xref: /linux/arch/powerpc/kernel/process.c (revision 26deb04342e343ac58ab05bc7d2345ff0be9b667)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 #include <linux/seq_buf.h>
47 
48 #include <asm/pgtable.h>
49 #include <asm/io.h>
50 #include <asm/processor.h>
51 #include <asm/mmu.h>
52 #include <asm/prom.h>
53 #include <asm/machdep.h>
54 #include <asm/time.h>
55 #include <asm/runlatch.h>
56 #include <asm/syscalls.h>
57 #include <asm/switch_to.h>
58 #include <asm/tm.h>
59 #include <asm/debug.h>
60 #ifdef CONFIG_PPC64
61 #include <asm/firmware.h>
62 #include <asm/hw_irq.h>
63 #endif
64 #include <asm/code-patching.h>
65 #include <asm/exec.h>
66 #include <asm/livepatch.h>
67 #include <asm/cpu_has_feature.h>
68 #include <asm/asm-prototypes.h>
69 #include <asm/stacktrace.h>
70 #include <asm/hw_breakpoint.h>
71 
72 #include <linux/kprobes.h>
73 #include <linux/kdebug.h>
74 
75 /* Transactional Memory debug */
76 #ifdef TM_DEBUG_SW
77 #define TM_DEBUG(x...) printk(KERN_INFO x)
78 #else
79 #define TM_DEBUG(x...) do { } while(0)
80 #endif
81 
82 extern unsigned long _get_SP(void);
83 
84 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
85 /*
86  * Are we running in "Suspend disabled" mode? If so we have to block any
87  * sigreturn that would get us into suspended state, and we also warn in some
88  * other paths that we should never reach with suspend disabled.
89  */
90 bool tm_suspend_disabled __ro_after_init = false;
91 
92 static void check_if_tm_restore_required(struct task_struct *tsk)
93 {
94 	/*
95 	 * If we are saving the current thread's registers, and the
96 	 * thread is in a transactional state, set the TIF_RESTORE_TM
97 	 * bit so that we know to restore the registers before
98 	 * returning to userspace.
99 	 */
100 	if (tsk == current && tsk->thread.regs &&
101 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
102 	    !test_thread_flag(TIF_RESTORE_TM)) {
103 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
104 		set_thread_flag(TIF_RESTORE_TM);
105 	}
106 }
107 
108 static bool tm_active_with_fp(struct task_struct *tsk)
109 {
110 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
111 		(tsk->thread.ckpt_regs.msr & MSR_FP);
112 }
113 
114 static bool tm_active_with_altivec(struct task_struct *tsk)
115 {
116 	return MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
117 		(tsk->thread.ckpt_regs.msr & MSR_VEC);
118 }
119 #else
120 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
121 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
122 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
123 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
124 
125 bool strict_msr_control;
126 EXPORT_SYMBOL(strict_msr_control);
127 
128 static int __init enable_strict_msr_control(char *str)
129 {
130 	strict_msr_control = true;
131 	pr_info("Enabling strict facility control\n");
132 
133 	return 0;
134 }
135 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
136 
137 unsigned long msr_check_and_set(unsigned long bits)
138 {
139 	unsigned long oldmsr = mfmsr();
140 	unsigned long newmsr;
141 
142 	newmsr = oldmsr | bits;
143 
144 #ifdef CONFIG_VSX
145 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
146 		newmsr |= MSR_VSX;
147 #endif
148 
149 	if (oldmsr != newmsr)
150 		mtmsr_isync(newmsr);
151 
152 	return newmsr;
153 }
154 EXPORT_SYMBOL_GPL(msr_check_and_set);
155 
156 void __msr_check_and_clear(unsigned long bits)
157 {
158 	unsigned long oldmsr = mfmsr();
159 	unsigned long newmsr;
160 
161 	newmsr = oldmsr & ~bits;
162 
163 #ifdef CONFIG_VSX
164 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
165 		newmsr &= ~MSR_VSX;
166 #endif
167 
168 	if (oldmsr != newmsr)
169 		mtmsr_isync(newmsr);
170 }
171 EXPORT_SYMBOL(__msr_check_and_clear);
172 
173 #ifdef CONFIG_PPC_FPU
174 static void __giveup_fpu(struct task_struct *tsk)
175 {
176 	unsigned long msr;
177 
178 	save_fpu(tsk);
179 	msr = tsk->thread.regs->msr;
180 	msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
181 #ifdef CONFIG_VSX
182 	if (cpu_has_feature(CPU_FTR_VSX))
183 		msr &= ~MSR_VSX;
184 #endif
185 	tsk->thread.regs->msr = msr;
186 }
187 
188 void giveup_fpu(struct task_struct *tsk)
189 {
190 	check_if_tm_restore_required(tsk);
191 
192 	msr_check_and_set(MSR_FP);
193 	__giveup_fpu(tsk);
194 	msr_check_and_clear(MSR_FP);
195 }
196 EXPORT_SYMBOL(giveup_fpu);
197 
198 /*
199  * Make sure the floating-point register state in the
200  * the thread_struct is up to date for task tsk.
201  */
202 void flush_fp_to_thread(struct task_struct *tsk)
203 {
204 	if (tsk->thread.regs) {
205 		/*
206 		 * We need to disable preemption here because if we didn't,
207 		 * another process could get scheduled after the regs->msr
208 		 * test but before we have finished saving the FP registers
209 		 * to the thread_struct.  That process could take over the
210 		 * FPU, and then when we get scheduled again we would store
211 		 * bogus values for the remaining FP registers.
212 		 */
213 		preempt_disable();
214 		if (tsk->thread.regs->msr & MSR_FP) {
215 			/*
216 			 * This should only ever be called for current or
217 			 * for a stopped child process.  Since we save away
218 			 * the FP register state on context switch,
219 			 * there is something wrong if a stopped child appears
220 			 * to still have its FP state in the CPU registers.
221 			 */
222 			BUG_ON(tsk != current);
223 			giveup_fpu(tsk);
224 		}
225 		preempt_enable();
226 	}
227 }
228 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
229 
230 void enable_kernel_fp(void)
231 {
232 	unsigned long cpumsr;
233 
234 	WARN_ON(preemptible());
235 
236 	cpumsr = msr_check_and_set(MSR_FP);
237 
238 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
239 		check_if_tm_restore_required(current);
240 		/*
241 		 * If a thread has already been reclaimed then the
242 		 * checkpointed registers are on the CPU but have definitely
243 		 * been saved by the reclaim code. Don't need to and *cannot*
244 		 * giveup as this would save  to the 'live' structure not the
245 		 * checkpointed structure.
246 		 */
247 		if (!MSR_TM_ACTIVE(cpumsr) &&
248 		     MSR_TM_ACTIVE(current->thread.regs->msr))
249 			return;
250 		__giveup_fpu(current);
251 	}
252 }
253 EXPORT_SYMBOL(enable_kernel_fp);
254 
255 static int restore_fp(struct task_struct *tsk)
256 {
257 	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
258 		load_fp_state(&current->thread.fp_state);
259 		current->thread.load_fp++;
260 		return 1;
261 	}
262 	return 0;
263 }
264 #else
265 static int restore_fp(struct task_struct *tsk) { return 0; }
266 #endif /* CONFIG_PPC_FPU */
267 
268 #ifdef CONFIG_ALTIVEC
269 #define loadvec(thr) ((thr).load_vec)
270 
271 static void __giveup_altivec(struct task_struct *tsk)
272 {
273 	unsigned long msr;
274 
275 	save_altivec(tsk);
276 	msr = tsk->thread.regs->msr;
277 	msr &= ~MSR_VEC;
278 #ifdef CONFIG_VSX
279 	if (cpu_has_feature(CPU_FTR_VSX))
280 		msr &= ~MSR_VSX;
281 #endif
282 	tsk->thread.regs->msr = msr;
283 }
284 
285 void giveup_altivec(struct task_struct *tsk)
286 {
287 	check_if_tm_restore_required(tsk);
288 
289 	msr_check_and_set(MSR_VEC);
290 	__giveup_altivec(tsk);
291 	msr_check_and_clear(MSR_VEC);
292 }
293 EXPORT_SYMBOL(giveup_altivec);
294 
295 void enable_kernel_altivec(void)
296 {
297 	unsigned long cpumsr;
298 
299 	WARN_ON(preemptible());
300 
301 	cpumsr = msr_check_and_set(MSR_VEC);
302 
303 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
304 		check_if_tm_restore_required(current);
305 		/*
306 		 * If a thread has already been reclaimed then the
307 		 * checkpointed registers are on the CPU but have definitely
308 		 * been saved by the reclaim code. Don't need to and *cannot*
309 		 * giveup as this would save  to the 'live' structure not the
310 		 * checkpointed structure.
311 		 */
312 		if (!MSR_TM_ACTIVE(cpumsr) &&
313 		     MSR_TM_ACTIVE(current->thread.regs->msr))
314 			return;
315 		__giveup_altivec(current);
316 	}
317 }
318 EXPORT_SYMBOL(enable_kernel_altivec);
319 
320 /*
321  * Make sure the VMX/Altivec register state in the
322  * the thread_struct is up to date for task tsk.
323  */
324 void flush_altivec_to_thread(struct task_struct *tsk)
325 {
326 	if (tsk->thread.regs) {
327 		preempt_disable();
328 		if (tsk->thread.regs->msr & MSR_VEC) {
329 			BUG_ON(tsk != current);
330 			giveup_altivec(tsk);
331 		}
332 		preempt_enable();
333 	}
334 }
335 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
336 
337 static int restore_altivec(struct task_struct *tsk)
338 {
339 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
340 		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
341 		load_vr_state(&tsk->thread.vr_state);
342 		tsk->thread.used_vr = 1;
343 		tsk->thread.load_vec++;
344 
345 		return 1;
346 	}
347 	return 0;
348 }
349 #else
350 #define loadvec(thr) 0
351 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
352 #endif /* CONFIG_ALTIVEC */
353 
354 #ifdef CONFIG_VSX
355 static void __giveup_vsx(struct task_struct *tsk)
356 {
357 	unsigned long msr = tsk->thread.regs->msr;
358 
359 	/*
360 	 * We should never be ssetting MSR_VSX without also setting
361 	 * MSR_FP and MSR_VEC
362 	 */
363 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
364 
365 	/* __giveup_fpu will clear MSR_VSX */
366 	if (msr & MSR_FP)
367 		__giveup_fpu(tsk);
368 	if (msr & MSR_VEC)
369 		__giveup_altivec(tsk);
370 }
371 
372 static void giveup_vsx(struct task_struct *tsk)
373 {
374 	check_if_tm_restore_required(tsk);
375 
376 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
377 	__giveup_vsx(tsk);
378 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
379 }
380 
381 void enable_kernel_vsx(void)
382 {
383 	unsigned long cpumsr;
384 
385 	WARN_ON(preemptible());
386 
387 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
388 
389 	if (current->thread.regs &&
390 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
391 		check_if_tm_restore_required(current);
392 		/*
393 		 * If a thread has already been reclaimed then the
394 		 * checkpointed registers are on the CPU but have definitely
395 		 * been saved by the reclaim code. Don't need to and *cannot*
396 		 * giveup as this would save  to the 'live' structure not the
397 		 * checkpointed structure.
398 		 */
399 		if (!MSR_TM_ACTIVE(cpumsr) &&
400 		     MSR_TM_ACTIVE(current->thread.regs->msr))
401 			return;
402 		__giveup_vsx(current);
403 	}
404 }
405 EXPORT_SYMBOL(enable_kernel_vsx);
406 
407 void flush_vsx_to_thread(struct task_struct *tsk)
408 {
409 	if (tsk->thread.regs) {
410 		preempt_disable();
411 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
412 			BUG_ON(tsk != current);
413 			giveup_vsx(tsk);
414 		}
415 		preempt_enable();
416 	}
417 }
418 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
419 
420 static int restore_vsx(struct task_struct *tsk)
421 {
422 	if (cpu_has_feature(CPU_FTR_VSX)) {
423 		tsk->thread.used_vsr = 1;
424 		return 1;
425 	}
426 
427 	return 0;
428 }
429 #else
430 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
431 #endif /* CONFIG_VSX */
432 
433 #ifdef CONFIG_SPE
434 void giveup_spe(struct task_struct *tsk)
435 {
436 	check_if_tm_restore_required(tsk);
437 
438 	msr_check_and_set(MSR_SPE);
439 	__giveup_spe(tsk);
440 	msr_check_and_clear(MSR_SPE);
441 }
442 EXPORT_SYMBOL(giveup_spe);
443 
444 void enable_kernel_spe(void)
445 {
446 	WARN_ON(preemptible());
447 
448 	msr_check_and_set(MSR_SPE);
449 
450 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
451 		check_if_tm_restore_required(current);
452 		__giveup_spe(current);
453 	}
454 }
455 EXPORT_SYMBOL(enable_kernel_spe);
456 
457 void flush_spe_to_thread(struct task_struct *tsk)
458 {
459 	if (tsk->thread.regs) {
460 		preempt_disable();
461 		if (tsk->thread.regs->msr & MSR_SPE) {
462 			BUG_ON(tsk != current);
463 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
464 			giveup_spe(tsk);
465 		}
466 		preempt_enable();
467 	}
468 }
469 #endif /* CONFIG_SPE */
470 
471 static unsigned long msr_all_available;
472 
473 static int __init init_msr_all_available(void)
474 {
475 #ifdef CONFIG_PPC_FPU
476 	msr_all_available |= MSR_FP;
477 #endif
478 #ifdef CONFIG_ALTIVEC
479 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
480 		msr_all_available |= MSR_VEC;
481 #endif
482 #ifdef CONFIG_VSX
483 	if (cpu_has_feature(CPU_FTR_VSX))
484 		msr_all_available |= MSR_VSX;
485 #endif
486 #ifdef CONFIG_SPE
487 	if (cpu_has_feature(CPU_FTR_SPE))
488 		msr_all_available |= MSR_SPE;
489 #endif
490 
491 	return 0;
492 }
493 early_initcall(init_msr_all_available);
494 
495 void giveup_all(struct task_struct *tsk)
496 {
497 	unsigned long usermsr;
498 
499 	if (!tsk->thread.regs)
500 		return;
501 
502 	usermsr = tsk->thread.regs->msr;
503 
504 	if ((usermsr & msr_all_available) == 0)
505 		return;
506 
507 	msr_check_and_set(msr_all_available);
508 	check_if_tm_restore_required(tsk);
509 
510 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
511 
512 #ifdef CONFIG_PPC_FPU
513 	if (usermsr & MSR_FP)
514 		__giveup_fpu(tsk);
515 #endif
516 #ifdef CONFIG_ALTIVEC
517 	if (usermsr & MSR_VEC)
518 		__giveup_altivec(tsk);
519 #endif
520 #ifdef CONFIG_SPE
521 	if (usermsr & MSR_SPE)
522 		__giveup_spe(tsk);
523 #endif
524 
525 	msr_check_and_clear(msr_all_available);
526 }
527 EXPORT_SYMBOL(giveup_all);
528 
529 void restore_math(struct pt_regs *regs)
530 {
531 	unsigned long msr;
532 
533 	if (!MSR_TM_ACTIVE(regs->msr) &&
534 		!current->thread.load_fp && !loadvec(current->thread))
535 		return;
536 
537 	msr = regs->msr;
538 	msr_check_and_set(msr_all_available);
539 
540 	/*
541 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
542 	 * indicates that the registers are hot
543 	 */
544 	if ((!(msr & MSR_FP)) && restore_fp(current))
545 		msr |= MSR_FP | current->thread.fpexc_mode;
546 
547 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
548 		msr |= MSR_VEC;
549 
550 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
551 			restore_vsx(current)) {
552 		msr |= MSR_VSX;
553 	}
554 
555 	msr_check_and_clear(msr_all_available);
556 
557 	regs->msr = msr;
558 }
559 
560 static void save_all(struct task_struct *tsk)
561 {
562 	unsigned long usermsr;
563 
564 	if (!tsk->thread.regs)
565 		return;
566 
567 	usermsr = tsk->thread.regs->msr;
568 
569 	if ((usermsr & msr_all_available) == 0)
570 		return;
571 
572 	msr_check_and_set(msr_all_available);
573 
574 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
575 
576 	if (usermsr & MSR_FP)
577 		save_fpu(tsk);
578 
579 	if (usermsr & MSR_VEC)
580 		save_altivec(tsk);
581 
582 	if (usermsr & MSR_SPE)
583 		__giveup_spe(tsk);
584 
585 	msr_check_and_clear(msr_all_available);
586 	thread_pkey_regs_save(&tsk->thread);
587 }
588 
589 void flush_all_to_thread(struct task_struct *tsk)
590 {
591 	if (tsk->thread.regs) {
592 		preempt_disable();
593 		BUG_ON(tsk != current);
594 #ifdef CONFIG_SPE
595 		if (tsk->thread.regs->msr & MSR_SPE)
596 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
597 #endif
598 		save_all(tsk);
599 
600 		preempt_enable();
601 	}
602 }
603 EXPORT_SYMBOL(flush_all_to_thread);
604 
605 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
606 void do_send_trap(struct pt_regs *regs, unsigned long address,
607 		  unsigned long error_code, int breakpt)
608 {
609 	current->thread.trap_nr = TRAP_HWBKPT;
610 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
611 			11, SIGSEGV) == NOTIFY_STOP)
612 		return;
613 
614 	/* Deliver the signal to userspace */
615 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
616 				    (void __user *)address);
617 }
618 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
619 void do_break (struct pt_regs *regs, unsigned long address,
620 		    unsigned long error_code)
621 {
622 	current->thread.trap_nr = TRAP_HWBKPT;
623 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
624 			11, SIGSEGV) == NOTIFY_STOP)
625 		return;
626 
627 	if (debugger_break_match(regs))
628 		return;
629 
630 	/* Clear the breakpoint */
631 	hw_breakpoint_disable();
632 
633 	/* Deliver the signal to userspace */
634 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
635 }
636 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
637 
638 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
639 
640 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
641 /*
642  * Set the debug registers back to their default "safe" values.
643  */
644 static void set_debug_reg_defaults(struct thread_struct *thread)
645 {
646 	thread->debug.iac1 = thread->debug.iac2 = 0;
647 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
648 	thread->debug.iac3 = thread->debug.iac4 = 0;
649 #endif
650 	thread->debug.dac1 = thread->debug.dac2 = 0;
651 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
652 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
653 #endif
654 	thread->debug.dbcr0 = 0;
655 #ifdef CONFIG_BOOKE
656 	/*
657 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
658 	 */
659 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
660 			DBCR1_IAC3US | DBCR1_IAC4US;
661 	/*
662 	 * Force Data Address Compare User/Supervisor bits to be User-only
663 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
664 	 */
665 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
666 #else
667 	thread->debug.dbcr1 = 0;
668 #endif
669 }
670 
671 static void prime_debug_regs(struct debug_reg *debug)
672 {
673 	/*
674 	 * We could have inherited MSR_DE from userspace, since
675 	 * it doesn't get cleared on exception entry.  Make sure
676 	 * MSR_DE is clear before we enable any debug events.
677 	 */
678 	mtmsr(mfmsr() & ~MSR_DE);
679 
680 	mtspr(SPRN_IAC1, debug->iac1);
681 	mtspr(SPRN_IAC2, debug->iac2);
682 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
683 	mtspr(SPRN_IAC3, debug->iac3);
684 	mtspr(SPRN_IAC4, debug->iac4);
685 #endif
686 	mtspr(SPRN_DAC1, debug->dac1);
687 	mtspr(SPRN_DAC2, debug->dac2);
688 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
689 	mtspr(SPRN_DVC1, debug->dvc1);
690 	mtspr(SPRN_DVC2, debug->dvc2);
691 #endif
692 	mtspr(SPRN_DBCR0, debug->dbcr0);
693 	mtspr(SPRN_DBCR1, debug->dbcr1);
694 #ifdef CONFIG_BOOKE
695 	mtspr(SPRN_DBCR2, debug->dbcr2);
696 #endif
697 }
698 /*
699  * Unless neither the old or new thread are making use of the
700  * debug registers, set the debug registers from the values
701  * stored in the new thread.
702  */
703 void switch_booke_debug_regs(struct debug_reg *new_debug)
704 {
705 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
706 		|| (new_debug->dbcr0 & DBCR0_IDM))
707 			prime_debug_regs(new_debug);
708 }
709 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
710 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
711 #ifndef CONFIG_HAVE_HW_BREAKPOINT
712 static void set_breakpoint(struct arch_hw_breakpoint *brk)
713 {
714 	preempt_disable();
715 	__set_breakpoint(brk);
716 	preempt_enable();
717 }
718 
719 static void set_debug_reg_defaults(struct thread_struct *thread)
720 {
721 	thread->hw_brk.address = 0;
722 	thread->hw_brk.type = 0;
723 	if (ppc_breakpoint_available())
724 		set_breakpoint(&thread->hw_brk);
725 }
726 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
727 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
728 
729 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
730 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
731 {
732 	mtspr(SPRN_DAC1, dabr);
733 #ifdef CONFIG_PPC_47x
734 	isync();
735 #endif
736 	return 0;
737 }
738 #elif defined(CONFIG_PPC_BOOK3S)
739 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
740 {
741 	mtspr(SPRN_DABR, dabr);
742 	if (cpu_has_feature(CPU_FTR_DABRX))
743 		mtspr(SPRN_DABRX, dabrx);
744 	return 0;
745 }
746 #elif defined(CONFIG_PPC_8xx)
747 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
748 {
749 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
750 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
751 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
752 
753 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
754 		lctrl1 |= 0xa0000;
755 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
756 		lctrl1 |= 0xf0000;
757 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
758 		lctrl2 = 0;
759 
760 	mtspr(SPRN_LCTRL2, 0);
761 	mtspr(SPRN_CMPE, addr);
762 	mtspr(SPRN_CMPF, addr + 4);
763 	mtspr(SPRN_LCTRL1, lctrl1);
764 	mtspr(SPRN_LCTRL2, lctrl2);
765 
766 	return 0;
767 }
768 #else
769 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
770 {
771 	return -EINVAL;
772 }
773 #endif
774 
775 static inline int set_dabr(struct arch_hw_breakpoint *brk)
776 {
777 	unsigned long dabr, dabrx;
778 
779 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
780 	dabrx = ((brk->type >> 3) & 0x7);
781 
782 	if (ppc_md.set_dabr)
783 		return ppc_md.set_dabr(dabr, dabrx);
784 
785 	return __set_dabr(dabr, dabrx);
786 }
787 
788 int set_dawr(struct arch_hw_breakpoint *brk)
789 {
790 	unsigned long dawr, dawrx, mrd;
791 
792 	dawr = brk->address;
793 
794 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
795 		                   << (63 - 58); //* read/write bits */
796 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
797 		                   << (63 - 59); //* translate */
798 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
799 		                   >> 3; //* PRIM bits */
800 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
801 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
802 	   0b111111=64DW.
803 	   brk->len is in bytes.
804 	   This aligns up to double word size, shifts and does the bias.
805 	*/
806 	mrd = ((brk->len + 7) >> 3) - 1;
807 	dawrx |= (mrd & 0x3f) << (63 - 53);
808 
809 	if (ppc_md.set_dawr)
810 		return ppc_md.set_dawr(dawr, dawrx);
811 	mtspr(SPRN_DAWR, dawr);
812 	mtspr(SPRN_DAWRX, dawrx);
813 	return 0;
814 }
815 
816 void __set_breakpoint(struct arch_hw_breakpoint *brk)
817 {
818 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
819 
820 	if (dawr_enabled())
821 		// Power8 or later
822 		set_dawr(brk);
823 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
824 		// Power7 or earlier
825 		set_dabr(brk);
826 	else
827 		// Shouldn't happen due to higher level checks
828 		WARN_ON_ONCE(1);
829 }
830 
831 /* Check if we have DAWR or DABR hardware */
832 bool ppc_breakpoint_available(void)
833 {
834 	if (dawr_enabled())
835 		return true; /* POWER8 DAWR or POWER9 forced DAWR */
836 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
837 		return false; /* POWER9 with DAWR disabled */
838 	/* DABR: Everything but POWER8 and POWER9 */
839 	return true;
840 }
841 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
842 
843 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
844 			      struct arch_hw_breakpoint *b)
845 {
846 	if (a->address != b->address)
847 		return false;
848 	if (a->type != b->type)
849 		return false;
850 	if (a->len != b->len)
851 		return false;
852 	return true;
853 }
854 
855 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
856 
857 static inline bool tm_enabled(struct task_struct *tsk)
858 {
859 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
860 }
861 
862 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
863 {
864 	/*
865 	 * Use the current MSR TM suspended bit to track if we have
866 	 * checkpointed state outstanding.
867 	 * On signal delivery, we'd normally reclaim the checkpointed
868 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
869 	 * This will then directly return to userspace without going
870 	 * through __switch_to(). However, if the stack frame is bad,
871 	 * we need to exit this thread which calls __switch_to() which
872 	 * will again attempt to reclaim the already saved tm state.
873 	 * Hence we need to check that we've not already reclaimed
874 	 * this state.
875 	 * We do this using the current MSR, rather tracking it in
876 	 * some specific thread_struct bit, as it has the additional
877 	 * benefit of checking for a potential TM bad thing exception.
878 	 */
879 	if (!MSR_TM_SUSPENDED(mfmsr()))
880 		return;
881 
882 	giveup_all(container_of(thr, struct task_struct, thread));
883 
884 	tm_reclaim(thr, cause);
885 
886 	/*
887 	 * If we are in a transaction and FP is off then we can't have
888 	 * used FP inside that transaction. Hence the checkpointed
889 	 * state is the same as the live state. We need to copy the
890 	 * live state to the checkpointed state so that when the
891 	 * transaction is restored, the checkpointed state is correct
892 	 * and the aborted transaction sees the correct state. We use
893 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
894 	 * determine if it's going to write the checkpointed state or
895 	 * not. So either this will write the checkpointed registers,
896 	 * or reclaim will. Similarly for VMX.
897 	 */
898 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
899 		memcpy(&thr->ckfp_state, &thr->fp_state,
900 		       sizeof(struct thread_fp_state));
901 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
902 		memcpy(&thr->ckvr_state, &thr->vr_state,
903 		       sizeof(struct thread_vr_state));
904 }
905 
906 void tm_reclaim_current(uint8_t cause)
907 {
908 	tm_enable();
909 	tm_reclaim_thread(&current->thread, cause);
910 }
911 
912 static inline void tm_reclaim_task(struct task_struct *tsk)
913 {
914 	/* We have to work out if we're switching from/to a task that's in the
915 	 * middle of a transaction.
916 	 *
917 	 * In switching we need to maintain a 2nd register state as
918 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
919 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
920 	 * ckvr_state
921 	 *
922 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
923 	 */
924 	struct thread_struct *thr = &tsk->thread;
925 
926 	if (!thr->regs)
927 		return;
928 
929 	if (!MSR_TM_ACTIVE(thr->regs->msr))
930 		goto out_and_saveregs;
931 
932 	WARN_ON(tm_suspend_disabled);
933 
934 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
935 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
936 		 tsk->pid, thr->regs->nip,
937 		 thr->regs->ccr, thr->regs->msr,
938 		 thr->regs->trap);
939 
940 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
941 
942 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
943 		 tsk->pid);
944 
945 out_and_saveregs:
946 	/* Always save the regs here, even if a transaction's not active.
947 	 * This context-switches a thread's TM info SPRs.  We do it here to
948 	 * be consistent with the restore path (in recheckpoint) which
949 	 * cannot happen later in _switch().
950 	 */
951 	tm_save_sprs(thr);
952 }
953 
954 extern void __tm_recheckpoint(struct thread_struct *thread);
955 
956 void tm_recheckpoint(struct thread_struct *thread)
957 {
958 	unsigned long flags;
959 
960 	if (!(thread->regs->msr & MSR_TM))
961 		return;
962 
963 	/* We really can't be interrupted here as the TEXASR registers can't
964 	 * change and later in the trecheckpoint code, we have a userspace R1.
965 	 * So let's hard disable over this region.
966 	 */
967 	local_irq_save(flags);
968 	hard_irq_disable();
969 
970 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
971 	 * before the trecheckpoint and no explosion occurs.
972 	 */
973 	tm_restore_sprs(thread);
974 
975 	__tm_recheckpoint(thread);
976 
977 	local_irq_restore(flags);
978 }
979 
980 static inline void tm_recheckpoint_new_task(struct task_struct *new)
981 {
982 	if (!cpu_has_feature(CPU_FTR_TM))
983 		return;
984 
985 	/* Recheckpoint the registers of the thread we're about to switch to.
986 	 *
987 	 * If the task was using FP, we non-lazily reload both the original and
988 	 * the speculative FP register states.  This is because the kernel
989 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
990 	 * unavailable later, we are unable to determine which set of FP regs
991 	 * need to be restored.
992 	 */
993 	if (!tm_enabled(new))
994 		return;
995 
996 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
997 		tm_restore_sprs(&new->thread);
998 		return;
999 	}
1000 	/* Recheckpoint to restore original checkpointed register state. */
1001 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1002 		 new->pid, new->thread.regs->msr);
1003 
1004 	tm_recheckpoint(&new->thread);
1005 
1006 	/*
1007 	 * The checkpointed state has been restored but the live state has
1008 	 * not, ensure all the math functionality is turned off to trigger
1009 	 * restore_math() to reload.
1010 	 */
1011 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1012 
1013 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1014 		 "(kernel msr 0x%lx)\n",
1015 		 new->pid, mfmsr());
1016 }
1017 
1018 static inline void __switch_to_tm(struct task_struct *prev,
1019 		struct task_struct *new)
1020 {
1021 	if (cpu_has_feature(CPU_FTR_TM)) {
1022 		if (tm_enabled(prev) || tm_enabled(new))
1023 			tm_enable();
1024 
1025 		if (tm_enabled(prev)) {
1026 			prev->thread.load_tm++;
1027 			tm_reclaim_task(prev);
1028 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1029 				prev->thread.regs->msr &= ~MSR_TM;
1030 		}
1031 
1032 		tm_recheckpoint_new_task(new);
1033 	}
1034 }
1035 
1036 /*
1037  * This is called if we are on the way out to userspace and the
1038  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1039  * FP and/or vector state and does so if necessary.
1040  * If userspace is inside a transaction (whether active or
1041  * suspended) and FP/VMX/VSX instructions have ever been enabled
1042  * inside that transaction, then we have to keep them enabled
1043  * and keep the FP/VMX/VSX state loaded while ever the transaction
1044  * continues.  The reason is that if we didn't, and subsequently
1045  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1046  * we don't know whether it's the same transaction, and thus we
1047  * don't know which of the checkpointed state and the transactional
1048  * state to use.
1049  */
1050 void restore_tm_state(struct pt_regs *regs)
1051 {
1052 	unsigned long msr_diff;
1053 
1054 	/*
1055 	 * This is the only moment we should clear TIF_RESTORE_TM as
1056 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1057 	 * again, anything else could lead to an incorrect ckpt_msr being
1058 	 * saved and therefore incorrect signal contexts.
1059 	 */
1060 	clear_thread_flag(TIF_RESTORE_TM);
1061 	if (!MSR_TM_ACTIVE(regs->msr))
1062 		return;
1063 
1064 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1065 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1066 
1067 	/* Ensure that restore_math() will restore */
1068 	if (msr_diff & MSR_FP)
1069 		current->thread.load_fp = 1;
1070 #ifdef CONFIG_ALTIVEC
1071 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1072 		current->thread.load_vec = 1;
1073 #endif
1074 	restore_math(regs);
1075 
1076 	regs->msr |= msr_diff;
1077 }
1078 
1079 #else
1080 #define tm_recheckpoint_new_task(new)
1081 #define __switch_to_tm(prev, new)
1082 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1083 
1084 static inline void save_sprs(struct thread_struct *t)
1085 {
1086 #ifdef CONFIG_ALTIVEC
1087 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1088 		t->vrsave = mfspr(SPRN_VRSAVE);
1089 #endif
1090 #ifdef CONFIG_PPC_BOOK3S_64
1091 	if (cpu_has_feature(CPU_FTR_DSCR))
1092 		t->dscr = mfspr(SPRN_DSCR);
1093 
1094 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1095 		t->bescr = mfspr(SPRN_BESCR);
1096 		t->ebbhr = mfspr(SPRN_EBBHR);
1097 		t->ebbrr = mfspr(SPRN_EBBRR);
1098 
1099 		t->fscr = mfspr(SPRN_FSCR);
1100 
1101 		/*
1102 		 * Note that the TAR is not available for use in the kernel.
1103 		 * (To provide this, the TAR should be backed up/restored on
1104 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1105 		 * this should be in pt_regs anyway (for debug).)
1106 		 */
1107 		t->tar = mfspr(SPRN_TAR);
1108 	}
1109 #endif
1110 
1111 	thread_pkey_regs_save(t);
1112 }
1113 
1114 static inline void restore_sprs(struct thread_struct *old_thread,
1115 				struct thread_struct *new_thread)
1116 {
1117 #ifdef CONFIG_ALTIVEC
1118 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1119 	    old_thread->vrsave != new_thread->vrsave)
1120 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1121 #endif
1122 #ifdef CONFIG_PPC_BOOK3S_64
1123 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1124 		u64 dscr = get_paca()->dscr_default;
1125 		if (new_thread->dscr_inherit)
1126 			dscr = new_thread->dscr;
1127 
1128 		if (old_thread->dscr != dscr)
1129 			mtspr(SPRN_DSCR, dscr);
1130 	}
1131 
1132 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1133 		if (old_thread->bescr != new_thread->bescr)
1134 			mtspr(SPRN_BESCR, new_thread->bescr);
1135 		if (old_thread->ebbhr != new_thread->ebbhr)
1136 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1137 		if (old_thread->ebbrr != new_thread->ebbrr)
1138 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1139 
1140 		if (old_thread->fscr != new_thread->fscr)
1141 			mtspr(SPRN_FSCR, new_thread->fscr);
1142 
1143 		if (old_thread->tar != new_thread->tar)
1144 			mtspr(SPRN_TAR, new_thread->tar);
1145 	}
1146 
1147 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1148 	    old_thread->tidr != new_thread->tidr)
1149 		mtspr(SPRN_TIDR, new_thread->tidr);
1150 #endif
1151 
1152 	thread_pkey_regs_restore(new_thread, old_thread);
1153 }
1154 
1155 struct task_struct *__switch_to(struct task_struct *prev,
1156 	struct task_struct *new)
1157 {
1158 	struct thread_struct *new_thread, *old_thread;
1159 	struct task_struct *last;
1160 #ifdef CONFIG_PPC_BOOK3S_64
1161 	struct ppc64_tlb_batch *batch;
1162 #endif
1163 
1164 	new_thread = &new->thread;
1165 	old_thread = &current->thread;
1166 
1167 	WARN_ON(!irqs_disabled());
1168 
1169 #ifdef CONFIG_PPC_BOOK3S_64
1170 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1171 	if (batch->active) {
1172 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1173 		if (batch->index)
1174 			__flush_tlb_pending(batch);
1175 		batch->active = 0;
1176 	}
1177 #endif /* CONFIG_PPC_BOOK3S_64 */
1178 
1179 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1180 	switch_booke_debug_regs(&new->thread.debug);
1181 #else
1182 /*
1183  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1184  * schedule DABR
1185  */
1186 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1187 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1188 		__set_breakpoint(&new->thread.hw_brk);
1189 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1190 #endif
1191 
1192 	/*
1193 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1194 	 * change a number of them.
1195 	 */
1196 	save_sprs(&prev->thread);
1197 
1198 	/* Save FPU, Altivec, VSX and SPE state */
1199 	giveup_all(prev);
1200 
1201 	__switch_to_tm(prev, new);
1202 
1203 	if (!radix_enabled()) {
1204 		/*
1205 		 * We can't take a PMU exception inside _switch() since there
1206 		 * is a window where the kernel stack SLB and the kernel stack
1207 		 * are out of sync. Hard disable here.
1208 		 */
1209 		hard_irq_disable();
1210 	}
1211 
1212 	/*
1213 	 * Call restore_sprs() before calling _switch(). If we move it after
1214 	 * _switch() then we miss out on calling it for new tasks. The reason
1215 	 * for this is we manually create a stack frame for new tasks that
1216 	 * directly returns through ret_from_fork() or
1217 	 * ret_from_kernel_thread(). See copy_thread() for details.
1218 	 */
1219 	restore_sprs(old_thread, new_thread);
1220 
1221 	last = _switch(old_thread, new_thread);
1222 
1223 #ifdef CONFIG_PPC_BOOK3S_64
1224 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1225 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1226 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1227 		batch->active = 1;
1228 	}
1229 
1230 	if (current->thread.regs) {
1231 		restore_math(current->thread.regs);
1232 
1233 		/*
1234 		 * The copy-paste buffer can only store into foreign real
1235 		 * addresses, so unprivileged processes can not see the
1236 		 * data or use it in any way unless they have foreign real
1237 		 * mappings. If the new process has the foreign real address
1238 		 * mappings, we must issue a cp_abort to clear any state and
1239 		 * prevent snooping, corruption or a covert channel.
1240 		 */
1241 		if (current->thread.used_vas)
1242 			asm volatile(PPC_CP_ABORT);
1243 	}
1244 #endif /* CONFIG_PPC_BOOK3S_64 */
1245 
1246 	return last;
1247 }
1248 
1249 #define NR_INSN_TO_PRINT	16
1250 
1251 static void show_instructions(struct pt_regs *regs)
1252 {
1253 	int i;
1254 	unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1255 
1256 	printk("Instruction dump:");
1257 
1258 	for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1259 		int instr;
1260 
1261 		if (!(i % 8))
1262 			pr_cont("\n");
1263 
1264 #if !defined(CONFIG_BOOKE)
1265 		/* If executing with the IMMU off, adjust pc rather
1266 		 * than print XXXXXXXX.
1267 		 */
1268 		if (!(regs->msr & MSR_IR))
1269 			pc = (unsigned long)phys_to_virt(pc);
1270 #endif
1271 
1272 		if (!__kernel_text_address(pc) ||
1273 		    probe_kernel_address((const void *)pc, instr)) {
1274 			pr_cont("XXXXXXXX ");
1275 		} else {
1276 			if (regs->nip == pc)
1277 				pr_cont("<%08x> ", instr);
1278 			else
1279 				pr_cont("%08x ", instr);
1280 		}
1281 
1282 		pc += sizeof(int);
1283 	}
1284 
1285 	pr_cont("\n");
1286 }
1287 
1288 void show_user_instructions(struct pt_regs *regs)
1289 {
1290 	unsigned long pc;
1291 	int n = NR_INSN_TO_PRINT;
1292 	struct seq_buf s;
1293 	char buf[96]; /* enough for 8 times 9 + 2 chars */
1294 
1295 	pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1296 
1297 	/*
1298 	 * Make sure the NIP points at userspace, not kernel text/data or
1299 	 * elsewhere.
1300 	 */
1301 	if (!__access_ok(pc, NR_INSN_TO_PRINT * sizeof(int), USER_DS)) {
1302 		pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1303 			current->comm, current->pid);
1304 		return;
1305 	}
1306 
1307 	seq_buf_init(&s, buf, sizeof(buf));
1308 
1309 	while (n) {
1310 		int i;
1311 
1312 		seq_buf_clear(&s);
1313 
1314 		for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1315 			int instr;
1316 
1317 			if (probe_kernel_address((const void *)pc, instr)) {
1318 				seq_buf_printf(&s, "XXXXXXXX ");
1319 				continue;
1320 			}
1321 			seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1322 		}
1323 
1324 		if (!seq_buf_has_overflowed(&s))
1325 			pr_info("%s[%d]: code: %s\n", current->comm,
1326 				current->pid, s.buffer);
1327 	}
1328 }
1329 
1330 struct regbit {
1331 	unsigned long bit;
1332 	const char *name;
1333 };
1334 
1335 static struct regbit msr_bits[] = {
1336 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1337 	{MSR_SF,	"SF"},
1338 	{MSR_HV,	"HV"},
1339 #endif
1340 	{MSR_VEC,	"VEC"},
1341 	{MSR_VSX,	"VSX"},
1342 #ifdef CONFIG_BOOKE
1343 	{MSR_CE,	"CE"},
1344 #endif
1345 	{MSR_EE,	"EE"},
1346 	{MSR_PR,	"PR"},
1347 	{MSR_FP,	"FP"},
1348 	{MSR_ME,	"ME"},
1349 #ifdef CONFIG_BOOKE
1350 	{MSR_DE,	"DE"},
1351 #else
1352 	{MSR_SE,	"SE"},
1353 	{MSR_BE,	"BE"},
1354 #endif
1355 	{MSR_IR,	"IR"},
1356 	{MSR_DR,	"DR"},
1357 	{MSR_PMM,	"PMM"},
1358 #ifndef CONFIG_BOOKE
1359 	{MSR_RI,	"RI"},
1360 	{MSR_LE,	"LE"},
1361 #endif
1362 	{0,		NULL}
1363 };
1364 
1365 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1366 {
1367 	const char *s = "";
1368 
1369 	for (; bits->bit; ++bits)
1370 		if (val & bits->bit) {
1371 			pr_cont("%s%s", s, bits->name);
1372 			s = sep;
1373 		}
1374 }
1375 
1376 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1377 static struct regbit msr_tm_bits[] = {
1378 	{MSR_TS_T,	"T"},
1379 	{MSR_TS_S,	"S"},
1380 	{MSR_TM,	"E"},
1381 	{0,		NULL}
1382 };
1383 
1384 static void print_tm_bits(unsigned long val)
1385 {
1386 /*
1387  * This only prints something if at least one of the TM bit is set.
1388  * Inside the TM[], the output means:
1389  *   E: Enabled		(bit 32)
1390  *   S: Suspended	(bit 33)
1391  *   T: Transactional	(bit 34)
1392  */
1393 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1394 		pr_cont(",TM[");
1395 		print_bits(val, msr_tm_bits, "");
1396 		pr_cont("]");
1397 	}
1398 }
1399 #else
1400 static void print_tm_bits(unsigned long val) {}
1401 #endif
1402 
1403 static void print_msr_bits(unsigned long val)
1404 {
1405 	pr_cont("<");
1406 	print_bits(val, msr_bits, ",");
1407 	print_tm_bits(val);
1408 	pr_cont(">");
1409 }
1410 
1411 #ifdef CONFIG_PPC64
1412 #define REG		"%016lx"
1413 #define REGS_PER_LINE	4
1414 #define LAST_VOLATILE	13
1415 #else
1416 #define REG		"%08lx"
1417 #define REGS_PER_LINE	8
1418 #define LAST_VOLATILE	12
1419 #endif
1420 
1421 void show_regs(struct pt_regs * regs)
1422 {
1423 	int i, trap;
1424 
1425 	show_regs_print_info(KERN_DEFAULT);
1426 
1427 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1428 	       regs->nip, regs->link, regs->ctr);
1429 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1430 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1431 	printk("MSR:  "REG" ", regs->msr);
1432 	print_msr_bits(regs->msr);
1433 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1434 	trap = TRAP(regs);
1435 	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1436 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1437 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1438 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1439 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1440 #else
1441 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1442 #endif
1443 #ifdef CONFIG_PPC64
1444 	pr_cont("IRQMASK: %lx ", regs->softe);
1445 #endif
1446 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1447 	if (MSR_TM_ACTIVE(regs->msr))
1448 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1449 #endif
1450 
1451 	for (i = 0;  i < 32;  i++) {
1452 		if ((i % REGS_PER_LINE) == 0)
1453 			pr_cont("\nGPR%02d: ", i);
1454 		pr_cont(REG " ", regs->gpr[i]);
1455 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1456 			break;
1457 	}
1458 	pr_cont("\n");
1459 #ifdef CONFIG_KALLSYMS
1460 	/*
1461 	 * Lookup NIP late so we have the best change of getting the
1462 	 * above info out without failing
1463 	 */
1464 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1465 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1466 #endif
1467 	show_stack(current, (unsigned long *) regs->gpr[1]);
1468 	if (!user_mode(regs))
1469 		show_instructions(regs);
1470 }
1471 
1472 void flush_thread(void)
1473 {
1474 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1475 	flush_ptrace_hw_breakpoint(current);
1476 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1477 	set_debug_reg_defaults(&current->thread);
1478 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1479 }
1480 
1481 #ifdef CONFIG_PPC_BOOK3S_64
1482 void arch_setup_new_exec(void)
1483 {
1484 	if (radix_enabled())
1485 		return;
1486 	hash__setup_new_exec();
1487 }
1488 #endif
1489 
1490 int set_thread_uses_vas(void)
1491 {
1492 #ifdef CONFIG_PPC_BOOK3S_64
1493 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1494 		return -EINVAL;
1495 
1496 	current->thread.used_vas = 1;
1497 
1498 	/*
1499 	 * Even a process that has no foreign real address mapping can use
1500 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1501 	 * to clear any pending COPY and prevent a covert channel.
1502 	 *
1503 	 * __switch_to() will issue CP_ABORT on future context switches.
1504 	 */
1505 	asm volatile(PPC_CP_ABORT);
1506 
1507 #endif /* CONFIG_PPC_BOOK3S_64 */
1508 	return 0;
1509 }
1510 
1511 #ifdef CONFIG_PPC64
1512 /**
1513  * Assign a TIDR (thread ID) for task @t and set it in the thread
1514  * structure. For now, we only support setting TIDR for 'current' task.
1515  *
1516  * Since the TID value is a truncated form of it PID, it is possible
1517  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1518  * that 2 threads share the same TID and are waiting, one of the following
1519  * cases will happen:
1520  *
1521  * 1. The correct thread is running, the wrong thread is not
1522  * In this situation, the correct thread is woken and proceeds to pass it's
1523  * condition check.
1524  *
1525  * 2. Neither threads are running
1526  * In this situation, neither thread will be woken. When scheduled, the waiting
1527  * threads will execute either a wait, which will return immediately, followed
1528  * by a condition check, which will pass for the correct thread and fail
1529  * for the wrong thread, or they will execute the condition check immediately.
1530  *
1531  * 3. The wrong thread is running, the correct thread is not
1532  * The wrong thread will be woken, but will fail it's condition check and
1533  * re-execute wait. The correct thread, when scheduled, will execute either
1534  * it's condition check (which will pass), or wait, which returns immediately
1535  * when called the first time after the thread is scheduled, followed by it's
1536  * condition check (which will pass).
1537  *
1538  * 4. Both threads are running
1539  * Both threads will be woken. The wrong thread will fail it's condition check
1540  * and execute another wait, while the correct thread will pass it's condition
1541  * check.
1542  *
1543  * @t: the task to set the thread ID for
1544  */
1545 int set_thread_tidr(struct task_struct *t)
1546 {
1547 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1548 		return -EINVAL;
1549 
1550 	if (t != current)
1551 		return -EINVAL;
1552 
1553 	if (t->thread.tidr)
1554 		return 0;
1555 
1556 	t->thread.tidr = (u16)task_pid_nr(t);
1557 	mtspr(SPRN_TIDR, t->thread.tidr);
1558 
1559 	return 0;
1560 }
1561 EXPORT_SYMBOL_GPL(set_thread_tidr);
1562 
1563 #endif /* CONFIG_PPC64 */
1564 
1565 void
1566 release_thread(struct task_struct *t)
1567 {
1568 }
1569 
1570 /*
1571  * this gets called so that we can store coprocessor state into memory and
1572  * copy the current task into the new thread.
1573  */
1574 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1575 {
1576 	flush_all_to_thread(src);
1577 	/*
1578 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1579 	 * flush but it removes the checkpointed state from the current CPU and
1580 	 * transitions the CPU out of TM mode.  Hence we need to call
1581 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1582 	 * checkpointed state back and the TM mode.
1583 	 *
1584 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1585 	 * dst is only important for __switch_to()
1586 	 */
1587 	__switch_to_tm(src, src);
1588 
1589 	*dst = *src;
1590 
1591 	clear_task_ebb(dst);
1592 
1593 	return 0;
1594 }
1595 
1596 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1597 {
1598 #ifdef CONFIG_PPC_BOOK3S_64
1599 	unsigned long sp_vsid;
1600 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1601 
1602 	if (radix_enabled())
1603 		return;
1604 
1605 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1606 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1607 			<< SLB_VSID_SHIFT_1T;
1608 	else
1609 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1610 			<< SLB_VSID_SHIFT;
1611 	sp_vsid |= SLB_VSID_KERNEL | llp;
1612 	p->thread.ksp_vsid = sp_vsid;
1613 #endif
1614 }
1615 
1616 /*
1617  * Copy a thread..
1618  */
1619 
1620 /*
1621  * Copy architecture-specific thread state
1622  */
1623 int copy_thread(unsigned long clone_flags, unsigned long usp,
1624 		unsigned long kthread_arg, struct task_struct *p)
1625 {
1626 	struct pt_regs *childregs, *kregs;
1627 	extern void ret_from_fork(void);
1628 	extern void ret_from_kernel_thread(void);
1629 	void (*f)(void);
1630 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1631 	struct thread_info *ti = task_thread_info(p);
1632 
1633 	klp_init_thread_info(p);
1634 
1635 	/* Copy registers */
1636 	sp -= sizeof(struct pt_regs);
1637 	childregs = (struct pt_regs *) sp;
1638 	if (unlikely(p->flags & PF_KTHREAD)) {
1639 		/* kernel thread */
1640 		memset(childregs, 0, sizeof(struct pt_regs));
1641 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1642 		/* function */
1643 		if (usp)
1644 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1645 #ifdef CONFIG_PPC64
1646 		clear_tsk_thread_flag(p, TIF_32BIT);
1647 		childregs->softe = IRQS_ENABLED;
1648 #endif
1649 		childregs->gpr[15] = kthread_arg;
1650 		p->thread.regs = NULL;	/* no user register state */
1651 		ti->flags |= _TIF_RESTOREALL;
1652 		f = ret_from_kernel_thread;
1653 	} else {
1654 		/* user thread */
1655 		struct pt_regs *regs = current_pt_regs();
1656 		CHECK_FULL_REGS(regs);
1657 		*childregs = *regs;
1658 		if (usp)
1659 			childregs->gpr[1] = usp;
1660 		p->thread.regs = childregs;
1661 		childregs->gpr[3] = 0;  /* Result from fork() */
1662 		if (clone_flags & CLONE_SETTLS) {
1663 #ifdef CONFIG_PPC64
1664 			if (!is_32bit_task())
1665 				childregs->gpr[13] = childregs->gpr[6];
1666 			else
1667 #endif
1668 				childregs->gpr[2] = childregs->gpr[6];
1669 		}
1670 
1671 		f = ret_from_fork;
1672 	}
1673 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1674 	sp -= STACK_FRAME_OVERHEAD;
1675 
1676 	/*
1677 	 * The way this works is that at some point in the future
1678 	 * some task will call _switch to switch to the new task.
1679 	 * That will pop off the stack frame created below and start
1680 	 * the new task running at ret_from_fork.  The new task will
1681 	 * do some house keeping and then return from the fork or clone
1682 	 * system call, using the stack frame created above.
1683 	 */
1684 	((unsigned long *)sp)[0] = 0;
1685 	sp -= sizeof(struct pt_regs);
1686 	kregs = (struct pt_regs *) sp;
1687 	sp -= STACK_FRAME_OVERHEAD;
1688 	p->thread.ksp = sp;
1689 #ifdef CONFIG_PPC32
1690 	p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1691 #endif
1692 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1693 	p->thread.ptrace_bps[0] = NULL;
1694 #endif
1695 
1696 	p->thread.fp_save_area = NULL;
1697 #ifdef CONFIG_ALTIVEC
1698 	p->thread.vr_save_area = NULL;
1699 #endif
1700 
1701 	setup_ksp_vsid(p, sp);
1702 
1703 #ifdef CONFIG_PPC64
1704 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1705 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1706 		p->thread.dscr = mfspr(SPRN_DSCR);
1707 	}
1708 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1709 		childregs->ppr = DEFAULT_PPR;
1710 
1711 	p->thread.tidr = 0;
1712 #endif
1713 	kregs->nip = ppc_function_entry(f);
1714 	return 0;
1715 }
1716 
1717 void preload_new_slb_context(unsigned long start, unsigned long sp);
1718 
1719 /*
1720  * Set up a thread for executing a new program
1721  */
1722 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1723 {
1724 #ifdef CONFIG_PPC64
1725 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1726 
1727 #ifdef CONFIG_PPC_BOOK3S_64
1728 	if (!radix_enabled())
1729 		preload_new_slb_context(start, sp);
1730 #endif
1731 #endif
1732 
1733 	/*
1734 	 * If we exec out of a kernel thread then thread.regs will not be
1735 	 * set.  Do it now.
1736 	 */
1737 	if (!current->thread.regs) {
1738 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1739 		current->thread.regs = regs - 1;
1740 	}
1741 
1742 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1743 	/*
1744 	 * Clear any transactional state, we're exec()ing. The cause is
1745 	 * not important as there will never be a recheckpoint so it's not
1746 	 * user visible.
1747 	 */
1748 	if (MSR_TM_SUSPENDED(mfmsr()))
1749 		tm_reclaim_current(0);
1750 #endif
1751 
1752 	memset(regs->gpr, 0, sizeof(regs->gpr));
1753 	regs->ctr = 0;
1754 	regs->link = 0;
1755 	regs->xer = 0;
1756 	regs->ccr = 0;
1757 	regs->gpr[1] = sp;
1758 
1759 	/*
1760 	 * We have just cleared all the nonvolatile GPRs, so make
1761 	 * FULL_REGS(regs) return true.  This is necessary to allow
1762 	 * ptrace to examine the thread immediately after exec.
1763 	 */
1764 	regs->trap &= ~1UL;
1765 
1766 #ifdef CONFIG_PPC32
1767 	regs->mq = 0;
1768 	regs->nip = start;
1769 	regs->msr = MSR_USER;
1770 #else
1771 	if (!is_32bit_task()) {
1772 		unsigned long entry;
1773 
1774 		if (is_elf2_task()) {
1775 			/* Look ma, no function descriptors! */
1776 			entry = start;
1777 
1778 			/*
1779 			 * Ulrich says:
1780 			 *   The latest iteration of the ABI requires that when
1781 			 *   calling a function (at its global entry point),
1782 			 *   the caller must ensure r12 holds the entry point
1783 			 *   address (so that the function can quickly
1784 			 *   establish addressability).
1785 			 */
1786 			regs->gpr[12] = start;
1787 			/* Make sure that's restored on entry to userspace. */
1788 			set_thread_flag(TIF_RESTOREALL);
1789 		} else {
1790 			unsigned long toc;
1791 
1792 			/* start is a relocated pointer to the function
1793 			 * descriptor for the elf _start routine.  The first
1794 			 * entry in the function descriptor is the entry
1795 			 * address of _start and the second entry is the TOC
1796 			 * value we need to use.
1797 			 */
1798 			__get_user(entry, (unsigned long __user *)start);
1799 			__get_user(toc, (unsigned long __user *)start+1);
1800 
1801 			/* Check whether the e_entry function descriptor entries
1802 			 * need to be relocated before we can use them.
1803 			 */
1804 			if (load_addr != 0) {
1805 				entry += load_addr;
1806 				toc   += load_addr;
1807 			}
1808 			regs->gpr[2] = toc;
1809 		}
1810 		regs->nip = entry;
1811 		regs->msr = MSR_USER64;
1812 	} else {
1813 		regs->nip = start;
1814 		regs->gpr[2] = 0;
1815 		regs->msr = MSR_USER32;
1816 	}
1817 #endif
1818 #ifdef CONFIG_VSX
1819 	current->thread.used_vsr = 0;
1820 #endif
1821 	current->thread.load_slb = 0;
1822 	current->thread.load_fp = 0;
1823 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1824 	current->thread.fp_save_area = NULL;
1825 #ifdef CONFIG_ALTIVEC
1826 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1827 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1828 	current->thread.vr_save_area = NULL;
1829 	current->thread.vrsave = 0;
1830 	current->thread.used_vr = 0;
1831 	current->thread.load_vec = 0;
1832 #endif /* CONFIG_ALTIVEC */
1833 #ifdef CONFIG_SPE
1834 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1835 	current->thread.acc = 0;
1836 	current->thread.spefscr = 0;
1837 	current->thread.used_spe = 0;
1838 #endif /* CONFIG_SPE */
1839 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1840 	current->thread.tm_tfhar = 0;
1841 	current->thread.tm_texasr = 0;
1842 	current->thread.tm_tfiar = 0;
1843 	current->thread.load_tm = 0;
1844 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1845 
1846 	thread_pkey_regs_init(&current->thread);
1847 }
1848 EXPORT_SYMBOL(start_thread);
1849 
1850 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1851 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1852 
1853 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1854 {
1855 	struct pt_regs *regs = tsk->thread.regs;
1856 
1857 	/* This is a bit hairy.  If we are an SPE enabled  processor
1858 	 * (have embedded fp) we store the IEEE exception enable flags in
1859 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1860 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1861 	if (val & PR_FP_EXC_SW_ENABLE) {
1862 #ifdef CONFIG_SPE
1863 		if (cpu_has_feature(CPU_FTR_SPE)) {
1864 			/*
1865 			 * When the sticky exception bits are set
1866 			 * directly by userspace, it must call prctl
1867 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1868 			 * in the existing prctl settings) or
1869 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1870 			 * the bits being set).  <fenv.h> functions
1871 			 * saving and restoring the whole
1872 			 * floating-point environment need to do so
1873 			 * anyway to restore the prctl settings from
1874 			 * the saved environment.
1875 			 */
1876 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1877 			tsk->thread.fpexc_mode = val &
1878 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1879 			return 0;
1880 		} else {
1881 			return -EINVAL;
1882 		}
1883 #else
1884 		return -EINVAL;
1885 #endif
1886 	}
1887 
1888 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1889 	 * __pack_fe01 use do not overlap with bits used for
1890 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1891 	 * on CONFIG_SPE implementations are reserved so writing to
1892 	 * them does not change anything */
1893 	if (val > PR_FP_EXC_PRECISE)
1894 		return -EINVAL;
1895 	tsk->thread.fpexc_mode = __pack_fe01(val);
1896 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1897 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1898 			| tsk->thread.fpexc_mode;
1899 	return 0;
1900 }
1901 
1902 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1903 {
1904 	unsigned int val;
1905 
1906 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1907 #ifdef CONFIG_SPE
1908 		if (cpu_has_feature(CPU_FTR_SPE)) {
1909 			/*
1910 			 * When the sticky exception bits are set
1911 			 * directly by userspace, it must call prctl
1912 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1913 			 * in the existing prctl settings) or
1914 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1915 			 * the bits being set).  <fenv.h> functions
1916 			 * saving and restoring the whole
1917 			 * floating-point environment need to do so
1918 			 * anyway to restore the prctl settings from
1919 			 * the saved environment.
1920 			 */
1921 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1922 			val = tsk->thread.fpexc_mode;
1923 		} else
1924 			return -EINVAL;
1925 #else
1926 		return -EINVAL;
1927 #endif
1928 	else
1929 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1930 	return put_user(val, (unsigned int __user *) adr);
1931 }
1932 
1933 int set_endian(struct task_struct *tsk, unsigned int val)
1934 {
1935 	struct pt_regs *regs = tsk->thread.regs;
1936 
1937 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1938 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1939 		return -EINVAL;
1940 
1941 	if (regs == NULL)
1942 		return -EINVAL;
1943 
1944 	if (val == PR_ENDIAN_BIG)
1945 		regs->msr &= ~MSR_LE;
1946 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1947 		regs->msr |= MSR_LE;
1948 	else
1949 		return -EINVAL;
1950 
1951 	return 0;
1952 }
1953 
1954 int get_endian(struct task_struct *tsk, unsigned long adr)
1955 {
1956 	struct pt_regs *regs = tsk->thread.regs;
1957 	unsigned int val;
1958 
1959 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1960 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1961 		return -EINVAL;
1962 
1963 	if (regs == NULL)
1964 		return -EINVAL;
1965 
1966 	if (regs->msr & MSR_LE) {
1967 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1968 			val = PR_ENDIAN_LITTLE;
1969 		else
1970 			val = PR_ENDIAN_PPC_LITTLE;
1971 	} else
1972 		val = PR_ENDIAN_BIG;
1973 
1974 	return put_user(val, (unsigned int __user *)adr);
1975 }
1976 
1977 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1978 {
1979 	tsk->thread.align_ctl = val;
1980 	return 0;
1981 }
1982 
1983 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1984 {
1985 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1986 }
1987 
1988 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1989 				  unsigned long nbytes)
1990 {
1991 	unsigned long stack_page;
1992 	unsigned long cpu = task_cpu(p);
1993 
1994 	stack_page = (unsigned long)hardirq_ctx[cpu];
1995 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
1996 		return 1;
1997 
1998 	stack_page = (unsigned long)softirq_ctx[cpu];
1999 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2000 		return 1;
2001 
2002 	return 0;
2003 }
2004 
2005 int validate_sp(unsigned long sp, struct task_struct *p,
2006 		       unsigned long nbytes)
2007 {
2008 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2009 
2010 	if (sp < THREAD_SIZE)
2011 		return 0;
2012 
2013 	if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2014 		return 1;
2015 
2016 	return valid_irq_stack(sp, p, nbytes);
2017 }
2018 
2019 EXPORT_SYMBOL(validate_sp);
2020 
2021 static unsigned long __get_wchan(struct task_struct *p)
2022 {
2023 	unsigned long ip, sp;
2024 	int count = 0;
2025 
2026 	if (!p || p == current || p->state == TASK_RUNNING)
2027 		return 0;
2028 
2029 	sp = p->thread.ksp;
2030 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2031 		return 0;
2032 
2033 	do {
2034 		sp = *(unsigned long *)sp;
2035 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2036 		    p->state == TASK_RUNNING)
2037 			return 0;
2038 		if (count > 0) {
2039 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2040 			if (!in_sched_functions(ip))
2041 				return ip;
2042 		}
2043 	} while (count++ < 16);
2044 	return 0;
2045 }
2046 
2047 unsigned long get_wchan(struct task_struct *p)
2048 {
2049 	unsigned long ret;
2050 
2051 	if (!try_get_task_stack(p))
2052 		return 0;
2053 
2054 	ret = __get_wchan(p);
2055 
2056 	put_task_stack(p);
2057 
2058 	return ret;
2059 }
2060 
2061 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2062 
2063 void show_stack(struct task_struct *tsk, unsigned long *stack)
2064 {
2065 	unsigned long sp, ip, lr, newsp;
2066 	int count = 0;
2067 	int firstframe = 1;
2068 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2069 	struct ftrace_ret_stack *ret_stack;
2070 	extern void return_to_handler(void);
2071 	unsigned long rth = (unsigned long)return_to_handler;
2072 	int curr_frame = 0;
2073 #endif
2074 
2075 	if (tsk == NULL)
2076 		tsk = current;
2077 
2078 	if (!try_get_task_stack(tsk))
2079 		return;
2080 
2081 	sp = (unsigned long) stack;
2082 	if (sp == 0) {
2083 		if (tsk == current)
2084 			sp = current_stack_pointer();
2085 		else
2086 			sp = tsk->thread.ksp;
2087 	}
2088 
2089 	lr = 0;
2090 	printk("Call Trace:\n");
2091 	do {
2092 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2093 			break;
2094 
2095 		stack = (unsigned long *) sp;
2096 		newsp = stack[0];
2097 		ip = stack[STACK_FRAME_LR_SAVE];
2098 		if (!firstframe || ip != lr) {
2099 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2100 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2101 			if ((ip == rth) && curr_frame >= 0) {
2102 				ret_stack = ftrace_graph_get_ret_stack(current,
2103 								  curr_frame++);
2104 				if (ret_stack)
2105 					pr_cont(" (%pS)",
2106 						(void *)ret_stack->ret);
2107 				else
2108 					curr_frame = -1;
2109 			}
2110 #endif
2111 			if (firstframe)
2112 				pr_cont(" (unreliable)");
2113 			pr_cont("\n");
2114 		}
2115 		firstframe = 0;
2116 
2117 		/*
2118 		 * See if this is an exception frame.
2119 		 * We look for the "regshere" marker in the current frame.
2120 		 */
2121 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2122 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2123 			struct pt_regs *regs = (struct pt_regs *)
2124 				(sp + STACK_FRAME_OVERHEAD);
2125 			lr = regs->link;
2126 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2127 			       regs->trap, (void *)regs->nip, (void *)lr);
2128 			firstframe = 1;
2129 		}
2130 
2131 		sp = newsp;
2132 	} while (count++ < kstack_depth_to_print);
2133 
2134 	put_task_stack(tsk);
2135 }
2136 
2137 #ifdef CONFIG_PPC64
2138 /* Called with hard IRQs off */
2139 void notrace __ppc64_runlatch_on(void)
2140 {
2141 	struct thread_info *ti = current_thread_info();
2142 
2143 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2144 		/*
2145 		 * Least significant bit (RUN) is the only writable bit of
2146 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2147 		 * earliest ISA where this is the case, but it's convenient.
2148 		 */
2149 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2150 	} else {
2151 		unsigned long ctrl;
2152 
2153 		/*
2154 		 * Some architectures (e.g., Cell) have writable fields other
2155 		 * than RUN, so do the read-modify-write.
2156 		 */
2157 		ctrl = mfspr(SPRN_CTRLF);
2158 		ctrl |= CTRL_RUNLATCH;
2159 		mtspr(SPRN_CTRLT, ctrl);
2160 	}
2161 
2162 	ti->local_flags |= _TLF_RUNLATCH;
2163 }
2164 
2165 /* Called with hard IRQs off */
2166 void notrace __ppc64_runlatch_off(void)
2167 {
2168 	struct thread_info *ti = current_thread_info();
2169 
2170 	ti->local_flags &= ~_TLF_RUNLATCH;
2171 
2172 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2173 		mtspr(SPRN_CTRLT, 0);
2174 	} else {
2175 		unsigned long ctrl;
2176 
2177 		ctrl = mfspr(SPRN_CTRLF);
2178 		ctrl &= ~CTRL_RUNLATCH;
2179 		mtspr(SPRN_CTRLT, ctrl);
2180 	}
2181 }
2182 #endif /* CONFIG_PPC64 */
2183 
2184 unsigned long arch_align_stack(unsigned long sp)
2185 {
2186 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2187 		sp -= get_random_int() & ~PAGE_MASK;
2188 	return sp & ~0xf;
2189 }
2190 
2191 static inline unsigned long brk_rnd(void)
2192 {
2193         unsigned long rnd = 0;
2194 
2195 	/* 8MB for 32bit, 1GB for 64bit */
2196 	if (is_32bit_task())
2197 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2198 	else
2199 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2200 
2201 	return rnd << PAGE_SHIFT;
2202 }
2203 
2204 unsigned long arch_randomize_brk(struct mm_struct *mm)
2205 {
2206 	unsigned long base = mm->brk;
2207 	unsigned long ret;
2208 
2209 #ifdef CONFIG_PPC_BOOK3S_64
2210 	/*
2211 	 * If we are using 1TB segments and we are allowed to randomise
2212 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2213 	 * segment. Otherwise the heap will be in the bottom 1TB
2214 	 * which always uses 256MB segments and this may result in a
2215 	 * performance penalty. We don't need to worry about radix. For
2216 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2217 	 */
2218 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2219 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2220 #endif
2221 
2222 	ret = PAGE_ALIGN(base + brk_rnd());
2223 
2224 	if (ret < mm->brk)
2225 		return mm->brk;
2226 
2227 	return ret;
2228 }
2229 
2230