xref: /linux/arch/powerpc/kernel/process.c (revision 01aa9d518eae8a4d75cd3049defc6ed0b6d0a658)
1 /*
2  *  Derived from "arch/i386/kernel/process.c"
3  *    Copyright (C) 1995  Linus Torvalds
4  *
5  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
6  *  Paul Mackerras (paulus@cs.anu.edu.au)
7  *
8  *  PowerPC version
9  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
10  *
11  *  This program is free software; you can redistribute it and/or
12  *  modify it under the terms of the GNU General Public License
13  *  as published by the Free Software Foundation; either version
14  *  2 of the License, or (at your option) any later version.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/sched/debug.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/smp.h>
25 #include <linux/stddef.h>
26 #include <linux/unistd.h>
27 #include <linux/ptrace.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/elf.h>
31 #include <linux/prctl.h>
32 #include <linux/init_task.h>
33 #include <linux/export.h>
34 #include <linux/kallsyms.h>
35 #include <linux/mqueue.h>
36 #include <linux/hardirq.h>
37 #include <linux/utsname.h>
38 #include <linux/ftrace.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/personality.h>
41 #include <linux/random.h>
42 #include <linux/hw_breakpoint.h>
43 #include <linux/uaccess.h>
44 #include <linux/elf-randomize.h>
45 #include <linux/pkeys.h>
46 
47 #include <asm/pgtable.h>
48 #include <asm/io.h>
49 #include <asm/processor.h>
50 #include <asm/mmu.h>
51 #include <asm/prom.h>
52 #include <asm/machdep.h>
53 #include <asm/time.h>
54 #include <asm/runlatch.h>
55 #include <asm/syscalls.h>
56 #include <asm/switch_to.h>
57 #include <asm/tm.h>
58 #include <asm/debug.h>
59 #ifdef CONFIG_PPC64
60 #include <asm/firmware.h>
61 #include <asm/hw_irq.h>
62 #endif
63 #include <asm/code-patching.h>
64 #include <asm/exec.h>
65 #include <asm/livepatch.h>
66 #include <asm/cpu_has_feature.h>
67 #include <asm/asm-prototypes.h>
68 
69 #include <linux/kprobes.h>
70 #include <linux/kdebug.h>
71 
72 /* Transactional Memory debug */
73 #ifdef TM_DEBUG_SW
74 #define TM_DEBUG(x...) printk(KERN_INFO x)
75 #else
76 #define TM_DEBUG(x...) do { } while(0)
77 #endif
78 
79 extern unsigned long _get_SP(void);
80 
81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
82 /*
83  * Are we running in "Suspend disabled" mode? If so we have to block any
84  * sigreturn that would get us into suspended state, and we also warn in some
85  * other paths that we should never reach with suspend disabled.
86  */
87 bool tm_suspend_disabled __ro_after_init = false;
88 
89 static void check_if_tm_restore_required(struct task_struct *tsk)
90 {
91 	/*
92 	 * If we are saving the current thread's registers, and the
93 	 * thread is in a transactional state, set the TIF_RESTORE_TM
94 	 * bit so that we know to restore the registers before
95 	 * returning to userspace.
96 	 */
97 	if (tsk == current && tsk->thread.regs &&
98 	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
99 	    !test_thread_flag(TIF_RESTORE_TM)) {
100 		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
101 		set_thread_flag(TIF_RESTORE_TM);
102 	}
103 }
104 
105 static inline bool msr_tm_active(unsigned long msr)
106 {
107 	return MSR_TM_ACTIVE(msr);
108 }
109 
110 static bool tm_active_with_fp(struct task_struct *tsk)
111 {
112 	return msr_tm_active(tsk->thread.regs->msr) &&
113 		(tsk->thread.ckpt_regs.msr & MSR_FP);
114 }
115 
116 static bool tm_active_with_altivec(struct task_struct *tsk)
117 {
118 	return msr_tm_active(tsk->thread.regs->msr) &&
119 		(tsk->thread.ckpt_regs.msr & MSR_VEC);
120 }
121 #else
122 static inline bool msr_tm_active(unsigned long msr) { return false; }
123 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
124 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
125 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
126 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
127 
128 bool strict_msr_control;
129 EXPORT_SYMBOL(strict_msr_control);
130 
131 static int __init enable_strict_msr_control(char *str)
132 {
133 	strict_msr_control = true;
134 	pr_info("Enabling strict facility control\n");
135 
136 	return 0;
137 }
138 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
139 
140 unsigned long msr_check_and_set(unsigned long bits)
141 {
142 	unsigned long oldmsr = mfmsr();
143 	unsigned long newmsr;
144 
145 	newmsr = oldmsr | bits;
146 
147 #ifdef CONFIG_VSX
148 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
149 		newmsr |= MSR_VSX;
150 #endif
151 
152 	if (oldmsr != newmsr)
153 		mtmsr_isync(newmsr);
154 
155 	return newmsr;
156 }
157 EXPORT_SYMBOL_GPL(msr_check_and_set);
158 
159 void __msr_check_and_clear(unsigned long bits)
160 {
161 	unsigned long oldmsr = mfmsr();
162 	unsigned long newmsr;
163 
164 	newmsr = oldmsr & ~bits;
165 
166 #ifdef CONFIG_VSX
167 	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
168 		newmsr &= ~MSR_VSX;
169 #endif
170 
171 	if (oldmsr != newmsr)
172 		mtmsr_isync(newmsr);
173 }
174 EXPORT_SYMBOL(__msr_check_and_clear);
175 
176 #ifdef CONFIG_PPC_FPU
177 static void __giveup_fpu(struct task_struct *tsk)
178 {
179 	unsigned long msr;
180 
181 	save_fpu(tsk);
182 	msr = tsk->thread.regs->msr;
183 	msr &= ~MSR_FP;
184 #ifdef CONFIG_VSX
185 	if (cpu_has_feature(CPU_FTR_VSX))
186 		msr &= ~MSR_VSX;
187 #endif
188 	tsk->thread.regs->msr = msr;
189 }
190 
191 void giveup_fpu(struct task_struct *tsk)
192 {
193 	check_if_tm_restore_required(tsk);
194 
195 	msr_check_and_set(MSR_FP);
196 	__giveup_fpu(tsk);
197 	msr_check_and_clear(MSR_FP);
198 }
199 EXPORT_SYMBOL(giveup_fpu);
200 
201 /*
202  * Make sure the floating-point register state in the
203  * the thread_struct is up to date for task tsk.
204  */
205 void flush_fp_to_thread(struct task_struct *tsk)
206 {
207 	if (tsk->thread.regs) {
208 		/*
209 		 * We need to disable preemption here because if we didn't,
210 		 * another process could get scheduled after the regs->msr
211 		 * test but before we have finished saving the FP registers
212 		 * to the thread_struct.  That process could take over the
213 		 * FPU, and then when we get scheduled again we would store
214 		 * bogus values for the remaining FP registers.
215 		 */
216 		preempt_disable();
217 		if (tsk->thread.regs->msr & MSR_FP) {
218 			/*
219 			 * This should only ever be called for current or
220 			 * for a stopped child process.  Since we save away
221 			 * the FP register state on context switch,
222 			 * there is something wrong if a stopped child appears
223 			 * to still have its FP state in the CPU registers.
224 			 */
225 			BUG_ON(tsk != current);
226 			giveup_fpu(tsk);
227 		}
228 		preempt_enable();
229 	}
230 }
231 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
232 
233 void enable_kernel_fp(void)
234 {
235 	unsigned long cpumsr;
236 
237 	WARN_ON(preemptible());
238 
239 	cpumsr = msr_check_and_set(MSR_FP);
240 
241 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
242 		check_if_tm_restore_required(current);
243 		/*
244 		 * If a thread has already been reclaimed then the
245 		 * checkpointed registers are on the CPU but have definitely
246 		 * been saved by the reclaim code. Don't need to and *cannot*
247 		 * giveup as this would save  to the 'live' structure not the
248 		 * checkpointed structure.
249 		 */
250 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
251 			return;
252 		__giveup_fpu(current);
253 	}
254 }
255 EXPORT_SYMBOL(enable_kernel_fp);
256 
257 static int restore_fp(struct task_struct *tsk)
258 {
259 	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
260 		load_fp_state(&current->thread.fp_state);
261 		current->thread.load_fp++;
262 		return 1;
263 	}
264 	return 0;
265 }
266 #else
267 static int restore_fp(struct task_struct *tsk) { return 0; }
268 #endif /* CONFIG_PPC_FPU */
269 
270 #ifdef CONFIG_ALTIVEC
271 #define loadvec(thr) ((thr).load_vec)
272 
273 static void __giveup_altivec(struct task_struct *tsk)
274 {
275 	unsigned long msr;
276 
277 	save_altivec(tsk);
278 	msr = tsk->thread.regs->msr;
279 	msr &= ~MSR_VEC;
280 #ifdef CONFIG_VSX
281 	if (cpu_has_feature(CPU_FTR_VSX))
282 		msr &= ~MSR_VSX;
283 #endif
284 	tsk->thread.regs->msr = msr;
285 }
286 
287 void giveup_altivec(struct task_struct *tsk)
288 {
289 	check_if_tm_restore_required(tsk);
290 
291 	msr_check_and_set(MSR_VEC);
292 	__giveup_altivec(tsk);
293 	msr_check_and_clear(MSR_VEC);
294 }
295 EXPORT_SYMBOL(giveup_altivec);
296 
297 void enable_kernel_altivec(void)
298 {
299 	unsigned long cpumsr;
300 
301 	WARN_ON(preemptible());
302 
303 	cpumsr = msr_check_and_set(MSR_VEC);
304 
305 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
306 		check_if_tm_restore_required(current);
307 		/*
308 		 * If a thread has already been reclaimed then the
309 		 * checkpointed registers are on the CPU but have definitely
310 		 * been saved by the reclaim code. Don't need to and *cannot*
311 		 * giveup as this would save  to the 'live' structure not the
312 		 * checkpointed structure.
313 		 */
314 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
315 			return;
316 		__giveup_altivec(current);
317 	}
318 }
319 EXPORT_SYMBOL(enable_kernel_altivec);
320 
321 /*
322  * Make sure the VMX/Altivec register state in the
323  * the thread_struct is up to date for task tsk.
324  */
325 void flush_altivec_to_thread(struct task_struct *tsk)
326 {
327 	if (tsk->thread.regs) {
328 		preempt_disable();
329 		if (tsk->thread.regs->msr & MSR_VEC) {
330 			BUG_ON(tsk != current);
331 			giveup_altivec(tsk);
332 		}
333 		preempt_enable();
334 	}
335 }
336 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
337 
338 static int restore_altivec(struct task_struct *tsk)
339 {
340 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
341 		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
342 		load_vr_state(&tsk->thread.vr_state);
343 		tsk->thread.used_vr = 1;
344 		tsk->thread.load_vec++;
345 
346 		return 1;
347 	}
348 	return 0;
349 }
350 #else
351 #define loadvec(thr) 0
352 static inline int restore_altivec(struct task_struct *tsk) { return 0; }
353 #endif /* CONFIG_ALTIVEC */
354 
355 #ifdef CONFIG_VSX
356 static void __giveup_vsx(struct task_struct *tsk)
357 {
358 	unsigned long msr = tsk->thread.regs->msr;
359 
360 	/*
361 	 * We should never be ssetting MSR_VSX without also setting
362 	 * MSR_FP and MSR_VEC
363 	 */
364 	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
365 
366 	/* __giveup_fpu will clear MSR_VSX */
367 	if (msr & MSR_FP)
368 		__giveup_fpu(tsk);
369 	if (msr & MSR_VEC)
370 		__giveup_altivec(tsk);
371 }
372 
373 static void giveup_vsx(struct task_struct *tsk)
374 {
375 	check_if_tm_restore_required(tsk);
376 
377 	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
378 	__giveup_vsx(tsk);
379 	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
380 }
381 
382 void enable_kernel_vsx(void)
383 {
384 	unsigned long cpumsr;
385 
386 	WARN_ON(preemptible());
387 
388 	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
389 
390 	if (current->thread.regs &&
391 	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
392 		check_if_tm_restore_required(current);
393 		/*
394 		 * If a thread has already been reclaimed then the
395 		 * checkpointed registers are on the CPU but have definitely
396 		 * been saved by the reclaim code. Don't need to and *cannot*
397 		 * giveup as this would save  to the 'live' structure not the
398 		 * checkpointed structure.
399 		 */
400 		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
401 			return;
402 		__giveup_vsx(current);
403 	}
404 }
405 EXPORT_SYMBOL(enable_kernel_vsx);
406 
407 void flush_vsx_to_thread(struct task_struct *tsk)
408 {
409 	if (tsk->thread.regs) {
410 		preempt_disable();
411 		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
412 			BUG_ON(tsk != current);
413 			giveup_vsx(tsk);
414 		}
415 		preempt_enable();
416 	}
417 }
418 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
419 
420 static int restore_vsx(struct task_struct *tsk)
421 {
422 	if (cpu_has_feature(CPU_FTR_VSX)) {
423 		tsk->thread.used_vsr = 1;
424 		return 1;
425 	}
426 
427 	return 0;
428 }
429 #else
430 static inline int restore_vsx(struct task_struct *tsk) { return 0; }
431 #endif /* CONFIG_VSX */
432 
433 #ifdef CONFIG_SPE
434 void giveup_spe(struct task_struct *tsk)
435 {
436 	check_if_tm_restore_required(tsk);
437 
438 	msr_check_and_set(MSR_SPE);
439 	__giveup_spe(tsk);
440 	msr_check_and_clear(MSR_SPE);
441 }
442 EXPORT_SYMBOL(giveup_spe);
443 
444 void enable_kernel_spe(void)
445 {
446 	WARN_ON(preemptible());
447 
448 	msr_check_and_set(MSR_SPE);
449 
450 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
451 		check_if_tm_restore_required(current);
452 		__giveup_spe(current);
453 	}
454 }
455 EXPORT_SYMBOL(enable_kernel_spe);
456 
457 void flush_spe_to_thread(struct task_struct *tsk)
458 {
459 	if (tsk->thread.regs) {
460 		preempt_disable();
461 		if (tsk->thread.regs->msr & MSR_SPE) {
462 			BUG_ON(tsk != current);
463 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
464 			giveup_spe(tsk);
465 		}
466 		preempt_enable();
467 	}
468 }
469 #endif /* CONFIG_SPE */
470 
471 static unsigned long msr_all_available;
472 
473 static int __init init_msr_all_available(void)
474 {
475 #ifdef CONFIG_PPC_FPU
476 	msr_all_available |= MSR_FP;
477 #endif
478 #ifdef CONFIG_ALTIVEC
479 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
480 		msr_all_available |= MSR_VEC;
481 #endif
482 #ifdef CONFIG_VSX
483 	if (cpu_has_feature(CPU_FTR_VSX))
484 		msr_all_available |= MSR_VSX;
485 #endif
486 #ifdef CONFIG_SPE
487 	if (cpu_has_feature(CPU_FTR_SPE))
488 		msr_all_available |= MSR_SPE;
489 #endif
490 
491 	return 0;
492 }
493 early_initcall(init_msr_all_available);
494 
495 void giveup_all(struct task_struct *tsk)
496 {
497 	unsigned long usermsr;
498 
499 	if (!tsk->thread.regs)
500 		return;
501 
502 	usermsr = tsk->thread.regs->msr;
503 
504 	if ((usermsr & msr_all_available) == 0)
505 		return;
506 
507 	msr_check_and_set(msr_all_available);
508 	check_if_tm_restore_required(tsk);
509 
510 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
511 
512 #ifdef CONFIG_PPC_FPU
513 	if (usermsr & MSR_FP)
514 		__giveup_fpu(tsk);
515 #endif
516 #ifdef CONFIG_ALTIVEC
517 	if (usermsr & MSR_VEC)
518 		__giveup_altivec(tsk);
519 #endif
520 #ifdef CONFIG_SPE
521 	if (usermsr & MSR_SPE)
522 		__giveup_spe(tsk);
523 #endif
524 
525 	msr_check_and_clear(msr_all_available);
526 }
527 EXPORT_SYMBOL(giveup_all);
528 
529 void restore_math(struct pt_regs *regs)
530 {
531 	unsigned long msr;
532 
533 	if (!msr_tm_active(regs->msr) &&
534 		!current->thread.load_fp && !loadvec(current->thread))
535 		return;
536 
537 	msr = regs->msr;
538 	msr_check_and_set(msr_all_available);
539 
540 	/*
541 	 * Only reload if the bit is not set in the user MSR, the bit BEING set
542 	 * indicates that the registers are hot
543 	 */
544 	if ((!(msr & MSR_FP)) && restore_fp(current))
545 		msr |= MSR_FP | current->thread.fpexc_mode;
546 
547 	if ((!(msr & MSR_VEC)) && restore_altivec(current))
548 		msr |= MSR_VEC;
549 
550 	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
551 			restore_vsx(current)) {
552 		msr |= MSR_VSX;
553 	}
554 
555 	msr_check_and_clear(msr_all_available);
556 
557 	regs->msr = msr;
558 }
559 
560 static void save_all(struct task_struct *tsk)
561 {
562 	unsigned long usermsr;
563 
564 	if (!tsk->thread.regs)
565 		return;
566 
567 	usermsr = tsk->thread.regs->msr;
568 
569 	if ((usermsr & msr_all_available) == 0)
570 		return;
571 
572 	msr_check_and_set(msr_all_available);
573 
574 	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
575 
576 	if (usermsr & MSR_FP)
577 		save_fpu(tsk);
578 
579 	if (usermsr & MSR_VEC)
580 		save_altivec(tsk);
581 
582 	if (usermsr & MSR_SPE)
583 		__giveup_spe(tsk);
584 
585 	msr_check_and_clear(msr_all_available);
586 	thread_pkey_regs_save(&tsk->thread);
587 }
588 
589 void flush_all_to_thread(struct task_struct *tsk)
590 {
591 	if (tsk->thread.regs) {
592 		preempt_disable();
593 		BUG_ON(tsk != current);
594 		save_all(tsk);
595 
596 #ifdef CONFIG_SPE
597 		if (tsk->thread.regs->msr & MSR_SPE)
598 			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
599 #endif
600 
601 		preempt_enable();
602 	}
603 }
604 EXPORT_SYMBOL(flush_all_to_thread);
605 
606 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
607 void do_send_trap(struct pt_regs *regs, unsigned long address,
608 		  unsigned long error_code, int breakpt)
609 {
610 	current->thread.trap_nr = TRAP_HWBKPT;
611 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
612 			11, SIGSEGV) == NOTIFY_STOP)
613 		return;
614 
615 	/* Deliver the signal to userspace */
616 	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
617 				    (void __user *)address);
618 }
619 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
620 void do_break (struct pt_regs *regs, unsigned long address,
621 		    unsigned long error_code)
622 {
623 	current->thread.trap_nr = TRAP_HWBKPT;
624 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
625 			11, SIGSEGV) == NOTIFY_STOP)
626 		return;
627 
628 	if (debugger_break_match(regs))
629 		return;
630 
631 	/* Clear the breakpoint */
632 	hw_breakpoint_disable();
633 
634 	/* Deliver the signal to userspace */
635 	force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current);
636 }
637 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
638 
639 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);
640 
641 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
642 /*
643  * Set the debug registers back to their default "safe" values.
644  */
645 static void set_debug_reg_defaults(struct thread_struct *thread)
646 {
647 	thread->debug.iac1 = thread->debug.iac2 = 0;
648 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
649 	thread->debug.iac3 = thread->debug.iac4 = 0;
650 #endif
651 	thread->debug.dac1 = thread->debug.dac2 = 0;
652 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
653 	thread->debug.dvc1 = thread->debug.dvc2 = 0;
654 #endif
655 	thread->debug.dbcr0 = 0;
656 #ifdef CONFIG_BOOKE
657 	/*
658 	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
659 	 */
660 	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
661 			DBCR1_IAC3US | DBCR1_IAC4US;
662 	/*
663 	 * Force Data Address Compare User/Supervisor bits to be User-only
664 	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
665 	 */
666 	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
667 #else
668 	thread->debug.dbcr1 = 0;
669 #endif
670 }
671 
672 static void prime_debug_regs(struct debug_reg *debug)
673 {
674 	/*
675 	 * We could have inherited MSR_DE from userspace, since
676 	 * it doesn't get cleared on exception entry.  Make sure
677 	 * MSR_DE is clear before we enable any debug events.
678 	 */
679 	mtmsr(mfmsr() & ~MSR_DE);
680 
681 	mtspr(SPRN_IAC1, debug->iac1);
682 	mtspr(SPRN_IAC2, debug->iac2);
683 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
684 	mtspr(SPRN_IAC3, debug->iac3);
685 	mtspr(SPRN_IAC4, debug->iac4);
686 #endif
687 	mtspr(SPRN_DAC1, debug->dac1);
688 	mtspr(SPRN_DAC2, debug->dac2);
689 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
690 	mtspr(SPRN_DVC1, debug->dvc1);
691 	mtspr(SPRN_DVC2, debug->dvc2);
692 #endif
693 	mtspr(SPRN_DBCR0, debug->dbcr0);
694 	mtspr(SPRN_DBCR1, debug->dbcr1);
695 #ifdef CONFIG_BOOKE
696 	mtspr(SPRN_DBCR2, debug->dbcr2);
697 #endif
698 }
699 /*
700  * Unless neither the old or new thread are making use of the
701  * debug registers, set the debug registers from the values
702  * stored in the new thread.
703  */
704 void switch_booke_debug_regs(struct debug_reg *new_debug)
705 {
706 	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
707 		|| (new_debug->dbcr0 & DBCR0_IDM))
708 			prime_debug_regs(new_debug);
709 }
710 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
711 #else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
712 #ifndef CONFIG_HAVE_HW_BREAKPOINT
713 static void set_breakpoint(struct arch_hw_breakpoint *brk)
714 {
715 	preempt_disable();
716 	__set_breakpoint(brk);
717 	preempt_enable();
718 }
719 
720 static void set_debug_reg_defaults(struct thread_struct *thread)
721 {
722 	thread->hw_brk.address = 0;
723 	thread->hw_brk.type = 0;
724 	if (ppc_breakpoint_available())
725 		set_breakpoint(&thread->hw_brk);
726 }
727 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
728 #endif	/* CONFIG_PPC_ADV_DEBUG_REGS */
729 
730 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
731 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
732 {
733 	mtspr(SPRN_DAC1, dabr);
734 #ifdef CONFIG_PPC_47x
735 	isync();
736 #endif
737 	return 0;
738 }
739 #elif defined(CONFIG_PPC_BOOK3S)
740 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
741 {
742 	mtspr(SPRN_DABR, dabr);
743 	if (cpu_has_feature(CPU_FTR_DABRX))
744 		mtspr(SPRN_DABRX, dabrx);
745 	return 0;
746 }
747 #elif defined(CONFIG_PPC_8xx)
748 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
749 {
750 	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
751 	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
752 	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */
753 
754 	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
755 		lctrl1 |= 0xa0000;
756 	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
757 		lctrl1 |= 0xf0000;
758 	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
759 		lctrl2 = 0;
760 
761 	mtspr(SPRN_LCTRL2, 0);
762 	mtspr(SPRN_CMPE, addr);
763 	mtspr(SPRN_CMPF, addr + 4);
764 	mtspr(SPRN_LCTRL1, lctrl1);
765 	mtspr(SPRN_LCTRL2, lctrl2);
766 
767 	return 0;
768 }
769 #else
770 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
771 {
772 	return -EINVAL;
773 }
774 #endif
775 
776 static inline int set_dabr(struct arch_hw_breakpoint *brk)
777 {
778 	unsigned long dabr, dabrx;
779 
780 	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
781 	dabrx = ((brk->type >> 3) & 0x7);
782 
783 	if (ppc_md.set_dabr)
784 		return ppc_md.set_dabr(dabr, dabrx);
785 
786 	return __set_dabr(dabr, dabrx);
787 }
788 
789 static inline int set_dawr(struct arch_hw_breakpoint *brk)
790 {
791 	unsigned long dawr, dawrx, mrd;
792 
793 	dawr = brk->address;
794 
795 	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
796 		                   << (63 - 58); //* read/write bits */
797 	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
798 		                   << (63 - 59); //* translate */
799 	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
800 		                   >> 3; //* PRIM bits */
801 	/* dawr length is stored in field MDR bits 48:53.  Matches range in
802 	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
803 	   0b111111=64DW.
804 	   brk->len is in bytes.
805 	   This aligns up to double word size, shifts and does the bias.
806 	*/
807 	mrd = ((brk->len + 7) >> 3) - 1;
808 	dawrx |= (mrd & 0x3f) << (63 - 53);
809 
810 	if (ppc_md.set_dawr)
811 		return ppc_md.set_dawr(dawr, dawrx);
812 	mtspr(SPRN_DAWR, dawr);
813 	mtspr(SPRN_DAWRX, dawrx);
814 	return 0;
815 }
816 
817 void __set_breakpoint(struct arch_hw_breakpoint *brk)
818 {
819 	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));
820 
821 	if (cpu_has_feature(CPU_FTR_DAWR))
822 		// Power8 or later
823 		set_dawr(brk);
824 	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
825 		// Power7 or earlier
826 		set_dabr(brk);
827 	else
828 		// Shouldn't happen due to higher level checks
829 		WARN_ON_ONCE(1);
830 }
831 
832 /* Check if we have DAWR or DABR hardware */
833 bool ppc_breakpoint_available(void)
834 {
835 	if (cpu_has_feature(CPU_FTR_DAWR))
836 		return true; /* POWER8 DAWR */
837 	if (cpu_has_feature(CPU_FTR_ARCH_207S))
838 		return false; /* POWER9 with DAWR disabled */
839 	/* DABR: Everything but POWER8 and POWER9 */
840 	return true;
841 }
842 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
843 
844 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
845 			      struct arch_hw_breakpoint *b)
846 {
847 	if (a->address != b->address)
848 		return false;
849 	if (a->type != b->type)
850 		return false;
851 	if (a->len != b->len)
852 		return false;
853 	return true;
854 }
855 
856 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
857 
858 static inline bool tm_enabled(struct task_struct *tsk)
859 {
860 	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
861 }
862 
863 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
864 {
865 	/*
866 	 * Use the current MSR TM suspended bit to track if we have
867 	 * checkpointed state outstanding.
868 	 * On signal delivery, we'd normally reclaim the checkpointed
869 	 * state to obtain stack pointer (see:get_tm_stackpointer()).
870 	 * This will then directly return to userspace without going
871 	 * through __switch_to(). However, if the stack frame is bad,
872 	 * we need to exit this thread which calls __switch_to() which
873 	 * will again attempt to reclaim the already saved tm state.
874 	 * Hence we need to check that we've not already reclaimed
875 	 * this state.
876 	 * We do this using the current MSR, rather tracking it in
877 	 * some specific thread_struct bit, as it has the additional
878 	 * benefit of checking for a potential TM bad thing exception.
879 	 */
880 	if (!MSR_TM_SUSPENDED(mfmsr()))
881 		return;
882 
883 	giveup_all(container_of(thr, struct task_struct, thread));
884 
885 	tm_reclaim(thr, cause);
886 
887 	/*
888 	 * If we are in a transaction and FP is off then we can't have
889 	 * used FP inside that transaction. Hence the checkpointed
890 	 * state is the same as the live state. We need to copy the
891 	 * live state to the checkpointed state so that when the
892 	 * transaction is restored, the checkpointed state is correct
893 	 * and the aborted transaction sees the correct state. We use
894 	 * ckpt_regs.msr here as that's what tm_reclaim will use to
895 	 * determine if it's going to write the checkpointed state or
896 	 * not. So either this will write the checkpointed registers,
897 	 * or reclaim will. Similarly for VMX.
898 	 */
899 	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
900 		memcpy(&thr->ckfp_state, &thr->fp_state,
901 		       sizeof(struct thread_fp_state));
902 	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
903 		memcpy(&thr->ckvr_state, &thr->vr_state,
904 		       sizeof(struct thread_vr_state));
905 }
906 
907 void tm_reclaim_current(uint8_t cause)
908 {
909 	tm_enable();
910 	tm_reclaim_thread(&current->thread, cause);
911 }
912 
913 static inline void tm_reclaim_task(struct task_struct *tsk)
914 {
915 	/* We have to work out if we're switching from/to a task that's in the
916 	 * middle of a transaction.
917 	 *
918 	 * In switching we need to maintain a 2nd register state as
919 	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
920 	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
921 	 * ckvr_state
922 	 *
923 	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
924 	 */
925 	struct thread_struct *thr = &tsk->thread;
926 
927 	if (!thr->regs)
928 		return;
929 
930 	if (!MSR_TM_ACTIVE(thr->regs->msr))
931 		goto out_and_saveregs;
932 
933 	WARN_ON(tm_suspend_disabled);
934 
935 	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
936 		 "ccr=%lx, msr=%lx, trap=%lx)\n",
937 		 tsk->pid, thr->regs->nip,
938 		 thr->regs->ccr, thr->regs->msr,
939 		 thr->regs->trap);
940 
941 	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
942 
943 	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
944 		 tsk->pid);
945 
946 out_and_saveregs:
947 	/* Always save the regs here, even if a transaction's not active.
948 	 * This context-switches a thread's TM info SPRs.  We do it here to
949 	 * be consistent with the restore path (in recheckpoint) which
950 	 * cannot happen later in _switch().
951 	 */
952 	tm_save_sprs(thr);
953 }
954 
955 extern void __tm_recheckpoint(struct thread_struct *thread);
956 
957 void tm_recheckpoint(struct thread_struct *thread)
958 {
959 	unsigned long flags;
960 
961 	if (!(thread->regs->msr & MSR_TM))
962 		return;
963 
964 	/* We really can't be interrupted here as the TEXASR registers can't
965 	 * change and later in the trecheckpoint code, we have a userspace R1.
966 	 * So let's hard disable over this region.
967 	 */
968 	local_irq_save(flags);
969 	hard_irq_disable();
970 
971 	/* The TM SPRs are restored here, so that TEXASR.FS can be set
972 	 * before the trecheckpoint and no explosion occurs.
973 	 */
974 	tm_restore_sprs(thread);
975 
976 	__tm_recheckpoint(thread);
977 
978 	local_irq_restore(flags);
979 }
980 
981 static inline void tm_recheckpoint_new_task(struct task_struct *new)
982 {
983 	if (!cpu_has_feature(CPU_FTR_TM))
984 		return;
985 
986 	/* Recheckpoint the registers of the thread we're about to switch to.
987 	 *
988 	 * If the task was using FP, we non-lazily reload both the original and
989 	 * the speculative FP register states.  This is because the kernel
990 	 * doesn't see if/when a TM rollback occurs, so if we take an FP
991 	 * unavailable later, we are unable to determine which set of FP regs
992 	 * need to be restored.
993 	 */
994 	if (!tm_enabled(new))
995 		return;
996 
997 	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
998 		tm_restore_sprs(&new->thread);
999 		return;
1000 	}
1001 	/* Recheckpoint to restore original checkpointed register state. */
1002 	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1003 		 new->pid, new->thread.regs->msr);
1004 
1005 	tm_recheckpoint(&new->thread);
1006 
1007 	/*
1008 	 * The checkpointed state has been restored but the live state has
1009 	 * not, ensure all the math functionality is turned off to trigger
1010 	 * restore_math() to reload.
1011 	 */
1012 	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1013 
1014 	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1015 		 "(kernel msr 0x%lx)\n",
1016 		 new->pid, mfmsr());
1017 }
1018 
1019 static inline void __switch_to_tm(struct task_struct *prev,
1020 		struct task_struct *new)
1021 {
1022 	if (cpu_has_feature(CPU_FTR_TM)) {
1023 		if (tm_enabled(prev) || tm_enabled(new))
1024 			tm_enable();
1025 
1026 		if (tm_enabled(prev)) {
1027 			prev->thread.load_tm++;
1028 			tm_reclaim_task(prev);
1029 			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1030 				prev->thread.regs->msr &= ~MSR_TM;
1031 		}
1032 
1033 		tm_recheckpoint_new_task(new);
1034 	}
1035 }
1036 
1037 /*
1038  * This is called if we are on the way out to userspace and the
1039  * TIF_RESTORE_TM flag is set.  It checks if we need to reload
1040  * FP and/or vector state and does so if necessary.
1041  * If userspace is inside a transaction (whether active or
1042  * suspended) and FP/VMX/VSX instructions have ever been enabled
1043  * inside that transaction, then we have to keep them enabled
1044  * and keep the FP/VMX/VSX state loaded while ever the transaction
1045  * continues.  The reason is that if we didn't, and subsequently
1046  * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1047  * we don't know whether it's the same transaction, and thus we
1048  * don't know which of the checkpointed state and the transactional
1049  * state to use.
1050  */
1051 void restore_tm_state(struct pt_regs *regs)
1052 {
1053 	unsigned long msr_diff;
1054 
1055 	/*
1056 	 * This is the only moment we should clear TIF_RESTORE_TM as
1057 	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1058 	 * again, anything else could lead to an incorrect ckpt_msr being
1059 	 * saved and therefore incorrect signal contexts.
1060 	 */
1061 	clear_thread_flag(TIF_RESTORE_TM);
1062 	if (!MSR_TM_ACTIVE(regs->msr))
1063 		return;
1064 
1065 	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1066 	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1067 
1068 	/* Ensure that restore_math() will restore */
1069 	if (msr_diff & MSR_FP)
1070 		current->thread.load_fp = 1;
1071 #ifdef CONFIG_ALTIVEC
1072 	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1073 		current->thread.load_vec = 1;
1074 #endif
1075 	restore_math(regs);
1076 
1077 	regs->msr |= msr_diff;
1078 }
1079 
1080 #else
1081 #define tm_recheckpoint_new_task(new)
1082 #define __switch_to_tm(prev, new)
1083 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1084 
1085 static inline void save_sprs(struct thread_struct *t)
1086 {
1087 #ifdef CONFIG_ALTIVEC
1088 	if (cpu_has_feature(CPU_FTR_ALTIVEC))
1089 		t->vrsave = mfspr(SPRN_VRSAVE);
1090 #endif
1091 #ifdef CONFIG_PPC_BOOK3S_64
1092 	if (cpu_has_feature(CPU_FTR_DSCR))
1093 		t->dscr = mfspr(SPRN_DSCR);
1094 
1095 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1096 		t->bescr = mfspr(SPRN_BESCR);
1097 		t->ebbhr = mfspr(SPRN_EBBHR);
1098 		t->ebbrr = mfspr(SPRN_EBBRR);
1099 
1100 		t->fscr = mfspr(SPRN_FSCR);
1101 
1102 		/*
1103 		 * Note that the TAR is not available for use in the kernel.
1104 		 * (To provide this, the TAR should be backed up/restored on
1105 		 * exception entry/exit instead, and be in pt_regs.  FIXME,
1106 		 * this should be in pt_regs anyway (for debug).)
1107 		 */
1108 		t->tar = mfspr(SPRN_TAR);
1109 	}
1110 #endif
1111 
1112 	thread_pkey_regs_save(t);
1113 }
1114 
1115 static inline void restore_sprs(struct thread_struct *old_thread,
1116 				struct thread_struct *new_thread)
1117 {
1118 #ifdef CONFIG_ALTIVEC
1119 	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1120 	    old_thread->vrsave != new_thread->vrsave)
1121 		mtspr(SPRN_VRSAVE, new_thread->vrsave);
1122 #endif
1123 #ifdef CONFIG_PPC_BOOK3S_64
1124 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1125 		u64 dscr = get_paca()->dscr_default;
1126 		if (new_thread->dscr_inherit)
1127 			dscr = new_thread->dscr;
1128 
1129 		if (old_thread->dscr != dscr)
1130 			mtspr(SPRN_DSCR, dscr);
1131 	}
1132 
1133 	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1134 		if (old_thread->bescr != new_thread->bescr)
1135 			mtspr(SPRN_BESCR, new_thread->bescr);
1136 		if (old_thread->ebbhr != new_thread->ebbhr)
1137 			mtspr(SPRN_EBBHR, new_thread->ebbhr);
1138 		if (old_thread->ebbrr != new_thread->ebbrr)
1139 			mtspr(SPRN_EBBRR, new_thread->ebbrr);
1140 
1141 		if (old_thread->fscr != new_thread->fscr)
1142 			mtspr(SPRN_FSCR, new_thread->fscr);
1143 
1144 		if (old_thread->tar != new_thread->tar)
1145 			mtspr(SPRN_TAR, new_thread->tar);
1146 	}
1147 
1148 	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1149 	    old_thread->tidr != new_thread->tidr)
1150 		mtspr(SPRN_TIDR, new_thread->tidr);
1151 #endif
1152 
1153 	thread_pkey_regs_restore(new_thread, old_thread);
1154 }
1155 
1156 #ifdef CONFIG_PPC_BOOK3S_64
1157 #define CP_SIZE 128
1158 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
1159 #endif
1160 
1161 struct task_struct *__switch_to(struct task_struct *prev,
1162 	struct task_struct *new)
1163 {
1164 	struct thread_struct *new_thread, *old_thread;
1165 	struct task_struct *last;
1166 #ifdef CONFIG_PPC_BOOK3S_64
1167 	struct ppc64_tlb_batch *batch;
1168 #endif
1169 
1170 	new_thread = &new->thread;
1171 	old_thread = &current->thread;
1172 
1173 	WARN_ON(!irqs_disabled());
1174 
1175 #ifdef CONFIG_PPC_BOOK3S_64
1176 	batch = this_cpu_ptr(&ppc64_tlb_batch);
1177 	if (batch->active) {
1178 		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1179 		if (batch->index)
1180 			__flush_tlb_pending(batch);
1181 		batch->active = 0;
1182 	}
1183 #endif /* CONFIG_PPC_BOOK3S_64 */
1184 
1185 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1186 	switch_booke_debug_regs(&new->thread.debug);
1187 #else
1188 /*
1189  * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1190  * schedule DABR
1191  */
1192 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1193 	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
1194 		__set_breakpoint(&new->thread.hw_brk);
1195 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1196 #endif
1197 
1198 	/*
1199 	 * We need to save SPRs before treclaim/trecheckpoint as these will
1200 	 * change a number of them.
1201 	 */
1202 	save_sprs(&prev->thread);
1203 
1204 	/* Save FPU, Altivec, VSX and SPE state */
1205 	giveup_all(prev);
1206 
1207 	__switch_to_tm(prev, new);
1208 
1209 	if (!radix_enabled()) {
1210 		/*
1211 		 * We can't take a PMU exception inside _switch() since there
1212 		 * is a window where the kernel stack SLB and the kernel stack
1213 		 * are out of sync. Hard disable here.
1214 		 */
1215 		hard_irq_disable();
1216 	}
1217 
1218 	/*
1219 	 * Call restore_sprs() before calling _switch(). If we move it after
1220 	 * _switch() then we miss out on calling it for new tasks. The reason
1221 	 * for this is we manually create a stack frame for new tasks that
1222 	 * directly returns through ret_from_fork() or
1223 	 * ret_from_kernel_thread(). See copy_thread() for details.
1224 	 */
1225 	restore_sprs(old_thread, new_thread);
1226 
1227 	last = _switch(old_thread, new_thread);
1228 
1229 #ifdef CONFIG_PPC_BOOK3S_64
1230 	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1231 		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1232 		batch = this_cpu_ptr(&ppc64_tlb_batch);
1233 		batch->active = 1;
1234 	}
1235 
1236 	if (current_thread_info()->task->thread.regs) {
1237 		restore_math(current_thread_info()->task->thread.regs);
1238 
1239 		/*
1240 		 * The copy-paste buffer can only store into foreign real
1241 		 * addresses, so unprivileged processes can not see the
1242 		 * data or use it in any way unless they have foreign real
1243 		 * mappings. If the new process has the foreign real address
1244 		 * mappings, we must issue a cp_abort to clear any state and
1245 		 * prevent snooping, corruption or a covert channel.
1246 		 */
1247 		if (current_thread_info()->task->thread.used_vas)
1248 			asm volatile(PPC_CP_ABORT);
1249 	}
1250 #endif /* CONFIG_PPC_BOOK3S_64 */
1251 
1252 	return last;
1253 }
1254 
1255 static int instructions_to_print = 16;
1256 
1257 static void show_instructions(struct pt_regs *regs)
1258 {
1259 	int i;
1260 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
1261 			sizeof(int));
1262 
1263 	printk("Instruction dump:");
1264 
1265 	for (i = 0; i < instructions_to_print; i++) {
1266 		int instr;
1267 
1268 		if (!(i % 8))
1269 			pr_cont("\n");
1270 
1271 #if !defined(CONFIG_BOOKE)
1272 		/* If executing with the IMMU off, adjust pc rather
1273 		 * than print XXXXXXXX.
1274 		 */
1275 		if (!(regs->msr & MSR_IR))
1276 			pc = (unsigned long)phys_to_virt(pc);
1277 #endif
1278 
1279 		if (!__kernel_text_address(pc) ||
1280 		     probe_kernel_address((unsigned int __user *)pc, instr)) {
1281 			pr_cont("XXXXXXXX ");
1282 		} else {
1283 			if (regs->nip == pc)
1284 				pr_cont("<%08x> ", instr);
1285 			else
1286 				pr_cont("%08x ", instr);
1287 		}
1288 
1289 		pc += sizeof(int);
1290 	}
1291 
1292 	pr_cont("\n");
1293 }
1294 
1295 void show_user_instructions(struct pt_regs *regs)
1296 {
1297 	unsigned long pc;
1298 	int i;
1299 
1300 	pc = regs->nip - (instructions_to_print * 3 / 4 * sizeof(int));
1301 
1302 	/*
1303 	 * Make sure the NIP points at userspace, not kernel text/data or
1304 	 * elsewhere.
1305 	 */
1306 	if (!__access_ok(pc, instructions_to_print * sizeof(int), USER_DS)) {
1307 		pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
1308 			current->comm, current->pid);
1309 		return;
1310 	}
1311 
1312 	pr_info("%s[%d]: code: ", current->comm, current->pid);
1313 
1314 	for (i = 0; i < instructions_to_print; i++) {
1315 		int instr;
1316 
1317 		if (!(i % 8) && (i > 0)) {
1318 			pr_cont("\n");
1319 			pr_info("%s[%d]: code: ", current->comm, current->pid);
1320 		}
1321 
1322 		if (probe_kernel_address((unsigned int __user *)pc, instr)) {
1323 			pr_cont("XXXXXXXX ");
1324 		} else {
1325 			if (regs->nip == pc)
1326 				pr_cont("<%08x> ", instr);
1327 			else
1328 				pr_cont("%08x ", instr);
1329 		}
1330 
1331 		pc += sizeof(int);
1332 	}
1333 
1334 	pr_cont("\n");
1335 }
1336 
1337 struct regbit {
1338 	unsigned long bit;
1339 	const char *name;
1340 };
1341 
1342 static struct regbit msr_bits[] = {
1343 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1344 	{MSR_SF,	"SF"},
1345 	{MSR_HV,	"HV"},
1346 #endif
1347 	{MSR_VEC,	"VEC"},
1348 	{MSR_VSX,	"VSX"},
1349 #ifdef CONFIG_BOOKE
1350 	{MSR_CE,	"CE"},
1351 #endif
1352 	{MSR_EE,	"EE"},
1353 	{MSR_PR,	"PR"},
1354 	{MSR_FP,	"FP"},
1355 	{MSR_ME,	"ME"},
1356 #ifdef CONFIG_BOOKE
1357 	{MSR_DE,	"DE"},
1358 #else
1359 	{MSR_SE,	"SE"},
1360 	{MSR_BE,	"BE"},
1361 #endif
1362 	{MSR_IR,	"IR"},
1363 	{MSR_DR,	"DR"},
1364 	{MSR_PMM,	"PMM"},
1365 #ifndef CONFIG_BOOKE
1366 	{MSR_RI,	"RI"},
1367 	{MSR_LE,	"LE"},
1368 #endif
1369 	{0,		NULL}
1370 };
1371 
1372 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1373 {
1374 	const char *s = "";
1375 
1376 	for (; bits->bit; ++bits)
1377 		if (val & bits->bit) {
1378 			pr_cont("%s%s", s, bits->name);
1379 			s = sep;
1380 		}
1381 }
1382 
1383 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1384 static struct regbit msr_tm_bits[] = {
1385 	{MSR_TS_T,	"T"},
1386 	{MSR_TS_S,	"S"},
1387 	{MSR_TM,	"E"},
1388 	{0,		NULL}
1389 };
1390 
1391 static void print_tm_bits(unsigned long val)
1392 {
1393 /*
1394  * This only prints something if at least one of the TM bit is set.
1395  * Inside the TM[], the output means:
1396  *   E: Enabled		(bit 32)
1397  *   S: Suspended	(bit 33)
1398  *   T: Transactional	(bit 34)
1399  */
1400 	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1401 		pr_cont(",TM[");
1402 		print_bits(val, msr_tm_bits, "");
1403 		pr_cont("]");
1404 	}
1405 }
1406 #else
1407 static void print_tm_bits(unsigned long val) {}
1408 #endif
1409 
1410 static void print_msr_bits(unsigned long val)
1411 {
1412 	pr_cont("<");
1413 	print_bits(val, msr_bits, ",");
1414 	print_tm_bits(val);
1415 	pr_cont(">");
1416 }
1417 
1418 #ifdef CONFIG_PPC64
1419 #define REG		"%016lx"
1420 #define REGS_PER_LINE	4
1421 #define LAST_VOLATILE	13
1422 #else
1423 #define REG		"%08lx"
1424 #define REGS_PER_LINE	8
1425 #define LAST_VOLATILE	12
1426 #endif
1427 
1428 void show_regs(struct pt_regs * regs)
1429 {
1430 	int i, trap;
1431 
1432 	show_regs_print_info(KERN_DEFAULT);
1433 
1434 	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
1435 	       regs->nip, regs->link, regs->ctr);
1436 	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
1437 	       regs, regs->trap, print_tainted(), init_utsname()->release);
1438 	printk("MSR:  "REG" ", regs->msr);
1439 	print_msr_bits(regs->msr);
1440 	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
1441 	trap = TRAP(regs);
1442 	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
1443 		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1444 	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
1445 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
1446 		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1447 #else
1448 		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1449 #endif
1450 #ifdef CONFIG_PPC64
1451 	pr_cont("IRQMASK: %lx ", regs->softe);
1452 #endif
1453 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1454 	if (MSR_TM_ACTIVE(regs->msr))
1455 		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1456 #endif
1457 
1458 	for (i = 0;  i < 32;  i++) {
1459 		if ((i % REGS_PER_LINE) == 0)
1460 			pr_cont("\nGPR%02d: ", i);
1461 		pr_cont(REG " ", regs->gpr[i]);
1462 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
1463 			break;
1464 	}
1465 	pr_cont("\n");
1466 #ifdef CONFIG_KALLSYMS
1467 	/*
1468 	 * Lookup NIP late so we have the best change of getting the
1469 	 * above info out without failing
1470 	 */
1471 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1472 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1473 #endif
1474 	show_stack(current, (unsigned long *) regs->gpr[1]);
1475 	if (!user_mode(regs))
1476 		show_instructions(regs);
1477 }
1478 
1479 void flush_thread(void)
1480 {
1481 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1482 	flush_ptrace_hw_breakpoint(current);
1483 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1484 	set_debug_reg_defaults(&current->thread);
1485 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1486 }
1487 
1488 int set_thread_uses_vas(void)
1489 {
1490 #ifdef CONFIG_PPC_BOOK3S_64
1491 	if (!cpu_has_feature(CPU_FTR_ARCH_300))
1492 		return -EINVAL;
1493 
1494 	current->thread.used_vas = 1;
1495 
1496 	/*
1497 	 * Even a process that has no foreign real address mapping can use
1498 	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
1499 	 * to clear any pending COPY and prevent a covert channel.
1500 	 *
1501 	 * __switch_to() will issue CP_ABORT on future context switches.
1502 	 */
1503 	asm volatile(PPC_CP_ABORT);
1504 
1505 #endif /* CONFIG_PPC_BOOK3S_64 */
1506 	return 0;
1507 }
1508 
1509 #ifdef CONFIG_PPC64
1510 /**
1511  * Assign a TIDR (thread ID) for task @t and set it in the thread
1512  * structure. For now, we only support setting TIDR for 'current' task.
1513  *
1514  * Since the TID value is a truncated form of it PID, it is possible
1515  * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1516  * that 2 threads share the same TID and are waiting, one of the following
1517  * cases will happen:
1518  *
1519  * 1. The correct thread is running, the wrong thread is not
1520  * In this situation, the correct thread is woken and proceeds to pass it's
1521  * condition check.
1522  *
1523  * 2. Neither threads are running
1524  * In this situation, neither thread will be woken. When scheduled, the waiting
1525  * threads will execute either a wait, which will return immediately, followed
1526  * by a condition check, which will pass for the correct thread and fail
1527  * for the wrong thread, or they will execute the condition check immediately.
1528  *
1529  * 3. The wrong thread is running, the correct thread is not
1530  * The wrong thread will be woken, but will fail it's condition check and
1531  * re-execute wait. The correct thread, when scheduled, will execute either
1532  * it's condition check (which will pass), or wait, which returns immediately
1533  * when called the first time after the thread is scheduled, followed by it's
1534  * condition check (which will pass).
1535  *
1536  * 4. Both threads are running
1537  * Both threads will be woken. The wrong thread will fail it's condition check
1538  * and execute another wait, while the correct thread will pass it's condition
1539  * check.
1540  *
1541  * @t: the task to set the thread ID for
1542  */
1543 int set_thread_tidr(struct task_struct *t)
1544 {
1545 	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1546 		return -EINVAL;
1547 
1548 	if (t != current)
1549 		return -EINVAL;
1550 
1551 	if (t->thread.tidr)
1552 		return 0;
1553 
1554 	t->thread.tidr = (u16)task_pid_nr(t);
1555 	mtspr(SPRN_TIDR, t->thread.tidr);
1556 
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(set_thread_tidr);
1560 
1561 #endif /* CONFIG_PPC64 */
1562 
1563 void
1564 release_thread(struct task_struct *t)
1565 {
1566 }
1567 
1568 /*
1569  * this gets called so that we can store coprocessor state into memory and
1570  * copy the current task into the new thread.
1571  */
1572 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1573 {
1574 	flush_all_to_thread(src);
1575 	/*
1576 	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
1577 	 * flush but it removes the checkpointed state from the current CPU and
1578 	 * transitions the CPU out of TM mode.  Hence we need to call
1579 	 * tm_recheckpoint_new_task() (on the same task) to restore the
1580 	 * checkpointed state back and the TM mode.
1581 	 *
1582 	 * Can't pass dst because it isn't ready. Doesn't matter, passing
1583 	 * dst is only important for __switch_to()
1584 	 */
1585 	__switch_to_tm(src, src);
1586 
1587 	*dst = *src;
1588 
1589 	clear_task_ebb(dst);
1590 
1591 	return 0;
1592 }
1593 
1594 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1595 {
1596 #ifdef CONFIG_PPC_BOOK3S_64
1597 	unsigned long sp_vsid;
1598 	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1599 
1600 	if (radix_enabled())
1601 		return;
1602 
1603 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1604 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1605 			<< SLB_VSID_SHIFT_1T;
1606 	else
1607 		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1608 			<< SLB_VSID_SHIFT;
1609 	sp_vsid |= SLB_VSID_KERNEL | llp;
1610 	p->thread.ksp_vsid = sp_vsid;
1611 #endif
1612 }
1613 
1614 /*
1615  * Copy a thread..
1616  */
1617 
1618 /*
1619  * Copy architecture-specific thread state
1620  */
1621 int copy_thread(unsigned long clone_flags, unsigned long usp,
1622 		unsigned long kthread_arg, struct task_struct *p)
1623 {
1624 	struct pt_regs *childregs, *kregs;
1625 	extern void ret_from_fork(void);
1626 	extern void ret_from_kernel_thread(void);
1627 	void (*f)(void);
1628 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1629 	struct thread_info *ti = task_thread_info(p);
1630 
1631 	klp_init_thread_info(ti);
1632 
1633 	/* Copy registers */
1634 	sp -= sizeof(struct pt_regs);
1635 	childregs = (struct pt_regs *) sp;
1636 	if (unlikely(p->flags & PF_KTHREAD)) {
1637 		/* kernel thread */
1638 		memset(childregs, 0, sizeof(struct pt_regs));
1639 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
1640 		/* function */
1641 		if (usp)
1642 			childregs->gpr[14] = ppc_function_entry((void *)usp);
1643 #ifdef CONFIG_PPC64
1644 		clear_tsk_thread_flag(p, TIF_32BIT);
1645 		childregs->softe = IRQS_ENABLED;
1646 #endif
1647 		childregs->gpr[15] = kthread_arg;
1648 		p->thread.regs = NULL;	/* no user register state */
1649 		ti->flags |= _TIF_RESTOREALL;
1650 		f = ret_from_kernel_thread;
1651 	} else {
1652 		/* user thread */
1653 		struct pt_regs *regs = current_pt_regs();
1654 		CHECK_FULL_REGS(regs);
1655 		*childregs = *regs;
1656 		if (usp)
1657 			childregs->gpr[1] = usp;
1658 		p->thread.regs = childregs;
1659 		childregs->gpr[3] = 0;  /* Result from fork() */
1660 		if (clone_flags & CLONE_SETTLS) {
1661 #ifdef CONFIG_PPC64
1662 			if (!is_32bit_task())
1663 				childregs->gpr[13] = childregs->gpr[6];
1664 			else
1665 #endif
1666 				childregs->gpr[2] = childregs->gpr[6];
1667 		}
1668 
1669 		f = ret_from_fork;
1670 	}
1671 	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1672 	sp -= STACK_FRAME_OVERHEAD;
1673 
1674 	/*
1675 	 * The way this works is that at some point in the future
1676 	 * some task will call _switch to switch to the new task.
1677 	 * That will pop off the stack frame created below and start
1678 	 * the new task running at ret_from_fork.  The new task will
1679 	 * do some house keeping and then return from the fork or clone
1680 	 * system call, using the stack frame created above.
1681 	 */
1682 	((unsigned long *)sp)[0] = 0;
1683 	sp -= sizeof(struct pt_regs);
1684 	kregs = (struct pt_regs *) sp;
1685 	sp -= STACK_FRAME_OVERHEAD;
1686 	p->thread.ksp = sp;
1687 #ifdef CONFIG_PPC32
1688 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
1689 				_ALIGN_UP(sizeof(struct thread_info), 16);
1690 #endif
1691 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1692 	p->thread.ptrace_bps[0] = NULL;
1693 #endif
1694 
1695 	p->thread.fp_save_area = NULL;
1696 #ifdef CONFIG_ALTIVEC
1697 	p->thread.vr_save_area = NULL;
1698 #endif
1699 
1700 	setup_ksp_vsid(p, sp);
1701 
1702 #ifdef CONFIG_PPC64
1703 	if (cpu_has_feature(CPU_FTR_DSCR)) {
1704 		p->thread.dscr_inherit = current->thread.dscr_inherit;
1705 		p->thread.dscr = mfspr(SPRN_DSCR);
1706 	}
1707 	if (cpu_has_feature(CPU_FTR_HAS_PPR))
1708 		p->thread.ppr = INIT_PPR;
1709 
1710 	p->thread.tidr = 0;
1711 #endif
1712 	kregs->nip = ppc_function_entry(f);
1713 	return 0;
1714 }
1715 
1716 /*
1717  * Set up a thread for executing a new program
1718  */
1719 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1720 {
1721 #ifdef CONFIG_PPC64
1722 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
1723 #endif
1724 
1725 	/*
1726 	 * If we exec out of a kernel thread then thread.regs will not be
1727 	 * set.  Do it now.
1728 	 */
1729 	if (!current->thread.regs) {
1730 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1731 		current->thread.regs = regs - 1;
1732 	}
1733 
1734 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1735 	/*
1736 	 * Clear any transactional state, we're exec()ing. The cause is
1737 	 * not important as there will never be a recheckpoint so it's not
1738 	 * user visible.
1739 	 */
1740 	if (MSR_TM_SUSPENDED(mfmsr()))
1741 		tm_reclaim_current(0);
1742 #endif
1743 
1744 	memset(regs->gpr, 0, sizeof(regs->gpr));
1745 	regs->ctr = 0;
1746 	regs->link = 0;
1747 	regs->xer = 0;
1748 	regs->ccr = 0;
1749 	regs->gpr[1] = sp;
1750 
1751 	/*
1752 	 * We have just cleared all the nonvolatile GPRs, so make
1753 	 * FULL_REGS(regs) return true.  This is necessary to allow
1754 	 * ptrace to examine the thread immediately after exec.
1755 	 */
1756 	regs->trap &= ~1UL;
1757 
1758 #ifdef CONFIG_PPC32
1759 	regs->mq = 0;
1760 	regs->nip = start;
1761 	regs->msr = MSR_USER;
1762 #else
1763 	if (!is_32bit_task()) {
1764 		unsigned long entry;
1765 
1766 		if (is_elf2_task()) {
1767 			/* Look ma, no function descriptors! */
1768 			entry = start;
1769 
1770 			/*
1771 			 * Ulrich says:
1772 			 *   The latest iteration of the ABI requires that when
1773 			 *   calling a function (at its global entry point),
1774 			 *   the caller must ensure r12 holds the entry point
1775 			 *   address (so that the function can quickly
1776 			 *   establish addressability).
1777 			 */
1778 			regs->gpr[12] = start;
1779 			/* Make sure that's restored on entry to userspace. */
1780 			set_thread_flag(TIF_RESTOREALL);
1781 		} else {
1782 			unsigned long toc;
1783 
1784 			/* start is a relocated pointer to the function
1785 			 * descriptor for the elf _start routine.  The first
1786 			 * entry in the function descriptor is the entry
1787 			 * address of _start and the second entry is the TOC
1788 			 * value we need to use.
1789 			 */
1790 			__get_user(entry, (unsigned long __user *)start);
1791 			__get_user(toc, (unsigned long __user *)start+1);
1792 
1793 			/* Check whether the e_entry function descriptor entries
1794 			 * need to be relocated before we can use them.
1795 			 */
1796 			if (load_addr != 0) {
1797 				entry += load_addr;
1798 				toc   += load_addr;
1799 			}
1800 			regs->gpr[2] = toc;
1801 		}
1802 		regs->nip = entry;
1803 		regs->msr = MSR_USER64;
1804 	} else {
1805 		regs->nip = start;
1806 		regs->gpr[2] = 0;
1807 		regs->msr = MSR_USER32;
1808 	}
1809 #endif
1810 #ifdef CONFIG_VSX
1811 	current->thread.used_vsr = 0;
1812 #endif
1813 	current->thread.load_fp = 0;
1814 	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
1815 	current->thread.fp_save_area = NULL;
1816 #ifdef CONFIG_ALTIVEC
1817 	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
1818 	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1819 	current->thread.vr_save_area = NULL;
1820 	current->thread.vrsave = 0;
1821 	current->thread.used_vr = 0;
1822 	current->thread.load_vec = 0;
1823 #endif /* CONFIG_ALTIVEC */
1824 #ifdef CONFIG_SPE
1825 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
1826 	current->thread.acc = 0;
1827 	current->thread.spefscr = 0;
1828 	current->thread.used_spe = 0;
1829 #endif /* CONFIG_SPE */
1830 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1831 	current->thread.tm_tfhar = 0;
1832 	current->thread.tm_texasr = 0;
1833 	current->thread.tm_tfiar = 0;
1834 	current->thread.load_tm = 0;
1835 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1836 
1837 	thread_pkey_regs_init(&current->thread);
1838 }
1839 EXPORT_SYMBOL(start_thread);
1840 
1841 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1842 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
1843 
1844 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1845 {
1846 	struct pt_regs *regs = tsk->thread.regs;
1847 
1848 	/* This is a bit hairy.  If we are an SPE enabled  processor
1849 	 * (have embedded fp) we store the IEEE exception enable flags in
1850 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
1851 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
1852 	if (val & PR_FP_EXC_SW_ENABLE) {
1853 #ifdef CONFIG_SPE
1854 		if (cpu_has_feature(CPU_FTR_SPE)) {
1855 			/*
1856 			 * When the sticky exception bits are set
1857 			 * directly by userspace, it must call prctl
1858 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1859 			 * in the existing prctl settings) or
1860 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1861 			 * the bits being set).  <fenv.h> functions
1862 			 * saving and restoring the whole
1863 			 * floating-point environment need to do so
1864 			 * anyway to restore the prctl settings from
1865 			 * the saved environment.
1866 			 */
1867 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1868 			tsk->thread.fpexc_mode = val &
1869 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1870 			return 0;
1871 		} else {
1872 			return -EINVAL;
1873 		}
1874 #else
1875 		return -EINVAL;
1876 #endif
1877 	}
1878 
1879 	/* on a CONFIG_SPE this does not hurt us.  The bits that
1880 	 * __pack_fe01 use do not overlap with bits used for
1881 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
1882 	 * on CONFIG_SPE implementations are reserved so writing to
1883 	 * them does not change anything */
1884 	if (val > PR_FP_EXC_PRECISE)
1885 		return -EINVAL;
1886 	tsk->thread.fpexc_mode = __pack_fe01(val);
1887 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
1888 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1889 			| tsk->thread.fpexc_mode;
1890 	return 0;
1891 }
1892 
1893 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1894 {
1895 	unsigned int val;
1896 
1897 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
1898 #ifdef CONFIG_SPE
1899 		if (cpu_has_feature(CPU_FTR_SPE)) {
1900 			/*
1901 			 * When the sticky exception bits are set
1902 			 * directly by userspace, it must call prctl
1903 			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1904 			 * in the existing prctl settings) or
1905 			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1906 			 * the bits being set).  <fenv.h> functions
1907 			 * saving and restoring the whole
1908 			 * floating-point environment need to do so
1909 			 * anyway to restore the prctl settings from
1910 			 * the saved environment.
1911 			 */
1912 			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1913 			val = tsk->thread.fpexc_mode;
1914 		} else
1915 			return -EINVAL;
1916 #else
1917 		return -EINVAL;
1918 #endif
1919 	else
1920 		val = __unpack_fe01(tsk->thread.fpexc_mode);
1921 	return put_user(val, (unsigned int __user *) adr);
1922 }
1923 
1924 int set_endian(struct task_struct *tsk, unsigned int val)
1925 {
1926 	struct pt_regs *regs = tsk->thread.regs;
1927 
1928 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1929 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1930 		return -EINVAL;
1931 
1932 	if (regs == NULL)
1933 		return -EINVAL;
1934 
1935 	if (val == PR_ENDIAN_BIG)
1936 		regs->msr &= ~MSR_LE;
1937 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1938 		regs->msr |= MSR_LE;
1939 	else
1940 		return -EINVAL;
1941 
1942 	return 0;
1943 }
1944 
1945 int get_endian(struct task_struct *tsk, unsigned long adr)
1946 {
1947 	struct pt_regs *regs = tsk->thread.regs;
1948 	unsigned int val;
1949 
1950 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1951 	    !cpu_has_feature(CPU_FTR_REAL_LE))
1952 		return -EINVAL;
1953 
1954 	if (regs == NULL)
1955 		return -EINVAL;
1956 
1957 	if (regs->msr & MSR_LE) {
1958 		if (cpu_has_feature(CPU_FTR_REAL_LE))
1959 			val = PR_ENDIAN_LITTLE;
1960 		else
1961 			val = PR_ENDIAN_PPC_LITTLE;
1962 	} else
1963 		val = PR_ENDIAN_BIG;
1964 
1965 	return put_user(val, (unsigned int __user *)adr);
1966 }
1967 
1968 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
1969 {
1970 	tsk->thread.align_ctl = val;
1971 	return 0;
1972 }
1973 
1974 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
1975 {
1976 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
1977 }
1978 
1979 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
1980 				  unsigned long nbytes)
1981 {
1982 	unsigned long stack_page;
1983 	unsigned long cpu = task_cpu(p);
1984 
1985 	/*
1986 	 * Avoid crashing if the stack has overflowed and corrupted
1987 	 * task_cpu(p), which is in the thread_info struct.
1988 	 */
1989 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
1990 		stack_page = (unsigned long) hardirq_ctx[cpu];
1991 		if (sp >= stack_page + sizeof(struct thread_struct)
1992 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1993 			return 1;
1994 
1995 		stack_page = (unsigned long) softirq_ctx[cpu];
1996 		if (sp >= stack_page + sizeof(struct thread_struct)
1997 		    && sp <= stack_page + THREAD_SIZE - nbytes)
1998 			return 1;
1999 	}
2000 	return 0;
2001 }
2002 
2003 int validate_sp(unsigned long sp, struct task_struct *p,
2004 		       unsigned long nbytes)
2005 {
2006 	unsigned long stack_page = (unsigned long)task_stack_page(p);
2007 
2008 	if (sp >= stack_page + sizeof(struct thread_struct)
2009 	    && sp <= stack_page + THREAD_SIZE - nbytes)
2010 		return 1;
2011 
2012 	return valid_irq_stack(sp, p, nbytes);
2013 }
2014 
2015 EXPORT_SYMBOL(validate_sp);
2016 
2017 unsigned long get_wchan(struct task_struct *p)
2018 {
2019 	unsigned long ip, sp;
2020 	int count = 0;
2021 
2022 	if (!p || p == current || p->state == TASK_RUNNING)
2023 		return 0;
2024 
2025 	sp = p->thread.ksp;
2026 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2027 		return 0;
2028 
2029 	do {
2030 		sp = *(unsigned long *)sp;
2031 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2032 		    p->state == TASK_RUNNING)
2033 			return 0;
2034 		if (count > 0) {
2035 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2036 			if (!in_sched_functions(ip))
2037 				return ip;
2038 		}
2039 	} while (count++ < 16);
2040 	return 0;
2041 }
2042 
2043 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2044 
2045 void show_stack(struct task_struct *tsk, unsigned long *stack)
2046 {
2047 	unsigned long sp, ip, lr, newsp;
2048 	int count = 0;
2049 	int firstframe = 1;
2050 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2051 	int curr_frame = current->curr_ret_stack;
2052 	extern void return_to_handler(void);
2053 	unsigned long rth = (unsigned long)return_to_handler;
2054 #endif
2055 
2056 	sp = (unsigned long) stack;
2057 	if (tsk == NULL)
2058 		tsk = current;
2059 	if (sp == 0) {
2060 		if (tsk == current)
2061 			sp = current_stack_pointer();
2062 		else
2063 			sp = tsk->thread.ksp;
2064 	}
2065 
2066 	lr = 0;
2067 	printk("Call Trace:\n");
2068 	do {
2069 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2070 			return;
2071 
2072 		stack = (unsigned long *) sp;
2073 		newsp = stack[0];
2074 		ip = stack[STACK_FRAME_LR_SAVE];
2075 		if (!firstframe || ip != lr) {
2076 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
2077 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
2078 			if ((ip == rth) && curr_frame >= 0) {
2079 				pr_cont(" (%pS)",
2080 				       (void *)current->ret_stack[curr_frame].ret);
2081 				curr_frame--;
2082 			}
2083 #endif
2084 			if (firstframe)
2085 				pr_cont(" (unreliable)");
2086 			pr_cont("\n");
2087 		}
2088 		firstframe = 0;
2089 
2090 		/*
2091 		 * See if this is an exception frame.
2092 		 * We look for the "regshere" marker in the current frame.
2093 		 */
2094 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2095 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2096 			struct pt_regs *regs = (struct pt_regs *)
2097 				(sp + STACK_FRAME_OVERHEAD);
2098 			lr = regs->link;
2099 			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
2100 			       regs->trap, (void *)regs->nip, (void *)lr);
2101 			firstframe = 1;
2102 		}
2103 
2104 		sp = newsp;
2105 	} while (count++ < kstack_depth_to_print);
2106 }
2107 
2108 #ifdef CONFIG_PPC64
2109 /* Called with hard IRQs off */
2110 void notrace __ppc64_runlatch_on(void)
2111 {
2112 	struct thread_info *ti = current_thread_info();
2113 
2114 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2115 		/*
2116 		 * Least significant bit (RUN) is the only writable bit of
2117 		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2118 		 * earliest ISA where this is the case, but it's convenient.
2119 		 */
2120 		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2121 	} else {
2122 		unsigned long ctrl;
2123 
2124 		/*
2125 		 * Some architectures (e.g., Cell) have writable fields other
2126 		 * than RUN, so do the read-modify-write.
2127 		 */
2128 		ctrl = mfspr(SPRN_CTRLF);
2129 		ctrl |= CTRL_RUNLATCH;
2130 		mtspr(SPRN_CTRLT, ctrl);
2131 	}
2132 
2133 	ti->local_flags |= _TLF_RUNLATCH;
2134 }
2135 
2136 /* Called with hard IRQs off */
2137 void notrace __ppc64_runlatch_off(void)
2138 {
2139 	struct thread_info *ti = current_thread_info();
2140 
2141 	ti->local_flags &= ~_TLF_RUNLATCH;
2142 
2143 	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2144 		mtspr(SPRN_CTRLT, 0);
2145 	} else {
2146 		unsigned long ctrl;
2147 
2148 		ctrl = mfspr(SPRN_CTRLF);
2149 		ctrl &= ~CTRL_RUNLATCH;
2150 		mtspr(SPRN_CTRLT, ctrl);
2151 	}
2152 }
2153 #endif /* CONFIG_PPC64 */
2154 
2155 unsigned long arch_align_stack(unsigned long sp)
2156 {
2157 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2158 		sp -= get_random_int() & ~PAGE_MASK;
2159 	return sp & ~0xf;
2160 }
2161 
2162 static inline unsigned long brk_rnd(void)
2163 {
2164         unsigned long rnd = 0;
2165 
2166 	/* 8MB for 32bit, 1GB for 64bit */
2167 	if (is_32bit_task())
2168 		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2169 	else
2170 		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2171 
2172 	return rnd << PAGE_SHIFT;
2173 }
2174 
2175 unsigned long arch_randomize_brk(struct mm_struct *mm)
2176 {
2177 	unsigned long base = mm->brk;
2178 	unsigned long ret;
2179 
2180 #ifdef CONFIG_PPC_BOOK3S_64
2181 	/*
2182 	 * If we are using 1TB segments and we are allowed to randomise
2183 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2184 	 * segment. Otherwise the heap will be in the bottom 1TB
2185 	 * which always uses 256MB segments and this may result in a
2186 	 * performance penalty. We don't need to worry about radix. For
2187 	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2188 	 */
2189 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2190 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2191 #endif
2192 
2193 	ret = PAGE_ALIGN(base + brk_rnd());
2194 
2195 	if (ret < mm->brk)
2196 		return mm->brk;
2197 
2198 	return ret;
2199 }
2200 
2201