xref: /linux/arch/powerpc/kernel/pci-common.c (revision b8e85e6f3a09fc56b0ff574887798962ef8a8f80)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Contains common pci routines for ALL ppc platform
4  * (based on pci_32.c and pci_64.c)
5  *
6  * Port for PPC64 David Engebretsen, IBM Corp.
7  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
8  *
9  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
10  *   Rework, based on alpha PCI code.
11  *
12  * Common pmac/prep/chrp pci routines. -- Cort
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/string.h>
18 #include <linux/init.h>
19 #include <linux/delay.h>
20 #include <linux/export.h>
21 #include <linux/of_address.h>
22 #include <linux/of_pci.h>
23 #include <linux/mm.h>
24 #include <linux/shmem_fs.h>
25 #include <linux/list.h>
26 #include <linux/syscalls.h>
27 #include <linux/irq.h>
28 #include <linux/vmalloc.h>
29 #include <linux/slab.h>
30 #include <linux/vgaarb.h>
31 #include <linux/numa.h>
32 #include <linux/msi.h>
33 #include <linux/irqdomain.h>
34 
35 #include <asm/processor.h>
36 #include <asm/io.h>
37 #include <asm/pci-bridge.h>
38 #include <asm/byteorder.h>
39 #include <asm/machdep.h>
40 #include <asm/ppc-pci.h>
41 #include <asm/eeh.h>
42 #include <asm/setup.h>
43 
44 #include "../../../drivers/pci/pci.h"
45 
46 /* hose_spinlock protects accesses to the phb_bitmap. */
47 static DEFINE_SPINLOCK(hose_spinlock);
48 LIST_HEAD(hose_list);
49 
50 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
51 #define MAX_PHBS 0x10000
52 
53 /*
54  * For dynamic PHB numbering: used/free PHBs tracking bitmap.
55  * Accesses to this bitmap should be protected by hose_spinlock.
56  */
57 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
58 
59 /* ISA Memory physical address */
60 resource_size_t isa_mem_base;
61 EXPORT_SYMBOL(isa_mem_base);
62 
63 
64 static const struct dma_map_ops *pci_dma_ops;
65 
66 void __init set_pci_dma_ops(const struct dma_map_ops *dma_ops)
67 {
68 	pci_dma_ops = dma_ops;
69 }
70 
71 static int get_phb_number(struct device_node *dn)
72 {
73 	int ret, phb_id = -1;
74 	u64 prop;
75 
76 	/*
77 	 * Try fixed PHB numbering first, by checking archs and reading
78 	 * the respective device-tree properties. Firstly, try reading
79 	 * standard "linux,pci-domain", then try reading "ibm,opal-phbid"
80 	 * (only present in powernv OPAL environment), then try device-tree
81 	 * alias and as the last try to use lower bits of "reg" property.
82 	 */
83 	ret = of_get_pci_domain_nr(dn);
84 	if (ret >= 0) {
85 		prop = ret;
86 		ret = 0;
87 	}
88 	if (ret)
89 		ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
90 
91 	if (ret) {
92 		ret = of_alias_get_id(dn, "pci");
93 		if (ret >= 0) {
94 			prop = ret;
95 			ret = 0;
96 		}
97 	}
98 	if (ret) {
99 		u32 prop_32;
100 		ret = of_property_read_u32_index(dn, "reg", 1, &prop_32);
101 		prop = prop_32;
102 	}
103 
104 	if (!ret)
105 		phb_id = (int)(prop & (MAX_PHBS - 1));
106 
107 	spin_lock(&hose_spinlock);
108 
109 	/* We need to be sure to not use the same PHB number twice. */
110 	if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
111 		goto out_unlock;
112 
113 	/* If everything fails then fallback to dynamic PHB numbering. */
114 	phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
115 	BUG_ON(phb_id >= MAX_PHBS);
116 	set_bit(phb_id, phb_bitmap);
117 
118 out_unlock:
119 	spin_unlock(&hose_spinlock);
120 
121 	return phb_id;
122 }
123 
124 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
125 {
126 	struct pci_controller *phb;
127 
128 	phb = kzalloc(sizeof(struct pci_controller), GFP_KERNEL);
129 	if (phb == NULL)
130 		return NULL;
131 
132 	phb->global_number = get_phb_number(dev);
133 
134 	spin_lock(&hose_spinlock);
135 	list_add_tail(&phb->list_node, &hose_list);
136 	spin_unlock(&hose_spinlock);
137 
138 	phb->dn = of_node_get(dev);
139 	phb->is_dynamic = slab_is_available();
140 #ifdef CONFIG_PPC64
141 	if (dev) {
142 		int nid = of_node_to_nid(dev);
143 
144 		if (nid < 0 || !node_online(nid))
145 			nid = NUMA_NO_NODE;
146 
147 		PHB_SET_NODE(phb, nid);
148 	}
149 #endif
150 	return phb;
151 }
152 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
153 
154 void pcibios_free_controller(struct pci_controller *phb)
155 {
156 	spin_lock(&hose_spinlock);
157 
158 	/* Clear bit of phb_bitmap to allow reuse of this PHB number. */
159 	if (phb->global_number < MAX_PHBS)
160 		clear_bit(phb->global_number, phb_bitmap);
161 	of_node_put(phb->dn);
162 	list_del(&phb->list_node);
163 	spin_unlock(&hose_spinlock);
164 
165 	if (phb->is_dynamic)
166 		kfree(phb);
167 }
168 EXPORT_SYMBOL_GPL(pcibios_free_controller);
169 
170 /*
171  * This function is used to call pcibios_free_controller()
172  * in a deferred manner: a callback from the PCI subsystem.
173  *
174  * _*DO NOT*_ call pcibios_free_controller() explicitly if
175  * this is used (or it may access an invalid *phb pointer).
176  *
177  * The callback occurs when all references to the root bus
178  * are dropped (e.g., child buses/devices and their users).
179  *
180  * It's called as .release_fn() of 'struct pci_host_bridge'
181  * which is associated with the 'struct pci_controller.bus'
182  * (root bus) - it expects .release_data to hold a pointer
183  * to 'struct pci_controller'.
184  *
185  * In order to use it, register .release_fn()/release_data
186  * like this:
187  *
188  * pci_set_host_bridge_release(bridge,
189  *                             pcibios_free_controller_deferred
190  *                             (void *) phb);
191  *
192  * e.g. in the pcibios_root_bridge_prepare() callback from
193  * pci_create_root_bus().
194  */
195 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge)
196 {
197 	struct pci_controller *phb = (struct pci_controller *)
198 					 bridge->release_data;
199 
200 	pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic);
201 
202 	pcibios_free_controller(phb);
203 }
204 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred);
205 
206 /*
207  * The function is used to return the minimal alignment
208  * for memory or I/O windows of the associated P2P bridge.
209  * By default, 4KiB alignment for I/O windows and 1MiB for
210  * memory windows.
211  */
212 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
213 					 unsigned long type)
214 {
215 	struct pci_controller *phb = pci_bus_to_host(bus);
216 
217 	if (phb->controller_ops.window_alignment)
218 		return phb->controller_ops.window_alignment(bus, type);
219 
220 	/*
221 	 * PCI core will figure out the default
222 	 * alignment: 4KiB for I/O and 1MiB for
223 	 * memory window.
224 	 */
225 	return 1;
226 }
227 
228 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
229 {
230 	struct pci_controller *hose = pci_bus_to_host(bus);
231 
232 	if (hose->controller_ops.setup_bridge)
233 		hose->controller_ops.setup_bridge(bus, type);
234 }
235 
236 void pcibios_reset_secondary_bus(struct pci_dev *dev)
237 {
238 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
239 
240 	if (phb->controller_ops.reset_secondary_bus) {
241 		phb->controller_ops.reset_secondary_bus(dev);
242 		return;
243 	}
244 
245 	pci_reset_secondary_bus(dev);
246 }
247 
248 resource_size_t pcibios_default_alignment(void)
249 {
250 	if (ppc_md.pcibios_default_alignment)
251 		return ppc_md.pcibios_default_alignment();
252 
253 	return 0;
254 }
255 
256 #ifdef CONFIG_PCI_IOV
257 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
258 {
259 	if (ppc_md.pcibios_iov_resource_alignment)
260 		return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
261 
262 	return pci_iov_resource_size(pdev, resno);
263 }
264 
265 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
266 {
267 	if (ppc_md.pcibios_sriov_enable)
268 		return ppc_md.pcibios_sriov_enable(pdev, num_vfs);
269 
270 	return 0;
271 }
272 
273 int pcibios_sriov_disable(struct pci_dev *pdev)
274 {
275 	if (ppc_md.pcibios_sriov_disable)
276 		return ppc_md.pcibios_sriov_disable(pdev);
277 
278 	return 0;
279 }
280 
281 #endif /* CONFIG_PCI_IOV */
282 
283 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
284 {
285 #ifdef CONFIG_PPC64
286 	return hose->pci_io_size;
287 #else
288 	return resource_size(&hose->io_resource);
289 #endif
290 }
291 
292 int pcibios_vaddr_is_ioport(void __iomem *address)
293 {
294 	int ret = 0;
295 	struct pci_controller *hose;
296 	resource_size_t size;
297 
298 	spin_lock(&hose_spinlock);
299 	list_for_each_entry(hose, &hose_list, list_node) {
300 		size = pcibios_io_size(hose);
301 		if (address >= hose->io_base_virt &&
302 		    address < (hose->io_base_virt + size)) {
303 			ret = 1;
304 			break;
305 		}
306 	}
307 	spin_unlock(&hose_spinlock);
308 	return ret;
309 }
310 
311 unsigned long pci_address_to_pio(phys_addr_t address)
312 {
313 	struct pci_controller *hose;
314 	resource_size_t size;
315 	unsigned long ret = ~0;
316 
317 	spin_lock(&hose_spinlock);
318 	list_for_each_entry(hose, &hose_list, list_node) {
319 		size = pcibios_io_size(hose);
320 		if (address >= hose->io_base_phys &&
321 		    address < (hose->io_base_phys + size)) {
322 			unsigned long base =
323 				(unsigned long)hose->io_base_virt - _IO_BASE;
324 			ret = base + (address - hose->io_base_phys);
325 			break;
326 		}
327 	}
328 	spin_unlock(&hose_spinlock);
329 
330 	return ret;
331 }
332 EXPORT_SYMBOL_GPL(pci_address_to_pio);
333 
334 /*
335  * Return the domain number for this bus.
336  */
337 int pci_domain_nr(struct pci_bus *bus)
338 {
339 	struct pci_controller *hose = pci_bus_to_host(bus);
340 
341 	return hose->global_number;
342 }
343 EXPORT_SYMBOL(pci_domain_nr);
344 
345 /* This routine is meant to be used early during boot, when the
346  * PCI bus numbers have not yet been assigned, and you need to
347  * issue PCI config cycles to an OF device.
348  * It could also be used to "fix" RTAS config cycles if you want
349  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
350  * config cycles.
351  */
352 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
353 {
354 	while(node) {
355 		struct pci_controller *hose, *tmp;
356 		list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
357 			if (hose->dn == node)
358 				return hose;
359 		node = node->parent;
360 	}
361 	return NULL;
362 }
363 
364 struct pci_controller *pci_find_controller_for_domain(int domain_nr)
365 {
366 	struct pci_controller *hose;
367 
368 	list_for_each_entry(hose, &hose_list, list_node)
369 		if (hose->global_number == domain_nr)
370 			return hose;
371 
372 	return NULL;
373 }
374 
375 struct pci_intx_virq {
376 	int virq;
377 	struct kref kref;
378 	struct list_head list_node;
379 };
380 
381 static LIST_HEAD(intx_list);
382 static DEFINE_MUTEX(intx_mutex);
383 
384 static void ppc_pci_intx_release(struct kref *kref)
385 {
386 	struct pci_intx_virq *vi = container_of(kref, struct pci_intx_virq, kref);
387 
388 	list_del(&vi->list_node);
389 	irq_dispose_mapping(vi->virq);
390 	kfree(vi);
391 }
392 
393 static int ppc_pci_unmap_irq_line(struct notifier_block *nb,
394 			       unsigned long action, void *data)
395 {
396 	struct pci_dev *pdev = to_pci_dev(data);
397 
398 	if (action == BUS_NOTIFY_DEL_DEVICE) {
399 		struct pci_intx_virq *vi;
400 
401 		mutex_lock(&intx_mutex);
402 		list_for_each_entry(vi, &intx_list, list_node) {
403 			if (vi->virq == pdev->irq) {
404 				kref_put(&vi->kref, ppc_pci_intx_release);
405 				break;
406 			}
407 		}
408 		mutex_unlock(&intx_mutex);
409 	}
410 
411 	return NOTIFY_DONE;
412 }
413 
414 static struct notifier_block ppc_pci_unmap_irq_notifier = {
415 	.notifier_call = ppc_pci_unmap_irq_line,
416 };
417 
418 static int ppc_pci_register_irq_notifier(void)
419 {
420 	return bus_register_notifier(&pci_bus_type, &ppc_pci_unmap_irq_notifier);
421 }
422 arch_initcall(ppc_pci_register_irq_notifier);
423 
424 /*
425  * Reads the interrupt pin to determine if interrupt is use by card.
426  * If the interrupt is used, then gets the interrupt line from the
427  * openfirmware and sets it in the pci_dev and pci_config line.
428  */
429 static int pci_read_irq_line(struct pci_dev *pci_dev)
430 {
431 	int virq;
432 	struct pci_intx_virq *vi, *vitmp;
433 
434 	/* Preallocate vi as rewind is complex if this fails after mapping */
435 	vi = kzalloc(sizeof(struct pci_intx_virq), GFP_KERNEL);
436 	if (!vi)
437 		return -1;
438 
439 	pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
440 
441 	/* Try to get a mapping from the device-tree */
442 	virq = of_irq_parse_and_map_pci(pci_dev, 0, 0);
443 	if (virq <= 0) {
444 		u8 line, pin;
445 
446 		/* If that fails, lets fallback to what is in the config
447 		 * space and map that through the default controller. We
448 		 * also set the type to level low since that's what PCI
449 		 * interrupts are. If your platform does differently, then
450 		 * either provide a proper interrupt tree or don't use this
451 		 * function.
452 		 */
453 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
454 			goto error_exit;
455 		if (pin == 0)
456 			goto error_exit;
457 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
458 		    line == 0xff || line == 0) {
459 			goto error_exit;
460 		}
461 		pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
462 			 line, pin);
463 
464 		virq = irq_create_mapping(NULL, line);
465 		if (virq)
466 			irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
467 	}
468 
469 	if (!virq) {
470 		pr_debug(" Failed to map !\n");
471 		goto error_exit;
472 	}
473 
474 	pr_debug(" Mapped to linux irq %d\n", virq);
475 
476 	pci_dev->irq = virq;
477 
478 	mutex_lock(&intx_mutex);
479 	list_for_each_entry(vitmp, &intx_list, list_node) {
480 		if (vitmp->virq == virq) {
481 			kref_get(&vitmp->kref);
482 			kfree(vi);
483 			vi = NULL;
484 			break;
485 		}
486 	}
487 	if (vi) {
488 		vi->virq = virq;
489 		kref_init(&vi->kref);
490 		list_add_tail(&vi->list_node, &intx_list);
491 	}
492 	mutex_unlock(&intx_mutex);
493 
494 	return 0;
495 error_exit:
496 	kfree(vi);
497 	return -1;
498 }
499 
500 /*
501  * Platform support for /proc/bus/pci/X/Y mmap()s.
502  *  -- paulus.
503  */
504 int pci_iobar_pfn(struct pci_dev *pdev, int bar, struct vm_area_struct *vma)
505 {
506 	struct pci_controller *hose = pci_bus_to_host(pdev->bus);
507 	resource_size_t ioaddr = pci_resource_start(pdev, bar);
508 
509 	if (!hose)
510 		return -EINVAL;
511 
512 	/* Convert to an offset within this PCI controller */
513 	ioaddr -= (unsigned long)hose->io_base_virt - _IO_BASE;
514 
515 	vma->vm_pgoff += (ioaddr + hose->io_base_phys) >> PAGE_SHIFT;
516 	return 0;
517 }
518 
519 /*
520  * This one is used by /dev/mem and fbdev who have no clue about the
521  * PCI device, it tries to find the PCI device first and calls the
522  * above routine
523  */
524 pgprot_t pci_phys_mem_access_prot(unsigned long pfn,
525 				  unsigned long size,
526 				  pgprot_t prot)
527 {
528 	struct pci_dev *pdev = NULL;
529 	struct resource *found = NULL;
530 	resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
531 	int i;
532 
533 	if (page_is_ram(pfn))
534 		return prot;
535 
536 	prot = pgprot_noncached(prot);
537 	for_each_pci_dev(pdev) {
538 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
539 			struct resource *rp = &pdev->resource[i];
540 			int flags = rp->flags;
541 
542 			/* Active and same type? */
543 			if ((flags & IORESOURCE_MEM) == 0)
544 				continue;
545 			/* In the range of this resource? */
546 			if (offset < (rp->start & PAGE_MASK) ||
547 			    offset > rp->end)
548 				continue;
549 			found = rp;
550 			break;
551 		}
552 		if (found)
553 			break;
554 	}
555 	if (found) {
556 		if (found->flags & IORESOURCE_PREFETCH)
557 			prot = pgprot_noncached_wc(prot);
558 		pci_dev_put(pdev);
559 	}
560 
561 	pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
562 		 (unsigned long long)offset, pgprot_val(prot));
563 
564 	return prot;
565 }
566 
567 /* This provides legacy IO read access on a bus */
568 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
569 {
570 	unsigned long offset;
571 	struct pci_controller *hose = pci_bus_to_host(bus);
572 	struct resource *rp = &hose->io_resource;
573 	void __iomem *addr;
574 
575 	/* Check if port can be supported by that bus. We only check
576 	 * the ranges of the PHB though, not the bus itself as the rules
577 	 * for forwarding legacy cycles down bridges are not our problem
578 	 * here. So if the host bridge supports it, we do it.
579 	 */
580 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
581 	offset += port;
582 
583 	if (!(rp->flags & IORESOURCE_IO))
584 		return -ENXIO;
585 	if (offset < rp->start || (offset + size) > rp->end)
586 		return -ENXIO;
587 	addr = hose->io_base_virt + port;
588 
589 	switch(size) {
590 	case 1:
591 		*((u8 *)val) = in_8(addr);
592 		return 1;
593 	case 2:
594 		if (port & 1)
595 			return -EINVAL;
596 		*((u16 *)val) = in_le16(addr);
597 		return 2;
598 	case 4:
599 		if (port & 3)
600 			return -EINVAL;
601 		*((u32 *)val) = in_le32(addr);
602 		return 4;
603 	}
604 	return -EINVAL;
605 }
606 
607 /* This provides legacy IO write access on a bus */
608 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
609 {
610 	unsigned long offset;
611 	struct pci_controller *hose = pci_bus_to_host(bus);
612 	struct resource *rp = &hose->io_resource;
613 	void __iomem *addr;
614 
615 	/* Check if port can be supported by that bus. We only check
616 	 * the ranges of the PHB though, not the bus itself as the rules
617 	 * for forwarding legacy cycles down bridges are not our problem
618 	 * here. So if the host bridge supports it, we do it.
619 	 */
620 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
621 	offset += port;
622 
623 	if (!(rp->flags & IORESOURCE_IO))
624 		return -ENXIO;
625 	if (offset < rp->start || (offset + size) > rp->end)
626 		return -ENXIO;
627 	addr = hose->io_base_virt + port;
628 
629 	/* WARNING: The generic code is idiotic. It gets passed a pointer
630 	 * to what can be a 1, 2 or 4 byte quantity and always reads that
631 	 * as a u32, which means that we have to correct the location of
632 	 * the data read within those 32 bits for size 1 and 2
633 	 */
634 	switch(size) {
635 	case 1:
636 		out_8(addr, val >> 24);
637 		return 1;
638 	case 2:
639 		if (port & 1)
640 			return -EINVAL;
641 		out_le16(addr, val >> 16);
642 		return 2;
643 	case 4:
644 		if (port & 3)
645 			return -EINVAL;
646 		out_le32(addr, val);
647 		return 4;
648 	}
649 	return -EINVAL;
650 }
651 
652 /* This provides legacy IO or memory mmap access on a bus */
653 int pci_mmap_legacy_page_range(struct pci_bus *bus,
654 			       struct vm_area_struct *vma,
655 			       enum pci_mmap_state mmap_state)
656 {
657 	struct pci_controller *hose = pci_bus_to_host(bus);
658 	resource_size_t offset =
659 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
660 	resource_size_t size = vma->vm_end - vma->vm_start;
661 	struct resource *rp;
662 
663 	pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
664 		 pci_domain_nr(bus), bus->number,
665 		 mmap_state == pci_mmap_mem ? "MEM" : "IO",
666 		 (unsigned long long)offset,
667 		 (unsigned long long)(offset + size - 1));
668 
669 	if (mmap_state == pci_mmap_mem) {
670 		/* Hack alert !
671 		 *
672 		 * Because X is lame and can fail starting if it gets an error trying
673 		 * to mmap legacy_mem (instead of just moving on without legacy memory
674 		 * access) we fake it here by giving it anonymous memory, effectively
675 		 * behaving just like /dev/zero
676 		 */
677 		if ((offset + size) > hose->isa_mem_size) {
678 			printk(KERN_DEBUG
679 			       "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
680 			       current->comm, current->pid, pci_domain_nr(bus), bus->number);
681 			if (vma->vm_flags & VM_SHARED)
682 				return shmem_zero_setup(vma);
683 			return 0;
684 		}
685 		offset += hose->isa_mem_phys;
686 	} else {
687 		unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
688 		unsigned long roffset = offset + io_offset;
689 		rp = &hose->io_resource;
690 		if (!(rp->flags & IORESOURCE_IO))
691 			return -ENXIO;
692 		if (roffset < rp->start || (roffset + size) > rp->end)
693 			return -ENXIO;
694 		offset += hose->io_base_phys;
695 	}
696 	pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
697 
698 	vma->vm_pgoff = offset >> PAGE_SHIFT;
699 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
700 	return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
701 			       vma->vm_end - vma->vm_start,
702 			       vma->vm_page_prot);
703 }
704 
705 void pci_resource_to_user(const struct pci_dev *dev, int bar,
706 			  const struct resource *rsrc,
707 			  resource_size_t *start, resource_size_t *end)
708 {
709 	struct pci_bus_region region;
710 
711 	if (rsrc->flags & IORESOURCE_IO) {
712 		pcibios_resource_to_bus(dev->bus, &region,
713 					(struct resource *) rsrc);
714 		*start = region.start;
715 		*end = region.end;
716 		return;
717 	}
718 
719 	/* We pass a CPU physical address to userland for MMIO instead of a
720 	 * BAR value because X is lame and expects to be able to use that
721 	 * to pass to /dev/mem!
722 	 *
723 	 * That means we may have 64-bit values where some apps only expect
724 	 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO).
725 	 */
726 	*start = rsrc->start;
727 	*end = rsrc->end;
728 }
729 
730 /**
731  * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
732  * @hose: newly allocated pci_controller to be setup
733  * @dev: device node of the host bridge
734  * @primary: set if primary bus (32 bits only, soon to be deprecated)
735  *
736  * This function will parse the "ranges" property of a PCI host bridge device
737  * node and setup the resource mapping of a pci controller based on its
738  * content.
739  *
740  * Life would be boring if it wasn't for a few issues that we have to deal
741  * with here:
742  *
743  *   - We can only cope with one IO space range and up to 3 Memory space
744  *     ranges. However, some machines (thanks Apple !) tend to split their
745  *     space into lots of small contiguous ranges. So we have to coalesce.
746  *
747  *   - Some busses have IO space not starting at 0, which causes trouble with
748  *     the way we do our IO resource renumbering. The code somewhat deals with
749  *     it for 64 bits but I would expect problems on 32 bits.
750  *
751  *   - Some 32 bits platforms such as 4xx can have physical space larger than
752  *     32 bits so we need to use 64 bits values for the parsing
753  */
754 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
755 				  struct device_node *dev, int primary)
756 {
757 	int memno = 0;
758 	struct resource *res;
759 	struct of_pci_range range;
760 	struct of_pci_range_parser parser;
761 
762 	printk(KERN_INFO "PCI host bridge %pOF %s ranges:\n",
763 	       dev, primary ? "(primary)" : "");
764 
765 	/* Check for ranges property */
766 	if (of_pci_range_parser_init(&parser, dev))
767 		return;
768 
769 	/* Parse it */
770 	for_each_of_pci_range(&parser, &range) {
771 		/* If we failed translation or got a zero-sized region
772 		 * (some FW try to feed us with non sensical zero sized regions
773 		 * such as power3 which look like some kind of attempt at exposing
774 		 * the VGA memory hole)
775 		 */
776 		if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
777 			continue;
778 
779 		/* Act based on address space type */
780 		res = NULL;
781 		switch (range.flags & IORESOURCE_TYPE_BITS) {
782 		case IORESOURCE_IO:
783 			printk(KERN_INFO
784 			       "  IO 0x%016llx..0x%016llx -> 0x%016llx\n",
785 			       range.cpu_addr, range.cpu_addr + range.size - 1,
786 			       range.pci_addr);
787 
788 			/* We support only one IO range */
789 			if (hose->pci_io_size) {
790 				printk(KERN_INFO
791 				       " \\--> Skipped (too many) !\n");
792 				continue;
793 			}
794 #ifdef CONFIG_PPC32
795 			/* On 32 bits, limit I/O space to 16MB */
796 			if (range.size > 0x01000000)
797 				range.size = 0x01000000;
798 
799 			/* 32 bits needs to map IOs here */
800 			hose->io_base_virt = ioremap(range.cpu_addr,
801 						range.size);
802 
803 			/* Expect trouble if pci_addr is not 0 */
804 			if (primary)
805 				isa_io_base =
806 					(unsigned long)hose->io_base_virt;
807 #endif /* CONFIG_PPC32 */
808 			/* pci_io_size and io_base_phys always represent IO
809 			 * space starting at 0 so we factor in pci_addr
810 			 */
811 			hose->pci_io_size = range.pci_addr + range.size;
812 			hose->io_base_phys = range.cpu_addr - range.pci_addr;
813 
814 			/* Build resource */
815 			res = &hose->io_resource;
816 			range.cpu_addr = range.pci_addr;
817 			break;
818 		case IORESOURCE_MEM:
819 			printk(KERN_INFO
820 			       " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
821 			       range.cpu_addr, range.cpu_addr + range.size - 1,
822 			       range.pci_addr,
823 			       (range.flags & IORESOURCE_PREFETCH) ?
824 			       "Prefetch" : "");
825 
826 			/* We support only 3 memory ranges */
827 			if (memno >= 3) {
828 				printk(KERN_INFO
829 				       " \\--> Skipped (too many) !\n");
830 				continue;
831 			}
832 			/* Handles ISA memory hole space here */
833 			if (range.pci_addr == 0) {
834 				if (primary || isa_mem_base == 0)
835 					isa_mem_base = range.cpu_addr;
836 				hose->isa_mem_phys = range.cpu_addr;
837 				hose->isa_mem_size = range.size;
838 			}
839 
840 			/* Build resource */
841 			hose->mem_offset[memno] = range.cpu_addr -
842 							range.pci_addr;
843 			res = &hose->mem_resources[memno++];
844 			break;
845 		}
846 		if (res != NULL) {
847 			res->name = dev->full_name;
848 			res->flags = range.flags;
849 			res->start = range.cpu_addr;
850 			res->end = range.cpu_addr + range.size - 1;
851 			res->parent = res->child = res->sibling = NULL;
852 		}
853 	}
854 }
855 
856 /* Decide whether to display the domain number in /proc */
857 int pci_proc_domain(struct pci_bus *bus)
858 {
859 	struct pci_controller *hose = pci_bus_to_host(bus);
860 
861 	if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
862 		return 0;
863 	if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
864 		return hose->global_number != 0;
865 	return 1;
866 }
867 
868 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
869 {
870 	if (ppc_md.pcibios_root_bridge_prepare)
871 		return ppc_md.pcibios_root_bridge_prepare(bridge);
872 
873 	return 0;
874 }
875 
876 /* This header fixup will do the resource fixup for all devices as they are
877  * probed, but not for bridge ranges
878  */
879 static void pcibios_fixup_resources(struct pci_dev *dev)
880 {
881 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
882 	struct resource *res;
883 	int i;
884 
885 	if (!hose) {
886 		printk(KERN_ERR "No host bridge for PCI dev %s !\n",
887 		       pci_name(dev));
888 		return;
889 	}
890 
891 	if (dev->is_virtfn)
892 		return;
893 
894 	pci_dev_for_each_resource(dev, res, i) {
895 		struct pci_bus_region reg;
896 
897 		if (!res->flags)
898 			continue;
899 
900 		/* If we're going to re-assign everything, we mark all resources
901 		 * as unset (and 0-base them). In addition, we mark BARs starting
902 		 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
903 		 * since in that case, we don't want to re-assign anything
904 		 */
905 		pcibios_resource_to_bus(dev->bus, &reg, res);
906 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
907 		    (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
908 			/* Only print message if not re-assigning */
909 			if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
910 				pr_debug("PCI:%s Resource %d %pR is unassigned\n",
911 					 pci_name(dev), i, res);
912 			res->end -= res->start;
913 			res->start = 0;
914 			res->flags |= IORESOURCE_UNSET;
915 			continue;
916 		}
917 
918 		pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
919 	}
920 
921 	/* Call machine specific resource fixup */
922 	if (ppc_md.pcibios_fixup_resources)
923 		ppc_md.pcibios_fixup_resources(dev);
924 }
925 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
926 
927 /* This function tries to figure out if a bridge resource has been initialized
928  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
929  * things go more smoothly when it gets it right. It should covers cases such
930  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
931  */
932 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
933 						 struct resource *res)
934 {
935 	struct pci_controller *hose = pci_bus_to_host(bus);
936 	struct pci_dev *dev = bus->self;
937 	resource_size_t offset;
938 	struct pci_bus_region region;
939 	u16 command;
940 	int i;
941 
942 	/* We don't do anything if PCI_PROBE_ONLY is set */
943 	if (pci_has_flag(PCI_PROBE_ONLY))
944 		return 0;
945 
946 	/* Job is a bit different between memory and IO */
947 	if (res->flags & IORESOURCE_MEM) {
948 		pcibios_resource_to_bus(dev->bus, &region, res);
949 
950 		/* If the BAR is non-0 then it's probably been initialized */
951 		if (region.start != 0)
952 			return 0;
953 
954 		/* The BAR is 0, let's check if memory decoding is enabled on
955 		 * the bridge. If not, we consider it unassigned
956 		 */
957 		pci_read_config_word(dev, PCI_COMMAND, &command);
958 		if ((command & PCI_COMMAND_MEMORY) == 0)
959 			return 1;
960 
961 		/* Memory decoding is enabled and the BAR is 0. If any of the bridge
962 		 * resources covers that starting address (0 then it's good enough for
963 		 * us for memory space)
964 		 */
965 		for (i = 0; i < 3; i++) {
966 			if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
967 			    hose->mem_resources[i].start == hose->mem_offset[i])
968 				return 0;
969 		}
970 
971 		/* Well, it starts at 0 and we know it will collide so we may as
972 		 * well consider it as unassigned. That covers the Apple case.
973 		 */
974 		return 1;
975 	} else {
976 		/* If the BAR is non-0, then we consider it assigned */
977 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
978 		if (((res->start - offset) & 0xfffffffful) != 0)
979 			return 0;
980 
981 		/* Here, we are a bit different than memory as typically IO space
982 		 * starting at low addresses -is- valid. What we do instead if that
983 		 * we consider as unassigned anything that doesn't have IO enabled
984 		 * in the PCI command register, and that's it.
985 		 */
986 		pci_read_config_word(dev, PCI_COMMAND, &command);
987 		if (command & PCI_COMMAND_IO)
988 			return 0;
989 
990 		/* It's starting at 0 and IO is disabled in the bridge, consider
991 		 * it unassigned
992 		 */
993 		return 1;
994 	}
995 }
996 
997 /* Fixup resources of a PCI<->PCI bridge */
998 static void pcibios_fixup_bridge(struct pci_bus *bus)
999 {
1000 	struct resource *res;
1001 	int i;
1002 
1003 	struct pci_dev *dev = bus->self;
1004 
1005 	pci_bus_for_each_resource(bus, res, i) {
1006 		if (!res || !res->flags)
1007 			continue;
1008 		if (i >= 3 && bus->self->transparent)
1009 			continue;
1010 
1011 		/* If we're going to reassign everything, we can
1012 		 * shrink the P2P resource to have size as being
1013 		 * of 0 in order to save space.
1014 		 */
1015 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1016 			res->flags |= IORESOURCE_UNSET;
1017 			res->start = 0;
1018 			res->end = -1;
1019 			continue;
1020 		}
1021 
1022 		pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
1023 
1024 		/* Try to detect uninitialized P2P bridge resources,
1025 		 * and clear them out so they get re-assigned later
1026 		 */
1027 		if (pcibios_uninitialized_bridge_resource(bus, res)) {
1028 			res->flags = 0;
1029 			pr_debug("PCI:%s            (unassigned)\n", pci_name(dev));
1030 		}
1031 	}
1032 }
1033 
1034 void pcibios_setup_bus_self(struct pci_bus *bus)
1035 {
1036 	struct pci_controller *phb;
1037 
1038 	/* Fix up the bus resources for P2P bridges */
1039 	if (bus->self != NULL)
1040 		pcibios_fixup_bridge(bus);
1041 
1042 	/* Platform specific bus fixups. This is currently only used
1043 	 * by fsl_pci and I'm hoping to get rid of it at some point
1044 	 */
1045 	if (ppc_md.pcibios_fixup_bus)
1046 		ppc_md.pcibios_fixup_bus(bus);
1047 
1048 	/* Setup bus DMA mappings */
1049 	phb = pci_bus_to_host(bus);
1050 	if (phb->controller_ops.dma_bus_setup)
1051 		phb->controller_ops.dma_bus_setup(bus);
1052 }
1053 
1054 void pcibios_bus_add_device(struct pci_dev *dev)
1055 {
1056 	struct pci_controller *phb;
1057 	/* Fixup NUMA node as it may not be setup yet by the generic
1058 	 * code and is needed by the DMA init
1059 	 */
1060 	set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
1061 
1062 	/* Hook up default DMA ops */
1063 	set_dma_ops(&dev->dev, pci_dma_ops);
1064 	dev->dev.archdata.dma_offset = PCI_DRAM_OFFSET;
1065 
1066 	/* Additional platform DMA/iommu setup */
1067 	phb = pci_bus_to_host(dev->bus);
1068 	if (phb->controller_ops.dma_dev_setup)
1069 		phb->controller_ops.dma_dev_setup(dev);
1070 
1071 	/* Read default IRQs and fixup if necessary */
1072 	pci_read_irq_line(dev);
1073 	if (ppc_md.pci_irq_fixup)
1074 		ppc_md.pci_irq_fixup(dev);
1075 
1076 	if (ppc_md.pcibios_bus_add_device)
1077 		ppc_md.pcibios_bus_add_device(dev);
1078 }
1079 
1080 int pcibios_device_add(struct pci_dev *dev)
1081 {
1082 	struct irq_domain *d;
1083 
1084 #ifdef CONFIG_PCI_IOV
1085 	if (ppc_md.pcibios_fixup_sriov)
1086 		ppc_md.pcibios_fixup_sriov(dev);
1087 #endif /* CONFIG_PCI_IOV */
1088 
1089 	d = dev_get_msi_domain(&dev->bus->dev);
1090 	if (d)
1091 		dev_set_msi_domain(&dev->dev, d);
1092 	return 0;
1093 }
1094 
1095 void pcibios_set_master(struct pci_dev *dev)
1096 {
1097 	/* No special bus mastering setup handling */
1098 }
1099 
1100 void pcibios_fixup_bus(struct pci_bus *bus)
1101 {
1102 	/* When called from the generic PCI probe, read PCI<->PCI bridge
1103 	 * bases. This is -not- called when generating the PCI tree from
1104 	 * the OF device-tree.
1105 	 */
1106 	pci_read_bridge_bases(bus);
1107 
1108 	/* Now fixup the bus */
1109 	pcibios_setup_bus_self(bus);
1110 }
1111 EXPORT_SYMBOL(pcibios_fixup_bus);
1112 
1113 static int skip_isa_ioresource_align(struct pci_dev *dev)
1114 {
1115 	if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1116 	    !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1117 		return 1;
1118 	return 0;
1119 }
1120 
1121 /*
1122  * We need to avoid collisions with `mirrored' VGA ports
1123  * and other strange ISA hardware, so we always want the
1124  * addresses to be allocated in the 0x000-0x0ff region
1125  * modulo 0x400.
1126  *
1127  * Why? Because some silly external IO cards only decode
1128  * the low 10 bits of the IO address. The 0x00-0xff region
1129  * is reserved for motherboard devices that decode all 16
1130  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1131  * but we want to try to avoid allocating at 0x2900-0x2bff
1132  * which might have be mirrored at 0x0100-0x03ff..
1133  */
1134 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1135 				resource_size_t size, resource_size_t align)
1136 {
1137 	struct pci_dev *dev = data;
1138 	resource_size_t start = res->start;
1139 
1140 	if (res->flags & IORESOURCE_IO) {
1141 		if (skip_isa_ioresource_align(dev))
1142 			return start;
1143 		if (start & 0x300)
1144 			start = (start + 0x3ff) & ~0x3ff;
1145 	}
1146 
1147 	return start;
1148 }
1149 EXPORT_SYMBOL(pcibios_align_resource);
1150 
1151 /*
1152  * Reparent resource children of pr that conflict with res
1153  * under res, and make res replace those children.
1154  */
1155 static int reparent_resources(struct resource *parent,
1156 				     struct resource *res)
1157 {
1158 	struct resource *p, **pp;
1159 	struct resource **firstpp = NULL;
1160 
1161 	for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1162 		if (p->end < res->start)
1163 			continue;
1164 		if (res->end < p->start)
1165 			break;
1166 		if (p->start < res->start || p->end > res->end)
1167 			return -1;	/* not completely contained */
1168 		if (firstpp == NULL)
1169 			firstpp = pp;
1170 	}
1171 	if (firstpp == NULL)
1172 		return -1;	/* didn't find any conflicting entries? */
1173 	res->parent = parent;
1174 	res->child = *firstpp;
1175 	res->sibling = *pp;
1176 	*firstpp = res;
1177 	*pp = NULL;
1178 	for (p = res->child; p != NULL; p = p->sibling) {
1179 		p->parent = res;
1180 		pr_debug("PCI: Reparented %s %pR under %s\n",
1181 			 p->name, p, res->name);
1182 	}
1183 	return 0;
1184 }
1185 
1186 /*
1187  *  Handle resources of PCI devices.  If the world were perfect, we could
1188  *  just allocate all the resource regions and do nothing more.  It isn't.
1189  *  On the other hand, we cannot just re-allocate all devices, as it would
1190  *  require us to know lots of host bridge internals.  So we attempt to
1191  *  keep as much of the original configuration as possible, but tweak it
1192  *  when it's found to be wrong.
1193  *
1194  *  Known BIOS problems we have to work around:
1195  *	- I/O or memory regions not configured
1196  *	- regions configured, but not enabled in the command register
1197  *	- bogus I/O addresses above 64K used
1198  *	- expansion ROMs left enabled (this may sound harmless, but given
1199  *	  the fact the PCI specs explicitly allow address decoders to be
1200  *	  shared between expansion ROMs and other resource regions, it's
1201  *	  at least dangerous)
1202  *
1203  *  Our solution:
1204  *	(1) Allocate resources for all buses behind PCI-to-PCI bridges.
1205  *	    This gives us fixed barriers on where we can allocate.
1206  *	(2) Allocate resources for all enabled devices.  If there is
1207  *	    a collision, just mark the resource as unallocated. Also
1208  *	    disable expansion ROMs during this step.
1209  *	(3) Try to allocate resources for disabled devices.  If the
1210  *	    resources were assigned correctly, everything goes well,
1211  *	    if they weren't, they won't disturb allocation of other
1212  *	    resources.
1213  *	(4) Assign new addresses to resources which were either
1214  *	    not configured at all or misconfigured.  If explicitly
1215  *	    requested by the user, configure expansion ROM address
1216  *	    as well.
1217  */
1218 
1219 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1220 {
1221 	struct pci_bus *b;
1222 	int i;
1223 	struct resource *res, *pr;
1224 
1225 	pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1226 		 pci_domain_nr(bus), bus->number);
1227 
1228 	pci_bus_for_each_resource(bus, res, i) {
1229 		if (!res || !res->flags || res->start > res->end || res->parent)
1230 			continue;
1231 
1232 		/* If the resource was left unset at this point, we clear it */
1233 		if (res->flags & IORESOURCE_UNSET)
1234 			goto clear_resource;
1235 
1236 		if (bus->parent == NULL)
1237 			pr = (res->flags & IORESOURCE_IO) ?
1238 				&ioport_resource : &iomem_resource;
1239 		else {
1240 			pr = pci_find_parent_resource(bus->self, res);
1241 			if (pr == res) {
1242 				/* this happens when the generic PCI
1243 				 * code (wrongly) decides that this
1244 				 * bridge is transparent  -- paulus
1245 				 */
1246 				continue;
1247 			}
1248 		}
1249 
1250 		pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1251 			 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1252 			 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1253 
1254 		if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1255 			struct pci_dev *dev = bus->self;
1256 
1257 			if (request_resource(pr, res) == 0)
1258 				continue;
1259 			/*
1260 			 * Must be a conflict with an existing entry.
1261 			 * Move that entry (or entries) under the
1262 			 * bridge resource and try again.
1263 			 */
1264 			if (reparent_resources(pr, res) == 0)
1265 				continue;
1266 
1267 			if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1268 			    pci_claim_bridge_resource(dev,
1269 						i + PCI_BRIDGE_RESOURCES) == 0)
1270 				continue;
1271 		}
1272 		pr_warn("PCI: Cannot allocate resource region %d of PCI bridge %d, will remap\n",
1273 			i, bus->number);
1274 	clear_resource:
1275 		/* The resource might be figured out when doing
1276 		 * reassignment based on the resources required
1277 		 * by the downstream PCI devices. Here we set
1278 		 * the size of the resource to be 0 in order to
1279 		 * save more space.
1280 		 */
1281 		res->start = 0;
1282 		res->end = -1;
1283 		res->flags = 0;
1284 	}
1285 
1286 	list_for_each_entry(b, &bus->children, node)
1287 		pcibios_allocate_bus_resources(b);
1288 }
1289 
1290 static inline void alloc_resource(struct pci_dev *dev, int idx)
1291 {
1292 	struct resource *pr, *r = &dev->resource[idx];
1293 
1294 	pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1295 		 pci_name(dev), idx, r);
1296 
1297 	pr = pci_find_parent_resource(dev, r);
1298 	if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1299 	    request_resource(pr, r) < 0) {
1300 		printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1301 		       " of device %s, will remap\n", idx, pci_name(dev));
1302 		if (pr)
1303 			pr_debug("PCI:  parent is %p: %pR\n", pr, pr);
1304 		/* We'll assign a new address later */
1305 		r->flags |= IORESOURCE_UNSET;
1306 		r->end -= r->start;
1307 		r->start = 0;
1308 	}
1309 }
1310 
1311 static void __init pcibios_allocate_resources(int pass)
1312 {
1313 	struct pci_dev *dev = NULL;
1314 	int idx, disabled;
1315 	u16 command;
1316 	struct resource *r;
1317 
1318 	for_each_pci_dev(dev) {
1319 		pci_read_config_word(dev, PCI_COMMAND, &command);
1320 		for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1321 			r = &dev->resource[idx];
1322 			if (r->parent)		/* Already allocated */
1323 				continue;
1324 			if (!r->flags || (r->flags & IORESOURCE_UNSET))
1325 				continue;	/* Not assigned at all */
1326 			/* We only allocate ROMs on pass 1 just in case they
1327 			 * have been screwed up by firmware
1328 			 */
1329 			if (idx == PCI_ROM_RESOURCE )
1330 				disabled = 1;
1331 			if (r->flags & IORESOURCE_IO)
1332 				disabled = !(command & PCI_COMMAND_IO);
1333 			else
1334 				disabled = !(command & PCI_COMMAND_MEMORY);
1335 			if (pass == disabled)
1336 				alloc_resource(dev, idx);
1337 		}
1338 		if (pass)
1339 			continue;
1340 		r = &dev->resource[PCI_ROM_RESOURCE];
1341 		if (r->flags) {
1342 			/* Turn the ROM off, leave the resource region,
1343 			 * but keep it unregistered.
1344 			 */
1345 			u32 reg;
1346 			pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1347 			if (reg & PCI_ROM_ADDRESS_ENABLE) {
1348 				pr_debug("PCI: Switching off ROM of %s\n",
1349 					 pci_name(dev));
1350 				r->flags &= ~IORESOURCE_ROM_ENABLE;
1351 				pci_write_config_dword(dev, dev->rom_base_reg,
1352 						       reg & ~PCI_ROM_ADDRESS_ENABLE);
1353 			}
1354 		}
1355 	}
1356 }
1357 
1358 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1359 {
1360 	struct pci_controller *hose = pci_bus_to_host(bus);
1361 	resource_size_t	offset;
1362 	struct resource *res, *pres;
1363 	int i;
1364 
1365 	pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1366 
1367 	/* Check for IO */
1368 	if (!(hose->io_resource.flags & IORESOURCE_IO))
1369 		goto no_io;
1370 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1371 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1372 	BUG_ON(res == NULL);
1373 	res->name = "Legacy IO";
1374 	res->flags = IORESOURCE_IO;
1375 	res->start = offset;
1376 	res->end = (offset + 0xfff) & 0xfffffffful;
1377 	pr_debug("Candidate legacy IO: %pR\n", res);
1378 	if (request_resource(&hose->io_resource, res)) {
1379 		printk(KERN_DEBUG
1380 		       "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1381 		       pci_domain_nr(bus), bus->number, res);
1382 		kfree(res);
1383 	}
1384 
1385  no_io:
1386 	/* Check for memory */
1387 	for (i = 0; i < 3; i++) {
1388 		pres = &hose->mem_resources[i];
1389 		offset = hose->mem_offset[i];
1390 		if (!(pres->flags & IORESOURCE_MEM))
1391 			continue;
1392 		pr_debug("hose mem res: %pR\n", pres);
1393 		if ((pres->start - offset) <= 0xa0000 &&
1394 		    (pres->end - offset) >= 0xbffff)
1395 			break;
1396 	}
1397 	if (i >= 3)
1398 		return;
1399 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1400 	BUG_ON(res == NULL);
1401 	res->name = "Legacy VGA memory";
1402 	res->flags = IORESOURCE_MEM;
1403 	res->start = 0xa0000 + offset;
1404 	res->end = 0xbffff + offset;
1405 	pr_debug("Candidate VGA memory: %pR\n", res);
1406 	if (request_resource(pres, res)) {
1407 		printk(KERN_DEBUG
1408 		       "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1409 		       pci_domain_nr(bus), bus->number, res);
1410 		kfree(res);
1411 	}
1412 }
1413 
1414 void __init pcibios_resource_survey(void)
1415 {
1416 	struct pci_bus *b;
1417 
1418 	/* Allocate and assign resources */
1419 	list_for_each_entry(b, &pci_root_buses, node)
1420 		pcibios_allocate_bus_resources(b);
1421 	if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
1422 		pcibios_allocate_resources(0);
1423 		pcibios_allocate_resources(1);
1424 	}
1425 
1426 	/* Before we start assigning unassigned resource, we try to reserve
1427 	 * the low IO area and the VGA memory area if they intersect the
1428 	 * bus available resources to avoid allocating things on top of them
1429 	 */
1430 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1431 		list_for_each_entry(b, &pci_root_buses, node)
1432 			pcibios_reserve_legacy_regions(b);
1433 	}
1434 
1435 	/* Now, if the platform didn't decide to blindly trust the firmware,
1436 	 * we proceed to assigning things that were left unassigned
1437 	 */
1438 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1439 		pr_debug("PCI: Assigning unassigned resources...\n");
1440 		pci_assign_unassigned_resources();
1441 	}
1442 }
1443 
1444 /* This is used by the PCI hotplug driver to allocate resource
1445  * of newly plugged busses. We can try to consolidate with the
1446  * rest of the code later, for now, keep it as-is as our main
1447  * resource allocation function doesn't deal with sub-trees yet.
1448  */
1449 void pcibios_claim_one_bus(struct pci_bus *bus)
1450 {
1451 	struct pci_dev *dev;
1452 	struct pci_bus *child_bus;
1453 
1454 	list_for_each_entry(dev, &bus->devices, bus_list) {
1455 		struct resource *r;
1456 		int i;
1457 
1458 		pci_dev_for_each_resource(dev, r, i) {
1459 			if (r->parent || !r->start || !r->flags)
1460 				continue;
1461 
1462 			pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1463 				 pci_name(dev), i, r);
1464 
1465 			if (pci_claim_resource(dev, i) == 0)
1466 				continue;
1467 
1468 			pci_claim_bridge_resource(dev, i);
1469 		}
1470 	}
1471 
1472 	list_for_each_entry(child_bus, &bus->children, node)
1473 		pcibios_claim_one_bus(child_bus);
1474 }
1475 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1476 
1477 
1478 /* pcibios_finish_adding_to_bus
1479  *
1480  * This is to be called by the hotplug code after devices have been
1481  * added to a bus, this include calling it for a PHB that is just
1482  * being added
1483  */
1484 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1485 {
1486 	pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1487 		 pci_domain_nr(bus), bus->number);
1488 
1489 	/* Allocate bus and devices resources */
1490 	pcibios_allocate_bus_resources(bus);
1491 	pcibios_claim_one_bus(bus);
1492 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1493 		if (bus->self)
1494 			pci_assign_unassigned_bridge_resources(bus->self);
1495 		else
1496 			pci_assign_unassigned_bus_resources(bus);
1497 	}
1498 
1499 	/* Add new devices to global lists.  Register in proc, sysfs. */
1500 	pci_bus_add_devices(bus);
1501 }
1502 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1503 
1504 int pcibios_enable_device(struct pci_dev *dev, int mask)
1505 {
1506 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1507 
1508 	if (phb->controller_ops.enable_device_hook)
1509 		if (!phb->controller_ops.enable_device_hook(dev))
1510 			return -EINVAL;
1511 
1512 	return pci_enable_resources(dev, mask);
1513 }
1514 
1515 void pcibios_disable_device(struct pci_dev *dev)
1516 {
1517 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1518 
1519 	if (phb->controller_ops.disable_device)
1520 		phb->controller_ops.disable_device(dev);
1521 }
1522 
1523 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1524 {
1525 	return (unsigned long) hose->io_base_virt - _IO_BASE;
1526 }
1527 
1528 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1529 					struct list_head *resources)
1530 {
1531 	struct resource *res;
1532 	resource_size_t offset;
1533 	int i;
1534 
1535 	/* Hookup PHB IO resource */
1536 	res = &hose->io_resource;
1537 
1538 	if (!res->flags) {
1539 		pr_debug("PCI: I/O resource not set for host"
1540 			 " bridge %pOF (domain %d)\n",
1541 			 hose->dn, hose->global_number);
1542 	} else {
1543 		offset = pcibios_io_space_offset(hose);
1544 
1545 		pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n",
1546 			 res, (unsigned long long)offset);
1547 		pci_add_resource_offset(resources, res, offset);
1548 	}
1549 
1550 	/* Hookup PHB Memory resources */
1551 	for (i = 0; i < 3; ++i) {
1552 		res = &hose->mem_resources[i];
1553 		if (!res->flags)
1554 			continue;
1555 
1556 		offset = hose->mem_offset[i];
1557 		pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1558 			 res, (unsigned long long)offset);
1559 
1560 		pci_add_resource_offset(resources, res, offset);
1561 	}
1562 }
1563 
1564 /*
1565  * Null PCI config access functions, for the case when we can't
1566  * find a hose.
1567  */
1568 #define NULL_PCI_OP(rw, size, type)					\
1569 static int								\
1570 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\
1571 {									\
1572 	return PCIBIOS_DEVICE_NOT_FOUND;    				\
1573 }
1574 
1575 static int
1576 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1577 		 int len, u32 *val)
1578 {
1579 	return PCIBIOS_DEVICE_NOT_FOUND;
1580 }
1581 
1582 static int
1583 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1584 		  int len, u32 val)
1585 {
1586 	return PCIBIOS_DEVICE_NOT_FOUND;
1587 }
1588 
1589 static struct pci_ops null_pci_ops =
1590 {
1591 	.read = null_read_config,
1592 	.write = null_write_config,
1593 };
1594 
1595 /*
1596  * These functions are used early on before PCI scanning is done
1597  * and all of the pci_dev and pci_bus structures have been created.
1598  */
1599 static struct pci_bus *
1600 fake_pci_bus(struct pci_controller *hose, int busnr)
1601 {
1602 	static struct pci_bus bus;
1603 
1604 	if (hose == NULL) {
1605 		printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1606 	}
1607 	bus.number = busnr;
1608 	bus.sysdata = hose;
1609 	bus.ops = hose? hose->ops: &null_pci_ops;
1610 	return &bus;
1611 }
1612 
1613 #define EARLY_PCI_OP(rw, size, type)					\
1614 int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\
1615 			       int devfn, int offset, type value)	\
1616 {									\
1617 	return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\
1618 					    devfn, offset, value);	\
1619 }
1620 
1621 EARLY_PCI_OP(read, byte, u8 *)
1622 EARLY_PCI_OP(read, word, u16 *)
1623 EARLY_PCI_OP(read, dword, u32 *)
1624 EARLY_PCI_OP(write, byte, u8)
1625 EARLY_PCI_OP(write, word, u16)
1626 EARLY_PCI_OP(write, dword, u32)
1627 
1628 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1629 			  int cap)
1630 {
1631 	return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1632 }
1633 
1634 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1635 {
1636 	struct pci_controller *hose = bus->sysdata;
1637 
1638 	return of_node_get(hose->dn);
1639 }
1640 
1641 /**
1642  * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1643  * @hose: Pointer to the PCI host controller instance structure
1644  */
1645 void pcibios_scan_phb(struct pci_controller *hose)
1646 {
1647 	LIST_HEAD(resources);
1648 	struct pci_bus *bus;
1649 	struct device_node *node = hose->dn;
1650 	int mode;
1651 
1652 	pr_debug("PCI: Scanning PHB %pOF\n", node);
1653 
1654 	/* Get some IO space for the new PHB */
1655 	pcibios_setup_phb_io_space(hose);
1656 
1657 	/* Wire up PHB bus resources */
1658 	pcibios_setup_phb_resources(hose, &resources);
1659 
1660 	hose->busn.start = hose->first_busno;
1661 	hose->busn.end	 = hose->last_busno;
1662 	hose->busn.flags = IORESOURCE_BUS;
1663 	pci_add_resource(&resources, &hose->busn);
1664 
1665 	/* Create an empty bus for the toplevel */
1666 	bus = pci_create_root_bus(hose->parent, hose->first_busno,
1667 				  hose->ops, hose, &resources);
1668 	if (bus == NULL) {
1669 		pr_err("Failed to create bus for PCI domain %04x\n",
1670 			hose->global_number);
1671 		pci_free_resource_list(&resources);
1672 		return;
1673 	}
1674 	hose->bus = bus;
1675 
1676 	/* Get probe mode and perform scan */
1677 	mode = PCI_PROBE_NORMAL;
1678 	if (node && hose->controller_ops.probe_mode)
1679 		mode = hose->controller_ops.probe_mode(bus);
1680 	pr_debug("    probe mode: %d\n", mode);
1681 	if (mode == PCI_PROBE_DEVTREE)
1682 		of_scan_bus(node, bus);
1683 
1684 	if (mode == PCI_PROBE_NORMAL) {
1685 		pci_bus_update_busn_res_end(bus, 255);
1686 		hose->last_busno = pci_scan_child_bus(bus);
1687 		pci_bus_update_busn_res_end(bus, hose->last_busno);
1688 	}
1689 
1690 	/* Platform gets a chance to do some global fixups before
1691 	 * we proceed to resource allocation
1692 	 */
1693 	if (ppc_md.pcibios_fixup_phb)
1694 		ppc_md.pcibios_fixup_phb(hose);
1695 
1696 	/* Configure PCI Express settings */
1697 	if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1698 		struct pci_bus *child;
1699 		list_for_each_entry(child, &bus->children, node)
1700 			pcie_bus_configure_settings(child);
1701 	}
1702 }
1703 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1704 
1705 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1706 {
1707 	int class = dev->class >> 8;
1708 	/* When configured as agent, programming interface = 1 */
1709 	int prog_if = dev->class & 0xf;
1710 	struct resource *r;
1711 
1712 	if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1713 	     class == PCI_CLASS_BRIDGE_OTHER) &&
1714 		(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1715 		(prog_if == 0) &&
1716 		(dev->bus->parent == NULL)) {
1717 		pci_dev_for_each_resource(dev, r) {
1718 			r->start = 0;
1719 			r->end = 0;
1720 			r->flags = 0;
1721 		}
1722 	}
1723 }
1724 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1725 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1726 
1727 
1728 static int __init discover_phbs(void)
1729 {
1730 	if (ppc_md.discover_phbs)
1731 		ppc_md.discover_phbs();
1732 
1733 	return 0;
1734 }
1735 core_initcall(discover_phbs);
1736