xref: /linux/arch/powerpc/kernel/pci-common.c (revision beb4f4722cf60d9f0803054dec4eb5025f2cf594)
1 /*
2  * Contains common pci routines for ALL ppc platform
3  * (based on pci_32.c and pci_64.c)
4  *
5  * Port for PPC64 David Engebretsen, IBM Corp.
6  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
7  *
8  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
9  *   Rework, based on alpha PCI code.
10  *
11  * Common pmac/prep/chrp pci routines. -- Cort
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/export.h>
25 #include <linux/of_address.h>
26 #include <linux/of_pci.h>
27 #include <linux/mm.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/list.h>
30 #include <linux/syscalls.h>
31 #include <linux/irq.h>
32 #include <linux/vmalloc.h>
33 #include <linux/slab.h>
34 #include <linux/vgaarb.h>
35 
36 #include <asm/processor.h>
37 #include <asm/io.h>
38 #include <asm/prom.h>
39 #include <asm/pci-bridge.h>
40 #include <asm/byteorder.h>
41 #include <asm/machdep.h>
42 #include <asm/ppc-pci.h>
43 #include <asm/eeh.h>
44 
45 #include "../../../drivers/pci/pci.h"
46 
47 /* hose_spinlock protects accesses to the the phb_bitmap. */
48 static DEFINE_SPINLOCK(hose_spinlock);
49 LIST_HEAD(hose_list);
50 
51 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
52 #define MAX_PHBS 0x10000
53 
54 /*
55  * For dynamic PHB numbering: used/free PHBs tracking bitmap.
56  * Accesses to this bitmap should be protected by hose_spinlock.
57  */
58 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
59 
60 /* ISA Memory physical address */
61 resource_size_t isa_mem_base;
62 EXPORT_SYMBOL(isa_mem_base);
63 
64 
65 static const struct dma_map_ops *pci_dma_ops;
66 
67 void set_pci_dma_ops(const struct dma_map_ops *dma_ops)
68 {
69 	pci_dma_ops = dma_ops;
70 }
71 
72 /*
73  * This function should run under locking protection, specifically
74  * hose_spinlock.
75  */
76 static int get_phb_number(struct device_node *dn)
77 {
78 	int ret, phb_id = -1;
79 	u32 prop_32;
80 	u64 prop;
81 
82 	/*
83 	 * Try fixed PHB numbering first, by checking archs and reading
84 	 * the respective device-tree properties. Firstly, try powernv by
85 	 * reading "ibm,opal-phbid", only present in OPAL environment.
86 	 */
87 	ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
88 	if (ret) {
89 		ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
90 		prop = prop_32;
91 	}
92 
93 	if (!ret)
94 		phb_id = (int)(prop & (MAX_PHBS - 1));
95 
96 	/* We need to be sure to not use the same PHB number twice. */
97 	if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
98 		return phb_id;
99 
100 	/*
101 	 * If not pseries nor powernv, or if fixed PHB numbering tried to add
102 	 * the same PHB number twice, then fallback to dynamic PHB numbering.
103 	 */
104 	phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
105 	BUG_ON(phb_id >= MAX_PHBS);
106 	set_bit(phb_id, phb_bitmap);
107 
108 	return phb_id;
109 }
110 
111 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
112 {
113 	struct pci_controller *phb;
114 
115 	phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
116 	if (phb == NULL)
117 		return NULL;
118 	spin_lock(&hose_spinlock);
119 	phb->global_number = get_phb_number(dev);
120 	list_add_tail(&phb->list_node, &hose_list);
121 	spin_unlock(&hose_spinlock);
122 	phb->dn = dev;
123 	phb->is_dynamic = slab_is_available();
124 #ifdef CONFIG_PPC64
125 	if (dev) {
126 		int nid = of_node_to_nid(dev);
127 
128 		if (nid < 0 || !node_online(nid))
129 			nid = -1;
130 
131 		PHB_SET_NODE(phb, nid);
132 	}
133 #endif
134 	return phb;
135 }
136 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
137 
138 void pcibios_free_controller(struct pci_controller *phb)
139 {
140 	spin_lock(&hose_spinlock);
141 
142 	/* Clear bit of phb_bitmap to allow reuse of this PHB number. */
143 	if (phb->global_number < MAX_PHBS)
144 		clear_bit(phb->global_number, phb_bitmap);
145 
146 	list_del(&phb->list_node);
147 	spin_unlock(&hose_spinlock);
148 
149 	if (phb->is_dynamic)
150 		kfree(phb);
151 }
152 EXPORT_SYMBOL_GPL(pcibios_free_controller);
153 
154 /*
155  * This function is used to call pcibios_free_controller()
156  * in a deferred manner: a callback from the PCI subsystem.
157  *
158  * _*DO NOT*_ call pcibios_free_controller() explicitly if
159  * this is used (or it may access an invalid *phb pointer).
160  *
161  * The callback occurs when all references to the root bus
162  * are dropped (e.g., child buses/devices and their users).
163  *
164  * It's called as .release_fn() of 'struct pci_host_bridge'
165  * which is associated with the 'struct pci_controller.bus'
166  * (root bus) - it expects .release_data to hold a pointer
167  * to 'struct pci_controller'.
168  *
169  * In order to use it, register .release_fn()/release_data
170  * like this:
171  *
172  * pci_set_host_bridge_release(bridge,
173  *                             pcibios_free_controller_deferred
174  *                             (void *) phb);
175  *
176  * e.g. in the pcibios_root_bridge_prepare() callback from
177  * pci_create_root_bus().
178  */
179 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
180 {
181 	struct pci_controller *phb = (struct pci_controller *)
182 					 bridge->release_data;
183 
184 	pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
185 
186 	pcibios_free_controller(phb);
187 }
188 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
189 
190 /*
191  * The function is used to return the minimal alignment
192  * for memory or I/O windows of the associated P2P bridge.
193  * By default, 4KiB alignment for I/O windows and 1MiB for
194  * memory windows.
195  */
196 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
197 					 unsigned long type)
198 {
199 	struct pci_controller *phb = pci_bus_to_host(bus);
200 
201 	if (phb->controller_ops.window_alignment)
202 		return phb->controller_ops.window_alignment(bus, type);
203 
204 	/*
205 	 * PCI core will figure out the default
206 	 * alignment: 4KiB for I/O and 1MiB for
207 	 * memory window.
208 	 */
209 	return 1;
210 }
211 
212 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
213 {
214 	struct pci_controller *hose = pci_bus_to_host(bus);
215 
216 	if (hose->controller_ops.setup_bridge)
217 		hose->controller_ops.setup_bridge(bus, type);
218 }
219 
220 void pcibios_reset_secondary_bus(struct pci_dev *dev)
221 {
222 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
223 
224 	if (phb->controller_ops.reset_secondary_bus) {
225 		phb->controller_ops.reset_secondary_bus(dev);
226 		return;
227 	}
228 
229 	pci_reset_secondary_bus(dev);
230 }
231 
232 resource_size_t pcibios_default_alignment(void)
233 {
234 	if (ppc_md.pcibios_default_alignment)
235 		return ppc_md.pcibios_default_alignment();
236 
237 	return 0;
238 }
239 
240 #ifdef CONFIG_PCI_IOV
241 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
242 {
243 	if (ppc_md.pcibios_iov_resource_alignment)
244 		return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
245 
246 	return pci_iov_resource_size(pdev, resno);
247 }
248 
249 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
250 {
251 	if (ppc_md.pcibios_sriov_enable)
252 		return ppc_md.pcibios_sriov_enable(pdev, num_vfs);
253 
254 	return 0;
255 }
256 
257 int pcibios_sriov_disable(struct pci_dev *pdev)
258 {
259 	if (ppc_md.pcibios_sriov_disable)
260 		return ppc_md.pcibios_sriov_disable(pdev);
261 
262 	return 0;
263 }
264 
265 #endif /* CONFIG_PCI_IOV */
266 
267 void pcibios_bus_add_device(struct pci_dev *pdev)
268 {
269 	if (ppc_md.pcibios_bus_add_device)
270 		ppc_md.pcibios_bus_add_device(pdev);
271 }
272 
273 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
274 {
275 #ifdef CONFIG_PPC64
276 	return hose->pci_io_size;
277 #else
278 	return resource_size(&hose->io_resource);
279 #endif
280 }
281 
282 int pcibios_vaddr_is_ioport(void __iomem *address)
283 {
284 	int ret = 0;
285 	struct pci_controller *hose;
286 	resource_size_t size;
287 
288 	spin_lock(&hose_spinlock);
289 	list_for_each_entry(hose, &hose_list, list_node) {
290 		size = pcibios_io_size(hose);
291 		if (address >= hose->io_base_virt &&
292 		    address < (hose->io_base_virt + size)) {
293 			ret = 1;
294 			break;
295 		}
296 	}
297 	spin_unlock(&hose_spinlock);
298 	return ret;
299 }
300 
301 unsigned long pci_address_to_pio(phys_addr_t address)
302 {
303 	struct pci_controller *hose;
304 	resource_size_t size;
305 	unsigned long ret = ~0;
306 
307 	spin_lock(&hose_spinlock);
308 	list_for_each_entry(hose, &hose_list, list_node) {
309 		size = pcibios_io_size(hose);
310 		if (address >= hose->io_base_phys &&
311 		    address < (hose->io_base_phys + size)) {
312 			unsigned long base =
313 				(unsigned long)hose->io_base_virt - _IO_BASE;
314 			ret = base + (address - hose->io_base_phys);
315 			break;
316 		}
317 	}
318 	spin_unlock(&hose_spinlock);
319 
320 	return ret;
321 }
322 EXPORT_SYMBOL_GPL(pci_address_to_pio);
323 
324 /*
325  * Return the domain number for this bus.
326  */
327 int pci_domain_nr(struct pci_bus *bus)
328 {
329 	struct pci_controller *hose = pci_bus_to_host(bus);
330 
331 	return hose->global_number;
332 }
333 EXPORT_SYMBOL(pci_domain_nr);
334 
335 /* This routine is meant to be used early during boot, when the
336  * PCI bus numbers have not yet been assigned, and you need to
337  * issue PCI config cycles to an OF device.
338  * It could also be used to "fix" RTAS config cycles if you want
339  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
340  * config cycles.
341  */
342 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
343 {
344 	while(node) {
345 		struct pci_controller *hose, *tmp;
346 		list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
347 			if (hose->dn == node)
348 				return hose;
349 		node = node->parent;
350 	}
351 	return NULL;
352 }
353 
354 struct pci_controller *pci_find_controller_for_domain(int domain_nr)
355 {
356 	struct pci_controller *hose;
357 
358 	list_for_each_entry(hose, &hose_list, list_node)
359 		if (hose->global_number == domain_nr)
360 			return hose;
361 
362 	return NULL;
363 }
364 
365 /*
366  * Reads the interrupt pin to determine if interrupt is use by card.
367  * If the interrupt is used, then gets the interrupt line from the
368  * openfirmware and sets it in the pci_dev and pci_config line.
369  */
370 static int pci_read_irq_line(struct pci_dev *pci_dev)
371 {
372 	int virq;
373 
374 	pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
375 
376 	/* Try to get a mapping from the device-tree */
377 	virq = of_irq_parse_and_map_pci(pci_dev, 0, 0);
378 	if (virq <= 0) {
379 		u8 line, pin;
380 
381 		/* If that fails, lets fallback to what is in the config
382 		 * space and map that through the default controller. We
383 		 * also set the type to level low since that's what PCI
384 		 * interrupts are. If your platform does differently, then
385 		 * either provide a proper interrupt tree or don't use this
386 		 * function.
387 		 */
388 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
389 			return -1;
390 		if (pin == 0)
391 			return -1;
392 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
393 		    line == 0xff || line == 0) {
394 			return -1;
395 		}
396 		pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
397 			 line, pin);
398 
399 		virq = irq_create_mapping(NULL, line);
400 		if (virq)
401 			irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
402 	}
403 
404 	if (!virq) {
405 		pr_debug(" Failed to map !\n");
406 		return -1;
407 	}
408 
409 	pr_debug(" Mapped to linux irq %d\n", virq);
410 
411 	pci_dev->irq = virq;
412 
413 	return 0;
414 }
415 
416 /*
417  * Platform support for /proc/bus/pci/X/Y mmap()s.
418  *  -- paulus.
419  */
420 int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma)
421 {
422 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
423 	resource_size_t ioaddr = pci_resource_start(pdev, bar);
424 
425 	if (!hose)
426 		return -EINVAL;
427 
428 	/* Convert to an offset within this PCI controller */
429 	ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE;
430 
431 	vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT;
432 	return 0;
433 }
434 
435 /*
436  * This one is used by /dev/mem and fbdev who have no clue about the
437  * PCI device, it tries to find the PCI device first and calls the
438  * above routine
439  */
440 pgprot_t pci_phys_mem_access_prot(struct file *file,
441 				  unsigned long pfn,
442 				  unsigned long size,
443 				  pgprot_t prot)
444 {
445 	struct pci_dev *pdev = NULL;
446 	struct resource *found = NULL;
447 	resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
448 	int i;
449 
450 	if (page_is_ram(pfn))
451 		return prot;
452 
453 	prot = pgprot_noncached(prot);
454 	for_each_pci_dev(pdev) {
455 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
456 			struct resource *rp = &pdev->resource[i];
457 			int flags = rp->flags;
458 
459 			/* Active and same type? */
460 			if ((flags & IORESOURCE_MEM) == 0)
461 				continue;
462 			/* In the range of this resource? */
463 			if (offset < (rp->start & PAGE_MASK) ||
464 			    offset > rp->end)
465 				continue;
466 			found = rp;
467 			break;
468 		}
469 		if (found)
470 			break;
471 	}
472 	if (found) {
473 		if (found->flags & IORESOURCE_PREFETCH)
474 			prot = pgprot_noncached_wc(prot);
475 		pci_dev_put(pdev);
476 	}
477 
478 	pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
479 		 (unsigned long long)offset, pgprot_val(prot));
480 
481 	return prot;
482 }
483 
484 /* This provides legacy IO read access on a bus */
485 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
486 {
487 	unsigned long offset;
488 	struct pci_controller *hose = pci_bus_to_host(bus);
489 	struct resource *rp = &hose->io_resource;
490 	void __iomem *addr;
491 
492 	/* Check if port can be supported by that bus. We only check
493 	 * the ranges of the PHB though, not the bus itself as the rules
494 	 * for forwarding legacy cycles down bridges are not our problem
495 	 * here. So if the host bridge supports it, we do it.
496 	 */
497 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
498 	offset += port;
499 
500 	if (!(rp->flags & IORESOURCE_IO))
501 		return -ENXIO;
502 	if (offset < rp->start || (offset + size) > rp->end)
503 		return -ENXIO;
504 	addr = hose->io_base_virt + port;
505 
506 	switch(size) {
507 	case 1:
508 		*((u8 *)val) = in_8(addr);
509 		return 1;
510 	case 2:
511 		if (port & 1)
512 			return -EINVAL;
513 		*((u16 *)val) = in_le16(addr);
514 		return 2;
515 	case 4:
516 		if (port & 3)
517 			return -EINVAL;
518 		*((u32 *)val) = in_le32(addr);
519 		return 4;
520 	}
521 	return -EINVAL;
522 }
523 
524 /* This provides legacy IO write access on a bus */
525 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
526 {
527 	unsigned long offset;
528 	struct pci_controller *hose = pci_bus_to_host(bus);
529 	struct resource *rp = &hose->io_resource;
530 	void __iomem *addr;
531 
532 	/* Check if port can be supported by that bus. We only check
533 	 * the ranges of the PHB though, not the bus itself as the rules
534 	 * for forwarding legacy cycles down bridges are not our problem
535 	 * here. So if the host bridge supports it, we do it.
536 	 */
537 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
538 	offset += port;
539 
540 	if (!(rp->flags & IORESOURCE_IO))
541 		return -ENXIO;
542 	if (offset < rp->start || (offset + size) > rp->end)
543 		return -ENXIO;
544 	addr = hose->io_base_virt + port;
545 
546 	/* WARNING: The generic code is idiotic. It gets passed a pointer
547 	 * to what can be a 1, 2 or 4 byte quantity and always reads that
548 	 * as a u32, which means that we have to correct the location of
549 	 * the data read within those 32 bits for size 1 and 2
550 	 */
551 	switch(size) {
552 	case 1:
553 		out_8(addr, val >> 24);
554 		return 1;
555 	case 2:
556 		if (port & 1)
557 			return -EINVAL;
558 		out_le16(addr, val >> 16);
559 		return 2;
560 	case 4:
561 		if (port & 3)
562 			return -EINVAL;
563 		out_le32(addr, val);
564 		return 4;
565 	}
566 	return -EINVAL;
567 }
568 
569 /* This provides legacy IO or memory mmap access on a bus */
570 int pci_mmap_legacy_page_range(struct pci_bus *bus,
571 			       struct vm_area_struct *vma,
572 			       enum pci_mmap_state mmap_state)
573 {
574 	struct pci_controller *hose = pci_bus_to_host(bus);
575 	resource_size_t offset =
576 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
577 	resource_size_t size = vma->vm_end - vma->vm_start;
578 	struct resource *rp;
579 
580 	pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
581 		 pci_domain_nr(bus), bus->number,
582 		 mmap_state == pci_mmap_mem ? "MEM" : "IO",
583 		 (unsigned long long)offset,
584 		 (unsigned long long)(offset + size - 1));
585 
586 	if (mmap_state == pci_mmap_mem) {
587 		/* Hack alert !
588 		 *
589 		 * Because X is lame and can fail starting if it gets an error trying
590 		 * to mmap legacy_mem (instead of just moving on without legacy memory
591 		 * access) we fake it here by giving it anonymous memory, effectively
592 		 * behaving just like /dev/zero
593 		 */
594 		if ((offset + size) > hose->isa_mem_size) {
595 			printk(KERN_DEBUG
596 			       "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
597 			       current->comm, current->pid, pci_domain_nr(bus), bus->number);
598 			if (vma->vm_flags & VM_SHARED)
599 				return shmem_zero_setup(vma);
600 			return 0;
601 		}
602 		offset += hose->isa_mem_phys;
603 	} else {
604 		unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
605 		unsigned long roffset = offset + io_offset;
606 		rp = &hose->io_resource;
607 		if (!(rp->flags & IORESOURCE_IO))
608 			return -ENXIO;
609 		if (roffset < rp->start || (roffset + size) > rp->end)
610 			return -ENXIO;
611 		offset += hose->io_base_phys;
612 	}
613 	pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
614 
615 	vma->vm_pgoff = offset >> PAGE_SHIFT;
616 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
617 	return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
618 			       vma->vm_end - vma->vm_start,
619 			       vma->vm_page_prot);
620 }
621 
622 void pci_resource_to_user(const struct pci_dev *dev, int bar,
623 			  const struct resource *rsrc,
624 			  resource_size_t *start, resource_size_t *end)
625 {
626 	struct pci_bus_region region;
627 
628 	if (rsrc->flags & IORESOURCE_IO) {
629 		pcibios_resource_to_bus(dev->bus, &region,
630 					(struct resource *) rsrc);
631 		*start = region.start;
632 		*end = region.end;
633 		return;
634 	}
635 
636 	/* We pass a CPU physical address to userland for MMIO instead of a
637 	 * BAR value because X is lame and expects to be able to use that
638 	 * to pass to /dev/mem!
639 	 *
640 	 * That means we may have 64-bit values where some apps only expect
641 	 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
642 	 */
643 	*start = rsrc->start;
644 	*end = rsrc->end;
645 }
646 
647 /**
648  * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
649  * @hose: newly allocated pci_controller to be setup
650  * @dev: device node of the host bridge
651  * @primary: set if primary bus (32 bits only, soon to be deprecated)
652  *
653  * This function will parse the "ranges" property of a PCI host bridge device
654  * node and setup the resource mapping of a pci controller based on its
655  * content.
656  *
657  * Life would be boring if it wasn't for a few issues that we have to deal
658  * with here:
659  *
660  *   - We can only cope with one IO space range and up to 3 Memory space
661  *     ranges. However, some machines (thanks Apple !) tend to split their
662  *     space into lots of small contiguous ranges. So we have to coalesce.
663  *
664  *   - Some busses have IO space not starting at 0, which causes trouble with
665  *     the way we do our IO resource renumbering. The code somewhat deals with
666  *     it for 64 bits but I would expect problems on 32 bits.
667  *
668  *   - Some 32 bits platforms such as 4xx can have physical space larger than
669  *     32 bits so we need to use 64 bits values for the parsing
670  */
671 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
672 				  struct device_node *dev, int primary)
673 {
674 	int memno = 0;
675 	struct resource *res;
676 	struct of_pci_range range;
677 	struct of_pci_range_parser parser;
678 
679 	printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n",
680 	       dev, primary ? "(primary)" : "");
681 
682 	/* Check for ranges property */
683 	if (of_pci_range_parser_init(&parser, dev))
684 		return;
685 
686 	/* Parse it */
687 	for_each_of_pci_range(&parser, &range) {
688 		/* If we failed translation or got a zero-sized region
689 		 * (some FW try to feed us with non sensical zero sized regions
690 		 * such as power3 which look like some kind of attempt at exposing
691 		 * the VGA memory hole)
692 		 */
693 		if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
694 			continue;
695 
696 		/* Act based on address space type */
697 		res = NULL;
698 		switch (range.flags & IORESOURCE_TYPE_BITS) {
699 		case IORESOURCE_IO:
700 			printk(KERN_INFO
701 			       "  IO 0x%016llx..0x%016llx -> 0x%016llx\n",
702 			       range.cpu_addr, range.cpu_addr + range.size - 1,
703 			       range.pci_addr);
704 
705 			/* We support only one IO range */
706 			if (hose->pci_io_size) {
707 				printk(KERN_INFO
708 				       " \\--> Skipped (too many) !\n");
709 				continue;
710 			}
711 #ifdef CONFIG_PPC32
712 			/* On 32 bits, limit I/O space to 16MB */
713 			if (range.size > 0x01000000)
714 				range.size = 0x01000000;
715 
716 			/* 32 bits needs to map IOs here */
717 			hose->io_base_virt = ioremap(range.cpu_addr,
718 						range.size);
719 
720 			/* Expect trouble if pci_addr is not 0 */
721 			if (primary)
722 				isa_io_base =
723 					(unsigned long)hose->io_base_virt;
724 #endif /* CONFIG_PPC32 */
725 			/* pci_io_size and io_base_phys always represent IO
726 			 * space starting at 0 so we factor in pci_addr
727 			 */
728 			hose->pci_io_size = range.pci_addr + range.size;
729 			hose->io_base_phys = range.cpu_addr - range.pci_addr;
730 
731 			/* Build resource */
732 			res = &hose->io_resource;
733 			range.cpu_addr = range.pci_addr;
734 			break;
735 		case IORESOURCE_MEM:
736 			printk(KERN_INFO
737 			       " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
738 			       range.cpu_addr, range.cpu_addr + range.size - 1,
739 			       range.pci_addr,
740 			       (range.pci_space & 0x40000000) ?
741 			       "Prefetch" : "");
742 
743 			/* We support only 3 memory ranges */
744 			if (memno >= 3) {
745 				printk(KERN_INFO
746 				       " \\--> Skipped (too many) !\n");
747 				continue;
748 			}
749 			/* Handles ISA memory hole space here */
750 			if (range.pci_addr == 0) {
751 				if (primary || isa_mem_base == 0)
752 					isa_mem_base = range.cpu_addr;
753 				hose->isa_mem_phys = range.cpu_addr;
754 				hose->isa_mem_size = range.size;
755 			}
756 
757 			/* Build resource */
758 			hose->mem_offset[memno] = range.cpu_addr -
759 							range.pci_addr;
760 			res = &hose->mem_resources[memno++];
761 			break;
762 		}
763 		if (res != NULL) {
764 			res->name = dev->full_name;
765 			res->flags = range.flags;
766 			res->start = range.cpu_addr;
767 			res->end = range.cpu_addr + range.size - 1;
768 			res->parent = res->child = res->sibling = NULL;
769 		}
770 	}
771 }
772 
773 /* Decide whether to display the domain number in /proc */
774 int pci_proc_domain(struct pci_bus *bus)
775 {
776 	struct pci_controller *hose = pci_bus_to_host(bus);
777 
778 	if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
779 		return 0;
780 	if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
781 		return hose->global_number != 0;
782 	return 1;
783 }
784 
785 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
786 {
787 	if (ppc_md.pcibios_root_bridge_prepare)
788 		return ppc_md.pcibios_root_bridge_prepare(bridge);
789 
790 	return 0;
791 }
792 
793 /* This header fixup will do the resource fixup for all devices as they are
794  * probed, but not for bridge ranges
795  */
796 static void pcibios_fixup_resources(struct pci_dev *dev)
797 {
798 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
799 	int i;
800 
801 	if (!hose) {
802 		printk(KERN_ERR "No host bridge for PCI dev %s !\n",
803 		       pci_name(dev));
804 		return;
805 	}
806 
807 	if (dev->is_virtfn)
808 		return;
809 
810 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
811 		struct resource *res = dev->resource + i;
812 		struct pci_bus_region reg;
813 		if (!res->flags)
814 			continue;
815 
816 		/* If we're going to re-assign everything, we mark all resources
817 		 * as unset (and 0-base them). In addition, we mark BARs starting
818 		 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
819 		 * since in that case, we don't want to re-assign anything
820 		 */
821 		pcibios_resource_to_bus(dev->bus, &reg, res);
822 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
823 		    (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
824 			/* Only print message if not re-assigning */
825 			if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
826 				pr_debug("PCI:%s Resource %d %pR is unassigned\n",
827 					 pci_name(dev), i, res);
828 			res->end -= res->start;
829 			res->start = 0;
830 			res->flags |= IORESOURCE_UNSET;
831 			continue;
832 		}
833 
834 		pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
835 	}
836 
837 	/* Call machine specific resource fixup */
838 	if (ppc_md.pcibios_fixup_resources)
839 		ppc_md.pcibios_fixup_resources(dev);
840 }
841 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
842 
843 /* This function tries to figure out if a bridge resource has been initialized
844  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
845  * things go more smoothly when it gets it right. It should covers cases such
846  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
847  */
848 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
849 						 struct resource *res)
850 {
851 	struct pci_controller *hose = pci_bus_to_host(bus);
852 	struct pci_dev *dev = bus->self;
853 	resource_size_t offset;
854 	struct pci_bus_region region;
855 	u16 command;
856 	int i;
857 
858 	/* We don't do anything if PCI_PROBE_ONLY is set */
859 	if (pci_has_flag(PCI_PROBE_ONLY))
860 		return 0;
861 
862 	/* Job is a bit different between memory and IO */
863 	if (res->flags & IORESOURCE_MEM) {
864 		pcibios_resource_to_bus(dev->bus, &region, res);
865 
866 		/* If the BAR is non-0 then it's probably been initialized */
867 		if (region.start != 0)
868 			return 0;
869 
870 		/* The BAR is 0, let's check if memory decoding is enabled on
871 		 * the bridge. If not, we consider it unassigned
872 		 */
873 		pci_read_config_word(dev, PCI_COMMAND, &command);
874 		if ((command & PCI_COMMAND_MEMORY) == 0)
875 			return 1;
876 
877 		/* Memory decoding is enabled and the BAR is 0. If any of the bridge
878 		 * resources covers that starting address (0 then it's good enough for
879 		 * us for memory space)
880 		 */
881 		for (i = 0; i < 3; i++) {
882 			if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
883 			    hose->mem_resources[i].start == hose->mem_offset[i])
884 				return 0;
885 		}
886 
887 		/* Well, it starts at 0 and we know it will collide so we may as
888 		 * well consider it as unassigned. That covers the Apple case.
889 		 */
890 		return 1;
891 	} else {
892 		/* If the BAR is non-0, then we consider it assigned */
893 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
894 		if (((res->start - offset) & 0xfffffffful) != 0)
895 			return 0;
896 
897 		/* Here, we are a bit different than memory as typically IO space
898 		 * starting at low addresses -is- valid. What we do instead if that
899 		 * we consider as unassigned anything that doesn't have IO enabled
900 		 * in the PCI command register, and that's it.
901 		 */
902 		pci_read_config_word(dev, PCI_COMMAND, &command);
903 		if (command & PCI_COMMAND_IO)
904 			return 0;
905 
906 		/* It's starting at 0 and IO is disabled in the bridge, consider
907 		 * it unassigned
908 		 */
909 		return 1;
910 	}
911 }
912 
913 /* Fixup resources of a PCI<->PCI bridge */
914 static void pcibios_fixup_bridge(struct pci_bus *bus)
915 {
916 	struct resource *res;
917 	int i;
918 
919 	struct pci_dev *dev = bus->self;
920 
921 	pci_bus_for_each_resource(bus, res, i) {
922 		if (!res || !res->flags)
923 			continue;
924 		if (i >= 3 && bus->self->transparent)
925 			continue;
926 
927 		/* If we're going to reassign everything, we can
928 		 * shrink the P2P resource to have size as being
929 		 * of 0 in order to save space.
930 		 */
931 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
932 			res->flags |= IORESOURCE_UNSET;
933 			res->start = 0;
934 			res->end = -1;
935 			continue;
936 		}
937 
938 		pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
939 
940 		/* Try to detect uninitialized P2P bridge resources,
941 		 * and clear them out so they get re-assigned later
942 		 */
943 		if (pcibios_uninitialized_bridge_resource(bus, res)) {
944 			res->flags = 0;
945 			pr_debug("PCI:%s            (unassigned)\n", pci_name(dev));
946 		}
947 	}
948 }
949 
950 void pcibios_setup_bus_self(struct pci_bus *bus)
951 {
952 	struct pci_controller *phb;
953 
954 	/* Fix up the bus resources for P2P bridges */
955 	if (bus->self != NULL)
956 		pcibios_fixup_bridge(bus);
957 
958 	/* Platform specific bus fixups. This is currently only used
959 	 * by fsl_pci and I'm hoping to get rid of it at some point
960 	 */
961 	if (ppc_md.pcibios_fixup_bus)
962 		ppc_md.pcibios_fixup_bus(bus);
963 
964 	/* Setup bus DMA mappings */
965 	phb = pci_bus_to_host(bus);
966 	if (phb->controller_ops.dma_bus_setup)
967 		phb->controller_ops.dma_bus_setup(bus);
968 }
969 
970 static void pcibios_setup_device(struct pci_dev *dev)
971 {
972 	struct pci_controller *phb;
973 	/* Fixup NUMA node as it may not be setup yet by the generic
974 	 * code and is needed by the DMA init
975 	 */
976 	set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
977 
978 	/* Hook up default DMA ops */
979 	set_dma_ops(&dev->dev, pci_dma_ops);
980 	dev->dev.archdata.dma_offset = PCI_DRAM_OFFSET;
981 
982 	/* Additional platform DMA/iommu setup */
983 	phb = pci_bus_to_host(dev->bus);
984 	if (phb->controller_ops.dma_dev_setup)
985 		phb->controller_ops.dma_dev_setup(dev);
986 
987 	/* Read default IRQs and fixup if necessary */
988 	pci_read_irq_line(dev);
989 	if (ppc_md.pci_irq_fixup)
990 		ppc_md.pci_irq_fixup(dev);
991 }
992 
993 int pcibios_add_device(struct pci_dev *dev)
994 {
995 	/*
996 	 * We can only call pcibios_setup_device() after bus setup is complete,
997 	 * since some of the platform specific DMA setup code depends on it.
998 	 */
999 	if (dev->bus->is_added)
1000 		pcibios_setup_device(dev);
1001 
1002 #ifdef CONFIG_PCI_IOV
1003 	if (ppc_md.pcibios_fixup_sriov)
1004 		ppc_md.pcibios_fixup_sriov(dev);
1005 #endif /* CONFIG_PCI_IOV */
1006 
1007 	return 0;
1008 }
1009 
1010 void pcibios_setup_bus_devices(struct pci_bus *bus)
1011 {
1012 	struct pci_dev *dev;
1013 
1014 	pr_debug("PCI: Fixup bus devices %d (%s)\n",
1015 		 bus->number, bus->self ? pci_name(bus->self) : "PHB");
1016 
1017 	list_for_each_entry(dev, &bus->devices, bus_list) {
1018 		/* Cardbus can call us to add new devices to a bus, so ignore
1019 		 * those who are already fully discovered
1020 		 */
1021 		if (pci_dev_is_added(dev))
1022 			continue;
1023 
1024 		pcibios_setup_device(dev);
1025 	}
1026 }
1027 
1028 void pcibios_set_master(struct pci_dev *dev)
1029 {
1030 	/* No special bus mastering setup handling */
1031 }
1032 
1033 void pcibios_fixup_bus(struct pci_bus *bus)
1034 {
1035 	/* When called from the generic PCI probe, read PCI<->PCI bridge
1036 	 * bases. This is -not- called when generating the PCI tree from
1037 	 * the OF device-tree.
1038 	 */
1039 	pci_read_bridge_bases(bus);
1040 
1041 	/* Now fixup the bus bus */
1042 	pcibios_setup_bus_self(bus);
1043 
1044 	/* Now fixup devices on that bus */
1045 	pcibios_setup_bus_devices(bus);
1046 }
1047 EXPORT_SYMBOL(pcibios_fixup_bus);
1048 
1049 void pci_fixup_cardbus(struct pci_bus *bus)
1050 {
1051 	/* Now fixup devices on that bus */
1052 	pcibios_setup_bus_devices(bus);
1053 }
1054 
1055 
1056 static int skip_isa_ioresource_align(struct pci_dev *dev)
1057 {
1058 	if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1059 	    !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1060 		return 1;
1061 	return 0;
1062 }
1063 
1064 /*
1065  * We need to avoid collisions with `mirrored' VGA ports
1066  * and other strange ISA hardware, so we always want the
1067  * addresses to be allocated in the 0x000-0x0ff region
1068  * modulo 0x400.
1069  *
1070  * Why? Because some silly external IO cards only decode
1071  * the low 10 bits of the IO address. The 0x00-0xff region
1072  * is reserved for motherboard devices that decode all 16
1073  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1074  * but we want to try to avoid allocating at 0x2900-0x2bff
1075  * which might have be mirrored at 0x0100-0x03ff..
1076  */
1077 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1078 				resource_size_t size, resource_size_t align)
1079 {
1080 	struct pci_dev *dev = data;
1081 	resource_size_t start = res->start;
1082 
1083 	if (res->flags & IORESOURCE_IO) {
1084 		if (skip_isa_ioresource_align(dev))
1085 			return start;
1086 		if (start & 0x300)
1087 			start = (start + 0x3ff) & ~0x3ff;
1088 	}
1089 
1090 	return start;
1091 }
1092 EXPORT_SYMBOL(pcibios_align_resource);
1093 
1094 /*
1095  * Reparent resource children of pr that conflict with res
1096  * under res, and make res replace those children.
1097  */
1098 static int reparent_resources(struct resource *parent,
1099 				     struct resource *res)
1100 {
1101 	struct resource *p, **pp;
1102 	struct resource **firstpp = NULL;
1103 
1104 	for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1105 		if (p->end < res->start)
1106 			continue;
1107 		if (res->end < p->start)
1108 			break;
1109 		if (p->start < res->start || p->end > res->end)
1110 			return -1;	/* not completely contained */
1111 		if (firstpp == NULL)
1112 			firstpp = pp;
1113 	}
1114 	if (firstpp == NULL)
1115 		return -1;	/* didn't find any conflicting entries? */
1116 	res->parent = parent;
1117 	res->child = *firstpp;
1118 	res->sibling = *pp;
1119 	*firstpp = res;
1120 	*pp = NULL;
1121 	for (p = res->child; p != NULL; p = p->sibling) {
1122 		p->parent = res;
1123 		pr_debug("PCI: Reparented %s %pR under %s\n",
1124 			 p->name, p, res->name);
1125 	}
1126 	return 0;
1127 }
1128 
1129 /*
1130  *  Handle resources of PCI devices.  If the world were perfect, we could
1131  *  just allocate all the resource regions and do nothing more.  It isn't.
1132  *  On the other hand, we cannot just re-allocate all devices, as it would
1133  *  require us to know lots of host bridge internals.  So we attempt to
1134  *  keep as much of the original configuration as possible, but tweak it
1135  *  when it's found to be wrong.
1136  *
1137  *  Known BIOS problems we have to work around:
1138  *	- I/O or memory regions not configured
1139  *	- regions configured, but not enabled in the command register
1140  *	- bogus I/O addresses above 64K used
1141  *	- expansion ROMs left enabled (this may sound harmless, but given
1142  *	  the fact the PCI specs explicitly allow address decoders to be
1143  *	  shared between expansion ROMs and other resource regions, it's
1144  *	  at least dangerous)
1145  *
1146  *  Our solution:
1147  *	(1) Allocate resources for all buses behind PCI-to-PCI bridges.
1148  *	    This gives us fixed barriers on where we can allocate.
1149  *	(2) Allocate resources for all enabled devices.  If there is
1150  *	    a collision, just mark the resource as unallocated. Also
1151  *	    disable expansion ROMs during this step.
1152  *	(3) Try to allocate resources for disabled devices.  If the
1153  *	    resources were assigned correctly, everything goes well,
1154  *	    if they weren't, they won't disturb allocation of other
1155  *	    resources.
1156  *	(4) Assign new addresses to resources which were either
1157  *	    not configured at all or misconfigured.  If explicitly
1158  *	    requested by the user, configure expansion ROM address
1159  *	    as well.
1160  */
1161 
1162 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1163 {
1164 	struct pci_bus *b;
1165 	int i;
1166 	struct resource *res, *pr;
1167 
1168 	pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1169 		 pci_domain_nr(bus), bus->number);
1170 
1171 	pci_bus_for_each_resource(bus, res, i) {
1172 		if (!res || !res->flags || res->start > res->end || res->parent)
1173 			continue;
1174 
1175 		/* If the resource was left unset at this point, we clear it */
1176 		if (res->flags & IORESOURCE_UNSET)
1177 			goto clear_resource;
1178 
1179 		if (bus->parent == NULL)
1180 			pr = (res->flags & IORESOURCE_IO) ?
1181 				&ioport_resource : &iomem_resource;
1182 		else {
1183 			pr = pci_find_parent_resource(bus->self, res);
1184 			if (pr == res) {
1185 				/* this happens when the generic PCI
1186 				 * code (wrongly) decides that this
1187 				 * bridge is transparent  -- paulus
1188 				 */
1189 				continue;
1190 			}
1191 		}
1192 
1193 		pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1194 			 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1195 			 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1196 
1197 		if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1198 			struct pci_dev *dev = bus->self;
1199 
1200 			if (request_resource(pr, res) == 0)
1201 				continue;
1202 			/*
1203 			 * Must be a conflict with an existing entry.
1204 			 * Move that entry (or entries) under the
1205 			 * bridge resource and try again.
1206 			 */
1207 			if (reparent_resources(pr, res) == 0)
1208 				continue;
1209 
1210 			if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1211 			    pci_claim_bridge_resource(dev,
1212 						i + PCI_BRIDGE_RESOURCES) == 0)
1213 				continue;
1214 		}
1215 		pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n",
1216 			i, bus->number);
1217 	clear_resource:
1218 		/* The resource might be figured out when doing
1219 		 * reassignment based on the resources required
1220 		 * by the downstream PCI devices. Here we set
1221 		 * the size of the resource to be 0 in order to
1222 		 * save more space.
1223 		 */
1224 		res->start = 0;
1225 		res->end = -1;
1226 		res->flags = 0;
1227 	}
1228 
1229 	list_for_each_entry(b, &bus->children, node)
1230 		pcibios_allocate_bus_resources(b);
1231 }
1232 
1233 static inline void alloc_resource(struct pci_dev *dev, int idx)
1234 {
1235 	struct resource *pr, *r = &dev->resource[idx];
1236 
1237 	pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1238 		 pci_name(dev), idx, r);
1239 
1240 	pr = pci_find_parent_resource(dev, r);
1241 	if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1242 	    request_resource(pr, r) < 0) {
1243 		printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1244 		       " of device %s, will remap\n", idx, pci_name(dev));
1245 		if (pr)
1246 			pr_debug("PCI:  parent is %p: %pR\n", pr, pr);
1247 		/* We'll assign a new address later */
1248 		r->flags |= IORESOURCE_UNSET;
1249 		r->end -= r->start;
1250 		r->start = 0;
1251 	}
1252 }
1253 
1254 static void __init pcibios_allocate_resources(int pass)
1255 {
1256 	struct pci_dev *dev = NULL;
1257 	int idx, disabled;
1258 	u16 command;
1259 	struct resource *r;
1260 
1261 	for_each_pci_dev(dev) {
1262 		pci_read_config_word(dev, PCI_COMMAND, &command);
1263 		for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1264 			r = &dev->resource[idx];
1265 			if (r->parent)		/* Already allocated */
1266 				continue;
1267 			if (!r->flags || (r->flags & IORESOURCE_UNSET))
1268 				continue;	/* Not assigned at all */
1269 			/* We only allocate ROMs on pass 1 just in case they
1270 			 * have been screwed up by firmware
1271 			 */
1272 			if (idx == PCI_ROM_RESOURCE )
1273 				disabled = 1;
1274 			if (r->flags & IORESOURCE_IO)
1275 				disabled = !(command & PCI_COMMAND_IO);
1276 			else
1277 				disabled = !(command & PCI_COMMAND_MEMORY);
1278 			if (pass == disabled)
1279 				alloc_resource(dev, idx);
1280 		}
1281 		if (pass)
1282 			continue;
1283 		r = &dev->resource[PCI_ROM_RESOURCE];
1284 		if (r->flags) {
1285 			/* Turn the ROM off, leave the resource region,
1286 			 * but keep it unregistered.
1287 			 */
1288 			u32 reg;
1289 			pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1290 			if (reg & PCI_ROM_ADDRESS_ENABLE) {
1291 				pr_debug("PCI: Switching off ROM of %s\n",
1292 					 pci_name(dev));
1293 				r->flags &= ~IORESOURCE_ROM_ENABLE;
1294 				pci_write_config_dword(dev, dev->rom_base_reg,
1295 						       reg & ~PCI_ROM_ADDRESS_ENABLE);
1296 			}
1297 		}
1298 	}
1299 }
1300 
1301 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1302 {
1303 	struct pci_controller *hose = pci_bus_to_host(bus);
1304 	resource_size_t	offset;
1305 	struct resource *res, *pres;
1306 	int i;
1307 
1308 	pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1309 
1310 	/* Check for IO */
1311 	if (!(hose->io_resource.flags & IORESOURCE_IO))
1312 		goto no_io;
1313 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1314 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1315 	BUG_ON(res == NULL);
1316 	res->name = "Legacy IO";
1317 	res->flags = IORESOURCE_IO;
1318 	res->start = offset;
1319 	res->end = (offset + 0xfff) & 0xfffffffful;
1320 	pr_debug("Candidate legacy IO: %pR\n", res);
1321 	if (request_resource(&hose->io_resource, res)) {
1322 		printk(KERN_DEBUG
1323 		       "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1324 		       pci_domain_nr(bus), bus->number, res);
1325 		kfree(res);
1326 	}
1327 
1328  no_io:
1329 	/* Check for memory */
1330 	for (i = 0; i < 3; i++) {
1331 		pres = &hose->mem_resources[i];
1332 		offset = hose->mem_offset[i];
1333 		if (!(pres->flags & IORESOURCE_MEM))
1334 			continue;
1335 		pr_debug("hose mem res: %pR\n", pres);
1336 		if ((pres->start - offset) <= 0xa0000 &&
1337 		    (pres->end - offset) >= 0xbffff)
1338 			break;
1339 	}
1340 	if (i >= 3)
1341 		return;
1342 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1343 	BUG_ON(res == NULL);
1344 	res->name = "Legacy VGA memory";
1345 	res->flags = IORESOURCE_MEM;
1346 	res->start = 0xa0000 + offset;
1347 	res->end = 0xbffff + offset;
1348 	pr_debug("Candidate VGA memory: %pR\n", res);
1349 	if (request_resource(pres, res)) {
1350 		printk(KERN_DEBUG
1351 		       "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1352 		       pci_domain_nr(bus), bus->number, res);
1353 		kfree(res);
1354 	}
1355 }
1356 
1357 void __init pcibios_resource_survey(void)
1358 {
1359 	struct pci_bus *b;
1360 
1361 	/* Allocate and assign resources */
1362 	list_for_each_entry(b, &pci_root_buses, node)
1363 		pcibios_allocate_bus_resources(b);
1364 	if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1365 		pcibios_allocate_resources(0);
1366 		pcibios_allocate_resources(1);
1367 	}
1368 
1369 	/* Before we start assigning unassigned resource, we try to reserve
1370 	 * the low IO area and the VGA memory area if they intersect the
1371 	 * bus available resources to avoid allocating things on top of them
1372 	 */
1373 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1374 		list_for_each_entry(b, &pci_root_buses, node)
1375 			pcibios_reserve_legacy_regions(b);
1376 	}
1377 
1378 	/* Now, if the platform didn't decide to blindly trust the firmware,
1379 	 * we proceed to assigning things that were left unassigned
1380 	 */
1381 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1382 		pr_debug("PCI: Assigning unassigned resources...\n");
1383 		pci_assign_unassigned_resources();
1384 	}
1385 
1386 	/* Call machine dependent fixup */
1387 	if (ppc_md.pcibios_fixup)
1388 		ppc_md.pcibios_fixup();
1389 }
1390 
1391 /* This is used by the PCI hotplug driver to allocate resource
1392  * of newly plugged busses. We can try to consolidate with the
1393  * rest of the code later, for now, keep it as-is as our main
1394  * resource allocation function doesn't deal with sub-trees yet.
1395  */
1396 void pcibios_claim_one_bus(struct pci_bus *bus)
1397 {
1398 	struct pci_dev *dev;
1399 	struct pci_bus *child_bus;
1400 
1401 	list_for_each_entry(dev, &bus->devices, bus_list) {
1402 		int i;
1403 
1404 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1405 			struct resource *r = &dev->resource[i];
1406 
1407 			if (r->parent || !r->start || !r->flags)
1408 				continue;
1409 
1410 			pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1411 				 pci_name(dev), i, r);
1412 
1413 			if (pci_claim_resource(dev, i) == 0)
1414 				continue;
1415 
1416 			pci_claim_bridge_resource(dev, i);
1417 		}
1418 	}
1419 
1420 	list_for_each_entry(child_bus, &bus->children, node)
1421 		pcibios_claim_one_bus(child_bus);
1422 }
1423 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1424 
1425 
1426 /* pcibios_finish_adding_to_bus
1427  *
1428  * This is to be called by the hotplug code after devices have been
1429  * added to a bus, this include calling it for a PHB that is just
1430  * being added
1431  */
1432 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1433 {
1434 	pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1435 		 pci_domain_nr(bus), bus->number);
1436 
1437 	/* Allocate bus and devices resources */
1438 	pcibios_allocate_bus_resources(bus);
1439 	pcibios_claim_one_bus(bus);
1440 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1441 		if (bus->self)
1442 			pci_assign_unassigned_bridge_resources(bus->self);
1443 		else
1444 			pci_assign_unassigned_bus_resources(bus);
1445 	}
1446 
1447 	/* Fixup EEH */
1448 	eeh_add_device_tree_late(bus);
1449 
1450 	/* Add new devices to global lists.  Register in proc, sysfs. */
1451 	pci_bus_add_devices(bus);
1452 
1453 	/* sysfs files should only be added after devices are added */
1454 	eeh_add_sysfs_files(bus);
1455 }
1456 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1457 
1458 int pcibios_enable_device(struct pci_dev *dev, int mask)
1459 {
1460 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1461 
1462 	if (phb->controller_ops.enable_device_hook)
1463 		if (!phb->controller_ops.enable_device_hook(dev))
1464 			return -EINVAL;
1465 
1466 	return pci_enable_resources(dev, mask);
1467 }
1468 
1469 void pcibios_disable_device(struct pci_dev *dev)
1470 {
1471 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1472 
1473 	if (phb->controller_ops.disable_device)
1474 		phb->controller_ops.disable_device(dev);
1475 }
1476 
1477 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1478 {
1479 	return (unsigned long) hose->io_base_virt - _IO_BASE;
1480 }
1481 
1482 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1483 					struct list_head *resources)
1484 {
1485 	struct resource *res;
1486 	resource_size_t offset;
1487 	int i;
1488 
1489 	/* Hookup PHB IO resource */
1490 	res = &hose->io_resource;
1491 
1492 	if (!res->flags) {
1493 		pr_debug("PCI: I/O resource not set for host"
1494 			 " bridge %pOF (domain %d)\n",
1495 			 hose->dn, hose->global_number);
1496 	} else {
1497 		offset = pcibios_io_space_offset(hose);
1498 
1499 		pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n",
1500 			 res, (unsigned long long)offset);
1501 		pci_add_resource_offset(resources, res, offset);
1502 	}
1503 
1504 	/* Hookup PHB Memory resources */
1505 	for (i = 0; i < 3; ++i) {
1506 		res = &hose->mem_resources[i];
1507 		if (!res->flags)
1508 			continue;
1509 
1510 		offset = hose->mem_offset[i];
1511 		pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1512 			 res, (unsigned long long)offset);
1513 
1514 		pci_add_resource_offset(resources, res, offset);
1515 	}
1516 }
1517 
1518 /*
1519  * Null PCI config access functions, for the case when we can't
1520  * find a hose.
1521  */
1522 #define NULL_PCI_OP(rw, size, type)					\
1523 static int								\
1524 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\
1525 {									\
1526 	return PCIBIOS_DEVICE_NOT_FOUND;    				\
1527 }
1528 
1529 static int
1530 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1531 		 int len, u32 *val)
1532 {
1533 	return PCIBIOS_DEVICE_NOT_FOUND;
1534 }
1535 
1536 static int
1537 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1538 		  int len, u32 val)
1539 {
1540 	return PCIBIOS_DEVICE_NOT_FOUND;
1541 }
1542 
1543 static struct pci_ops null_pci_ops =
1544 {
1545 	.read = null_read_config,
1546 	.write = null_write_config,
1547 };
1548 
1549 /*
1550  * These functions are used early on before PCI scanning is done
1551  * and all of the pci_dev and pci_bus structures have been created.
1552  */
1553 static struct pci_bus *
1554 fake_pci_bus(struct pci_controller *hose, int busnr)
1555 {
1556 	static struct pci_bus bus;
1557 
1558 	if (hose == NULL) {
1559 		printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1560 	}
1561 	bus.number = busnr;
1562 	bus.sysdata = hose;
1563 	bus.ops = hose? hose->ops: &null_pci_ops;
1564 	return &bus;
1565 }
1566 
1567 #define EARLY_PCI_OP(rw, size, type)					\
1568 int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\
1569 			       int devfn, int offset, type value)	\
1570 {									\
1571 	return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\
1572 					    devfn, offset, value);	\
1573 }
1574 
1575 EARLY_PCI_OP(read, byte, u8 *)
1576 EARLY_PCI_OP(read, word, u16 *)
1577 EARLY_PCI_OP(read, dword, u32 *)
1578 EARLY_PCI_OP(write, byte, u8)
1579 EARLY_PCI_OP(write, word, u16)
1580 EARLY_PCI_OP(write, dword, u32)
1581 
1582 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1583 			  int cap)
1584 {
1585 	return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1586 }
1587 
1588 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1589 {
1590 	struct pci_controller *hose = bus->sysdata;
1591 
1592 	return of_node_get(hose->dn);
1593 }
1594 
1595 /**
1596  * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1597  * @hose: Pointer to the PCI host controller instance structure
1598  */
1599 void pcibios_scan_phb(struct pci_controller *hose)
1600 {
1601 	LIST_HEAD(resources);
1602 	struct pci_bus *bus;
1603 	struct device_node *node = hose->dn;
1604 	int mode;
1605 
1606 	pr_debug("PCI: Scanning PHB %pOF\n", node);
1607 
1608 	/* Get some IO space for the new PHB */
1609 	pcibios_setup_phb_io_space(hose);
1610 
1611 	/* Wire up PHB bus resources */
1612 	pcibios_setup_phb_resources(hose, &resources);
1613 
1614 	hose->busn.start = hose->first_busno;
1615 	hose->busn.end	 = hose->last_busno;
1616 	hose->busn.flags = IORESOURCE_BUS;
1617 	pci_add_resource(&resources, &hose->busn);
1618 
1619 	/* Create an empty bus for the toplevel */
1620 	bus = pci_create_root_bus(hose->parent, hose->first_busno,
1621 				  hose->ops, hose, &resources);
1622 	if (bus == NULL) {
1623 		pr_err("Failed to create bus for PCI domain %04x\n",
1624 			hose->global_number);
1625 		pci_free_resource_list(&resources);
1626 		return;
1627 	}
1628 	hose->bus = bus;
1629 
1630 	/* Get probe mode and perform scan */
1631 	mode = PCI_PROBE_NORMAL;
1632 	if (node && hose->controller_ops.probe_mode)
1633 		mode = hose->controller_ops.probe_mode(bus);
1634 	pr_debug("    probe mode: %d\n", mode);
1635 	if (mode == PCI_PROBE_DEVTREE)
1636 		of_scan_bus(node, bus);
1637 
1638 	if (mode == PCI_PROBE_NORMAL) {
1639 		pci_bus_update_busn_res_end(bus, 255);
1640 		hose->last_busno = pci_scan_child_bus(bus);
1641 		pci_bus_update_busn_res_end(bus, hose->last_busno);
1642 	}
1643 
1644 	/* Platform gets a chance to do some global fixups before
1645 	 * we proceed to resource allocation
1646 	 */
1647 	if (ppc_md.pcibios_fixup_phb)
1648 		ppc_md.pcibios_fixup_phb(hose);
1649 
1650 	/* Configure PCI Express settings */
1651 	if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1652 		struct pci_bus *child;
1653 		list_for_each_entry(child, &bus->children, node)
1654 			pcie_bus_configure_settings(child);
1655 	}
1656 }
1657 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1658 
1659 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1660 {
1661 	int i, class = dev->class >> 8;
1662 	/* When configured as agent, programing interface = 1 */
1663 	int prog_if = dev->class & 0xf;
1664 
1665 	if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1666 	     class == PCI_CLASS_BRIDGE_OTHER) &&
1667 		(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1668 		(prog_if == 0) &&
1669 		(dev->bus->parent == NULL)) {
1670 		for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1671 			dev->resource[i].start = 0;
1672 			dev->resource[i].end = 0;
1673 			dev->resource[i].flags = 0;
1674 		}
1675 	}
1676 }
1677 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1678 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1679