xref: /linux/arch/powerpc/kernel/process.c (revision 045ddc8991698a8e9c5668c6190faa8b5d516dc0)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/stddef.h>
23 #include <linux/unistd.h>
24 #include <linux/ptrace.h>
25 #include <linux/slab.h>
26 #include <linux/user.h>
27 #include <linux/elf.h>
28 #include <linux/init.h>
29 #include <linux/prctl.h>
30 #include <linux/init_task.h>
31 #include <linux/export.h>
32 #include <linux/kallsyms.h>
33 #include <linux/mqueue.h>
34 #include <linux/hardirq.h>
35 #include <linux/utsname.h>
36 #include <linux/ftrace.h>
37 #include <linux/kernel_stat.h>
38 #include <linux/personality.h>
39 #include <linux/random.h>
40 #include <linux/hw_breakpoint.h>
41 
42 #include <asm/pgtable.h>
43 #include <asm/uaccess.h>
44 #include <asm/system.h>
45 #include <asm/io.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/prom.h>
49 #include <asm/machdep.h>
50 #include <asm/time.h>
51 #include <asm/syscalls.h>
52 #ifdef CONFIG_PPC64
53 #include <asm/firmware.h>
54 #endif
55 #include <linux/kprobes.h>
56 #include <linux/kdebug.h>
57 
58 extern unsigned long _get_SP(void);
59 
60 #ifndef CONFIG_SMP
61 struct task_struct *last_task_used_math = NULL;
62 struct task_struct *last_task_used_altivec = NULL;
63 struct task_struct *last_task_used_vsx = NULL;
64 struct task_struct *last_task_used_spe = NULL;
65 #endif
66 
67 /*
68  * Make sure the floating-point register state in the
69  * the thread_struct is up to date for task tsk.
70  */
71 void flush_fp_to_thread(struct task_struct *tsk)
72 {
73 	if (tsk->thread.regs) {
74 		/*
75 		 * We need to disable preemption here because if we didn't,
76 		 * another process could get scheduled after the regs->msr
77 		 * test but before we have finished saving the FP registers
78 		 * to the thread_struct.  That process could take over the
79 		 * FPU, and then when we get scheduled again we would store
80 		 * bogus values for the remaining FP registers.
81 		 */
82 		preempt_disable();
83 		if (tsk->thread.regs->msr & MSR_FP) {
84 #ifdef CONFIG_SMP
85 			/*
86 			 * This should only ever be called for current or
87 			 * for a stopped child process.  Since we save away
88 			 * the FP register state on context switch on SMP,
89 			 * there is something wrong if a stopped child appears
90 			 * to still have its FP state in the CPU registers.
91 			 */
92 			BUG_ON(tsk != current);
93 #endif
94 			giveup_fpu(tsk);
95 		}
96 		preempt_enable();
97 	}
98 }
99 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
100 
101 void enable_kernel_fp(void)
102 {
103 	WARN_ON(preemptible());
104 
105 #ifdef CONFIG_SMP
106 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
107 		giveup_fpu(current);
108 	else
109 		giveup_fpu(NULL);	/* just enables FP for kernel */
110 #else
111 	giveup_fpu(last_task_used_math);
112 #endif /* CONFIG_SMP */
113 }
114 EXPORT_SYMBOL(enable_kernel_fp);
115 
116 #ifdef CONFIG_ALTIVEC
117 void enable_kernel_altivec(void)
118 {
119 	WARN_ON(preemptible());
120 
121 #ifdef CONFIG_SMP
122 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
123 		giveup_altivec(current);
124 	else
125 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
126 #else
127 	giveup_altivec(last_task_used_altivec);
128 #endif /* CONFIG_SMP */
129 }
130 EXPORT_SYMBOL(enable_kernel_altivec);
131 
132 /*
133  * Make sure the VMX/Altivec register state in the
134  * the thread_struct is up to date for task tsk.
135  */
136 void flush_altivec_to_thread(struct task_struct *tsk)
137 {
138 	if (tsk->thread.regs) {
139 		preempt_disable();
140 		if (tsk->thread.regs->msr & MSR_VEC) {
141 #ifdef CONFIG_SMP
142 			BUG_ON(tsk != current);
143 #endif
144 			giveup_altivec(tsk);
145 		}
146 		preempt_enable();
147 	}
148 }
149 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
150 #endif /* CONFIG_ALTIVEC */
151 
152 #ifdef CONFIG_VSX
153 #if 0
154 /* not currently used, but some crazy RAID module might want to later */
155 void enable_kernel_vsx(void)
156 {
157 	WARN_ON(preemptible());
158 
159 #ifdef CONFIG_SMP
160 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
161 		giveup_vsx(current);
162 	else
163 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
164 #else
165 	giveup_vsx(last_task_used_vsx);
166 #endif /* CONFIG_SMP */
167 }
168 EXPORT_SYMBOL(enable_kernel_vsx);
169 #endif
170 
171 void giveup_vsx(struct task_struct *tsk)
172 {
173 	giveup_fpu(tsk);
174 	giveup_altivec(tsk);
175 	__giveup_vsx(tsk);
176 }
177 
178 void flush_vsx_to_thread(struct task_struct *tsk)
179 {
180 	if (tsk->thread.regs) {
181 		preempt_disable();
182 		if (tsk->thread.regs->msr & MSR_VSX) {
183 #ifdef CONFIG_SMP
184 			BUG_ON(tsk != current);
185 #endif
186 			giveup_vsx(tsk);
187 		}
188 		preempt_enable();
189 	}
190 }
191 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
192 #endif /* CONFIG_VSX */
193 
194 #ifdef CONFIG_SPE
195 
196 void enable_kernel_spe(void)
197 {
198 	WARN_ON(preemptible());
199 
200 #ifdef CONFIG_SMP
201 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
202 		giveup_spe(current);
203 	else
204 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
205 #else
206 	giveup_spe(last_task_used_spe);
207 #endif /* __SMP __ */
208 }
209 EXPORT_SYMBOL(enable_kernel_spe);
210 
211 void flush_spe_to_thread(struct task_struct *tsk)
212 {
213 	if (tsk->thread.regs) {
214 		preempt_disable();
215 		if (tsk->thread.regs->msr & MSR_SPE) {
216 #ifdef CONFIG_SMP
217 			BUG_ON(tsk != current);
218 #endif
219 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
220 			giveup_spe(tsk);
221 		}
222 		preempt_enable();
223 	}
224 }
225 #endif /* CONFIG_SPE */
226 
227 #ifndef CONFIG_SMP
228 /*
229  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
230  * and the current task has some state, discard it.
231  */
232 void discard_lazy_cpu_state(void)
233 {
234 	preempt_disable();
235 	if (last_task_used_math == current)
236 		last_task_used_math = NULL;
237 #ifdef CONFIG_ALTIVEC
238 	if (last_task_used_altivec == current)
239 		last_task_used_altivec = NULL;
240 #endif /* CONFIG_ALTIVEC */
241 #ifdef CONFIG_VSX
242 	if (last_task_used_vsx == current)
243 		last_task_used_vsx = NULL;
244 #endif /* CONFIG_VSX */
245 #ifdef CONFIG_SPE
246 	if (last_task_used_spe == current)
247 		last_task_used_spe = NULL;
248 #endif
249 	preempt_enable();
250 }
251 #endif /* CONFIG_SMP */
252 
253 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
254 void do_send_trap(struct pt_regs *regs, unsigned long address,
255 		  unsigned long error_code, int signal_code, int breakpt)
256 {
257 	siginfo_t info;
258 
259 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
260 			11, SIGSEGV) == NOTIFY_STOP)
261 		return;
262 
263 	/* Deliver the signal to userspace */
264 	info.si_signo = SIGTRAP;
265 	info.si_errno = breakpt;	/* breakpoint or watchpoint id */
266 	info.si_code = signal_code;
267 	info.si_addr = (void __user *)address;
268 	force_sig_info(SIGTRAP, &info, current);
269 }
270 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
271 void do_dabr(struct pt_regs *regs, unsigned long address,
272 		    unsigned long error_code)
273 {
274 	siginfo_t info;
275 
276 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
277 			11, SIGSEGV) == NOTIFY_STOP)
278 		return;
279 
280 	if (debugger_dabr_match(regs))
281 		return;
282 
283 	/* Clear the DABR */
284 	set_dabr(0);
285 
286 	/* Deliver the signal to userspace */
287 	info.si_signo = SIGTRAP;
288 	info.si_errno = 0;
289 	info.si_code = TRAP_HWBKPT;
290 	info.si_addr = (void __user *)address;
291 	force_sig_info(SIGTRAP, &info, current);
292 }
293 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
294 
295 static DEFINE_PER_CPU(unsigned long, current_dabr);
296 
297 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
298 /*
299  * Set the debug registers back to their default "safe" values.
300  */
301 static void set_debug_reg_defaults(struct thread_struct *thread)
302 {
303 	thread->iac1 = thread->iac2 = 0;
304 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
305 	thread->iac3 = thread->iac4 = 0;
306 #endif
307 	thread->dac1 = thread->dac2 = 0;
308 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
309 	thread->dvc1 = thread->dvc2 = 0;
310 #endif
311 	thread->dbcr0 = 0;
312 #ifdef CONFIG_BOOKE
313 	/*
314 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
315 	 */
316 	thread->dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |	\
317 			DBCR1_IAC3US | DBCR1_IAC4US;
318 	/*
319 	 * Force Data Address Compare User/Supervisor bits to be User-only
320 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
321 	 */
322 	thread->dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
323 #else
324 	thread->dbcr1 = 0;
325 #endif
326 }
327 
328 static void prime_debug_regs(struct thread_struct *thread)
329 {
330 	mtspr(SPRN_IAC1, thread->iac1);
331 	mtspr(SPRN_IAC2, thread->iac2);
332 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
333 	mtspr(SPRN_IAC3, thread->iac3);
334 	mtspr(SPRN_IAC4, thread->iac4);
335 #endif
336 	mtspr(SPRN_DAC1, thread->dac1);
337 	mtspr(SPRN_DAC2, thread->dac2);
338 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
339 	mtspr(SPRN_DVC1, thread->dvc1);
340 	mtspr(SPRN_DVC2, thread->dvc2);
341 #endif
342 	mtspr(SPRN_DBCR0, thread->dbcr0);
343 	mtspr(SPRN_DBCR1, thread->dbcr1);
344 #ifdef CONFIG_BOOKE
345 	mtspr(SPRN_DBCR2, thread->dbcr2);
346 #endif
347 }
348 /*
349  * Unless neither the old or new thread are making use of the
350  * debug registers, set the debug registers from the values
351  * stored in the new thread.
352  */
353 static void switch_booke_debug_regs(struct thread_struct *new_thread)
354 {
355 	if ((current->thread.dbcr0 & DBCR0_IDM)
356 		|| (new_thread->dbcr0 & DBCR0_IDM))
357 			prime_debug_regs(new_thread);
358 }
359 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
360 #ifndef CONFIG_HAVE_HW_BREAKPOINT
361 static void set_debug_reg_defaults(struct thread_struct *thread)
362 {
363 	if (thread->dabr) {
364 		thread->dabr = 0;
365 		set_dabr(0);
366 	}
367 }
368 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
369 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
370 
371 int set_dabr(unsigned long dabr)
372 {
373 	__get_cpu_var(current_dabr) = dabr;
374 
375 	if (ppc_md.set_dabr)
376 		return ppc_md.set_dabr(dabr);
377 
378 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
379 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
380 	mtspr(SPRN_DAC1, dabr);
381 #ifdef CONFIG_PPC_47x
382 	isync();
383 #endif
384 #elif defined(CONFIG_PPC_BOOK3S)
385 	mtspr(SPRN_DABR, dabr);
386 #endif
387 
388 
389 	return 0;
390 }
391 
392 #ifdef CONFIG_PPC64
393 DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
394 #endif
395 
396 struct task_struct *__switch_to(struct task_struct *prev,
397 	struct task_struct *new)
398 {
399 	struct thread_struct *new_thread, *old_thread;
400 	unsigned long flags;
401 	struct task_struct *last;
402 #ifdef CONFIG_PPC_BOOK3S_64
403 	struct ppc64_tlb_batch *batch;
404 #endif
405 
406 #ifdef CONFIG_SMP
407 	/* avoid complexity of lazy save/restore of fpu
408 	 * by just saving it every time we switch out if
409 	 * this task used the fpu during the last quantum.
410 	 *
411 	 * If it tries to use the fpu again, it'll trap and
412 	 * reload its fp regs.  So we don't have to do a restore
413 	 * every switch, just a save.
414 	 *  -- Cort
415 	 */
416 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
417 		giveup_fpu(prev);
418 #ifdef CONFIG_ALTIVEC
419 	/*
420 	 * If the previous thread used altivec in the last quantum
421 	 * (thus changing altivec regs) then save them.
422 	 * We used to check the VRSAVE register but not all apps
423 	 * set it, so we don't rely on it now (and in fact we need
424 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
425 	 *
426 	 * On SMP we always save/restore altivec regs just to avoid the
427 	 * complexity of changing processors.
428 	 *  -- Cort
429 	 */
430 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
431 		giveup_altivec(prev);
432 #endif /* CONFIG_ALTIVEC */
433 #ifdef CONFIG_VSX
434 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
435 		/* VMX and FPU registers are already save here */
436 		__giveup_vsx(prev);
437 #endif /* CONFIG_VSX */
438 #ifdef CONFIG_SPE
439 	/*
440 	 * If the previous thread used spe in the last quantum
441 	 * (thus changing spe regs) then save them.
442 	 *
443 	 * On SMP we always save/restore spe regs just to avoid the
444 	 * complexity of changing processors.
445 	 */
446 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
447 		giveup_spe(prev);
448 #endif /* CONFIG_SPE */
449 
450 #else  /* CONFIG_SMP */
451 #ifdef CONFIG_ALTIVEC
452 	/* Avoid the trap.  On smp this this never happens since
453 	 * we don't set last_task_used_altivec -- Cort
454 	 */
455 	if (new->thread.regs && last_task_used_altivec == new)
456 		new->thread.regs->msr |= MSR_VEC;
457 #endif /* CONFIG_ALTIVEC */
458 #ifdef CONFIG_VSX
459 	if (new->thread.regs && last_task_used_vsx == new)
460 		new->thread.regs->msr |= MSR_VSX;
461 #endif /* CONFIG_VSX */
462 #ifdef CONFIG_SPE
463 	/* Avoid the trap.  On smp this this never happens since
464 	 * we don't set last_task_used_spe
465 	 */
466 	if (new->thread.regs && last_task_used_spe == new)
467 		new->thread.regs->msr |= MSR_SPE;
468 #endif /* CONFIG_SPE */
469 
470 #endif /* CONFIG_SMP */
471 
472 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
473 	switch_booke_debug_regs(&new->thread);
474 #else
475 /*
476  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
477  * schedule DABR
478  */
479 #ifndef CONFIG_HAVE_HW_BREAKPOINT
480 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
481 		set_dabr(new->thread.dabr);
482 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
483 #endif
484 
485 
486 	new_thread = &new->thread;
487 	old_thread = &current->thread;
488 
489 #ifdef CONFIG_PPC64
490 	/*
491 	 * Collect processor utilization data per process
492 	 */
493 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
494 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
495 		long unsigned start_tb, current_tb;
496 		start_tb = old_thread->start_tb;
497 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
498 		old_thread->accum_tb += (current_tb - start_tb);
499 		new_thread->start_tb = current_tb;
500 	}
501 #endif /* CONFIG_PPC64 */
502 
503 #ifdef CONFIG_PPC_BOOK3S_64
504 	batch = &__get_cpu_var(ppc64_tlb_batch);
505 	if (batch->active) {
506 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
507 		if (batch->index)
508 			__flush_tlb_pending(batch);
509 		batch->active = 0;
510 	}
511 #endif /* CONFIG_PPC_BOOK3S_64 */
512 
513 	local_irq_save(flags);
514 
515 	account_system_vtime(current);
516 	account_process_vtime(current);
517 
518 	/*
519 	 * We can't take a PMU exception inside _switch() since there is a
520 	 * window where the kernel stack SLB and the kernel stack are out
521 	 * of sync. Hard disable here.
522 	 */
523 	hard_irq_disable();
524 	last = _switch(old_thread, new_thread);
525 
526 #ifdef CONFIG_PPC_BOOK3S_64
527 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
528 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
529 		batch = &__get_cpu_var(ppc64_tlb_batch);
530 		batch->active = 1;
531 	}
532 #endif /* CONFIG_PPC_BOOK3S_64 */
533 
534 	local_irq_restore(flags);
535 
536 	return last;
537 }
538 
539 static int instructions_to_print = 16;
540 
541 static void show_instructions(struct pt_regs *regs)
542 {
543 	int i;
544 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
545 			sizeof(int));
546 
547 	printk("Instruction dump:");
548 
549 	for (i = 0; i < instructions_to_print; i++) {
550 		int instr;
551 
552 		if (!(i % 8))
553 			printk("\n");
554 
555 #if !defined(CONFIG_BOOKE)
556 		/* If executing with the IMMU off, adjust pc rather
557 		 * than print XXXXXXXX.
558 		 */
559 		if (!(regs->msr & MSR_IR))
560 			pc = (unsigned long)phys_to_virt(pc);
561 #endif
562 
563 		/* We use __get_user here *only* to avoid an OOPS on a
564 		 * bad address because the pc *should* only be a
565 		 * kernel address.
566 		 */
567 		if (!__kernel_text_address(pc) ||
568 		     __get_user(instr, (unsigned int __user *)pc)) {
569 			printk("XXXXXXXX ");
570 		} else {
571 			if (regs->nip == pc)
572 				printk("<%08x> ", instr);
573 			else
574 				printk("%08x ", instr);
575 		}
576 
577 		pc += sizeof(int);
578 	}
579 
580 	printk("\n");
581 }
582 
583 static struct regbit {
584 	unsigned long bit;
585 	const char *name;
586 } msr_bits[] = {
587 	{MSR_EE,	"EE"},
588 	{MSR_PR,	"PR"},
589 	{MSR_FP,	"FP"},
590 	{MSR_VEC,	"VEC"},
591 	{MSR_VSX,	"VSX"},
592 	{MSR_ME,	"ME"},
593 	{MSR_CE,	"CE"},
594 	{MSR_DE,	"DE"},
595 	{MSR_IR,	"IR"},
596 	{MSR_DR,	"DR"},
597 	{0,		NULL}
598 };
599 
600 static void printbits(unsigned long val, struct regbit *bits)
601 {
602 	const char *sep = "";
603 
604 	printk("<");
605 	for (; bits->bit; ++bits)
606 		if (val & bits->bit) {
607 			printk("%s%s", sep, bits->name);
608 			sep = ",";
609 		}
610 	printk(">");
611 }
612 
613 #ifdef CONFIG_PPC64
614 #define REG		"%016lx"
615 #define REGS_PER_LINE	4
616 #define LAST_VOLATILE	13
617 #else
618 #define REG		"%08lx"
619 #define REGS_PER_LINE	8
620 #define LAST_VOLATILE	12
621 #endif
622 
623 void show_regs(struct pt_regs * regs)
624 {
625 	int i, trap;
626 
627 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
628 	       regs->nip, regs->link, regs->ctr);
629 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
630 	       regs, regs->trap, print_tainted(), init_utsname()->release);
631 	printk("MSR: "REG" ", regs->msr);
632 	printbits(regs->msr, msr_bits);
633 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
634 	trap = TRAP(regs);
635 	if ((regs->trap != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
636 		printk("CFAR: "REG"\n", regs->orig_gpr3);
637 	if (trap == 0x300 || trap == 0x600)
638 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
639 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
640 #else
641 		printk("DAR: "REG", DSISR: %08lx\n", regs->dar, regs->dsisr);
642 #endif
643 	printk("TASK = %p[%d] '%s' THREAD: %p",
644 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
645 
646 #ifdef CONFIG_SMP
647 	printk(" CPU: %d", raw_smp_processor_id());
648 #endif /* CONFIG_SMP */
649 
650 	for (i = 0;  i < 32;  i++) {
651 		if ((i % REGS_PER_LINE) == 0)
652 			printk("\nGPR%02d: ", i);
653 		printk(REG " ", regs->gpr[i]);
654 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
655 			break;
656 	}
657 	printk("\n");
658 #ifdef CONFIG_KALLSYMS
659 	/*
660 	 * Lookup NIP late so we have the best change of getting the
661 	 * above info out without failing
662 	 */
663 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
664 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
665 #endif
666 	show_stack(current, (unsigned long *) regs->gpr[1]);
667 	if (!user_mode(regs))
668 		show_instructions(regs);
669 }
670 
671 void exit_thread(void)
672 {
673 	discard_lazy_cpu_state();
674 }
675 
676 void flush_thread(void)
677 {
678 	discard_lazy_cpu_state();
679 
680 #ifdef CONFIG_HAVE_HW_BREAKPOINT
681 	flush_ptrace_hw_breakpoint(current);
682 #else /* CONFIG_HAVE_HW_BREAKPOINT */
683 	set_debug_reg_defaults(&current->thread);
684 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
685 }
686 
687 void
688 release_thread(struct task_struct *t)
689 {
690 }
691 
692 /*
693  * This gets called before we allocate a new thread and copy
694  * the current task into it.
695  */
696 void prepare_to_copy(struct task_struct *tsk)
697 {
698 	flush_fp_to_thread(current);
699 	flush_altivec_to_thread(current);
700 	flush_vsx_to_thread(current);
701 	flush_spe_to_thread(current);
702 #ifdef CONFIG_HAVE_HW_BREAKPOINT
703 	flush_ptrace_hw_breakpoint(tsk);
704 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
705 }
706 
707 /*
708  * Copy a thread..
709  */
710 extern unsigned long dscr_default; /* defined in arch/powerpc/kernel/sysfs.c */
711 
712 int copy_thread(unsigned long clone_flags, unsigned long usp,
713 		unsigned long unused, struct task_struct *p,
714 		struct pt_regs *regs)
715 {
716 	struct pt_regs *childregs, *kregs;
717 	extern void ret_from_fork(void);
718 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
719 
720 	CHECK_FULL_REGS(regs);
721 	/* Copy registers */
722 	sp -= sizeof(struct pt_regs);
723 	childregs = (struct pt_regs *) sp;
724 	*childregs = *regs;
725 	if ((childregs->msr & MSR_PR) == 0) {
726 		/* for kernel thread, set `current' and stackptr in new task */
727 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
728 #ifdef CONFIG_PPC32
729 		childregs->gpr[2] = (unsigned long) p;
730 #else
731 		clear_tsk_thread_flag(p, TIF_32BIT);
732 #endif
733 		p->thread.regs = NULL;	/* no user register state */
734 	} else {
735 		childregs->gpr[1] = usp;
736 		p->thread.regs = childregs;
737 		if (clone_flags & CLONE_SETTLS) {
738 #ifdef CONFIG_PPC64
739 			if (!is_32bit_task())
740 				childregs->gpr[13] = childregs->gpr[6];
741 			else
742 #endif
743 				childregs->gpr[2] = childregs->gpr[6];
744 		}
745 	}
746 	childregs->gpr[3] = 0;  /* Result from fork() */
747 	sp -= STACK_FRAME_OVERHEAD;
748 
749 	/*
750 	 * The way this works is that at some point in the future
751 	 * some task will call _switch to switch to the new task.
752 	 * That will pop off the stack frame created below and start
753 	 * the new task running at ret_from_fork.  The new task will
754 	 * do some house keeping and then return from the fork or clone
755 	 * system call, using the stack frame created above.
756 	 */
757 	sp -= sizeof(struct pt_regs);
758 	kregs = (struct pt_regs *) sp;
759 	sp -= STACK_FRAME_OVERHEAD;
760 	p->thread.ksp = sp;
761 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
762 				_ALIGN_UP(sizeof(struct thread_info), 16);
763 
764 #ifdef CONFIG_PPC_STD_MMU_64
765 	if (mmu_has_feature(MMU_FTR_SLB)) {
766 		unsigned long sp_vsid;
767 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
768 
769 		if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
770 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
771 				<< SLB_VSID_SHIFT_1T;
772 		else
773 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
774 				<< SLB_VSID_SHIFT;
775 		sp_vsid |= SLB_VSID_KERNEL | llp;
776 		p->thread.ksp_vsid = sp_vsid;
777 	}
778 #endif /* CONFIG_PPC_STD_MMU_64 */
779 #ifdef CONFIG_PPC64
780 	if (cpu_has_feature(CPU_FTR_DSCR)) {
781 		if (current->thread.dscr_inherit) {
782 			p->thread.dscr_inherit = 1;
783 			p->thread.dscr = current->thread.dscr;
784 		} else if (0 != dscr_default) {
785 			p->thread.dscr_inherit = 1;
786 			p->thread.dscr = dscr_default;
787 		} else {
788 			p->thread.dscr_inherit = 0;
789 			p->thread.dscr = 0;
790 		}
791 	}
792 #endif
793 
794 	/*
795 	 * The PPC64 ABI makes use of a TOC to contain function
796 	 * pointers.  The function (ret_from_except) is actually a pointer
797 	 * to the TOC entry.  The first entry is a pointer to the actual
798 	 * function.
799  	 */
800 #ifdef CONFIG_PPC64
801 	kregs->nip = *((unsigned long *)ret_from_fork);
802 #else
803 	kregs->nip = (unsigned long)ret_from_fork;
804 #endif
805 
806 	return 0;
807 }
808 
809 /*
810  * Set up a thread for executing a new program
811  */
812 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
813 {
814 #ifdef CONFIG_PPC64
815 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
816 #endif
817 
818 	/*
819 	 * If we exec out of a kernel thread then thread.regs will not be
820 	 * set.  Do it now.
821 	 */
822 	if (!current->thread.regs) {
823 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
824 		current->thread.regs = regs - 1;
825 	}
826 
827 	memset(regs->gpr, 0, sizeof(regs->gpr));
828 	regs->ctr = 0;
829 	regs->link = 0;
830 	regs->xer = 0;
831 	regs->ccr = 0;
832 	regs->gpr[1] = sp;
833 
834 	/*
835 	 * We have just cleared all the nonvolatile GPRs, so make
836 	 * FULL_REGS(regs) return true.  This is necessary to allow
837 	 * ptrace to examine the thread immediately after exec.
838 	 */
839 	regs->trap &= ~1UL;
840 
841 #ifdef CONFIG_PPC32
842 	regs->mq = 0;
843 	regs->nip = start;
844 	regs->msr = MSR_USER;
845 #else
846 	if (!is_32bit_task()) {
847 		unsigned long entry, toc;
848 
849 		/* start is a relocated pointer to the function descriptor for
850 		 * the elf _start routine.  The first entry in the function
851 		 * descriptor is the entry address of _start and the second
852 		 * entry is the TOC value we need to use.
853 		 */
854 		__get_user(entry, (unsigned long __user *)start);
855 		__get_user(toc, (unsigned long __user *)start+1);
856 
857 		/* Check whether the e_entry function descriptor entries
858 		 * need to be relocated before we can use them.
859 		 */
860 		if (load_addr != 0) {
861 			entry += load_addr;
862 			toc   += load_addr;
863 		}
864 		regs->nip = entry;
865 		regs->gpr[2] = toc;
866 		regs->msr = MSR_USER64;
867 	} else {
868 		regs->nip = start;
869 		regs->gpr[2] = 0;
870 		regs->msr = MSR_USER32;
871 	}
872 #endif
873 
874 	discard_lazy_cpu_state();
875 #ifdef CONFIG_VSX
876 	current->thread.used_vsr = 0;
877 #endif
878 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
879 	current->thread.fpscr.val = 0;
880 #ifdef CONFIG_ALTIVEC
881 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
882 	memset(&current->thread.vscr, 0, sizeof(current->thread.vscr));
883 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
884 	current->thread.vrsave = 0;
885 	current->thread.used_vr = 0;
886 #endif /* CONFIG_ALTIVEC */
887 #ifdef CONFIG_SPE
888 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
889 	current->thread.acc = 0;
890 	current->thread.spefscr = 0;
891 	current->thread.used_spe = 0;
892 #endif /* CONFIG_SPE */
893 }
894 
895 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
896 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
897 
898 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
899 {
900 	struct pt_regs *regs = tsk->thread.regs;
901 
902 	/* This is a bit hairy.  If we are an SPE enabled  processor
903 	 * (have embedded fp) we store the IEEE exception enable flags in
904 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
905 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
906 	if (val & PR_FP_EXC_SW_ENABLE) {
907 #ifdef CONFIG_SPE
908 		if (cpu_has_feature(CPU_FTR_SPE)) {
909 			tsk->thread.fpexc_mode = val &
910 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
911 			return 0;
912 		} else {
913 			return -EINVAL;
914 		}
915 #else
916 		return -EINVAL;
917 #endif
918 	}
919 
920 	/* on a CONFIG_SPE this does not hurt us.  The bits that
921 	 * __pack_fe01 use do not overlap with bits used for
922 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
923 	 * on CONFIG_SPE implementations are reserved so writing to
924 	 * them does not change anything */
925 	if (val > PR_FP_EXC_PRECISE)
926 		return -EINVAL;
927 	tsk->thread.fpexc_mode = __pack_fe01(val);
928 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
929 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
930 			| tsk->thread.fpexc_mode;
931 	return 0;
932 }
933 
934 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
935 {
936 	unsigned int val;
937 
938 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
939 #ifdef CONFIG_SPE
940 		if (cpu_has_feature(CPU_FTR_SPE))
941 			val = tsk->thread.fpexc_mode;
942 		else
943 			return -EINVAL;
944 #else
945 		return -EINVAL;
946 #endif
947 	else
948 		val = __unpack_fe01(tsk->thread.fpexc_mode);
949 	return put_user(val, (unsigned int __user *) adr);
950 }
951 
952 int set_endian(struct task_struct *tsk, unsigned int val)
953 {
954 	struct pt_regs *regs = tsk->thread.regs;
955 
956 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
957 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
958 		return -EINVAL;
959 
960 	if (regs == NULL)
961 		return -EINVAL;
962 
963 	if (val == PR_ENDIAN_BIG)
964 		regs->msr &= ~MSR_LE;
965 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
966 		regs->msr |= MSR_LE;
967 	else
968 		return -EINVAL;
969 
970 	return 0;
971 }
972 
973 int get_endian(struct task_struct *tsk, unsigned long adr)
974 {
975 	struct pt_regs *regs = tsk->thread.regs;
976 	unsigned int val;
977 
978 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
979 	    !cpu_has_feature(CPU_FTR_REAL_LE))
980 		return -EINVAL;
981 
982 	if (regs == NULL)
983 		return -EINVAL;
984 
985 	if (regs->msr & MSR_LE) {
986 		if (cpu_has_feature(CPU_FTR_REAL_LE))
987 			val = PR_ENDIAN_LITTLE;
988 		else
989 			val = PR_ENDIAN_PPC_LITTLE;
990 	} else
991 		val = PR_ENDIAN_BIG;
992 
993 	return put_user(val, (unsigned int __user *)adr);
994 }
995 
996 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
997 {
998 	tsk->thread.align_ctl = val;
999 	return 0;
1000 }
1001 
1002 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1003 {
1004 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1005 }
1006 
1007 #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
1008 
1009 int sys_clone(unsigned long clone_flags, unsigned long usp,
1010 	      int __user *parent_tidp, void __user *child_threadptr,
1011 	      int __user *child_tidp, int p6,
1012 	      struct pt_regs *regs)
1013 {
1014 	CHECK_FULL_REGS(regs);
1015 	if (usp == 0)
1016 		usp = regs->gpr[1];	/* stack pointer for child */
1017 #ifdef CONFIG_PPC64
1018 	if (is_32bit_task()) {
1019 		parent_tidp = TRUNC_PTR(parent_tidp);
1020 		child_tidp = TRUNC_PTR(child_tidp);
1021 	}
1022 #endif
1023  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
1024 }
1025 
1026 int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
1027 	     unsigned long p4, unsigned long p5, unsigned long p6,
1028 	     struct pt_regs *regs)
1029 {
1030 	CHECK_FULL_REGS(regs);
1031 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
1032 }
1033 
1034 int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
1035 	      unsigned long p4, unsigned long p5, unsigned long p6,
1036 	      struct pt_regs *regs)
1037 {
1038 	CHECK_FULL_REGS(regs);
1039 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
1040 			regs, 0, NULL, NULL);
1041 }
1042 
1043 int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
1044 	       unsigned long a3, unsigned long a4, unsigned long a5,
1045 	       struct pt_regs *regs)
1046 {
1047 	int error;
1048 	char *filename;
1049 
1050 	filename = getname((const char __user *) a0);
1051 	error = PTR_ERR(filename);
1052 	if (IS_ERR(filename))
1053 		goto out;
1054 	flush_fp_to_thread(current);
1055 	flush_altivec_to_thread(current);
1056 	flush_spe_to_thread(current);
1057 	error = do_execve(filename,
1058 			  (const char __user *const __user *) a1,
1059 			  (const char __user *const __user *) a2, regs);
1060 	putname(filename);
1061 out:
1062 	return error;
1063 }
1064 
1065 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1066 				  unsigned long nbytes)
1067 {
1068 	unsigned long stack_page;
1069 	unsigned long cpu = task_cpu(p);
1070 
1071 	/*
1072 	 * Avoid crashing if the stack has overflowed and corrupted
1073 	 * task_cpu(p), which is in the thread_info struct.
1074 	 */
1075 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1076 		stack_page = (unsigned long) hardirq_ctx[cpu];
1077 		if (sp >= stack_page + sizeof(struct thread_struct)
1078 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1079 			return 1;
1080 
1081 		stack_page = (unsigned long) softirq_ctx[cpu];
1082 		if (sp >= stack_page + sizeof(struct thread_struct)
1083 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1084 			return 1;
1085 	}
1086 	return 0;
1087 }
1088 
1089 int validate_sp(unsigned long sp, struct task_struct *p,
1090 		       unsigned long nbytes)
1091 {
1092 	unsigned long stack_page = (unsigned long)task_stack_page(p);
1093 
1094 	if (sp >= stack_page + sizeof(struct thread_struct)
1095 	    && sp <= stack_page + THREAD_SIZE - nbytes)
1096 		return 1;
1097 
1098 	return valid_irq_stack(sp, p, nbytes);
1099 }
1100 
1101 EXPORT_SYMBOL(validate_sp);
1102 
1103 unsigned long get_wchan(struct task_struct *p)
1104 {
1105 	unsigned long ip, sp;
1106 	int count = 0;
1107 
1108 	if (!p || p == current || p->state == TASK_RUNNING)
1109 		return 0;
1110 
1111 	sp = p->thread.ksp;
1112 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1113 		return 0;
1114 
1115 	do {
1116 		sp = *(unsigned long *)sp;
1117 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
1118 			return 0;
1119 		if (count > 0) {
1120 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
1121 			if (!in_sched_functions(ip))
1122 				return ip;
1123 		}
1124 	} while (count++ < 16);
1125 	return 0;
1126 }
1127 
1128 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
1129 
1130 void show_stack(struct task_struct *tsk, unsigned long *stack)
1131 {
1132 	unsigned long sp, ip, lr, newsp;
1133 	int count = 0;
1134 	int firstframe = 1;
1135 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1136 	int curr_frame = current->curr_ret_stack;
1137 	extern void return_to_handler(void);
1138 	unsigned long rth = (unsigned long)return_to_handler;
1139 	unsigned long mrth = -1;
1140 #ifdef CONFIG_PPC64
1141 	extern void mod_return_to_handler(void);
1142 	rth = *(unsigned long *)rth;
1143 	mrth = (unsigned long)mod_return_to_handler;
1144 	mrth = *(unsigned long *)mrth;
1145 #endif
1146 #endif
1147 
1148 	sp = (unsigned long) stack;
1149 	if (tsk == NULL)
1150 		tsk = current;
1151 	if (sp == 0) {
1152 		if (tsk == current)
1153 			asm("mr %0,1" : "=r" (sp));
1154 		else
1155 			sp = tsk->thread.ksp;
1156 	}
1157 
1158 	lr = 0;
1159 	printk("Call Trace:\n");
1160 	do {
1161 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
1162 			return;
1163 
1164 		stack = (unsigned long *) sp;
1165 		newsp = stack[0];
1166 		ip = stack[STACK_FRAME_LR_SAVE];
1167 		if (!firstframe || ip != lr) {
1168 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
1169 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1170 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
1171 				printk(" (%pS)",
1172 				       (void *)current->ret_stack[curr_frame].ret);
1173 				curr_frame--;
1174 			}
1175 #endif
1176 			if (firstframe)
1177 				printk(" (unreliable)");
1178 			printk("\n");
1179 		}
1180 		firstframe = 0;
1181 
1182 		/*
1183 		 * See if this is an exception frame.
1184 		 * We look for the "regshere" marker in the current frame.
1185 		 */
1186 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
1187 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
1188 			struct pt_regs *regs = (struct pt_regs *)
1189 				(sp + STACK_FRAME_OVERHEAD);
1190 			lr = regs->link;
1191 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
1192 			       regs->trap, (void *)regs->nip, (void *)lr);
1193 			firstframe = 1;
1194 		}
1195 
1196 		sp = newsp;
1197 	} while (count++ < kstack_depth_to_print);
1198 }
1199 
1200 void dump_stack(void)
1201 {
1202 	show_stack(current, NULL);
1203 }
1204 EXPORT_SYMBOL(dump_stack);
1205 
1206 #ifdef CONFIG_PPC64
1207 void ppc64_runlatch_on(void)
1208 {
1209 	unsigned long ctrl;
1210 
1211 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
1212 		HMT_medium();
1213 
1214 		ctrl = mfspr(SPRN_CTRLF);
1215 		ctrl |= CTRL_RUNLATCH;
1216 		mtspr(SPRN_CTRLT, ctrl);
1217 
1218 		set_thread_flag(TIF_RUNLATCH);
1219 	}
1220 }
1221 
1222 void __ppc64_runlatch_off(void)
1223 {
1224 	unsigned long ctrl;
1225 
1226 	HMT_medium();
1227 
1228 	clear_thread_flag(TIF_RUNLATCH);
1229 
1230 	ctrl = mfspr(SPRN_CTRLF);
1231 	ctrl &= ~CTRL_RUNLATCH;
1232 	mtspr(SPRN_CTRLT, ctrl);
1233 }
1234 #endif
1235 
1236 #if THREAD_SHIFT < PAGE_SHIFT
1237 
1238 static struct kmem_cache *thread_info_cache;
1239 
1240 struct thread_info *alloc_thread_info_node(struct task_struct *tsk, int node)
1241 {
1242 	struct thread_info *ti;
1243 
1244 	ti = kmem_cache_alloc_node(thread_info_cache, GFP_KERNEL, node);
1245 	if (unlikely(ti == NULL))
1246 		return NULL;
1247 #ifdef CONFIG_DEBUG_STACK_USAGE
1248 	memset(ti, 0, THREAD_SIZE);
1249 #endif
1250 	return ti;
1251 }
1252 
1253 void free_thread_info(struct thread_info *ti)
1254 {
1255 	kmem_cache_free(thread_info_cache, ti);
1256 }
1257 
1258 void thread_info_cache_init(void)
1259 {
1260 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
1261 					      THREAD_SIZE, 0, NULL);
1262 	BUG_ON(thread_info_cache == NULL);
1263 }
1264 
1265 #endif /* THREAD_SHIFT < PAGE_SHIFT */
1266 
1267 unsigned long arch_align_stack(unsigned long sp)
1268 {
1269 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
1270 		sp -= get_random_int() & ~PAGE_MASK;
1271 	return sp & ~0xf;
1272 }
1273 
1274 static inline unsigned long brk_rnd(void)
1275 {
1276         unsigned long rnd = 0;
1277 
1278 	/* 8MB for 32bit, 1GB for 64bit */
1279 	if (is_32bit_task())
1280 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
1281 	else
1282 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
1283 
1284 	return rnd << PAGE_SHIFT;
1285 }
1286 
1287 unsigned long arch_randomize_brk(struct mm_struct *mm)
1288 {
1289 	unsigned long base = mm->brk;
1290 	unsigned long ret;
1291 
1292 #ifdef CONFIG_PPC_STD_MMU_64
1293 	/*
1294 	 * If we are using 1TB segments and we are allowed to randomise
1295 	 * the heap, we can put it above 1TB so it is backed by a 1TB
1296 	 * segment. Otherwise the heap will be in the bottom 1TB
1297 	 * which always uses 256MB segments and this may result in a
1298 	 * performance penalty.
1299 	 */
1300 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
1301 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
1302 #endif
1303 
1304 	ret = PAGE_ALIGN(base + brk_rnd());
1305 
1306 	if (ret < mm->brk)
1307 		return mm->brk;
1308 
1309 	return ret;
1310 }
1311 
1312 unsigned long randomize_et_dyn(unsigned long base)
1313 {
1314 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
1315 
1316 	if (ret < base)
1317 		return base;
1318 
1319 	return ret;
1320 }
1321