xref: /linux/arch/powerpc/kernel/pci-common.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Contains common pci routines for ALL ppc platform
3  * (based on pci_32.c and pci_64.c)
4  *
5  * Port for PPC64 David Engebretsen, IBM Corp.
6  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
7  *
8  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
9  *   Rework, based on alpha PCI code.
10  *
11  * Common pmac/prep/chrp pci routines. -- Cort
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/export.h>
25 #include <linux/of_address.h>
26 #include <linux/of_pci.h>
27 #include <linux/mm.h>
28 #include <linux/list.h>
29 #include <linux/syscalls.h>
30 #include <linux/irq.h>
31 #include <linux/vmalloc.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 
35 #include <asm/processor.h>
36 #include <asm/io.h>
37 #include <asm/prom.h>
38 #include <asm/pci-bridge.h>
39 #include <asm/byteorder.h>
40 #include <asm/machdep.h>
41 #include <asm/ppc-pci.h>
42 #include <asm/eeh.h>
43 
44 static DEFINE_SPINLOCK(hose_spinlock);
45 LIST_HEAD(hose_list);
46 
47 /* XXX kill that some day ... */
48 static int global_phb_number;		/* Global phb counter */
49 
50 /* ISA Memory physical address */
51 resource_size_t isa_mem_base;
52 
53 
54 static struct dma_map_ops *pci_dma_ops = &dma_direct_ops;
55 
56 void set_pci_dma_ops(struct dma_map_ops *dma_ops)
57 {
58 	pci_dma_ops = dma_ops;
59 }
60 
61 struct dma_map_ops *get_pci_dma_ops(void)
62 {
63 	return pci_dma_ops;
64 }
65 EXPORT_SYMBOL(get_pci_dma_ops);
66 
67 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
68 {
69 	struct pci_controller *phb;
70 
71 	phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
72 	if (phb == NULL)
73 		return NULL;
74 	spin_lock(&hose_spinlock);
75 	phb->global_number = global_phb_number++;
76 	list_add_tail(&phb->list_node, &hose_list);
77 	spin_unlock(&hose_spinlock);
78 	phb->dn = dev;
79 	phb->is_dynamic = slab_is_available();
80 #ifdef CONFIG_PPC64
81 	if (dev) {
82 		int nid = of_node_to_nid(dev);
83 
84 		if (nid < 0 || !node_online(nid))
85 			nid = -1;
86 
87 		PHB_SET_NODE(phb, nid);
88 	}
89 #endif
90 	return phb;
91 }
92 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
93 
94 void pcibios_free_controller(struct pci_controller *phb)
95 {
96 	spin_lock(&hose_spinlock);
97 	list_del(&phb->list_node);
98 	spin_unlock(&hose_spinlock);
99 
100 	if (phb->is_dynamic)
101 		kfree(phb);
102 }
103 
104 /*
105  * The function is used to return the minimal alignment
106  * for memory or I/O windows of the associated P2P bridge.
107  * By default, 4KiB alignment for I/O windows and 1MiB for
108  * memory windows.
109  */
110 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
111 					 unsigned long type)
112 {
113 	struct pci_controller *phb = pci_bus_to_host(bus);
114 
115 	if (phb->controller_ops.window_alignment)
116 		return phb->controller_ops.window_alignment(bus, type);
117 
118 	/*
119 	 * PCI core will figure out the default
120 	 * alignment: 4KiB for I/O and 1MiB for
121 	 * memory window.
122 	 */
123 	return 1;
124 }
125 
126 void pcibios_reset_secondary_bus(struct pci_dev *dev)
127 {
128 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
129 
130 	if (phb->controller_ops.reset_secondary_bus) {
131 		phb->controller_ops.reset_secondary_bus(dev);
132 		return;
133 	}
134 
135 	pci_reset_secondary_bus(dev);
136 }
137 
138 #ifdef CONFIG_PCI_IOV
139 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
140 {
141 	if (ppc_md.pcibios_iov_resource_alignment)
142 		return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
143 
144 	return pci_iov_resource_size(pdev, resno);
145 }
146 #endif /* CONFIG_PCI_IOV */
147 
148 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
149 {
150 #ifdef CONFIG_PPC64
151 	return hose->pci_io_size;
152 #else
153 	return resource_size(&hose->io_resource);
154 #endif
155 }
156 
157 int pcibios_vaddr_is_ioport(void __iomem *address)
158 {
159 	int ret = 0;
160 	struct pci_controller *hose;
161 	resource_size_t size;
162 
163 	spin_lock(&hose_spinlock);
164 	list_for_each_entry(hose, &hose_list, list_node) {
165 		size = pcibios_io_size(hose);
166 		if (address >= hose->io_base_virt &&
167 		    address < (hose->io_base_virt + size)) {
168 			ret = 1;
169 			break;
170 		}
171 	}
172 	spin_unlock(&hose_spinlock);
173 	return ret;
174 }
175 
176 unsigned long pci_address_to_pio(phys_addr_t address)
177 {
178 	struct pci_controller *hose;
179 	resource_size_t size;
180 	unsigned long ret = ~0;
181 
182 	spin_lock(&hose_spinlock);
183 	list_for_each_entry(hose, &hose_list, list_node) {
184 		size = pcibios_io_size(hose);
185 		if (address >= hose->io_base_phys &&
186 		    address < (hose->io_base_phys + size)) {
187 			unsigned long base =
188 				(unsigned long)hose->io_base_virt - _IO_BASE;
189 			ret = base + (address - hose->io_base_phys);
190 			break;
191 		}
192 	}
193 	spin_unlock(&hose_spinlock);
194 
195 	return ret;
196 }
197 EXPORT_SYMBOL_GPL(pci_address_to_pio);
198 
199 /*
200  * Return the domain number for this bus.
201  */
202 int pci_domain_nr(struct pci_bus *bus)
203 {
204 	struct pci_controller *hose = pci_bus_to_host(bus);
205 
206 	return hose->global_number;
207 }
208 EXPORT_SYMBOL(pci_domain_nr);
209 
210 /* This routine is meant to be used early during boot, when the
211  * PCI bus numbers have not yet been assigned, and you need to
212  * issue PCI config cycles to an OF device.
213  * It could also be used to "fix" RTAS config cycles if you want
214  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
215  * config cycles.
216  */
217 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
218 {
219 	while(node) {
220 		struct pci_controller *hose, *tmp;
221 		list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
222 			if (hose->dn == node)
223 				return hose;
224 		node = node->parent;
225 	}
226 	return NULL;
227 }
228 
229 /*
230  * Reads the interrupt pin to determine if interrupt is use by card.
231  * If the interrupt is used, then gets the interrupt line from the
232  * openfirmware and sets it in the pci_dev and pci_config line.
233  */
234 static int pci_read_irq_line(struct pci_dev *pci_dev)
235 {
236 	struct of_phandle_args oirq;
237 	unsigned int virq;
238 
239 	pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
240 
241 #ifdef DEBUG
242 	memset(&oirq, 0xff, sizeof(oirq));
243 #endif
244 	/* Try to get a mapping from the device-tree */
245 	if (of_irq_parse_pci(pci_dev, &oirq)) {
246 		u8 line, pin;
247 
248 		/* If that fails, lets fallback to what is in the config
249 		 * space and map that through the default controller. We
250 		 * also set the type to level low since that's what PCI
251 		 * interrupts are. If your platform does differently, then
252 		 * either provide a proper interrupt tree or don't use this
253 		 * function.
254 		 */
255 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
256 			return -1;
257 		if (pin == 0)
258 			return -1;
259 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
260 		    line == 0xff || line == 0) {
261 			return -1;
262 		}
263 		pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
264 			 line, pin);
265 
266 		virq = irq_create_mapping(NULL, line);
267 		if (virq != NO_IRQ)
268 			irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
269 	} else {
270 		pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n",
271 			 oirq.args_count, oirq.args[0], oirq.args[1],
272 			 of_node_full_name(oirq.np));
273 
274 		virq = irq_create_of_mapping(&oirq);
275 	}
276 	if(virq == NO_IRQ) {
277 		pr_debug(" Failed to map !\n");
278 		return -1;
279 	}
280 
281 	pr_debug(" Mapped to linux irq %d\n", virq);
282 
283 	pci_dev->irq = virq;
284 
285 	return 0;
286 }
287 
288 /*
289  * Platform support for /proc/bus/pci/X/Y mmap()s,
290  * modelled on the sparc64 implementation by Dave Miller.
291  *  -- paulus.
292  */
293 
294 /*
295  * Adjust vm_pgoff of VMA such that it is the physical page offset
296  * corresponding to the 32-bit pci bus offset for DEV requested by the user.
297  *
298  * Basically, the user finds the base address for his device which he wishes
299  * to mmap.  They read the 32-bit value from the config space base register,
300  * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
301  * offset parameter of mmap on /proc/bus/pci/XXX for that device.
302  *
303  * Returns negative error code on failure, zero on success.
304  */
305 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
306 					       resource_size_t *offset,
307 					       enum pci_mmap_state mmap_state)
308 {
309 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
310 	unsigned long io_offset = 0;
311 	int i, res_bit;
312 
313 	if (hose == NULL)
314 		return NULL;		/* should never happen */
315 
316 	/* If memory, add on the PCI bridge address offset */
317 	if (mmap_state == pci_mmap_mem) {
318 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */
319 		*offset += hose->pci_mem_offset;
320 #endif
321 		res_bit = IORESOURCE_MEM;
322 	} else {
323 		io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
324 		*offset += io_offset;
325 		res_bit = IORESOURCE_IO;
326 	}
327 
328 	/*
329 	 * Check that the offset requested corresponds to one of the
330 	 * resources of the device.
331 	 */
332 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
333 		struct resource *rp = &dev->resource[i];
334 		int flags = rp->flags;
335 
336 		/* treat ROM as memory (should be already) */
337 		if (i == PCI_ROM_RESOURCE)
338 			flags |= IORESOURCE_MEM;
339 
340 		/* Active and same type? */
341 		if ((flags & res_bit) == 0)
342 			continue;
343 
344 		/* In the range of this resource? */
345 		if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
346 			continue;
347 
348 		/* found it! construct the final physical address */
349 		if (mmap_state == pci_mmap_io)
350 			*offset += hose->io_base_phys - io_offset;
351 		return rp;
352 	}
353 
354 	return NULL;
355 }
356 
357 /*
358  * Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
359  * device mapping.
360  */
361 static pgprot_t __pci_mmap_set_pgprot(struct pci_dev *dev, struct resource *rp,
362 				      pgprot_t protection,
363 				      enum pci_mmap_state mmap_state,
364 				      int write_combine)
365 {
366 
367 	/* Write combine is always 0 on non-memory space mappings. On
368 	 * memory space, if the user didn't pass 1, we check for a
369 	 * "prefetchable" resource. This is a bit hackish, but we use
370 	 * this to workaround the inability of /sysfs to provide a write
371 	 * combine bit
372 	 */
373 	if (mmap_state != pci_mmap_mem)
374 		write_combine = 0;
375 	else if (write_combine == 0) {
376 		if (rp->flags & IORESOURCE_PREFETCH)
377 			write_combine = 1;
378 	}
379 
380 	/* XXX would be nice to have a way to ask for write-through */
381 	if (write_combine)
382 		return pgprot_noncached_wc(protection);
383 	else
384 		return pgprot_noncached(protection);
385 }
386 
387 /*
388  * This one is used by /dev/mem and fbdev who have no clue about the
389  * PCI device, it tries to find the PCI device first and calls the
390  * above routine
391  */
392 pgprot_t pci_phys_mem_access_prot(struct file *file,
393 				  unsigned long pfn,
394 				  unsigned long size,
395 				  pgprot_t prot)
396 {
397 	struct pci_dev *pdev = NULL;
398 	struct resource *found = NULL;
399 	resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
400 	int i;
401 
402 	if (page_is_ram(pfn))
403 		return prot;
404 
405 	prot = pgprot_noncached(prot);
406 	for_each_pci_dev(pdev) {
407 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
408 			struct resource *rp = &pdev->resource[i];
409 			int flags = rp->flags;
410 
411 			/* Active and same type? */
412 			if ((flags & IORESOURCE_MEM) == 0)
413 				continue;
414 			/* In the range of this resource? */
415 			if (offset < (rp->start & PAGE_MASK) ||
416 			    offset > rp->end)
417 				continue;
418 			found = rp;
419 			break;
420 		}
421 		if (found)
422 			break;
423 	}
424 	if (found) {
425 		if (found->flags & IORESOURCE_PREFETCH)
426 			prot = pgprot_noncached_wc(prot);
427 		pci_dev_put(pdev);
428 	}
429 
430 	pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
431 		 (unsigned long long)offset, pgprot_val(prot));
432 
433 	return prot;
434 }
435 
436 
437 /*
438  * Perform the actual remap of the pages for a PCI device mapping, as
439  * appropriate for this architecture.  The region in the process to map
440  * is described by vm_start and vm_end members of VMA, the base physical
441  * address is found in vm_pgoff.
442  * The pci device structure is provided so that architectures may make mapping
443  * decisions on a per-device or per-bus basis.
444  *
445  * Returns a negative error code on failure, zero on success.
446  */
447 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
448 			enum pci_mmap_state mmap_state, int write_combine)
449 {
450 	resource_size_t offset =
451 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
452 	struct resource *rp;
453 	int ret;
454 
455 	rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
456 	if (rp == NULL)
457 		return -EINVAL;
458 
459 	vma->vm_pgoff = offset >> PAGE_SHIFT;
460 	vma->vm_page_prot = __pci_mmap_set_pgprot(dev, rp,
461 						  vma->vm_page_prot,
462 						  mmap_state, write_combine);
463 
464 	ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
465 			       vma->vm_end - vma->vm_start, vma->vm_page_prot);
466 
467 	return ret;
468 }
469 
470 /* This provides legacy IO read access on a bus */
471 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
472 {
473 	unsigned long offset;
474 	struct pci_controller *hose = pci_bus_to_host(bus);
475 	struct resource *rp = &hose->io_resource;
476 	void __iomem *addr;
477 
478 	/* Check if port can be supported by that bus. We only check
479 	 * the ranges of the PHB though, not the bus itself as the rules
480 	 * for forwarding legacy cycles down bridges are not our problem
481 	 * here. So if the host bridge supports it, we do it.
482 	 */
483 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
484 	offset += port;
485 
486 	if (!(rp->flags & IORESOURCE_IO))
487 		return -ENXIO;
488 	if (offset < rp->start || (offset + size) > rp->end)
489 		return -ENXIO;
490 	addr = hose->io_base_virt + port;
491 
492 	switch(size) {
493 	case 1:
494 		*((u8 *)val) = in_8(addr);
495 		return 1;
496 	case 2:
497 		if (port & 1)
498 			return -EINVAL;
499 		*((u16 *)val) = in_le16(addr);
500 		return 2;
501 	case 4:
502 		if (port & 3)
503 			return -EINVAL;
504 		*((u32 *)val) = in_le32(addr);
505 		return 4;
506 	}
507 	return -EINVAL;
508 }
509 
510 /* This provides legacy IO write access on a bus */
511 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
512 {
513 	unsigned long offset;
514 	struct pci_controller *hose = pci_bus_to_host(bus);
515 	struct resource *rp = &hose->io_resource;
516 	void __iomem *addr;
517 
518 	/* Check if port can be supported by that bus. We only check
519 	 * the ranges of the PHB though, not the bus itself as the rules
520 	 * for forwarding legacy cycles down bridges are not our problem
521 	 * here. So if the host bridge supports it, we do it.
522 	 */
523 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
524 	offset += port;
525 
526 	if (!(rp->flags & IORESOURCE_IO))
527 		return -ENXIO;
528 	if (offset < rp->start || (offset + size) > rp->end)
529 		return -ENXIO;
530 	addr = hose->io_base_virt + port;
531 
532 	/* WARNING: The generic code is idiotic. It gets passed a pointer
533 	 * to what can be a 1, 2 or 4 byte quantity and always reads that
534 	 * as a u32, which means that we have to correct the location of
535 	 * the data read within those 32 bits for size 1 and 2
536 	 */
537 	switch(size) {
538 	case 1:
539 		out_8(addr, val >> 24);
540 		return 1;
541 	case 2:
542 		if (port & 1)
543 			return -EINVAL;
544 		out_le16(addr, val >> 16);
545 		return 2;
546 	case 4:
547 		if (port & 3)
548 			return -EINVAL;
549 		out_le32(addr, val);
550 		return 4;
551 	}
552 	return -EINVAL;
553 }
554 
555 /* This provides legacy IO or memory mmap access on a bus */
556 int pci_mmap_legacy_page_range(struct pci_bus *bus,
557 			       struct vm_area_struct *vma,
558 			       enum pci_mmap_state mmap_state)
559 {
560 	struct pci_controller *hose = pci_bus_to_host(bus);
561 	resource_size_t offset =
562 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
563 	resource_size_t size = vma->vm_end - vma->vm_start;
564 	struct resource *rp;
565 
566 	pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
567 		 pci_domain_nr(bus), bus->number,
568 		 mmap_state == pci_mmap_mem ? "MEM" : "IO",
569 		 (unsigned long long)offset,
570 		 (unsigned long long)(offset + size - 1));
571 
572 	if (mmap_state == pci_mmap_mem) {
573 		/* Hack alert !
574 		 *
575 		 * Because X is lame and can fail starting if it gets an error trying
576 		 * to mmap legacy_mem (instead of just moving on without legacy memory
577 		 * access) we fake it here by giving it anonymous memory, effectively
578 		 * behaving just like /dev/zero
579 		 */
580 		if ((offset + size) > hose->isa_mem_size) {
581 			printk(KERN_DEBUG
582 			       "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
583 			       current->comm, current->pid, pci_domain_nr(bus), bus->number);
584 			if (vma->vm_flags & VM_SHARED)
585 				return shmem_zero_setup(vma);
586 			return 0;
587 		}
588 		offset += hose->isa_mem_phys;
589 	} else {
590 		unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
591 		unsigned long roffset = offset + io_offset;
592 		rp = &hose->io_resource;
593 		if (!(rp->flags & IORESOURCE_IO))
594 			return -ENXIO;
595 		if (roffset < rp->start || (roffset + size) > rp->end)
596 			return -ENXIO;
597 		offset += hose->io_base_phys;
598 	}
599 	pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
600 
601 	vma->vm_pgoff = offset >> PAGE_SHIFT;
602 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
603 	return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
604 			       vma->vm_end - vma->vm_start,
605 			       vma->vm_page_prot);
606 }
607 
608 void pci_resource_to_user(const struct pci_dev *dev, int bar,
609 			  const struct resource *rsrc,
610 			  resource_size_t *start, resource_size_t *end)
611 {
612 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
613 	resource_size_t offset = 0;
614 
615 	if (hose == NULL)
616 		return;
617 
618 	if (rsrc->flags & IORESOURCE_IO)
619 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
620 
621 	/* We pass a fully fixed up address to userland for MMIO instead of
622 	 * a BAR value because X is lame and expects to be able to use that
623 	 * to pass to /dev/mem !
624 	 *
625 	 * That means that we'll have potentially 64 bits values where some
626 	 * userland apps only expect 32 (like X itself since it thinks only
627 	 * Sparc has 64 bits MMIO) but if we don't do that, we break it on
628 	 * 32 bits CHRPs :-(
629 	 *
630 	 * Hopefully, the sysfs insterface is immune to that gunk. Once X
631 	 * has been fixed (and the fix spread enough), we can re-enable the
632 	 * 2 lines below and pass down a BAR value to userland. In that case
633 	 * we'll also have to re-enable the matching code in
634 	 * __pci_mmap_make_offset().
635 	 *
636 	 * BenH.
637 	 */
638 #if 0
639 	else if (rsrc->flags & IORESOURCE_MEM)
640 		offset = hose->pci_mem_offset;
641 #endif
642 
643 	*start = rsrc->start - offset;
644 	*end = rsrc->end - offset;
645 }
646 
647 /**
648  * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
649  * @hose: newly allocated pci_controller to be setup
650  * @dev: device node of the host bridge
651  * @primary: set if primary bus (32 bits only, soon to be deprecated)
652  *
653  * This function will parse the "ranges" property of a PCI host bridge device
654  * node and setup the resource mapping of a pci controller based on its
655  * content.
656  *
657  * Life would be boring if it wasn't for a few issues that we have to deal
658  * with here:
659  *
660  *   - We can only cope with one IO space range and up to 3 Memory space
661  *     ranges. However, some machines (thanks Apple !) tend to split their
662  *     space into lots of small contiguous ranges. So we have to coalesce.
663  *
664  *   - Some busses have IO space not starting at 0, which causes trouble with
665  *     the way we do our IO resource renumbering. The code somewhat deals with
666  *     it for 64 bits but I would expect problems on 32 bits.
667  *
668  *   - Some 32 bits platforms such as 4xx can have physical space larger than
669  *     32 bits so we need to use 64 bits values for the parsing
670  */
671 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
672 				  struct device_node *dev, int primary)
673 {
674 	int memno = 0;
675 	struct resource *res;
676 	struct of_pci_range range;
677 	struct of_pci_range_parser parser;
678 
679 	printk(KERN_INFO "PCI host bridge %s %s ranges:\n",
680 	       dev->full_name, primary ? "(primary)" : "");
681 
682 	/* Check for ranges property */
683 	if (of_pci_range_parser_init(&parser, dev))
684 		return;
685 
686 	/* Parse it */
687 	for_each_of_pci_range(&parser, &range) {
688 		/* If we failed translation or got a zero-sized region
689 		 * (some FW try to feed us with non sensical zero sized regions
690 		 * such as power3 which look like some kind of attempt at exposing
691 		 * the VGA memory hole)
692 		 */
693 		if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
694 			continue;
695 
696 		/* Act based on address space type */
697 		res = NULL;
698 		switch (range.flags & IORESOURCE_TYPE_BITS) {
699 		case IORESOURCE_IO:
700 			printk(KERN_INFO
701 			       "  IO 0x%016llx..0x%016llx -> 0x%016llx\n",
702 			       range.cpu_addr, range.cpu_addr + range.size - 1,
703 			       range.pci_addr);
704 
705 			/* We support only one IO range */
706 			if (hose->pci_io_size) {
707 				printk(KERN_INFO
708 				       " \\--> Skipped (too many) !\n");
709 				continue;
710 			}
711 #ifdef CONFIG_PPC32
712 			/* On 32 bits, limit I/O space to 16MB */
713 			if (range.size > 0x01000000)
714 				range.size = 0x01000000;
715 
716 			/* 32 bits needs to map IOs here */
717 			hose->io_base_virt = ioremap(range.cpu_addr,
718 						range.size);
719 
720 			/* Expect trouble if pci_addr is not 0 */
721 			if (primary)
722 				isa_io_base =
723 					(unsigned long)hose->io_base_virt;
724 #endif /* CONFIG_PPC32 */
725 			/* pci_io_size and io_base_phys always represent IO
726 			 * space starting at 0 so we factor in pci_addr
727 			 */
728 			hose->pci_io_size = range.pci_addr + range.size;
729 			hose->io_base_phys = range.cpu_addr - range.pci_addr;
730 
731 			/* Build resource */
732 			res = &hose->io_resource;
733 			range.cpu_addr = range.pci_addr;
734 			break;
735 		case IORESOURCE_MEM:
736 			printk(KERN_INFO
737 			       " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
738 			       range.cpu_addr, range.cpu_addr + range.size - 1,
739 			       range.pci_addr,
740 			       (range.pci_space & 0x40000000) ?
741 			       "Prefetch" : "");
742 
743 			/* We support only 3 memory ranges */
744 			if (memno >= 3) {
745 				printk(KERN_INFO
746 				       " \\--> Skipped (too many) !\n");
747 				continue;
748 			}
749 			/* Handles ISA memory hole space here */
750 			if (range.pci_addr == 0) {
751 				if (primary || isa_mem_base == 0)
752 					isa_mem_base = range.cpu_addr;
753 				hose->isa_mem_phys = range.cpu_addr;
754 				hose->isa_mem_size = range.size;
755 			}
756 
757 			/* Build resource */
758 			hose->mem_offset[memno] = range.cpu_addr -
759 							range.pci_addr;
760 			res = &hose->mem_resources[memno++];
761 			break;
762 		}
763 		if (res != NULL) {
764 			res->name = dev->full_name;
765 			res->flags = range.flags;
766 			res->start = range.cpu_addr;
767 			res->end = range.cpu_addr + range.size - 1;
768 			res->parent = res->child = res->sibling = NULL;
769 		}
770 	}
771 }
772 
773 /* Decide whether to display the domain number in /proc */
774 int pci_proc_domain(struct pci_bus *bus)
775 {
776 	struct pci_controller *hose = pci_bus_to_host(bus);
777 
778 	if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
779 		return 0;
780 	if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
781 		return hose->global_number != 0;
782 	return 1;
783 }
784 
785 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
786 {
787 	if (ppc_md.pcibios_root_bridge_prepare)
788 		return ppc_md.pcibios_root_bridge_prepare(bridge);
789 
790 	return 0;
791 }
792 
793 /* This header fixup will do the resource fixup for all devices as they are
794  * probed, but not for bridge ranges
795  */
796 static void pcibios_fixup_resources(struct pci_dev *dev)
797 {
798 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
799 	int i;
800 
801 	if (!hose) {
802 		printk(KERN_ERR "No host bridge for PCI dev %s !\n",
803 		       pci_name(dev));
804 		return;
805 	}
806 
807 	if (dev->is_virtfn)
808 		return;
809 
810 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
811 		struct resource *res = dev->resource + i;
812 		struct pci_bus_region reg;
813 		if (!res->flags)
814 			continue;
815 
816 		/* If we're going to re-assign everything, we mark all resources
817 		 * as unset (and 0-base them). In addition, we mark BARs starting
818 		 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
819 		 * since in that case, we don't want to re-assign anything
820 		 */
821 		pcibios_resource_to_bus(dev->bus, &reg, res);
822 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
823 		    (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
824 			/* Only print message if not re-assigning */
825 			if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
826 				pr_debug("PCI:%s Resource %d %pR is unassigned\n",
827 					 pci_name(dev), i, res);
828 			res->end -= res->start;
829 			res->start = 0;
830 			res->flags |= IORESOURCE_UNSET;
831 			continue;
832 		}
833 
834 		pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
835 	}
836 
837 	/* Call machine specific resource fixup */
838 	if (ppc_md.pcibios_fixup_resources)
839 		ppc_md.pcibios_fixup_resources(dev);
840 }
841 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
842 
843 /* This function tries to figure out if a bridge resource has been initialized
844  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
845  * things go more smoothly when it gets it right. It should covers cases such
846  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
847  */
848 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
849 						 struct resource *res)
850 {
851 	struct pci_controller *hose = pci_bus_to_host(bus);
852 	struct pci_dev *dev = bus->self;
853 	resource_size_t offset;
854 	struct pci_bus_region region;
855 	u16 command;
856 	int i;
857 
858 	/* We don't do anything if PCI_PROBE_ONLY is set */
859 	if (pci_has_flag(PCI_PROBE_ONLY))
860 		return 0;
861 
862 	/* Job is a bit different between memory and IO */
863 	if (res->flags & IORESOURCE_MEM) {
864 		pcibios_resource_to_bus(dev->bus, &region, res);
865 
866 		/* If the BAR is non-0 then it's probably been initialized */
867 		if (region.start != 0)
868 			return 0;
869 
870 		/* The BAR is 0, let's check if memory decoding is enabled on
871 		 * the bridge. If not, we consider it unassigned
872 		 */
873 		pci_read_config_word(dev, PCI_COMMAND, &command);
874 		if ((command & PCI_COMMAND_MEMORY) == 0)
875 			return 1;
876 
877 		/* Memory decoding is enabled and the BAR is 0. If any of the bridge
878 		 * resources covers that starting address (0 then it's good enough for
879 		 * us for memory space)
880 		 */
881 		for (i = 0; i < 3; i++) {
882 			if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
883 			    hose->mem_resources[i].start == hose->mem_offset[i])
884 				return 0;
885 		}
886 
887 		/* Well, it starts at 0 and we know it will collide so we may as
888 		 * well consider it as unassigned. That covers the Apple case.
889 		 */
890 		return 1;
891 	} else {
892 		/* If the BAR is non-0, then we consider it assigned */
893 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
894 		if (((res->start - offset) & 0xfffffffful) != 0)
895 			return 0;
896 
897 		/* Here, we are a bit different than memory as typically IO space
898 		 * starting at low addresses -is- valid. What we do instead if that
899 		 * we consider as unassigned anything that doesn't have IO enabled
900 		 * in the PCI command register, and that's it.
901 		 */
902 		pci_read_config_word(dev, PCI_COMMAND, &command);
903 		if (command & PCI_COMMAND_IO)
904 			return 0;
905 
906 		/* It's starting at 0 and IO is disabled in the bridge, consider
907 		 * it unassigned
908 		 */
909 		return 1;
910 	}
911 }
912 
913 /* Fixup resources of a PCI<->PCI bridge */
914 static void pcibios_fixup_bridge(struct pci_bus *bus)
915 {
916 	struct resource *res;
917 	int i;
918 
919 	struct pci_dev *dev = bus->self;
920 
921 	pci_bus_for_each_resource(bus, res, i) {
922 		if (!res || !res->flags)
923 			continue;
924 		if (i >= 3 && bus->self->transparent)
925 			continue;
926 
927 		/* If we're going to reassign everything, we can
928 		 * shrink the P2P resource to have size as being
929 		 * of 0 in order to save space.
930 		 */
931 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
932 			res->flags |= IORESOURCE_UNSET;
933 			res->start = 0;
934 			res->end = -1;
935 			continue;
936 		}
937 
938 		pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
939 
940 		/* Try to detect uninitialized P2P bridge resources,
941 		 * and clear them out so they get re-assigned later
942 		 */
943 		if (pcibios_uninitialized_bridge_resource(bus, res)) {
944 			res->flags = 0;
945 			pr_debug("PCI:%s            (unassigned)\n", pci_name(dev));
946 		}
947 	}
948 }
949 
950 void pcibios_setup_bus_self(struct pci_bus *bus)
951 {
952 	struct pci_controller *phb;
953 
954 	/* Fix up the bus resources for P2P bridges */
955 	if (bus->self != NULL)
956 		pcibios_fixup_bridge(bus);
957 
958 	/* Platform specific bus fixups. This is currently only used
959 	 * by fsl_pci and I'm hoping to get rid of it at some point
960 	 */
961 	if (ppc_md.pcibios_fixup_bus)
962 		ppc_md.pcibios_fixup_bus(bus);
963 
964 	/* Setup bus DMA mappings */
965 	phb = pci_bus_to_host(bus);
966 	if (phb->controller_ops.dma_bus_setup)
967 		phb->controller_ops.dma_bus_setup(bus);
968 }
969 
970 static void pcibios_setup_device(struct pci_dev *dev)
971 {
972 	struct pci_controller *phb;
973 	/* Fixup NUMA node as it may not be setup yet by the generic
974 	 * code and is needed by the DMA init
975 	 */
976 	set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
977 
978 	/* Hook up default DMA ops */
979 	set_dma_ops(&dev->dev, pci_dma_ops);
980 	set_dma_offset(&dev->dev, PCI_DRAM_OFFSET);
981 
982 	/* Additional platform DMA/iommu setup */
983 	phb = pci_bus_to_host(dev->bus);
984 	if (phb->controller_ops.dma_dev_setup)
985 		phb->controller_ops.dma_dev_setup(dev);
986 
987 	/* Read default IRQs and fixup if necessary */
988 	pci_read_irq_line(dev);
989 	if (ppc_md.pci_irq_fixup)
990 		ppc_md.pci_irq_fixup(dev);
991 }
992 
993 int pcibios_add_device(struct pci_dev *dev)
994 {
995 	/*
996 	 * We can only call pcibios_setup_device() after bus setup is complete,
997 	 * since some of the platform specific DMA setup code depends on it.
998 	 */
999 	if (dev->bus->is_added)
1000 		pcibios_setup_device(dev);
1001 
1002 #ifdef CONFIG_PCI_IOV
1003 	if (ppc_md.pcibios_fixup_sriov)
1004 		ppc_md.pcibios_fixup_sriov(dev);
1005 #endif /* CONFIG_PCI_IOV */
1006 
1007 	return 0;
1008 }
1009 
1010 void pcibios_setup_bus_devices(struct pci_bus *bus)
1011 {
1012 	struct pci_dev *dev;
1013 
1014 	pr_debug("PCI: Fixup bus devices %d (%s)\n",
1015 		 bus->number, bus->self ? pci_name(bus->self) : "PHB");
1016 
1017 	list_for_each_entry(dev, &bus->devices, bus_list) {
1018 		/* Cardbus can call us to add new devices to a bus, so ignore
1019 		 * those who are already fully discovered
1020 		 */
1021 		if (dev->is_added)
1022 			continue;
1023 
1024 		pcibios_setup_device(dev);
1025 	}
1026 }
1027 
1028 void pcibios_set_master(struct pci_dev *dev)
1029 {
1030 	/* No special bus mastering setup handling */
1031 }
1032 
1033 void pcibios_fixup_bus(struct pci_bus *bus)
1034 {
1035 	/* When called from the generic PCI probe, read PCI<->PCI bridge
1036 	 * bases. This is -not- called when generating the PCI tree from
1037 	 * the OF device-tree.
1038 	 */
1039 	pci_read_bridge_bases(bus);
1040 
1041 	/* Now fixup the bus bus */
1042 	pcibios_setup_bus_self(bus);
1043 
1044 	/* Now fixup devices on that bus */
1045 	pcibios_setup_bus_devices(bus);
1046 }
1047 EXPORT_SYMBOL(pcibios_fixup_bus);
1048 
1049 void pci_fixup_cardbus(struct pci_bus *bus)
1050 {
1051 	/* Now fixup devices on that bus */
1052 	pcibios_setup_bus_devices(bus);
1053 }
1054 
1055 
1056 static int skip_isa_ioresource_align(struct pci_dev *dev)
1057 {
1058 	if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1059 	    !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1060 		return 1;
1061 	return 0;
1062 }
1063 
1064 /*
1065  * We need to avoid collisions with `mirrored' VGA ports
1066  * and other strange ISA hardware, so we always want the
1067  * addresses to be allocated in the 0x000-0x0ff region
1068  * modulo 0x400.
1069  *
1070  * Why? Because some silly external IO cards only decode
1071  * the low 10 bits of the IO address. The 0x00-0xff region
1072  * is reserved for motherboard devices that decode all 16
1073  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1074  * but we want to try to avoid allocating at 0x2900-0x2bff
1075  * which might have be mirrored at 0x0100-0x03ff..
1076  */
1077 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1078 				resource_size_t size, resource_size_t align)
1079 {
1080 	struct pci_dev *dev = data;
1081 	resource_size_t start = res->start;
1082 
1083 	if (res->flags & IORESOURCE_IO) {
1084 		if (skip_isa_ioresource_align(dev))
1085 			return start;
1086 		if (start & 0x300)
1087 			start = (start + 0x3ff) & ~0x3ff;
1088 	}
1089 
1090 	return start;
1091 }
1092 EXPORT_SYMBOL(pcibios_align_resource);
1093 
1094 /*
1095  * Reparent resource children of pr that conflict with res
1096  * under res, and make res replace those children.
1097  */
1098 static int reparent_resources(struct resource *parent,
1099 				     struct resource *res)
1100 {
1101 	struct resource *p, **pp;
1102 	struct resource **firstpp = NULL;
1103 
1104 	for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1105 		if (p->end < res->start)
1106 			continue;
1107 		if (res->end < p->start)
1108 			break;
1109 		if (p->start < res->start || p->end > res->end)
1110 			return -1;	/* not completely contained */
1111 		if (firstpp == NULL)
1112 			firstpp = pp;
1113 	}
1114 	if (firstpp == NULL)
1115 		return -1;	/* didn't find any conflicting entries? */
1116 	res->parent = parent;
1117 	res->child = *firstpp;
1118 	res->sibling = *pp;
1119 	*firstpp = res;
1120 	*pp = NULL;
1121 	for (p = res->child; p != NULL; p = p->sibling) {
1122 		p->parent = res;
1123 		pr_debug("PCI: Reparented %s %pR under %s\n",
1124 			 p->name, p, res->name);
1125 	}
1126 	return 0;
1127 }
1128 
1129 /*
1130  *  Handle resources of PCI devices.  If the world were perfect, we could
1131  *  just allocate all the resource regions and do nothing more.  It isn't.
1132  *  On the other hand, we cannot just re-allocate all devices, as it would
1133  *  require us to know lots of host bridge internals.  So we attempt to
1134  *  keep as much of the original configuration as possible, but tweak it
1135  *  when it's found to be wrong.
1136  *
1137  *  Known BIOS problems we have to work around:
1138  *	- I/O or memory regions not configured
1139  *	- regions configured, but not enabled in the command register
1140  *	- bogus I/O addresses above 64K used
1141  *	- expansion ROMs left enabled (this may sound harmless, but given
1142  *	  the fact the PCI specs explicitly allow address decoders to be
1143  *	  shared between expansion ROMs and other resource regions, it's
1144  *	  at least dangerous)
1145  *
1146  *  Our solution:
1147  *	(1) Allocate resources for all buses behind PCI-to-PCI bridges.
1148  *	    This gives us fixed barriers on where we can allocate.
1149  *	(2) Allocate resources for all enabled devices.  If there is
1150  *	    a collision, just mark the resource as unallocated. Also
1151  *	    disable expansion ROMs during this step.
1152  *	(3) Try to allocate resources for disabled devices.  If the
1153  *	    resources were assigned correctly, everything goes well,
1154  *	    if they weren't, they won't disturb allocation of other
1155  *	    resources.
1156  *	(4) Assign new addresses to resources which were either
1157  *	    not configured at all or misconfigured.  If explicitly
1158  *	    requested by the user, configure expansion ROM address
1159  *	    as well.
1160  */
1161 
1162 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1163 {
1164 	struct pci_bus *b;
1165 	int i;
1166 	struct resource *res, *pr;
1167 
1168 	pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1169 		 pci_domain_nr(bus), bus->number);
1170 
1171 	pci_bus_for_each_resource(bus, res, i) {
1172 		if (!res || !res->flags || res->start > res->end || res->parent)
1173 			continue;
1174 
1175 		/* If the resource was left unset at this point, we clear it */
1176 		if (res->flags & IORESOURCE_UNSET)
1177 			goto clear_resource;
1178 
1179 		if (bus->parent == NULL)
1180 			pr = (res->flags & IORESOURCE_IO) ?
1181 				&ioport_resource : &iomem_resource;
1182 		else {
1183 			pr = pci_find_parent_resource(bus->self, res);
1184 			if (pr == res) {
1185 				/* this happens when the generic PCI
1186 				 * code (wrongly) decides that this
1187 				 * bridge is transparent  -- paulus
1188 				 */
1189 				continue;
1190 			}
1191 		}
1192 
1193 		pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1194 			 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1195 			 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1196 
1197 		if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1198 			struct pci_dev *dev = bus->self;
1199 
1200 			if (request_resource(pr, res) == 0)
1201 				continue;
1202 			/*
1203 			 * Must be a conflict with an existing entry.
1204 			 * Move that entry (or entries) under the
1205 			 * bridge resource and try again.
1206 			 */
1207 			if (reparent_resources(pr, res) == 0)
1208 				continue;
1209 
1210 			if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1211 			    pci_claim_bridge_resource(dev,
1212 						i + PCI_BRIDGE_RESOURCES) == 0)
1213 				continue;
1214 		}
1215 		pr_warning("PCI: Cannot allocate resource region "
1216 			   "%d of PCI bridge %d, will remap\n", i, bus->number);
1217 	clear_resource:
1218 		/* The resource might be figured out when doing
1219 		 * reassignment based on the resources required
1220 		 * by the downstream PCI devices. Here we set
1221 		 * the size of the resource to be 0 in order to
1222 		 * save more space.
1223 		 */
1224 		res->start = 0;
1225 		res->end = -1;
1226 		res->flags = 0;
1227 	}
1228 
1229 	list_for_each_entry(b, &bus->children, node)
1230 		pcibios_allocate_bus_resources(b);
1231 }
1232 
1233 static inline void alloc_resource(struct pci_dev *dev, int idx)
1234 {
1235 	struct resource *pr, *r = &dev->resource[idx];
1236 
1237 	pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1238 		 pci_name(dev), idx, r);
1239 
1240 	pr = pci_find_parent_resource(dev, r);
1241 	if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1242 	    request_resource(pr, r) < 0) {
1243 		printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1244 		       " of device %s, will remap\n", idx, pci_name(dev));
1245 		if (pr)
1246 			pr_debug("PCI:  parent is %p: %pR\n", pr, pr);
1247 		/* We'll assign a new address later */
1248 		r->flags |= IORESOURCE_UNSET;
1249 		r->end -= r->start;
1250 		r->start = 0;
1251 	}
1252 }
1253 
1254 static void __init pcibios_allocate_resources(int pass)
1255 {
1256 	struct pci_dev *dev = NULL;
1257 	int idx, disabled;
1258 	u16 command;
1259 	struct resource *r;
1260 
1261 	for_each_pci_dev(dev) {
1262 		pci_read_config_word(dev, PCI_COMMAND, &command);
1263 		for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1264 			r = &dev->resource[idx];
1265 			if (r->parent)		/* Already allocated */
1266 				continue;
1267 			if (!r->flags || (r->flags & IORESOURCE_UNSET))
1268 				continue;	/* Not assigned at all */
1269 			/* We only allocate ROMs on pass 1 just in case they
1270 			 * have been screwed up by firmware
1271 			 */
1272 			if (idx == PCI_ROM_RESOURCE )
1273 				disabled = 1;
1274 			if (r->flags & IORESOURCE_IO)
1275 				disabled = !(command & PCI_COMMAND_IO);
1276 			else
1277 				disabled = !(command & PCI_COMMAND_MEMORY);
1278 			if (pass == disabled)
1279 				alloc_resource(dev, idx);
1280 		}
1281 		if (pass)
1282 			continue;
1283 		r = &dev->resource[PCI_ROM_RESOURCE];
1284 		if (r->flags) {
1285 			/* Turn the ROM off, leave the resource region,
1286 			 * but keep it unregistered.
1287 			 */
1288 			u32 reg;
1289 			pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1290 			if (reg & PCI_ROM_ADDRESS_ENABLE) {
1291 				pr_debug("PCI: Switching off ROM of %s\n",
1292 					 pci_name(dev));
1293 				r->flags &= ~IORESOURCE_ROM_ENABLE;
1294 				pci_write_config_dword(dev, dev->rom_base_reg,
1295 						       reg & ~PCI_ROM_ADDRESS_ENABLE);
1296 			}
1297 		}
1298 	}
1299 }
1300 
1301 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1302 {
1303 	struct pci_controller *hose = pci_bus_to_host(bus);
1304 	resource_size_t	offset;
1305 	struct resource *res, *pres;
1306 	int i;
1307 
1308 	pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1309 
1310 	/* Check for IO */
1311 	if (!(hose->io_resource.flags & IORESOURCE_IO))
1312 		goto no_io;
1313 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1314 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1315 	BUG_ON(res == NULL);
1316 	res->name = "Legacy IO";
1317 	res->flags = IORESOURCE_IO;
1318 	res->start = offset;
1319 	res->end = (offset + 0xfff) & 0xfffffffful;
1320 	pr_debug("Candidate legacy IO: %pR\n", res);
1321 	if (request_resource(&hose->io_resource, res)) {
1322 		printk(KERN_DEBUG
1323 		       "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1324 		       pci_domain_nr(bus), bus->number, res);
1325 		kfree(res);
1326 	}
1327 
1328  no_io:
1329 	/* Check for memory */
1330 	for (i = 0; i < 3; i++) {
1331 		pres = &hose->mem_resources[i];
1332 		offset = hose->mem_offset[i];
1333 		if (!(pres->flags & IORESOURCE_MEM))
1334 			continue;
1335 		pr_debug("hose mem res: %pR\n", pres);
1336 		if ((pres->start - offset) <= 0xa0000 &&
1337 		    (pres->end - offset) >= 0xbffff)
1338 			break;
1339 	}
1340 	if (i >= 3)
1341 		return;
1342 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1343 	BUG_ON(res == NULL);
1344 	res->name = "Legacy VGA memory";
1345 	res->flags = IORESOURCE_MEM;
1346 	res->start = 0xa0000 + offset;
1347 	res->end = 0xbffff + offset;
1348 	pr_debug("Candidate VGA memory: %pR\n", res);
1349 	if (request_resource(pres, res)) {
1350 		printk(KERN_DEBUG
1351 		       "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1352 		       pci_domain_nr(bus), bus->number, res);
1353 		kfree(res);
1354 	}
1355 }
1356 
1357 void __init pcibios_resource_survey(void)
1358 {
1359 	struct pci_bus *b;
1360 
1361 	/* Allocate and assign resources */
1362 	list_for_each_entry(b, &pci_root_buses, node)
1363 		pcibios_allocate_bus_resources(b);
1364 	pcibios_allocate_resources(0);
1365 	pcibios_allocate_resources(1);
1366 
1367 	/* Before we start assigning unassigned resource, we try to reserve
1368 	 * the low IO area and the VGA memory area if they intersect the
1369 	 * bus available resources to avoid allocating things on top of them
1370 	 */
1371 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1372 		list_for_each_entry(b, &pci_root_buses, node)
1373 			pcibios_reserve_legacy_regions(b);
1374 	}
1375 
1376 	/* Now, if the platform didn't decide to blindly trust the firmware,
1377 	 * we proceed to assigning things that were left unassigned
1378 	 */
1379 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1380 		pr_debug("PCI: Assigning unassigned resources...\n");
1381 		pci_assign_unassigned_resources();
1382 	}
1383 
1384 	/* Call machine dependent fixup */
1385 	if (ppc_md.pcibios_fixup)
1386 		ppc_md.pcibios_fixup();
1387 }
1388 
1389 /* This is used by the PCI hotplug driver to allocate resource
1390  * of newly plugged busses. We can try to consolidate with the
1391  * rest of the code later, for now, keep it as-is as our main
1392  * resource allocation function doesn't deal with sub-trees yet.
1393  */
1394 void pcibios_claim_one_bus(struct pci_bus *bus)
1395 {
1396 	struct pci_dev *dev;
1397 	struct pci_bus *child_bus;
1398 
1399 	list_for_each_entry(dev, &bus->devices, bus_list) {
1400 		int i;
1401 
1402 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1403 			struct resource *r = &dev->resource[i];
1404 
1405 			if (r->parent || !r->start || !r->flags)
1406 				continue;
1407 
1408 			pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1409 				 pci_name(dev), i, r);
1410 
1411 			if (pci_claim_resource(dev, i) == 0)
1412 				continue;
1413 
1414 			pci_claim_bridge_resource(dev, i);
1415 		}
1416 	}
1417 
1418 	list_for_each_entry(child_bus, &bus->children, node)
1419 		pcibios_claim_one_bus(child_bus);
1420 }
1421 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1422 
1423 
1424 /* pcibios_finish_adding_to_bus
1425  *
1426  * This is to be called by the hotplug code after devices have been
1427  * added to a bus, this include calling it for a PHB that is just
1428  * being added
1429  */
1430 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1431 {
1432 	pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1433 		 pci_domain_nr(bus), bus->number);
1434 
1435 	/* Allocate bus and devices resources */
1436 	pcibios_allocate_bus_resources(bus);
1437 	pcibios_claim_one_bus(bus);
1438 	if (!pci_has_flag(PCI_PROBE_ONLY))
1439 		pci_assign_unassigned_bus_resources(bus);
1440 
1441 	/* Fixup EEH */
1442 	eeh_add_device_tree_late(bus);
1443 
1444 	/* Add new devices to global lists.  Register in proc, sysfs. */
1445 	pci_bus_add_devices(bus);
1446 
1447 	/* sysfs files should only be added after devices are added */
1448 	eeh_add_sysfs_files(bus);
1449 }
1450 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1451 
1452 int pcibios_enable_device(struct pci_dev *dev, int mask)
1453 {
1454 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1455 
1456 	if (phb->controller_ops.enable_device_hook)
1457 		if (!phb->controller_ops.enable_device_hook(dev))
1458 			return -EINVAL;
1459 
1460 	return pci_enable_resources(dev, mask);
1461 }
1462 
1463 void pcibios_disable_device(struct pci_dev *dev)
1464 {
1465 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1466 
1467 	if (phb->controller_ops.disable_device)
1468 		phb->controller_ops.disable_device(dev);
1469 }
1470 
1471 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1472 {
1473 	return (unsigned long) hose->io_base_virt - _IO_BASE;
1474 }
1475 
1476 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1477 					struct list_head *resources)
1478 {
1479 	struct resource *res;
1480 	resource_size_t offset;
1481 	int i;
1482 
1483 	/* Hookup PHB IO resource */
1484 	res = &hose->io_resource;
1485 
1486 	if (!res->flags) {
1487 		pr_info("PCI: I/O resource not set for host"
1488 		       " bridge %s (domain %d)\n",
1489 		       hose->dn->full_name, hose->global_number);
1490 	} else {
1491 		offset = pcibios_io_space_offset(hose);
1492 
1493 		pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n",
1494 			 res, (unsigned long long)offset);
1495 		pci_add_resource_offset(resources, res, offset);
1496 	}
1497 
1498 	/* Hookup PHB Memory resources */
1499 	for (i = 0; i < 3; ++i) {
1500 		res = &hose->mem_resources[i];
1501 		if (!res->flags) {
1502 			if (i == 0)
1503 				printk(KERN_ERR "PCI: Memory resource 0 not set for "
1504 				       "host bridge %s (domain %d)\n",
1505 				       hose->dn->full_name, hose->global_number);
1506 			continue;
1507 		}
1508 		offset = hose->mem_offset[i];
1509 
1510 
1511 		pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1512 			 res, (unsigned long long)offset);
1513 
1514 		pci_add_resource_offset(resources, res, offset);
1515 	}
1516 }
1517 
1518 /*
1519  * Null PCI config access functions, for the case when we can't
1520  * find a hose.
1521  */
1522 #define NULL_PCI_OP(rw, size, type)					\
1523 static int								\
1524 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\
1525 {									\
1526 	return PCIBIOS_DEVICE_NOT_FOUND;    				\
1527 }
1528 
1529 static int
1530 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1531 		 int len, u32 *val)
1532 {
1533 	return PCIBIOS_DEVICE_NOT_FOUND;
1534 }
1535 
1536 static int
1537 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1538 		  int len, u32 val)
1539 {
1540 	return PCIBIOS_DEVICE_NOT_FOUND;
1541 }
1542 
1543 static struct pci_ops null_pci_ops =
1544 {
1545 	.read = null_read_config,
1546 	.write = null_write_config,
1547 };
1548 
1549 /*
1550  * These functions are used early on before PCI scanning is done
1551  * and all of the pci_dev and pci_bus structures have been created.
1552  */
1553 static struct pci_bus *
1554 fake_pci_bus(struct pci_controller *hose, int busnr)
1555 {
1556 	static struct pci_bus bus;
1557 
1558 	if (hose == NULL) {
1559 		printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1560 	}
1561 	bus.number = busnr;
1562 	bus.sysdata = hose;
1563 	bus.ops = hose? hose->ops: &null_pci_ops;
1564 	return &bus;
1565 }
1566 
1567 #define EARLY_PCI_OP(rw, size, type)					\
1568 int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\
1569 			       int devfn, int offset, type value)	\
1570 {									\
1571 	return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\
1572 					    devfn, offset, value);	\
1573 }
1574 
1575 EARLY_PCI_OP(read, byte, u8 *)
1576 EARLY_PCI_OP(read, word, u16 *)
1577 EARLY_PCI_OP(read, dword, u32 *)
1578 EARLY_PCI_OP(write, byte, u8)
1579 EARLY_PCI_OP(write, word, u16)
1580 EARLY_PCI_OP(write, dword, u32)
1581 
1582 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1583 			  int cap)
1584 {
1585 	return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1586 }
1587 
1588 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1589 {
1590 	struct pci_controller *hose = bus->sysdata;
1591 
1592 	return of_node_get(hose->dn);
1593 }
1594 
1595 /**
1596  * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1597  * @hose: Pointer to the PCI host controller instance structure
1598  */
1599 void pcibios_scan_phb(struct pci_controller *hose)
1600 {
1601 	LIST_HEAD(resources);
1602 	struct pci_bus *bus;
1603 	struct device_node *node = hose->dn;
1604 	int mode;
1605 
1606 	pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node));
1607 
1608 	/* Get some IO space for the new PHB */
1609 	pcibios_setup_phb_io_space(hose);
1610 
1611 	/* Wire up PHB bus resources */
1612 	pcibios_setup_phb_resources(hose, &resources);
1613 
1614 	hose->busn.start = hose->first_busno;
1615 	hose->busn.end	 = hose->last_busno;
1616 	hose->busn.flags = IORESOURCE_BUS;
1617 	pci_add_resource(&resources, &hose->busn);
1618 
1619 	/* Create an empty bus for the toplevel */
1620 	bus = pci_create_root_bus(hose->parent, hose->first_busno,
1621 				  hose->ops, hose, &resources);
1622 	if (bus == NULL) {
1623 		pr_err("Failed to create bus for PCI domain %04x\n",
1624 			hose->global_number);
1625 		pci_free_resource_list(&resources);
1626 		return;
1627 	}
1628 	hose->bus = bus;
1629 
1630 	/* Get probe mode and perform scan */
1631 	mode = PCI_PROBE_NORMAL;
1632 	if (node && hose->controller_ops.probe_mode)
1633 		mode = hose->controller_ops.probe_mode(bus);
1634 	pr_debug("    probe mode: %d\n", mode);
1635 	if (mode == PCI_PROBE_DEVTREE)
1636 		of_scan_bus(node, bus);
1637 
1638 	if (mode == PCI_PROBE_NORMAL) {
1639 		pci_bus_update_busn_res_end(bus, 255);
1640 		hose->last_busno = pci_scan_child_bus(bus);
1641 		pci_bus_update_busn_res_end(bus, hose->last_busno);
1642 	}
1643 
1644 	/* Platform gets a chance to do some global fixups before
1645 	 * we proceed to resource allocation
1646 	 */
1647 	if (ppc_md.pcibios_fixup_phb)
1648 		ppc_md.pcibios_fixup_phb(hose);
1649 
1650 	/* Configure PCI Express settings */
1651 	if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1652 		struct pci_bus *child;
1653 		list_for_each_entry(child, &bus->children, node)
1654 			pcie_bus_configure_settings(child);
1655 	}
1656 }
1657 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1658 
1659 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1660 {
1661 	int i, class = dev->class >> 8;
1662 	/* When configured as agent, programing interface = 1 */
1663 	int prog_if = dev->class & 0xf;
1664 
1665 	if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1666 	     class == PCI_CLASS_BRIDGE_OTHER) &&
1667 		(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1668 		(prog_if == 0) &&
1669 		(dev->bus->parent == NULL)) {
1670 		for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1671 			dev->resource[i].start = 0;
1672 			dev->resource[i].end = 0;
1673 			dev->resource[i].flags = 0;
1674 		}
1675 	}
1676 }
1677 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1678 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1679 
1680 static void fixup_vga(struct pci_dev *pdev)
1681 {
1682 	u16 cmd;
1683 
1684 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1685 	if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device())
1686 		vga_set_default_device(pdev);
1687 
1688 }
1689 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID,
1690 			      PCI_CLASS_DISPLAY_VGA, 8, fixup_vga);
1691