regs = regs - 1; 1740 } 1741 1742 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1743 /* 1744 * Clear any transactional state, we're exec()ing. The cause is 1745 * not important as there will never be a recheckpoint so it's not 1746 * user visible. 1747 */ 1748 if (MSR_TM_SUSPENDED(mfmsr())) 1749 tm_reclaim_current(0); 1750 #endif 1751 1752 memset(regs->gpr, 0, sizeof(regs->gpr)); 1753 regs->ctr = 0; 1754 regs->link = 0; 1755 regs->xer = 0; 1756 regs->ccr = 0; 1757 regs->gpr[1] = sp; 1758 1759 /* 1760 * We have just cleared all the nonvolatile GPRs, so make 1761 * FULL_REGS(regs) return true. This is necessary to allow 1762 * ptrace to examine the thread immediately after exec. 1763 */ 1764 regs->trap &= ~1UL; 1765 1766 #ifdef CONFIG_PPC32 1767 regs->mq = 0; 1768 regs->nip = start; 1769 regs->msr = MSR_USER; 1770 #else 1771 if (!is_32bit_task()) { 1772 unsigned long entry; 1773 1774 if (is_elf2_task()) { 1775 /* Look ma, no function descriptors! */ 1776 entry = start; 1777 1778 /* 1779 * Ulrich says: 1780 * The latest iteration of the ABI requires that when 1781 * calling a function (at its global entry point), 1782 * the caller must ensure r12 holds the entry point 1783 * address (so that the function can quickly 1784 * establish addressability). 1785 */ 1786 regs->gpr[12] = start; 1787 /* Make sure that's restored on entry to userspace. */ 1788 set_thread_flag(TIF_RESTOREALL); 1789 } else { 1790 unsigned long toc; 1791 1792 /* start is a relocated pointer to the function 1793 * descriptor for the elf _start routine. The first 1794 * entry in the function descriptor is the entry 1795 * address of _start and the second entry is the TOC 1796 * value we need to use. 1797 */ 1798 __get_user(entry, (unsigned long __user *)start); 1799 __get_user(toc, (unsigned long __user *)start+1); 1800 1801 /* Check whether the e_entry function descriptor entries 1802 * need to be relocated before we can use them. 1803 */ 1804 if (load_addr != 0) { 1805 entry += load_addr; 1806 toc += load_addr; 1807 } 1808 regs->gpr[2] = toc; 1809 } 1810 regs->nip = entry; 1811 regs->msr = MSR_USER64; 1812 } else { 1813 regs->nip = start; 1814 regs->gpr[2] = 0; 1815 regs->msr = MSR_USER32; 1816 } 1817 #endif 1818 #ifdef CONFIG_VSX 1819 current->thread.used_vsr = 0; 1820 #endif 1821 current->thread.load_slb = 0; 1822 current->thread.load_fp = 0; 1823 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1824 current->thread.fp_save_area = NULL; 1825 #ifdef CONFIG_ALTIVEC 1826 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1827 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1828 current->thread.vr_save_area = NULL; 1829 current->thread.vrsave = 0; 1830 current->thread.used_vr = 0; 1831 current->thread.load_vec = 0; 1832 #endif /* CONFIG_ALTIVEC */ 1833 #ifdef CONFIG_SPE 1834 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1835 current->thread.acc = 0; 1836 current->thread.spefscr = 0; 1837 current->thread.used_spe = 0; 1838 #endif /* CONFIG_SPE */ 1839 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1840 current->thread.tm_tfhar = 0; 1841 current->thread.tm_texasr = 0; 1842 current->thread.tm_tfiar = 0; 1843 current->thread.load_tm = 0; 1844 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1845 1846 thread_pkey_regs_init(¤t->thread); 1847 } 1848 EXPORT_SYMBOL(start_thread); 1849 1850 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1851 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1852 1853 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1854 { 1855 struct pt_regs *regs = tsk->thread.regs; 1856 1857 /* This is a bit hairy. If we are an SPE enabled processor 1858 * (have embedded fp) we store the IEEE exception enable flags in 1859 * fpexc_mode. fpexc_mode is also used for setting FP exception 1860 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1861 if (val & PR_FP_EXC_SW_ENABLE) { 1862 #ifdef CONFIG_SPE 1863 if (cpu_has_feature(CPU_FTR_SPE)) { 1864 /* 1865 * When the sticky exception bits are set 1866 * directly by userspace, it must call prctl 1867 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1868 * in the existing prctl settings) or 1869 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1870 * the bits being set). <fenv.h> functions 1871 * saving and restoring the whole 1872 * floating-point environment need to do so 1873 * anyway to restore the prctl settings from 1874 * the saved environment. 1875 */ 1876 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1877 tsk->thread.fpexc_mode = val & 1878 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1879 return 0; 1880 } else { 1881 return -EINVAL; 1882 } 1883 #else 1884 return -EINVAL; 1885 #endif 1886 } 1887 1888 /* on a CONFIG_SPE this does not hurt us. The bits that 1889 * __pack_fe01 use do not overlap with bits used for 1890 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1891 * on CONFIG_SPE implementations are reserved so writing to 1892 * them does not change anything */ 1893 if (val > PR_FP_EXC_PRECISE) 1894 return -EINVAL; 1895 tsk->thread.fpexc_mode = __pack_fe01(val); 1896 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1897 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1898 | tsk->thread.fpexc_mode; 1899 return 0; 1900 } 1901 1902 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1903 { 1904 unsigned int val; 1905 1906 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1907 #ifdef CONFIG_SPE 1908 if (cpu_has_feature(CPU_FTR_SPE)) { 1909 /* 1910 * When the sticky exception bits are set 1911 * directly by userspace, it must call prctl 1912 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1913 * in the existing prctl settings) or 1914 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1915 * the bits being set). <fenv.h> functions 1916 * saving and restoring the whole 1917 * floating-point environment need to do so 1918 * anyway to restore the prctl settings from 1919 * the saved environment. 1920 */ 1921 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1922 val = tsk->thread.fpexc_mode; 1923 } else 1924 return -EINVAL; 1925 #else 1926 return -EINVAL; 1927 #endif 1928 else 1929 val = __unpack_fe01(tsk->thread.fpexc_mode); 1930 return put_user(val, (unsigned int __user *) adr); 1931 } 1932 1933 int set_endian(struct task_struct *tsk, unsigned int val) 1934 { 1935 struct pt_regs *regs = tsk->thread.regs; 1936 1937 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1938 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1939 return -EINVAL; 1940 1941 if (regs == NULL) 1942 return -EINVAL; 1943 1944 if (val == PR_ENDIAN_BIG) 1945 regs->msr &= ~MSR_LE; 1946 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1947 regs->msr |= MSR_LE; 1948 else 1949 return -EINVAL; 1950 1951 return 0; 1952 } 1953 1954 int get_endian(struct task_struct *tsk, unsigned long adr) 1955 { 1956 struct pt_regs *regs = tsk->thread.regs; 1957 unsigned int val; 1958 1959 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1960 !cpu_has_feature(CPU_FTR_REAL_LE)) 1961 return -EINVAL; 1962 1963 if (regs == NULL) 1964 return -EINVAL; 1965 1966 if (regs->msr & MSR_LE) { 1967 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1968 val = PR_ENDIAN_LITTLE; 1969 else 1970 val = PR_ENDIAN_PPC_LITTLE; 1971 } else 1972 val = PR_ENDIAN_BIG; 1973 1974 return put_user(val, (unsigned int __user *)adr); 1975 } 1976 1977 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1978 { 1979 tsk->thread.align_ctl = val; 1980 return 0; 1981 } 1982 1983 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1984 { 1985 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1986 } 1987 1988 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1989 unsigned long nbytes) 1990 { 1991 unsigned long stack_page; 1992 unsigned long cpu = task_cpu(p); 1993 1994 stack_page = (unsigned long)hardirq_ctx[cpu]; 1995 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 1996 return 1; 1997 1998 stack_page = (unsigned long)softirq_ctx[cpu]; 1999 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2000 return 1; 2001 2002 return 0; 2003 } 2004 2005 int validate_sp(unsigned long sp, struct task_struct *p, 2006 unsigned long nbytes) 2007 { 2008 unsigned long stack_page = (unsigned long)task_stack_page(p); 2009 2010 if (sp < THREAD_SIZE) 2011 return 0; 2012 2013 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes) 2014 return 1; 2015 2016 return valid_irq_stack(sp, p, nbytes); 2017 } 2018 2019 EXPORT_SYMBOL(validate_sp); 2020 2021 static unsigned long __get_wchan(struct task_struct *p) 2022 { 2023 unsigned long ip, sp; 2024 int count = 0; 2025 2026 if (!p || p == current || p->state == TASK_RUNNING) 2027 return 0; 2028 2029 sp = p->thread.ksp; 2030 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2031 return 0; 2032 2033 do { 2034 sp = *(unsigned long *)sp; 2035 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2036 p->state == TASK_RUNNING) 2037 return 0; 2038 if (count > 0) { 2039 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2040 if (!in_sched_functions(ip)) 2041 return ip; 2042 } 2043 } while (count++ < 16); 2044 return 0; 2045 } 2046 2047 unsigned long get_wchan(struct task_struct *p) 2048 { 2049 unsigned long ret; 2050 2051 if (!try_get_task_stack(p)) 2052 return 0; 2053 2054 ret = __get_wchan(p); 2055 2056 put_task_stack(p); 2057 2058 return ret; 2059 } 2060 2061 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2062 2063 void show_stack(struct task_struct *tsk, unsigned long *stack) 2064 { 2065 unsigned long sp, ip, lr, newsp; 2066 int count = 0; 2067 int firstframe = 1; 2068 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2069 struct ftrace_ret_stack *ret_stack; 2070 extern void return_to_handler(void); 2071 unsigned long rth = (unsigned long)return_to_handler; 2072 int curr_frame = 0; 2073 #endif 2074 2075 if (tsk == NULL) 2076 tsk = current; 2077 2078 if (!try_get_task_stack(tsk)) 2079 return; 2080 2081 sp = (unsigned long) stack; 2082 if (sp == 0) { 2083 if (tsk == current) 2084 sp = current_stack_pointer(); 2085 else 2086 sp = tsk->thread.ksp; 2087 } 2088 2089 lr = 0; 2090 printk("Call Trace:\n"); 2091 do { 2092 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2093 break; 2094 2095 stack = (unsigned long *) sp; 2096 newsp = stack[0]; 2097 ip = stack[STACK_FRAME_LR_SAVE]; 2098 if (!firstframe || ip != lr) { 2099 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2100 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2101 if ((ip == rth) && curr_frame >= 0) { 2102 ret_stack = ftrace_graph_get_ret_stack(current, 2103 curr_frame++); 2104 if (ret_stack) 2105 pr_cont(" (%pS)", 2106 (void *)ret_stack->ret); 2107 else 2108 curr_frame = -1; 2109 } 2110 #endif 2111 if (firstframe) 2112 pr_cont(" (unreliable)"); 2113 pr_cont("\n"); 2114 } 2115 firstframe = 0; 2116 2117 /* 2118 * See if this is an exception frame. 2119 * We look for the "regshere" marker in the current frame. 2120 */ 2121 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2122 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2123 struct pt_regs *regs = (struct pt_regs *) 2124 (sp + STACK_FRAME_OVERHEAD); 2125 lr = regs->link; 2126 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2127 regs->trap, (void *)regs->nip, (void *)lr); 2128 firstframe = 1; 2129 } 2130 2131 sp = newsp; 2132 } while (count++ < kstack_depth_to_print); 2133 2134 put_task_stack(tsk); 2135 } 2136 2137 #ifdef CONFIG_PPC64 2138 /* Called with hard IRQs off */ 2139 void notrace __ppc64_runlatch_on(void) 2140 { 2141 struct thread_info *ti = current_thread_info(); 2142 2143 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2144 /* 2145 * Least significant bit (RUN) is the only writable bit of 2146 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2147 * earliest ISA where this is the case, but it's convenient. 2148 */ 2149 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2150 } else { 2151 unsigned long ctrl; 2152 2153 /* 2154 * Some architectures (e.g., Cell) have writable fields other 2155 * than RUN, so do the read-modify-write. 2156 */ 2157 ctrl = mfspr(SPRN_CTRLF); 2158 ctrl |= CTRL_RUNLATCH; 2159 mtspr(SPRN_CTRLT, ctrl); 2160 } 2161 2162 ti->local_flags |= _TLF_RUNLATCH; 2163 } 2164 2165 /* Called with hard IRQs off */ 2166 void notrace __ppc64_runlatch_off(void) 2167 { 2168 struct thread_info *ti = current_thread_info(); 2169 2170 ti->local_flags &= ~_TLF_RUNLATCH; 2171 2172 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2173 mtspr(SPRN_CTRLT, 0); 2174 } else { 2175 unsigned long ctrl; 2176 2177 ctrl = mfspr(SPRN_CTRLF); 2178 ctrl &= ~CTRL_RUNLATCH; 2179 mtspr(SPRN_CTRLT, ctrl); 2180 } 2181 } 2182 #endif /* CONFIG_PPC64 */ 2183 2184 unsigned long arch_align_stack(unsigned long sp) 2185 { 2186 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2187 sp -= get_random_int() & ~PAGE_MASK; 2188 return sp & ~0xf; 2189 } 2190 2191 static inline unsigned long brk_rnd(void) 2192 { 2193 unsigned long rnd = 0; 2194 2195 /* 8MB for 32bit, 1GB for 64bit */ 2196 if (is_32bit_task()) 2197 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2198 else 2199 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2200 2201 return rnd << PAGE_SHIFT; 2202 } 2203 2204 unsigned long arch_randomize_brk(struct mm_struct *mm) 2205 { 2206 unsigned long base = mm->brk; 2207 unsigned long ret; 2208 2209 #ifdef CONFIG_PPC_BOOK3S_64 2210 /* 2211 * If we are using 1TB segments and we are allowed to randomise 2212 * the heap, we can put it above 1TB so it is backed by a 1TB 2213 * segment. Otherwise the heap will be in the bottom 1TB 2214 * which always uses 256MB segments and this may result in a 2215 * performance penalty. We don't need to worry about radix. For 2216 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2217 */ 2218 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2219 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2220 #endif 2221 2222 ret = PAGE_ALIGN(base + brk_rnd()); 2223 2224 if (ret < mm->brk) 2225 return mm->brk; 2226 2227 return ret; 2228 } 2229 2230