1 /* 2 * Derived from "arch/i386/kernel/process.c" 3 * Copyright (C) 1995 Linus Torvalds 4 * 5 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and 6 * Paul Mackerras (paulus@cs.anu.edu.au) 7 * 8 * PowerPC version 9 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 10 * 11 * This program is free software; you can redistribute it and/or 12 * modify it under the terms of the GNU General Public License 13 * as published by the Free Software Foundation; either version 14 * 2 of the License, or (at your option) any later version. 15 */ 16 17 #include <linux/errno.h> 18 #include <linux/sched.h> 19 #include <linux/sched/debug.h> 20 #include <linux/sched/task.h> 21 #include <linux/sched/task_stack.h> 22 #include <linux/kernel.h> 23 #include <linux/mm.h> 24 #include <linux/smp.h> 25 #include <linux/stddef.h> 26 #include <linux/unistd.h> 27 #include <linux/ptrace.h> 28 #include <linux/slab.h> 29 #include <linux/user.h> 30 #include <linux/elf.h> 31 #include <linux/prctl.h> 32 #include <linux/init_task.h> 33 #include <linux/export.h> 34 #include <linux/kallsyms.h> 35 #include <linux/mqueue.h> 36 #include <linux/hardirq.h> 37 #include <linux/utsname.h> 38 #include <linux/ftrace.h> 39 #include <linux/kernel_stat.h> 40 #include <linux/personality.h> 41 #include <linux/random.h> 42 #include <linux/hw_breakpoint.h> 43 #include <linux/uaccess.h> 44 #include <linux/elf-randomize.h> 45 #include <linux/pkeys.h> 46 47 #include <asm/pgtable.h> 48 #include <asm/io.h> 49 #include <asm/processor.h> 50 #include <asm/mmu.h> 51 #include <asm/prom.h> 52 #include <asm/machdep.h> 53 #include <asm/time.h> 54 #include <asm/runlatch.h> 55 #include <asm/syscalls.h> 56 #include <asm/switch_to.h> 57 #include <asm/tm.h> 58 #include <asm/debug.h> 59 #ifdef CONFIG_PPC64 60 #include <asm/firmware.h> 61 #include <asm/hw_irq.h> 62 #endif 63 #include <asm/code-patching.h> 64 #include <asm/exec.h> 65 #include <asm/livepatch.h> 66 #include <asm/cpu_has_feature.h> 67 #include <asm/asm-prototypes.h> 68 69 #include <linux/kprobes.h> 70 #include <linux/kdebug.h> 71 72 /* Transactional Memory debug */ 73 #ifdef TM_DEBUG_SW 74 #define TM_DEBUG(x...) printk(KERN_INFO x) 75 #else 76 #define TM_DEBUG(x...) do { } while(0) 77 #endif 78 79 extern unsigned long _get_SP(void); 80 81 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 82 /* 83 * Are we running in "Suspend disabled" mode? If so we have to block any 84 * sigreturn that would get us into suspended state, and we also warn in some 85 * other paths that we should never reach with suspend disabled. 86 */ 87 bool tm_suspend_disabled __ro_after_init = false; 88 89 static void check_if_tm_restore_required(struct task_struct *tsk) 90 { 91 /* 92 * If we are saving the current thread's registers, and the 93 * thread is in a transactional state, set the TIF_RESTORE_TM 94 * bit so that we know to restore the registers before 95 * returning to userspace. 96 */ 97 if (tsk == current && tsk->thread.regs && 98 MSR_TM_ACTIVE(tsk->thread.regs->msr) && 99 !test_thread_flag(TIF_RESTORE_TM)) { 100 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr; 101 set_thread_flag(TIF_RESTORE_TM); 102 } 103 } 104 105 static inline bool msr_tm_active(unsigned long msr) 106 { 107 return MSR_TM_ACTIVE(msr); 108 } 109 110 static bool tm_active_with_fp(struct task_struct *tsk) 111 { 112 return msr_tm_active(tsk->thread.regs->msr) && 113 (tsk->thread.ckpt_regs.msr & MSR_FP); 114 } 115 116 static bool tm_active_with_altivec(struct task_struct *tsk) 117 { 118 return msr_tm_active(tsk->thread.regs->msr) && 119 (tsk->thread.ckpt_regs.msr & MSR_VEC); 120 } 121 #else 122 static inline bool msr_tm_active(unsigned long msr) { return false; } 123 static inline void check_if_tm_restore_required(struct task_struct *tsk) { } 124 static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; } 125 static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; } 126 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 127 128 bool strict_msr_control; 129 EXPORT_SYMBOL(strict_msr_control); 130 131 static int __init enable_strict_msr_control(char *str) 132 { 133 strict_msr_control = true; 134 pr_info("Enabling strict facility control\n"); 135 136 return 0; 137 } 138 early_param("ppc_strict_facility_enable", enable_strict_msr_control); 139 140 unsigned long msr_check_and_set(unsigned long bits) 141 { 142 unsigned long oldmsr = mfmsr(); 143 unsigned long newmsr; 144 145 newmsr = oldmsr | bits; 146 147 #ifdef CONFIG_VSX 148 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 149 newmsr |= MSR_VSX; 150 #endif 151 152 if (oldmsr != newmsr) 153 mtmsr_isync(newmsr); 154 155 return newmsr; 156 } 157 EXPORT_SYMBOL_GPL(msr_check_and_set); 158 159 void __msr_check_and_clear(unsigned long bits) 160 { 161 unsigned long oldmsr = mfmsr(); 162 unsigned long newmsr; 163 164 newmsr = oldmsr & ~bits; 165 166 #ifdef CONFIG_VSX 167 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP)) 168 newmsr &= ~MSR_VSX; 169 #endif 170 171 if (oldmsr != newmsr) 172 mtmsr_isync(newmsr); 173 } 174 EXPORT_SYMBOL(__msr_check_and_clear); 175 176 #ifdef CONFIG_PPC_FPU 177 static void __giveup_fpu(struct task_struct *tsk) 178 { 179 unsigned long msr; 180 181 save_fpu(tsk); 182 msr = tsk->thread.regs->msr; 183 msr &= ~MSR_FP; 184 #ifdef CONFIG_VSX 185 if (cpu_has_feature(CPU_FTR_VSX)) 186 msr &= ~MSR_VSX; 187 #endif 188 tsk->thread.regs->msr = msr; 189 } 190 191 void giveup_fpu(struct task_struct *tsk) 192 { 193 check_if_tm_restore_required(tsk); 194 195 msr_check_and_set(MSR_FP); 196 __giveup_fpu(tsk); 197 msr_check_and_clear(MSR_FP); 198 } 199 EXPORT_SYMBOL(giveup_fpu); 200 201 /* 202 * Make sure the floating-point register state in the 203 * the thread_struct is up to date for task tsk. 204 */ 205 void flush_fp_to_thread(struct task_struct *tsk) 206 { 207 if (tsk->thread.regs) { 208 /* 209 * We need to disable preemption here because if we didn't, 210 * another process could get scheduled after the regs->msr 211 * test but before we have finished saving the FP registers 212 * to the thread_struct. That process could take over the 213 * FPU, and then when we get scheduled again we would store 214 * bogus values for the remaining FP registers. 215 */ 216 preempt_disable(); 217 if (tsk->thread.regs->msr & MSR_FP) { 218 /* 219 * This should only ever be called for current or 220 * for a stopped child process. Since we save away 221 * the FP register state on context switch, 222 * there is something wrong if a stopped child appears 223 * to still have its FP state in the CPU registers. 224 */ 225 BUG_ON(tsk != current); 226 giveup_fpu(tsk); 227 } 228 preempt_enable(); 229 } 230 } 231 EXPORT_SYMBOL_GPL(flush_fp_to_thread); 232 233 void enable_kernel_fp(void) 234 { 235 unsigned long cpumsr; 236 237 WARN_ON(preemptible()); 238 239 cpumsr = msr_check_and_set(MSR_FP); 240 241 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) { 242 check_if_tm_restore_required(current); 243 /* 244 * If a thread has already been reclaimed then the 245 * checkpointed registers are on the CPU but have definitely 246 * been saved by the reclaim code. Don't need to and *cannot* 247 * giveup as this would save to the 'live' structure not the 248 * checkpointed structure. 249 */ 250 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 251 return; 252 __giveup_fpu(current); 253 } 254 } 255 EXPORT_SYMBOL(enable_kernel_fp); 256 257 static int restore_fp(struct task_struct *tsk) 258 { 259 if (tsk->thread.load_fp || tm_active_with_fp(tsk)) { 260 load_fp_state(¤t->thread.fp_state); 261 current->thread.load_fp++; 262 return 1; 263 } 264 return 0; 265 } 266 #else 267 static int restore_fp(struct task_struct *tsk) { return 0; } 268 #endif /* CONFIG_PPC_FPU */ 269 270 #ifdef CONFIG_ALTIVEC 271 #define loadvec(thr) ((thr).load_vec) 272 273 static void __giveup_altivec(struct task_struct *tsk) 274 { 275 unsigned long msr; 276 277 save_altivec(tsk); 278 msr = tsk->thread.regs->msr; 279 msr &= ~MSR_VEC; 280 #ifdef CONFIG_VSX 281 if (cpu_has_feature(CPU_FTR_VSX)) 282 msr &= ~MSR_VSX; 283 #endif 284 tsk->thread.regs->msr = msr; 285 } 286 287 void giveup_altivec(struct task_struct *tsk) 288 { 289 check_if_tm_restore_required(tsk); 290 291 msr_check_and_set(MSR_VEC); 292 __giveup_altivec(tsk); 293 msr_check_and_clear(MSR_VEC); 294 } 295 EXPORT_SYMBOL(giveup_altivec); 296 297 void enable_kernel_altivec(void) 298 { 299 unsigned long cpumsr; 300 301 WARN_ON(preemptible()); 302 303 cpumsr = msr_check_and_set(MSR_VEC); 304 305 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) { 306 check_if_tm_restore_required(current); 307 /* 308 * If a thread has already been reclaimed then the 309 * checkpointed registers are on the CPU but have definitely 310 * been saved by the reclaim code. Don't need to and *cannot* 311 * giveup as this would save to the 'live' structure not the 312 * checkpointed structure. 313 */ 314 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 315 return; 316 __giveup_altivec(current); 317 } 318 } 319 EXPORT_SYMBOL(enable_kernel_altivec); 320 321 /* 322 * Make sure the VMX/Altivec register state in the 323 * the thread_struct is up to date for task tsk. 324 */ 325 void flush_altivec_to_thread(struct task_struct *tsk) 326 { 327 if (tsk->thread.regs) { 328 preempt_disable(); 329 if (tsk->thread.regs->msr & MSR_VEC) { 330 BUG_ON(tsk != current); 331 giveup_altivec(tsk); 332 } 333 preempt_enable(); 334 } 335 } 336 EXPORT_SYMBOL_GPL(flush_altivec_to_thread); 337 338 static int restore_altivec(struct task_struct *tsk) 339 { 340 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 341 (tsk->thread.load_vec || tm_active_with_altivec(tsk))) { 342 load_vr_state(&tsk->thread.vr_state); 343 tsk->thread.used_vr = 1; 344 tsk->thread.load_vec++; 345 346 return 1; 347 } 348 return 0; 349 } 350 #else 351 #define loadvec(thr) 0 352 static inline int restore_altivec(struct task_struct *tsk) { return 0; } 353 #endif /* CONFIG_ALTIVEC */ 354 355 #ifdef CONFIG_VSX 356 static void __giveup_vsx(struct task_struct *tsk) 357 { 358 unsigned long msr = tsk->thread.regs->msr; 359 360 /* 361 * We should never be ssetting MSR_VSX without also setting 362 * MSR_FP and MSR_VEC 363 */ 364 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC))); 365 366 /* __giveup_fpu will clear MSR_VSX */ 367 if (msr & MSR_FP) 368 __giveup_fpu(tsk); 369 if (msr & MSR_VEC) 370 __giveup_altivec(tsk); 371 } 372 373 static void giveup_vsx(struct task_struct *tsk) 374 { 375 check_if_tm_restore_required(tsk); 376 377 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 378 __giveup_vsx(tsk); 379 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX); 380 } 381 382 void enable_kernel_vsx(void) 383 { 384 unsigned long cpumsr; 385 386 WARN_ON(preemptible()); 387 388 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX); 389 390 if (current->thread.regs && 391 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) { 392 check_if_tm_restore_required(current); 393 /* 394 * If a thread has already been reclaimed then the 395 * checkpointed registers are on the CPU but have definitely 396 * been saved by the reclaim code. Don't need to and *cannot* 397 * giveup as this would save to the 'live' structure not the 398 * checkpointed structure. 399 */ 400 if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr)) 401 return; 402 __giveup_vsx(current); 403 } 404 } 405 EXPORT_SYMBOL(enable_kernel_vsx); 406 407 void flush_vsx_to_thread(struct task_struct *tsk) 408 { 409 if (tsk->thread.regs) { 410 preempt_disable(); 411 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) { 412 BUG_ON(tsk != current); 413 giveup_vsx(tsk); 414 } 415 preempt_enable(); 416 } 417 } 418 EXPORT_SYMBOL_GPL(flush_vsx_to_thread); 419 420 static int restore_vsx(struct task_struct *tsk) 421 { 422 if (cpu_has_feature(CPU_FTR_VSX)) { 423 tsk->thread.used_vsr = 1; 424 return 1; 425 } 426 427 return 0; 428 } 429 #else 430 static inline int restore_vsx(struct task_struct *tsk) { return 0; } 431 #endif /* CONFIG_VSX */ 432 433 #ifdef CONFIG_SPE 434 void giveup_spe(struct task_struct *tsk) 435 { 436 check_if_tm_restore_required(tsk); 437 438 msr_check_and_set(MSR_SPE); 439 __giveup_spe(tsk); 440 msr_check_and_clear(MSR_SPE); 441 } 442 EXPORT_SYMBOL(giveup_spe); 443 444 void enable_kernel_spe(void) 445 { 446 WARN_ON(preemptible()); 447 448 msr_check_and_set(MSR_SPE); 449 450 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) { 451 check_if_tm_restore_required(current); 452 __giveup_spe(current); 453 } 454 } 455 EXPORT_SYMBOL(enable_kernel_spe); 456 457 void flush_spe_to_thread(struct task_struct *tsk) 458 { 459 if (tsk->thread.regs) { 460 preempt_disable(); 461 if (tsk->thread.regs->msr & MSR_SPE) { 462 BUG_ON(tsk != current); 463 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 464 giveup_spe(tsk); 465 } 466 preempt_enable(); 467 } 468 } 469 #endif /* CONFIG_SPE */ 470 471 static unsigned long msr_all_available; 472 473 static int __init init_msr_all_available(void) 474 { 475 #ifdef CONFIG_PPC_FPU 476 msr_all_available |= MSR_FP; 477 #endif 478 #ifdef CONFIG_ALTIVEC 479 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 480 msr_all_available |= MSR_VEC; 481 #endif 482 #ifdef CONFIG_VSX 483 if (cpu_has_feature(CPU_FTR_VSX)) 484 msr_all_available |= MSR_VSX; 485 #endif 486 #ifdef CONFIG_SPE 487 if (cpu_has_feature(CPU_FTR_SPE)) 488 msr_all_available |= MSR_SPE; 489 #endif 490 491 return 0; 492 } 493 early_initcall(init_msr_all_available); 494 495 void giveup_all(struct task_struct *tsk) 496 { 497 unsigned long usermsr; 498 499 if (!tsk->thread.regs) 500 return; 501 502 usermsr = tsk->thread.regs->msr; 503 504 if ((usermsr & msr_all_available) == 0) 505 return; 506 507 msr_check_and_set(msr_all_available); 508 check_if_tm_restore_required(tsk); 509 510 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 511 512 #ifdef CONFIG_PPC_FPU 513 if (usermsr & MSR_FP) 514 __giveup_fpu(tsk); 515 #endif 516 #ifdef CONFIG_ALTIVEC 517 if (usermsr & MSR_VEC) 518 __giveup_altivec(tsk); 519 #endif 520 #ifdef CONFIG_SPE 521 if (usermsr & MSR_SPE) 522 __giveup_spe(tsk); 523 #endif 524 525 msr_check_and_clear(msr_all_available); 526 } 527 EXPORT_SYMBOL(giveup_all); 528 529 void restore_math(struct pt_regs *regs) 530 { 531 unsigned long msr; 532 533 if (!msr_tm_active(regs->msr) && 534 !current->thread.load_fp && !loadvec(current->thread)) 535 return; 536 537 msr = regs->msr; 538 msr_check_and_set(msr_all_available); 539 540 /* 541 * Only reload if the bit is not set in the user MSR, the bit BEING set 542 * indicates that the registers are hot 543 */ 544 if ((!(msr & MSR_FP)) && restore_fp(current)) 545 msr |= MSR_FP | current->thread.fpexc_mode; 546 547 if ((!(msr & MSR_VEC)) && restore_altivec(current)) 548 msr |= MSR_VEC; 549 550 if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) && 551 restore_vsx(current)) { 552 msr |= MSR_VSX; 553 } 554 555 msr_check_and_clear(msr_all_available); 556 557 regs->msr = msr; 558 } 559 560 static void save_all(struct task_struct *tsk) 561 { 562 unsigned long usermsr; 563 564 if (!tsk->thread.regs) 565 return; 566 567 usermsr = tsk->thread.regs->msr; 568 569 if ((usermsr & msr_all_available) == 0) 570 return; 571 572 msr_check_and_set(msr_all_available); 573 574 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); 575 576 if (usermsr & MSR_FP) 577 save_fpu(tsk); 578 579 if (usermsr & MSR_VEC) 580 save_altivec(tsk); 581 582 if (usermsr & MSR_SPE) 583 __giveup_spe(tsk); 584 585 msr_check_and_clear(msr_all_available); 586 thread_pkey_regs_save(&tsk->thread); 587 } 588 589 void flush_all_to_thread(struct task_struct *tsk) 590 { 591 if (tsk->thread.regs) { 592 preempt_disable(); 593 BUG_ON(tsk != current); 594 save_all(tsk); 595 596 #ifdef CONFIG_SPE 597 if (tsk->thread.regs->msr & MSR_SPE) 598 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR); 599 #endif 600 601 preempt_enable(); 602 } 603 } 604 EXPORT_SYMBOL(flush_all_to_thread); 605 606 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 607 void do_send_trap(struct pt_regs *regs, unsigned long address, 608 unsigned long error_code, int breakpt) 609 { 610 current->thread.trap_nr = TRAP_HWBKPT; 611 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 612 11, SIGSEGV) == NOTIFY_STOP) 613 return; 614 615 /* Deliver the signal to userspace */ 616 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */ 617 (void __user *)address); 618 } 619 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 620 void do_break (struct pt_regs *regs, unsigned long address, 621 unsigned long error_code) 622 { 623 current->thread.trap_nr = TRAP_HWBKPT; 624 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, 625 11, SIGSEGV) == NOTIFY_STOP) 626 return; 627 628 if (debugger_break_match(regs)) 629 return; 630 631 /* Clear the breakpoint */ 632 hw_breakpoint_disable(); 633 634 /* Deliver the signal to userspace */ 635 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address, current); 636 } 637 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 638 639 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk); 640 641 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 642 /* 643 * Set the debug registers back to their default "safe" values. 644 */ 645 static void set_debug_reg_defaults(struct thread_struct *thread) 646 { 647 thread->debug.iac1 = thread->debug.iac2 = 0; 648 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 649 thread->debug.iac3 = thread->debug.iac4 = 0; 650 #endif 651 thread->debug.dac1 = thread->debug.dac2 = 0; 652 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 653 thread->debug.dvc1 = thread->debug.dvc2 = 0; 654 #endif 655 thread->debug.dbcr0 = 0; 656 #ifdef CONFIG_BOOKE 657 /* 658 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1) 659 */ 660 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US | 661 DBCR1_IAC3US | DBCR1_IAC4US; 662 /* 663 * Force Data Address Compare User/Supervisor bits to be User-only 664 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0. 665 */ 666 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US; 667 #else 668 thread->debug.dbcr1 = 0; 669 #endif 670 } 671 672 static void prime_debug_regs(struct debug_reg *debug) 673 { 674 /* 675 * We could have inherited MSR_DE from userspace, since 676 * it doesn't get cleared on exception entry. Make sure 677 * MSR_DE is clear before we enable any debug events. 678 */ 679 mtmsr(mfmsr() & ~MSR_DE); 680 681 mtspr(SPRN_IAC1, debug->iac1); 682 mtspr(SPRN_IAC2, debug->iac2); 683 #if CONFIG_PPC_ADV_DEBUG_IACS > 2 684 mtspr(SPRN_IAC3, debug->iac3); 685 mtspr(SPRN_IAC4, debug->iac4); 686 #endif 687 mtspr(SPRN_DAC1, debug->dac1); 688 mtspr(SPRN_DAC2, debug->dac2); 689 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0 690 mtspr(SPRN_DVC1, debug->dvc1); 691 mtspr(SPRN_DVC2, debug->dvc2); 692 #endif 693 mtspr(SPRN_DBCR0, debug->dbcr0); 694 mtspr(SPRN_DBCR1, debug->dbcr1); 695 #ifdef CONFIG_BOOKE 696 mtspr(SPRN_DBCR2, debug->dbcr2); 697 #endif 698 } 699 /* 700 * Unless neither the old or new thread are making use of the 701 * debug registers, set the debug registers from the values 702 * stored in the new thread. 703 */ 704 void switch_booke_debug_regs(struct debug_reg *new_debug) 705 { 706 if ((current->thread.debug.dbcr0 & DBCR0_IDM) 707 || (new_debug->dbcr0 & DBCR0_IDM)) 708 prime_debug_regs(new_debug); 709 } 710 EXPORT_SYMBOL_GPL(switch_booke_debug_regs); 711 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */ 712 #ifndef CONFIG_HAVE_HW_BREAKPOINT 713 static void set_breakpoint(struct arch_hw_breakpoint *brk) 714 { 715 preempt_disable(); 716 __set_breakpoint(brk); 717 preempt_enable(); 718 } 719 720 static void set_debug_reg_defaults(struct thread_struct *thread) 721 { 722 thread->hw_brk.address = 0; 723 thread->hw_brk.type = 0; 724 if (ppc_breakpoint_available()) 725 set_breakpoint(&thread->hw_brk); 726 } 727 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */ 728 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */ 729 730 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 731 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 732 { 733 mtspr(SPRN_DAC1, dabr); 734 #ifdef CONFIG_PPC_47x 735 isync(); 736 #endif 737 return 0; 738 } 739 #elif defined(CONFIG_PPC_BOOK3S) 740 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 741 { 742 mtspr(SPRN_DABR, dabr); 743 if (cpu_has_feature(CPU_FTR_DABRX)) 744 mtspr(SPRN_DABRX, dabrx); 745 return 0; 746 } 747 #elif defined(CONFIG_PPC_8xx) 748 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 749 { 750 unsigned long addr = dabr & ~HW_BRK_TYPE_DABR; 751 unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */ 752 unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */ 753 754 if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ) 755 lctrl1 |= 0xa0000; 756 else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE) 757 lctrl1 |= 0xf0000; 758 else if ((dabr & HW_BRK_TYPE_RDWR) == 0) 759 lctrl2 = 0; 760 761 mtspr(SPRN_LCTRL2, 0); 762 mtspr(SPRN_CMPE, addr); 763 mtspr(SPRN_CMPF, addr + 4); 764 mtspr(SPRN_LCTRL1, lctrl1); 765 mtspr(SPRN_LCTRL2, lctrl2); 766 767 return 0; 768 } 769 #else 770 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx) 771 { 772 return -EINVAL; 773 } 774 #endif 775 776 static inline int set_dabr(struct arch_hw_breakpoint *brk) 777 { 778 unsigned long dabr, dabrx; 779 780 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR); 781 dabrx = ((brk->type >> 3) & 0x7); 782 783 if (ppc_md.set_dabr) 784 return ppc_md.set_dabr(dabr, dabrx); 785 786 return __set_dabr(dabr, dabrx); 787 } 788 789 static inline int set_dawr(struct arch_hw_breakpoint *brk) 790 { 791 unsigned long dawr, dawrx, mrd; 792 793 dawr = brk->address; 794 795 dawrx = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \ 796 << (63 - 58); //* read/write bits */ 797 dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \ 798 << (63 - 59); //* translate */ 799 dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \ 800 >> 3; //* PRIM bits */ 801 /* dawr length is stored in field MDR bits 48:53. Matches range in 802 doublewords (64 bits) baised by -1 eg. 0b000000=1DW and 803 0b111111=64DW. 804 brk->len is in bytes. 805 This aligns up to double word size, shifts and does the bias. 806 */ 807 mrd = ((brk->len + 7) >> 3) - 1; 808 dawrx |= (mrd & 0x3f) << (63 - 53); 809 810 if (ppc_md.set_dawr) 811 return ppc_md.set_dawr(dawr, dawrx); 812 mtspr(SPRN_DAWR, dawr); 813 mtspr(SPRN_DAWRX, dawrx); 814 return 0; 815 } 816 817 void __set_breakpoint(struct arch_hw_breakpoint *brk) 818 { 819 memcpy(this_cpu_ptr(¤t_brk), brk, sizeof(*brk)); 820 821 if (cpu_has_feature(CPU_FTR_DAWR)) 822 // Power8 or later 823 set_dawr(brk); 824 else if (!cpu_has_feature(CPU_FTR_ARCH_207S)) 825 // Power7 or earlier 826 set_dabr(brk); 827 else 828 // Shouldn't happen due to higher level checks 829 WARN_ON_ONCE(1); 830 } 831 832 /* Check if we have DAWR or DABR hardware */ 833 bool ppc_breakpoint_available(void) 834 { 835 if (cpu_has_feature(CPU_FTR_DAWR)) 836 return true; /* POWER8 DAWR */ 837 if (cpu_has_feature(CPU_FTR_ARCH_207S)) 838 return false; /* POWER9 with DAWR disabled */ 839 /* DABR: Everything but POWER8 and POWER9 */ 840 return true; 841 } 842 EXPORT_SYMBOL_GPL(ppc_breakpoint_available); 843 844 static inline bool hw_brk_match(struct arch_hw_breakpoint *a, 845 struct arch_hw_breakpoint *b) 846 { 847 if (a->address != b->address) 848 return false; 849 if (a->type != b->type) 850 return false; 851 if (a->len != b->len) 852 return false; 853 return true; 854 } 855 856 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 857 858 static inline bool tm_enabled(struct task_struct *tsk) 859 { 860 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM); 861 } 862 863 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause) 864 { 865 /* 866 * Use the current MSR TM suspended bit to track if we have 867 * checkpointed state outstanding. 868 * On signal delivery, we'd normally reclaim the checkpointed 869 * state to obtain stack pointer (see:get_tm_stackpointer()). 870 * This will then directly return to userspace without going 871 * through __switch_to(). However, if the stack frame is bad, 872 * we need to exit this thread which calls __switch_to() which 873 * will again attempt to reclaim the already saved tm state. 874 * Hence we need to check that we've not already reclaimed 875 * this state. 876 * We do this using the current MSR, rather tracking it in 877 * some specific thread_struct bit, as it has the additional 878 * benefit of checking for a potential TM bad thing exception. 879 */ 880 if (!MSR_TM_SUSPENDED(mfmsr())) 881 return; 882 883 giveup_all(container_of(thr, struct task_struct, thread)); 884 885 tm_reclaim(thr, cause); 886 887 /* 888 * If we are in a transaction and FP is off then we can't have 889 * used FP inside that transaction. Hence the checkpointed 890 * state is the same as the live state. We need to copy the 891 * live state to the checkpointed state so that when the 892 * transaction is restored, the checkpointed state is correct 893 * and the aborted transaction sees the correct state. We use 894 * ckpt_regs.msr here as that's what tm_reclaim will use to 895 * determine if it's going to write the checkpointed state or 896 * not. So either this will write the checkpointed registers, 897 * or reclaim will. Similarly for VMX. 898 */ 899 if ((thr->ckpt_regs.msr & MSR_FP) == 0) 900 memcpy(&thr->ckfp_state, &thr->fp_state, 901 sizeof(struct thread_fp_state)); 902 if ((thr->ckpt_regs.msr & MSR_VEC) == 0) 903 memcpy(&thr->ckvr_state, &thr->vr_state, 904 sizeof(struct thread_vr_state)); 905 } 906 907 void tm_reclaim_current(uint8_t cause) 908 { 909 tm_enable(); 910 tm_reclaim_thread(¤t->thread, cause); 911 } 912 913 static inline void tm_reclaim_task(struct task_struct *tsk) 914 { 915 /* We have to work out if we're switching from/to a task that's in the 916 * middle of a transaction. 917 * 918 * In switching we need to maintain a 2nd register state as 919 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the 920 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and 921 * ckvr_state 922 * 923 * We also context switch (save) TFHAR/TEXASR/TFIAR in here. 924 */ 925 struct thread_struct *thr = &tsk->thread; 926 927 if (!thr->regs) 928 return; 929 930 if (!MSR_TM_ACTIVE(thr->regs->msr)) 931 goto out_and_saveregs; 932 933 WARN_ON(tm_suspend_disabled); 934 935 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, " 936 "ccr=%lx, msr=%lx, trap=%lx)\n", 937 tsk->pid, thr->regs->nip, 938 thr->regs->ccr, thr->regs->msr, 939 thr->regs->trap); 940 941 tm_reclaim_thread(thr, TM_CAUSE_RESCHED); 942 943 TM_DEBUG("--- tm_reclaim on pid %d complete\n", 944 tsk->pid); 945 946 out_and_saveregs: 947 /* Always save the regs here, even if a transaction's not active. 948 * This context-switches a thread's TM info SPRs. We do it here to 949 * be consistent with the restore path (in recheckpoint) which 950 * cannot happen later in _switch(). 951 */ 952 tm_save_sprs(thr); 953 } 954 955 extern void __tm_recheckpoint(struct thread_struct *thread); 956 957 void tm_recheckpoint(struct thread_struct *thread) 958 { 959 unsigned long flags; 960 961 if (!(thread->regs->msr & MSR_TM)) 962 return; 963 964 /* We really can't be interrupted here as the TEXASR registers can't 965 * change and later in the trecheckpoint code, we have a userspace R1. 966 * So let's hard disable over this region. 967 */ 968 local_irq_save(flags); 969 hard_irq_disable(); 970 971 /* The TM SPRs are restored here, so that TEXASR.FS can be set 972 * before the trecheckpoint and no explosion occurs. 973 */ 974 tm_restore_sprs(thread); 975 976 __tm_recheckpoint(thread); 977 978 local_irq_restore(flags); 979 } 980 981 static inline void tm_recheckpoint_new_task(struct task_struct *new) 982 { 983 if (!cpu_has_feature(CPU_FTR_TM)) 984 return; 985 986 /* Recheckpoint the registers of the thread we're about to switch to. 987 * 988 * If the task was using FP, we non-lazily reload both the original and 989 * the speculative FP register states. This is because the kernel 990 * doesn't see if/when a TM rollback occurs, so if we take an FP 991 * unavailable later, we are unable to determine which set of FP regs 992 * need to be restored. 993 */ 994 if (!tm_enabled(new)) 995 return; 996 997 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){ 998 tm_restore_sprs(&new->thread); 999 return; 1000 } 1001 /* Recheckpoint to restore original checkpointed register state. */ 1002 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n", 1003 new->pid, new->thread.regs->msr); 1004 1005 tm_recheckpoint(&new->thread); 1006 1007 /* 1008 * The checkpointed state has been restored but the live state has 1009 * not, ensure all the math functionality is turned off to trigger 1010 * restore_math() to reload. 1011 */ 1012 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX); 1013 1014 TM_DEBUG("*** tm_recheckpoint of pid %d complete " 1015 "(kernel msr 0x%lx)\n", 1016 new->pid, mfmsr()); 1017 } 1018 1019 static inline void __switch_to_tm(struct task_struct *prev, 1020 struct task_struct *new) 1021 { 1022 if (cpu_has_feature(CPU_FTR_TM)) { 1023 if (tm_enabled(prev) || tm_enabled(new)) 1024 tm_enable(); 1025 1026 if (tm_enabled(prev)) { 1027 prev->thread.load_tm++; 1028 tm_reclaim_task(prev); 1029 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0) 1030 prev->thread.regs->msr &= ~MSR_TM; 1031 } 1032 1033 tm_recheckpoint_new_task(new); 1034 } 1035 } 1036 1037 /* 1038 * This is called if we are on the way out to userspace and the 1039 * TIF_RESTORE_TM flag is set. It checks if we need to reload 1040 * FP and/or vector state and does so if necessary. 1041 * If userspace is inside a transaction (whether active or 1042 * suspended) and FP/VMX/VSX instructions have ever been enabled 1043 * inside that transaction, then we have to keep them enabled 1044 * and keep the FP/VMX/VSX state loaded while ever the transaction 1045 * continues. The reason is that if we didn't, and subsequently 1046 * got a FP/VMX/VSX unavailable interrupt inside a transaction, 1047 * we don't know whether it's the same transaction, and thus we 1048 * don't know which of the checkpointed state and the transactional 1049 * state to use. 1050 */ 1051 void restore_tm_state(struct pt_regs *regs) 1052 { 1053 unsigned long msr_diff; 1054 1055 /* 1056 * This is the only moment we should clear TIF_RESTORE_TM as 1057 * it is here that ckpt_regs.msr and pt_regs.msr become the same 1058 * again, anything else could lead to an incorrect ckpt_msr being 1059 * saved and therefore incorrect signal contexts. 1060 */ 1061 clear_thread_flag(TIF_RESTORE_TM); 1062 if (!MSR_TM_ACTIVE(regs->msr)) 1063 return; 1064 1065 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr; 1066 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX; 1067 1068 /* Ensure that restore_math() will restore */ 1069 if (msr_diff & MSR_FP) 1070 current->thread.load_fp = 1; 1071 #ifdef CONFIG_ALTIVEC 1072 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC) 1073 current->thread.load_vec = 1; 1074 #endif 1075 restore_math(regs); 1076 1077 regs->msr |= msr_diff; 1078 } 1079 1080 #else 1081 #define tm_recheckpoint_new_task(new) 1082 #define __switch_to_tm(prev, new) 1083 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1084 1085 static inline void save_sprs(struct thread_struct *t) 1086 { 1087 #ifdef CONFIG_ALTIVEC 1088 if (cpu_has_feature(CPU_FTR_ALTIVEC)) 1089 t->vrsave = mfspr(SPRN_VRSAVE); 1090 #endif 1091 #ifdef CONFIG_PPC_BOOK3S_64 1092 if (cpu_has_feature(CPU_FTR_DSCR)) 1093 t->dscr = mfspr(SPRN_DSCR); 1094 1095 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1096 t->bescr = mfspr(SPRN_BESCR); 1097 t->ebbhr = mfspr(SPRN_EBBHR); 1098 t->ebbrr = mfspr(SPRN_EBBRR); 1099 1100 t->fscr = mfspr(SPRN_FSCR); 1101 1102 /* 1103 * Note that the TAR is not available for use in the kernel. 1104 * (To provide this, the TAR should be backed up/restored on 1105 * exception entry/exit instead, and be in pt_regs. FIXME, 1106 * this should be in pt_regs anyway (for debug).) 1107 */ 1108 t->tar = mfspr(SPRN_TAR); 1109 } 1110 #endif 1111 1112 thread_pkey_regs_save(t); 1113 } 1114 1115 static inline void restore_sprs(struct thread_struct *old_thread, 1116 struct thread_struct *new_thread) 1117 { 1118 #ifdef CONFIG_ALTIVEC 1119 if (cpu_has_feature(CPU_FTR_ALTIVEC) && 1120 old_thread->vrsave != new_thread->vrsave) 1121 mtspr(SPRN_VRSAVE, new_thread->vrsave); 1122 #endif 1123 #ifdef CONFIG_PPC_BOOK3S_64 1124 if (cpu_has_feature(CPU_FTR_DSCR)) { 1125 u64 dscr = get_paca()->dscr_default; 1126 if (new_thread->dscr_inherit) 1127 dscr = new_thread->dscr; 1128 1129 if (old_thread->dscr != dscr) 1130 mtspr(SPRN_DSCR, dscr); 1131 } 1132 1133 if (cpu_has_feature(CPU_FTR_ARCH_207S)) { 1134 if (old_thread->bescr != new_thread->bescr) 1135 mtspr(SPRN_BESCR, new_thread->bescr); 1136 if (old_thread->ebbhr != new_thread->ebbhr) 1137 mtspr(SPRN_EBBHR, new_thread->ebbhr); 1138 if (old_thread->ebbrr != new_thread->ebbrr) 1139 mtspr(SPRN_EBBRR, new_thread->ebbrr); 1140 1141 if (old_thread->fscr != new_thread->fscr) 1142 mtspr(SPRN_FSCR, new_thread->fscr); 1143 1144 if (old_thread->tar != new_thread->tar) 1145 mtspr(SPRN_TAR, new_thread->tar); 1146 } 1147 1148 if (cpu_has_feature(CPU_FTR_P9_TIDR) && 1149 old_thread->tidr != new_thread->tidr) 1150 mtspr(SPRN_TIDR, new_thread->tidr); 1151 #endif 1152 1153 thread_pkey_regs_restore(new_thread, old_thread); 1154 } 1155 1156 #ifdef CONFIG_PPC_BOOK3S_64 1157 #define CP_SIZE 128 1158 static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE))); 1159 #endif 1160 1161 struct task_struct *__switch_to(struct task_struct *prev, 1162 struct task_struct *new) 1163 { 1164 struct thread_struct *new_thread, *old_thread; 1165 struct task_struct *last; 1166 #ifdef CONFIG_PPC_BOOK3S_64 1167 struct ppc64_tlb_batch *batch; 1168 #endif 1169 1170 new_thread = &new->thread; 1171 old_thread = ¤t->thread; 1172 1173 WARN_ON(!irqs_disabled()); 1174 1175 #ifdef CONFIG_PPC_BOOK3S_64 1176 batch = this_cpu_ptr(&ppc64_tlb_batch); 1177 if (batch->active) { 1178 current_thread_info()->local_flags |= _TLF_LAZY_MMU; 1179 if (batch->index) 1180 __flush_tlb_pending(batch); 1181 batch->active = 0; 1182 } 1183 #endif /* CONFIG_PPC_BOOK3S_64 */ 1184 1185 #ifdef CONFIG_PPC_ADV_DEBUG_REGS 1186 switch_booke_debug_regs(&new->thread.debug); 1187 #else 1188 /* 1189 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would 1190 * schedule DABR 1191 */ 1192 #ifndef CONFIG_HAVE_HW_BREAKPOINT 1193 if (unlikely(!hw_brk_match(this_cpu_ptr(¤t_brk), &new->thread.hw_brk))) 1194 __set_breakpoint(&new->thread.hw_brk); 1195 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1196 #endif 1197 1198 /* 1199 * We need to save SPRs before treclaim/trecheckpoint as these will 1200 * change a number of them. 1201 */ 1202 save_sprs(&prev->thread); 1203 1204 /* Save FPU, Altivec, VSX and SPE state */ 1205 giveup_all(prev); 1206 1207 __switch_to_tm(prev, new); 1208 1209 if (!radix_enabled()) { 1210 /* 1211 * We can't take a PMU exception inside _switch() since there 1212 * is a window where the kernel stack SLB and the kernel stack 1213 * are out of sync. Hard disable here. 1214 */ 1215 hard_irq_disable(); 1216 } 1217 1218 /* 1219 * Call restore_sprs() before calling _switch(). If we move it after 1220 * _switch() then we miss out on calling it for new tasks. The reason 1221 * for this is we manually create a stack frame for new tasks that 1222 * directly returns through ret_from_fork() or 1223 * ret_from_kernel_thread(). See copy_thread() for details. 1224 */ 1225 restore_sprs(old_thread, new_thread); 1226 1227 last = _switch(old_thread, new_thread); 1228 1229 #ifdef CONFIG_PPC_BOOK3S_64 1230 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) { 1231 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU; 1232 batch = this_cpu_ptr(&ppc64_tlb_batch); 1233 batch->active = 1; 1234 } 1235 1236 if (current_thread_info()->task->thread.regs) { 1237 restore_math(current_thread_info()->task->thread.regs); 1238 1239 /* 1240 * The copy-paste buffer can only store into foreign real 1241 * addresses, so unprivileged processes can not see the 1242 * data or use it in any way unless they have foreign real 1243 * mappings. If the new process has the foreign real address 1244 * mappings, we must issue a cp_abort to clear any state and 1245 * prevent snooping, corruption or a covert channel. 1246 */ 1247 if (current_thread_info()->task->thread.used_vas) 1248 asm volatile(PPC_CP_ABORT); 1249 } 1250 #endif /* CONFIG_PPC_BOOK3S_64 */ 1251 1252 return last; 1253 } 1254 1255 static int instructions_to_print = 16; 1256 1257 static void show_instructions(struct pt_regs *regs) 1258 { 1259 int i; 1260 unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 * 1261 sizeof(int)); 1262 1263 printk("Instruction dump:"); 1264 1265 for (i = 0; i < instructions_to_print; i++) { 1266 int instr; 1267 1268 if (!(i % 8)) 1269 pr_cont("\n"); 1270 1271 #if !defined(CONFIG_BOOKE) 1272 /* If executing with the IMMU off, adjust pc rather 1273 * than print XXXXXXXX. 1274 */ 1275 if (!(regs->msr & MSR_IR)) 1276 pc = (unsigned long)phys_to_virt(pc); 1277 #endif 1278 1279 if (!__kernel_text_address(pc) || 1280 probe_kernel_address((unsigned int __user *)pc, instr)) { 1281 pr_cont("XXXXXXXX "); 1282 } else { 1283 if (regs->nip == pc) 1284 pr_cont("<%08x> ", instr); 1285 else 1286 pr_cont("%08x ", instr); 1287 } 1288 1289 pc += sizeof(int); 1290 } 1291 1292 pr_cont("\n"); 1293 } 1294 1295 void show_user_instructions(struct pt_regs *regs) 1296 { 1297 unsigned long pc; 1298 int i; 1299 1300 pc = regs->nip - (instructions_to_print * 3 / 4 * sizeof(int)); 1301 1302 /* 1303 * Make sure the NIP points at userspace, not kernel text/data or 1304 * elsewhere. 1305 */ 1306 if (!__access_ok(pc, instructions_to_print * sizeof(int), USER_DS)) { 1307 pr_info("%s[%d]: Bad NIP, not dumping instructions.\n", 1308 current->comm, current->pid); 1309 return; 1310 } 1311 1312 pr_info("%s[%d]: code: ", current->comm, current->pid); 1313 1314 for (i = 0; i < instructions_to_print; i++) { 1315 int instr; 1316 1317 if (!(i % 8) && (i > 0)) { 1318 pr_cont("\n"); 1319 pr_info("%s[%d]: code: ", current->comm, current->pid); 1320 } 1321 1322 if (probe_kernel_address((unsigned int __user *)pc, instr)) { 1323 pr_cont("XXXXXXXX "); 1324 } else { 1325 if (regs->nip == pc) 1326 pr_cont("<%08x> ", instr); 1327 else 1328 pr_cont("%08x ", instr); 1329 } 1330 1331 pc += sizeof(int); 1332 } 1333 1334 pr_cont("\n"); 1335 } 1336 1337 struct regbit { 1338 unsigned long bit; 1339 const char *name; 1340 }; 1341 1342 static struct regbit msr_bits[] = { 1343 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE) 1344 {MSR_SF, "SF"}, 1345 {MSR_HV, "HV"}, 1346 #endif 1347 {MSR_VEC, "VEC"}, 1348 {MSR_VSX, "VSX"}, 1349 #ifdef CONFIG_BOOKE 1350 {MSR_CE, "CE"}, 1351 #endif 1352 {MSR_EE, "EE"}, 1353 {MSR_PR, "PR"}, 1354 {MSR_FP, "FP"}, 1355 {MSR_ME, "ME"}, 1356 #ifdef CONFIG_BOOKE 1357 {MSR_DE, "DE"}, 1358 #else 1359 {MSR_SE, "SE"}, 1360 {MSR_BE, "BE"}, 1361 #endif 1362 {MSR_IR, "IR"}, 1363 {MSR_DR, "DR"}, 1364 {MSR_PMM, "PMM"}, 1365 #ifndef CONFIG_BOOKE 1366 {MSR_RI, "RI"}, 1367 {MSR_LE, "LE"}, 1368 #endif 1369 {0, NULL} 1370 }; 1371 1372 static void print_bits(unsigned long val, struct regbit *bits, const char *sep) 1373 { 1374 const char *s = ""; 1375 1376 for (; bits->bit; ++bits) 1377 if (val & bits->bit) { 1378 pr_cont("%s%s", s, bits->name); 1379 s = sep; 1380 } 1381 } 1382 1383 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1384 static struct regbit msr_tm_bits[] = { 1385 {MSR_TS_T, "T"}, 1386 {MSR_TS_S, "S"}, 1387 {MSR_TM, "E"}, 1388 {0, NULL} 1389 }; 1390 1391 static void print_tm_bits(unsigned long val) 1392 { 1393 /* 1394 * This only prints something if at least one of the TM bit is set. 1395 * Inside the TM[], the output means: 1396 * E: Enabled (bit 32) 1397 * S: Suspended (bit 33) 1398 * T: Transactional (bit 34) 1399 */ 1400 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) { 1401 pr_cont(",TM["); 1402 print_bits(val, msr_tm_bits, ""); 1403 pr_cont("]"); 1404 } 1405 } 1406 #else 1407 static void print_tm_bits(unsigned long val) {} 1408 #endif 1409 1410 static void print_msr_bits(unsigned long val) 1411 { 1412 pr_cont("<"); 1413 print_bits(val, msr_bits, ","); 1414 print_tm_bits(val); 1415 pr_cont(">"); 1416 } 1417 1418 #ifdef CONFIG_PPC64 1419 #define REG "%016lx" 1420 #define REGS_PER_LINE 4 1421 #define LAST_VOLATILE 13 1422 #else 1423 #define REG "%08lx" 1424 #define REGS_PER_LINE 8 1425 #define LAST_VOLATILE 12 1426 #endif 1427 1428 void show_regs(struct pt_regs * regs) 1429 { 1430 int i, trap; 1431 1432 show_regs_print_info(KERN_DEFAULT); 1433 1434 printk("NIP: "REG" LR: "REG" CTR: "REG"\n", 1435 regs->nip, regs->link, regs->ctr); 1436 printk("REGS: %px TRAP: %04lx %s (%s)\n", 1437 regs, regs->trap, print_tainted(), init_utsname()->release); 1438 printk("MSR: "REG" ", regs->msr); 1439 print_msr_bits(regs->msr); 1440 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer); 1441 trap = TRAP(regs); 1442 if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR)) 1443 pr_cont("CFAR: "REG" ", regs->orig_gpr3); 1444 if (trap == 0x200 || trap == 0x300 || trap == 0x600) 1445 #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) 1446 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr); 1447 #else 1448 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr); 1449 #endif 1450 #ifdef CONFIG_PPC64 1451 pr_cont("IRQMASK: %lx ", regs->softe); 1452 #endif 1453 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1454 if (MSR_TM_ACTIVE(regs->msr)) 1455 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch); 1456 #endif 1457 1458 for (i = 0; i < 32; i++) { 1459 if ((i % REGS_PER_LINE) == 0) 1460 pr_cont("\nGPR%02d: ", i); 1461 pr_cont(REG " ", regs->gpr[i]); 1462 if (i == LAST_VOLATILE && !FULL_REGS(regs)) 1463 break; 1464 } 1465 pr_cont("\n"); 1466 #ifdef CONFIG_KALLSYMS 1467 /* 1468 * Lookup NIP late so we have the best change of getting the 1469 * above info out without failing 1470 */ 1471 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip); 1472 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link); 1473 #endif 1474 show_stack(current, (unsigned long *) regs->gpr[1]); 1475 if (!user_mode(regs)) 1476 show_instructions(regs); 1477 } 1478 1479 void flush_thread(void) 1480 { 1481 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1482 flush_ptrace_hw_breakpoint(current); 1483 #else /* CONFIG_HAVE_HW_BREAKPOINT */ 1484 set_debug_reg_defaults(¤t->thread); 1485 #endif /* CONFIG_HAVE_HW_BREAKPOINT */ 1486 } 1487 1488 int set_thread_uses_vas(void) 1489 { 1490 #ifdef CONFIG_PPC_BOOK3S_64 1491 if (!cpu_has_feature(CPU_FTR_ARCH_300)) 1492 return -EINVAL; 1493 1494 current->thread.used_vas = 1; 1495 1496 /* 1497 * Even a process that has no foreign real address mapping can use 1498 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT 1499 * to clear any pending COPY and prevent a covert channel. 1500 * 1501 * __switch_to() will issue CP_ABORT on future context switches. 1502 */ 1503 asm volatile(PPC_CP_ABORT); 1504 1505 #endif /* CONFIG_PPC_BOOK3S_64 */ 1506 return 0; 1507 } 1508 1509 #ifdef CONFIG_PPC64 1510 /** 1511 * Assign a TIDR (thread ID) for task @t and set it in the thread 1512 * structure. For now, we only support setting TIDR for 'current' task. 1513 * 1514 * Since the TID value is a truncated form of it PID, it is possible 1515 * (but unlikely) for 2 threads to have the same TID. In the unlikely event 1516 * that 2 threads share the same TID and are waiting, one of the following 1517 * cases will happen: 1518 * 1519 * 1. The correct thread is running, the wrong thread is not 1520 * In this situation, the correct thread is woken and proceeds to pass it's 1521 * condition check. 1522 * 1523 * 2. Neither threads are running 1524 * In this situation, neither thread will be woken. When scheduled, the waiting 1525 * threads will execute either a wait, which will return immediately, followed 1526 * by a condition check, which will pass for the correct thread and fail 1527 * for the wrong thread, or they will execute the condition check immediately. 1528 * 1529 * 3. The wrong thread is running, the correct thread is not 1530 * The wrong thread will be woken, but will fail it's condition check and 1531 * re-execute wait. The correct thread, when scheduled, will execute either 1532 * it's condition check (which will pass), or wait, which returns immediately 1533 * when called the first time after the thread is scheduled, followed by it's 1534 * condition check (which will pass). 1535 * 1536 * 4. Both threads are running 1537 * Both threads will be woken. The wrong thread will fail it's condition check 1538 * and execute another wait, while the correct thread will pass it's condition 1539 * check. 1540 * 1541 * @t: the task to set the thread ID for 1542 */ 1543 int set_thread_tidr(struct task_struct *t) 1544 { 1545 if (!cpu_has_feature(CPU_FTR_P9_TIDR)) 1546 return -EINVAL; 1547 1548 if (t != current) 1549 return -EINVAL; 1550 1551 if (t->thread.tidr) 1552 return 0; 1553 1554 t->thread.tidr = (u16)task_pid_nr(t); 1555 mtspr(SPRN_TIDR, t->thread.tidr); 1556 1557 return 0; 1558 } 1559 EXPORT_SYMBOL_GPL(set_thread_tidr); 1560 1561 #endif /* CONFIG_PPC64 */ 1562 1563 void 1564 release_thread(struct task_struct *t) 1565 { 1566 } 1567 1568 /* 1569 * this gets called so that we can store coprocessor state into memory and 1570 * copy the current task into the new thread. 1571 */ 1572 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 1573 { 1574 flush_all_to_thread(src); 1575 /* 1576 * Flush TM state out so we can copy it. __switch_to_tm() does this 1577 * flush but it removes the checkpointed state from the current CPU and 1578 * transitions the CPU out of TM mode. Hence we need to call 1579 * tm_recheckpoint_new_task() (on the same task) to restore the 1580 * checkpointed state back and the TM mode. 1581 * 1582 * Can't pass dst because it isn't ready. Doesn't matter, passing 1583 * dst is only important for __switch_to() 1584 */ 1585 __switch_to_tm(src, src); 1586 1587 *dst = *src; 1588 1589 clear_task_ebb(dst); 1590 1591 return 0; 1592 } 1593 1594 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp) 1595 { 1596 #ifdef CONFIG_PPC_BOOK3S_64 1597 unsigned long sp_vsid; 1598 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp; 1599 1600 if (radix_enabled()) 1601 return; 1602 1603 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) 1604 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T) 1605 << SLB_VSID_SHIFT_1T; 1606 else 1607 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M) 1608 << SLB_VSID_SHIFT; 1609 sp_vsid |= SLB_VSID_KERNEL | llp; 1610 p->thread.ksp_vsid = sp_vsid; 1611 #endif 1612 } 1613 1614 /* 1615 * Copy a thread.. 1616 */ 1617 1618 /* 1619 * Copy architecture-specific thread state 1620 */ 1621 int copy_thread(unsigned long clone_flags, unsigned long usp, 1622 unsigned long kthread_arg, struct task_struct *p) 1623 { 1624 struct pt_regs *childregs, *kregs; 1625 extern void ret_from_fork(void); 1626 extern void ret_from_kernel_thread(void); 1627 void (*f)(void); 1628 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE; 1629 struct thread_info *ti = task_thread_info(p); 1630 1631 klp_init_thread_info(ti); 1632 1633 /* Copy registers */ 1634 sp -= sizeof(struct pt_regs); 1635 childregs = (struct pt_regs *) sp; 1636 if (unlikely(p->flags & PF_KTHREAD)) { 1637 /* kernel thread */ 1638 memset(childregs, 0, sizeof(struct pt_regs)); 1639 childregs->gpr[1] = sp + sizeof(struct pt_regs); 1640 /* function */ 1641 if (usp) 1642 childregs->gpr[14] = ppc_function_entry((void *)usp); 1643 #ifdef CONFIG_PPC64 1644 clear_tsk_thread_flag(p, TIF_32BIT); 1645 childregs->softe = IRQS_ENABLED; 1646 #endif 1647 childregs->gpr[15] = kthread_arg; 1648 p->thread.regs = NULL; /* no user register state */ 1649 ti->flags |= _TIF_RESTOREALL; 1650 f = ret_from_kernel_thread; 1651 } else { 1652 /* user thread */ 1653 struct pt_regs *regs = current_pt_regs(); 1654 CHECK_FULL_REGS(regs); 1655 *childregs = *regs; 1656 if (usp) 1657 childregs->gpr[1] = usp; 1658 p->thread.regs = childregs; 1659 childregs->gpr[3] = 0; /* Result from fork() */ 1660 if (clone_flags & CLONE_SETTLS) { 1661 #ifdef CONFIG_PPC64 1662 if (!is_32bit_task()) 1663 childregs->gpr[13] = childregs->gpr[6]; 1664 else 1665 #endif 1666 childregs->gpr[2] = childregs->gpr[6]; 1667 } 1668 1669 f = ret_from_fork; 1670 } 1671 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX); 1672 sp -= STACK_FRAME_OVERHEAD; 1673 1674 /* 1675 * The way this works is that at some point in the future 1676 * some task will call _switch to switch to the new task. 1677 * That will pop off the stack frame created below and start 1678 * the new task running at ret_from_fork. The new task will 1679 * do some house keeping and then return from the fork or clone 1680 * system call, using the stack frame created above. 1681 */ 1682 ((unsigned long *)sp)[0] = 0; 1683 sp -= sizeof(struct pt_regs); 1684 kregs = (struct pt_regs *) sp; 1685 sp -= STACK_FRAME_OVERHEAD; 1686 p->thread.ksp = sp; 1687 #ifdef CONFIG_PPC32 1688 p->thread.ksp_limit = (unsigned long)task_stack_page(p) + 1689 _ALIGN_UP(sizeof(struct thread_info), 16); 1690 #endif 1691 #ifdef CONFIG_HAVE_HW_BREAKPOINT 1692 p->thread.ptrace_bps[0] = NULL; 1693 #endif 1694 1695 p->thread.fp_save_area = NULL; 1696 #ifdef CONFIG_ALTIVEC 1697 p->thread.vr_save_area = NULL; 1698 #endif 1699 1700 setup_ksp_vsid(p, sp); 1701 1702 #ifdef CONFIG_PPC64 1703 if (cpu_has_feature(CPU_FTR_DSCR)) { 1704 p->thread.dscr_inherit = current->thread.dscr_inherit; 1705 p->thread.dscr = mfspr(SPRN_DSCR); 1706 } 1707 if (cpu_has_feature(CPU_FTR_HAS_PPR)) 1708 p->thread.ppr = INIT_PPR; 1709 1710 p->thread.tidr = 0; 1711 #endif 1712 kregs->nip = ppc_function_entry(f); 1713 return 0; 1714 } 1715 1716 /* 1717 * Set up a thread for executing a new program 1718 */ 1719 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp) 1720 { 1721 #ifdef CONFIG_PPC64 1722 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */ 1723 #endif 1724 1725 /* 1726 * If we exec out of a kernel thread then thread.regs will not be 1727 * set. Do it now. 1728 */ 1729 if (!current->thread.regs) { 1730 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE; 1731 current->thread.regs = regs - 1; 1732 } 1733 1734 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1735 /* 1736 * Clear any transactional state, we're exec()ing. The cause is 1737 * not important as there will never be a recheckpoint so it's not 1738 * user visible. 1739 */ 1740 if (MSR_TM_SUSPENDED(mfmsr())) 1741 tm_reclaim_current(0); 1742 #endif 1743 1744 memset(regs->gpr, 0, sizeof(regs->gpr)); 1745 regs->ctr = 0; 1746 regs->link = 0; 1747 regs->xer = 0; 1748 regs->ccr = 0; 1749 regs->gpr[1] = sp; 1750 1751 /* 1752 * We have just cleared all the nonvolatile GPRs, so make 1753 * FULL_REGS(regs) return true. This is necessary to allow 1754 * ptrace to examine the thread immediately after exec. 1755 */ 1756 regs->trap &= ~1UL; 1757 1758 #ifdef CONFIG_PPC32 1759 regs->mq = 0; 1760 regs->nip = start; 1761 regs->msr = MSR_USER; 1762 #else 1763 if (!is_32bit_task()) { 1764 unsigned long entry; 1765 1766 if (is_elf2_task()) { 1767 /* Look ma, no function descriptors! */ 1768 entry = start; 1769 1770 /* 1771 * Ulrich says: 1772 * The latest iteration of the ABI requires that when 1773 * calling a function (at its global entry point), 1774 * the caller must ensure r12 holds the entry point 1775 * address (so that the function can quickly 1776 * establish addressability). 1777 */ 1778 regs->gpr[12] = start; 1779 /* Make sure that's restored on entry to userspace. */ 1780 set_thread_flag(TIF_RESTOREALL); 1781 } else { 1782 unsigned long toc; 1783 1784 /* start is a relocated pointer to the function 1785 * descriptor for the elf _start routine. The first 1786 * entry in the function descriptor is the entry 1787 * address of _start and the second entry is the TOC 1788 * value we need to use. 1789 */ 1790 __get_user(entry, (unsigned long __user *)start); 1791 __get_user(toc, (unsigned long __user *)start+1); 1792 1793 /* Check whether the e_entry function descriptor entries 1794 * need to be relocated before we can use them. 1795 */ 1796 if (load_addr != 0) { 1797 entry += load_addr; 1798 toc += load_addr; 1799 } 1800 regs->gpr[2] = toc; 1801 } 1802 regs->nip = entry; 1803 regs->msr = MSR_USER64; 1804 } else { 1805 regs->nip = start; 1806 regs->gpr[2] = 0; 1807 regs->msr = MSR_USER32; 1808 } 1809 #endif 1810 #ifdef CONFIG_VSX 1811 current->thread.used_vsr = 0; 1812 #endif 1813 current->thread.load_fp = 0; 1814 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state)); 1815 current->thread.fp_save_area = NULL; 1816 #ifdef CONFIG_ALTIVEC 1817 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state)); 1818 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */ 1819 current->thread.vr_save_area = NULL; 1820 current->thread.vrsave = 0; 1821 current->thread.used_vr = 0; 1822 current->thread.load_vec = 0; 1823 #endif /* CONFIG_ALTIVEC */ 1824 #ifdef CONFIG_SPE 1825 memset(current->thread.evr, 0, sizeof(current->thread.evr)); 1826 current->thread.acc = 0; 1827 current->thread.spefscr = 0; 1828 current->thread.used_spe = 0; 1829 #endif /* CONFIG_SPE */ 1830 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM 1831 current->thread.tm_tfhar = 0; 1832 current->thread.tm_texasr = 0; 1833 current->thread.tm_tfiar = 0; 1834 current->thread.load_tm = 0; 1835 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */ 1836 1837 thread_pkey_regs_init(¤t->thread); 1838 } 1839 EXPORT_SYMBOL(start_thread); 1840 1841 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \ 1842 | PR_FP_EXC_RES | PR_FP_EXC_INV) 1843 1844 int set_fpexc_mode(struct task_struct *tsk, unsigned int val) 1845 { 1846 struct pt_regs *regs = tsk->thread.regs; 1847 1848 /* This is a bit hairy. If we are an SPE enabled processor 1849 * (have embedded fp) we store the IEEE exception enable flags in 1850 * fpexc_mode. fpexc_mode is also used for setting FP exception 1851 * mode (asyn, precise, disabled) for 'Classic' FP. */ 1852 if (val & PR_FP_EXC_SW_ENABLE) { 1853 #ifdef CONFIG_SPE 1854 if (cpu_has_feature(CPU_FTR_SPE)) { 1855 /* 1856 * When the sticky exception bits are set 1857 * directly by userspace, it must call prctl 1858 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1859 * in the existing prctl settings) or 1860 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1861 * the bits being set). <fenv.h> functions 1862 * saving and restoring the whole 1863 * floating-point environment need to do so 1864 * anyway to restore the prctl settings from 1865 * the saved environment. 1866 */ 1867 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1868 tsk->thread.fpexc_mode = val & 1869 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT); 1870 return 0; 1871 } else { 1872 return -EINVAL; 1873 } 1874 #else 1875 return -EINVAL; 1876 #endif 1877 } 1878 1879 /* on a CONFIG_SPE this does not hurt us. The bits that 1880 * __pack_fe01 use do not overlap with bits used for 1881 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits 1882 * on CONFIG_SPE implementations are reserved so writing to 1883 * them does not change anything */ 1884 if (val > PR_FP_EXC_PRECISE) 1885 return -EINVAL; 1886 tsk->thread.fpexc_mode = __pack_fe01(val); 1887 if (regs != NULL && (regs->msr & MSR_FP) != 0) 1888 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1)) 1889 | tsk->thread.fpexc_mode; 1890 return 0; 1891 } 1892 1893 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr) 1894 { 1895 unsigned int val; 1896 1897 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) 1898 #ifdef CONFIG_SPE 1899 if (cpu_has_feature(CPU_FTR_SPE)) { 1900 /* 1901 * When the sticky exception bits are set 1902 * directly by userspace, it must call prctl 1903 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE 1904 * in the existing prctl settings) or 1905 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in 1906 * the bits being set). <fenv.h> functions 1907 * saving and restoring the whole 1908 * floating-point environment need to do so 1909 * anyway to restore the prctl settings from 1910 * the saved environment. 1911 */ 1912 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR); 1913 val = tsk->thread.fpexc_mode; 1914 } else 1915 return -EINVAL; 1916 #else 1917 return -EINVAL; 1918 #endif 1919 else 1920 val = __unpack_fe01(tsk->thread.fpexc_mode); 1921 return put_user(val, (unsigned int __user *) adr); 1922 } 1923 1924 int set_endian(struct task_struct *tsk, unsigned int val) 1925 { 1926 struct pt_regs *regs = tsk->thread.regs; 1927 1928 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) || 1929 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE))) 1930 return -EINVAL; 1931 1932 if (regs == NULL) 1933 return -EINVAL; 1934 1935 if (val == PR_ENDIAN_BIG) 1936 regs->msr &= ~MSR_LE; 1937 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE) 1938 regs->msr |= MSR_LE; 1939 else 1940 return -EINVAL; 1941 1942 return 0; 1943 } 1944 1945 int get_endian(struct task_struct *tsk, unsigned long adr) 1946 { 1947 struct pt_regs *regs = tsk->thread.regs; 1948 unsigned int val; 1949 1950 if (!cpu_has_feature(CPU_FTR_PPC_LE) && 1951 !cpu_has_feature(CPU_FTR_REAL_LE)) 1952 return -EINVAL; 1953 1954 if (regs == NULL) 1955 return -EINVAL; 1956 1957 if (regs->msr & MSR_LE) { 1958 if (cpu_has_feature(CPU_FTR_REAL_LE)) 1959 val = PR_ENDIAN_LITTLE; 1960 else 1961 val = PR_ENDIAN_PPC_LITTLE; 1962 } else 1963 val = PR_ENDIAN_BIG; 1964 1965 return put_user(val, (unsigned int __user *)adr); 1966 } 1967 1968 int set_unalign_ctl(struct task_struct *tsk, unsigned int val) 1969 { 1970 tsk->thread.align_ctl = val; 1971 return 0; 1972 } 1973 1974 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr) 1975 { 1976 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr); 1977 } 1978 1979 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p, 1980 unsigned long nbytes) 1981 { 1982 unsigned long stack_page; 1983 unsigned long cpu = task_cpu(p); 1984 1985 /* 1986 * Avoid crashing if the stack has overflowed and corrupted 1987 * task_cpu(p), which is in the thread_info struct. 1988 */ 1989 if (cpu < NR_CPUS && cpu_possible(cpu)) { 1990 stack_page = (unsigned long) hardirq_ctx[cpu]; 1991 if (sp >= stack_page + sizeof(struct thread_struct) 1992 && sp <= stack_page + THREAD_SIZE - nbytes) 1993 return 1; 1994 1995 stack_page = (unsigned long) softirq_ctx[cpu]; 1996 if (sp >= stack_page + sizeof(struct thread_struct) 1997 && sp <= stack_page + THREAD_SIZE - nbytes) 1998 return 1; 1999 } 2000 return 0; 2001 } 2002 2003 int validate_sp(unsigned long sp, struct task_struct *p, 2004 unsigned long nbytes) 2005 { 2006 unsigned long stack_page = (unsigned long)task_stack_page(p); 2007 2008 if (sp >= stack_page + sizeof(struct thread_struct) 2009 && sp <= stack_page + THREAD_SIZE - nbytes) 2010 return 1; 2011 2012 return valid_irq_stack(sp, p, nbytes); 2013 } 2014 2015 EXPORT_SYMBOL(validate_sp); 2016 2017 unsigned long get_wchan(struct task_struct *p) 2018 { 2019 unsigned long ip, sp; 2020 int count = 0; 2021 2022 if (!p || p == current || p->state == TASK_RUNNING) 2023 return 0; 2024 2025 sp = p->thread.ksp; 2026 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD)) 2027 return 0; 2028 2029 do { 2030 sp = *(unsigned long *)sp; 2031 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) || 2032 p->state == TASK_RUNNING) 2033 return 0; 2034 if (count > 0) { 2035 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE]; 2036 if (!in_sched_functions(ip)) 2037 return ip; 2038 } 2039 } while (count++ < 16); 2040 return 0; 2041 } 2042 2043 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH; 2044 2045 void show_stack(struct task_struct *tsk, unsigned long *stack) 2046 { 2047 unsigned long sp, ip, lr, newsp; 2048 int count = 0; 2049 int firstframe = 1; 2050 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2051 int curr_frame = current->curr_ret_stack; 2052 extern void return_to_handler(void); 2053 unsigned long rth = (unsigned long)return_to_handler; 2054 #endif 2055 2056 sp = (unsigned long) stack; 2057 if (tsk == NULL) 2058 tsk = current; 2059 if (sp == 0) { 2060 if (tsk == current) 2061 sp = current_stack_pointer(); 2062 else 2063 sp = tsk->thread.ksp; 2064 } 2065 2066 lr = 0; 2067 printk("Call Trace:\n"); 2068 do { 2069 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD)) 2070 return; 2071 2072 stack = (unsigned long *) sp; 2073 newsp = stack[0]; 2074 ip = stack[STACK_FRAME_LR_SAVE]; 2075 if (!firstframe || ip != lr) { 2076 printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip); 2077 #ifdef CONFIG_FUNCTION_GRAPH_TRACER 2078 if ((ip == rth) && curr_frame >= 0) { 2079 pr_cont(" (%pS)", 2080 (void *)current->ret_stack[curr_frame].ret); 2081 curr_frame--; 2082 } 2083 #endif 2084 if (firstframe) 2085 pr_cont(" (unreliable)"); 2086 pr_cont("\n"); 2087 } 2088 firstframe = 0; 2089 2090 /* 2091 * See if this is an exception frame. 2092 * We look for the "regshere" marker in the current frame. 2093 */ 2094 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE) 2095 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) { 2096 struct pt_regs *regs = (struct pt_regs *) 2097 (sp + STACK_FRAME_OVERHEAD); 2098 lr = regs->link; 2099 printk("--- interrupt: %lx at %pS\n LR = %pS\n", 2100 regs->trap, (void *)regs->nip, (void *)lr); 2101 firstframe = 1; 2102 } 2103 2104 sp = newsp; 2105 } while (count++ < kstack_depth_to_print); 2106 } 2107 2108 #ifdef CONFIG_PPC64 2109 /* Called with hard IRQs off */ 2110 void notrace __ppc64_runlatch_on(void) 2111 { 2112 struct thread_info *ti = current_thread_info(); 2113 2114 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2115 /* 2116 * Least significant bit (RUN) is the only writable bit of 2117 * the CTRL register, so we can avoid mfspr. 2.06 is not the 2118 * earliest ISA where this is the case, but it's convenient. 2119 */ 2120 mtspr(SPRN_CTRLT, CTRL_RUNLATCH); 2121 } else { 2122 unsigned long ctrl; 2123 2124 /* 2125 * Some architectures (e.g., Cell) have writable fields other 2126 * than RUN, so do the read-modify-write. 2127 */ 2128 ctrl = mfspr(SPRN_CTRLF); 2129 ctrl |= CTRL_RUNLATCH; 2130 mtspr(SPRN_CTRLT, ctrl); 2131 } 2132 2133 ti->local_flags |= _TLF_RUNLATCH; 2134 } 2135 2136 /* Called with hard IRQs off */ 2137 void notrace __ppc64_runlatch_off(void) 2138 { 2139 struct thread_info *ti = current_thread_info(); 2140 2141 ti->local_flags &= ~_TLF_RUNLATCH; 2142 2143 if (cpu_has_feature(CPU_FTR_ARCH_206)) { 2144 mtspr(SPRN_CTRLT, 0); 2145 } else { 2146 unsigned long ctrl; 2147 2148 ctrl = mfspr(SPRN_CTRLF); 2149 ctrl &= ~CTRL_RUNLATCH; 2150 mtspr(SPRN_CTRLT, ctrl); 2151 } 2152 } 2153 #endif /* CONFIG_PPC64 */ 2154 2155 unsigned long arch_align_stack(unsigned long sp) 2156 { 2157 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 2158 sp -= get_random_int() & ~PAGE_MASK; 2159 return sp & ~0xf; 2160 } 2161 2162 static inline unsigned long brk_rnd(void) 2163 { 2164 unsigned long rnd = 0; 2165 2166 /* 8MB for 32bit, 1GB for 64bit */ 2167 if (is_32bit_task()) 2168 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT))); 2169 else 2170 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT))); 2171 2172 return rnd << PAGE_SHIFT; 2173 } 2174 2175 unsigned long arch_randomize_brk(struct mm_struct *mm) 2176 { 2177 unsigned long base = mm->brk; 2178 unsigned long ret; 2179 2180 #ifdef CONFIG_PPC_BOOK3S_64 2181 /* 2182 * If we are using 1TB segments and we are allowed to randomise 2183 * the heap, we can put it above 1TB so it is backed by a 1TB 2184 * segment. Otherwise the heap will be in the bottom 1TB 2185 * which always uses 256MB segments and this may result in a 2186 * performance penalty. We don't need to worry about radix. For 2187 * radix, mmu_highuser_ssize remains unchanged from 256MB. 2188 */ 2189 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T)) 2190 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T); 2191 #endif 2192 2193 ret = PAGE_ALIGN(base + brk_rnd()); 2194 2195 if (ret < mm->brk) 2196 return mm->brk; 2197 2198 return ret; 2199 } 2200 2201