1 /* 2 * Contains common pci routines for ALL ppc platform 3 * (based on pci_32.c and pci_64.c) 4 * 5 * Port for PPC64 David Engebretsen, IBM Corp. 6 * Contains common pci routines for ppc64 platform, pSeries and iSeries brands. 7 * 8 * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM 9 * Rework, based on alpha PCI code. 10 * 11 * Common pmac/prep/chrp pci routines. -- Cort 12 * 13 * This program is free software; you can redistribute it and/or 14 * modify it under the terms of the GNU General Public License 15 * as published by the Free Software Foundation; either version 16 * 2 of the License, or (at your option) any later version. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/pci.h> 21 #include <linux/string.h> 22 #include <linux/init.h> 23 #include <linux/delay.h> 24 #include <linux/export.h> 25 #include <linux/of_address.h> 26 #include <linux/of_pci.h> 27 #include <linux/mm.h> 28 #include <linux/list.h> 29 #include <linux/syscalls.h> 30 #include <linux/irq.h> 31 #include <linux/vmalloc.h> 32 #include <linux/slab.h> 33 #include <linux/vgaarb.h> 34 35 #include <asm/processor.h> 36 #include <asm/io.h> 37 #include <asm/prom.h> 38 #include <asm/pci-bridge.h> 39 #include <asm/byteorder.h> 40 #include <asm/machdep.h> 41 #include <asm/ppc-pci.h> 42 #include <asm/eeh.h> 43 44 /* hose_spinlock protects accesses to the the phb_bitmap. */ 45 static DEFINE_SPINLOCK(hose_spinlock); 46 LIST_HEAD(hose_list); 47 48 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */ 49 #define MAX_PHBS 0x10000 50 51 /* 52 * For dynamic PHB numbering: used/free PHBs tracking bitmap. 53 * Accesses to this bitmap should be protected by hose_spinlock. 54 */ 55 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS); 56 57 /* ISA Memory physical address */ 58 resource_size_t isa_mem_base; 59 60 61 static struct dma_map_ops *pci_dma_ops = &dma_direct_ops; 62 63 void set_pci_dma_ops(struct dma_map_ops *dma_ops) 64 { 65 pci_dma_ops = dma_ops; 66 } 67 68 struct dma_map_ops *get_pci_dma_ops(void) 69 { 70 return pci_dma_ops; 71 } 72 EXPORT_SYMBOL(get_pci_dma_ops); 73 74 /* 75 * This function should run under locking protection, specifically 76 * hose_spinlock. 77 */ 78 static int get_phb_number(struct device_node *dn) 79 { 80 int ret, phb_id = -1; 81 u32 prop_32; 82 u64 prop; 83 84 /* 85 * Try fixed PHB numbering first, by checking archs and reading 86 * the respective device-tree properties. Firstly, try powernv by 87 * reading "ibm,opal-phbid", only present in OPAL environment. 88 */ 89 ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop); 90 if (ret) { 91 ret = of_property_read_u32_index(dn, "reg", 1, &prop_32); 92 prop = prop_32; 93 } 94 95 if (!ret) 96 phb_id = (int)(prop & (MAX_PHBS - 1)); 97 98 /* We need to be sure to not use the same PHB number twice. */ 99 if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap)) 100 return phb_id; 101 102 /* 103 * If not pseries nor powernv, or if fixed PHB numbering tried to add 104 * the same PHB number twice, then fallback to dynamic PHB numbering. 105 */ 106 phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS); 107 BUG_ON(phb_id >= MAX_PHBS); 108 set_bit(phb_id, phb_bitmap); 109 110 return phb_id; 111 } 112 113 struct pci_controller *pcibios_alloc_controller(struct device_node *dev) 114 { 115 struct pci_controller *phb; 116 117 phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL); 118 if (phb == NULL) 119 return NULL; 120 spin_lock(&hose_spinlock); 121 phb->global_number = get_phb_number(dev); 122 list_add_tail(&phb->list_node, &hose_list); 123 spin_unlock(&hose_spinlock); 124 phb->dn = dev; 125 phb->is_dynamic = slab_is_available(); 126 #ifdef CONFIG_PPC64 127 if (dev) { 128 int nid = of_node_to_nid(dev); 129 130 if (nid < 0 || !node_online(nid)) 131 nid = -1; 132 133 PHB_SET_NODE(phb, nid); 134 } 135 #endif 136 return phb; 137 } 138 EXPORT_SYMBOL_GPL(pcibios_alloc_controller); 139 140 void pcibios_free_controller(struct pci_controller *phb) 141 { 142 spin_lock(&hose_spinlock); 143 144 /* Clear bit of phb_bitmap to allow reuse of this PHB number. */ 145 if (phb->global_number < MAX_PHBS) 146 clear_bit(phb->global_number, phb_bitmap); 147 148 list_del(&phb->list_node); 149 spin_unlock(&hose_spinlock); 150 151 if (phb->is_dynamic) 152 kfree(phb); 153 } 154 EXPORT_SYMBOL_GPL(pcibios_free_controller); 155 156 /* 157 * This function is used to call pcibios_free_controller() 158 * in a deferred manner: a callback from the PCI subsystem. 159 * 160 * _*DO NOT*_ call pcibios_free_controller() explicitly if 161 * this is used (or it may access an invalid *phb pointer). 162 * 163 * The callback occurs when all references to the root bus 164 * are dropped (e.g., child buses/devices and their users). 165 * 166 * It's called as .release_fn() of 'struct pci_host_bridge' 167 * which is associated with the 'struct pci_controller.bus' 168 * (root bus) - it expects .release_data to hold a pointer 169 * to 'struct pci_controller'. 170 * 171 * In order to use it, register .release_fn()/release_data 172 * like this: 173 * 174 * pci_set_host_bridge_release(bridge, 175 * pcibios_free_controller_deferred 176 * (void *) phb); 177 * 178 * e.g. in the pcibios_root_bridge_prepare() callback from 179 * pci_create_root_bus(). 180 */ 181 void pcibios_free_controller_deferred(struct pci_host_bridge *bridge) 182 { 183 struct pci_controller *phb = (struct pci_controller *) 184 bridge->release_data; 185 186 pr_debug("domain %d, dynamic %d\n", phb->global_number, phb->is_dynamic); 187 188 pcibios_free_controller(phb); 189 } 190 EXPORT_SYMBOL_GPL(pcibios_free_controller_deferred); 191 192 /* 193 * The function is used to return the minimal alignment 194 * for memory or I/O windows of the associated P2P bridge. 195 * By default, 4KiB alignment for I/O windows and 1MiB for 196 * memory windows. 197 */ 198 resource_size_t pcibios_window_alignment(struct pci_bus *bus, 199 unsigned long type) 200 { 201 struct pci_controller *phb = pci_bus_to_host(bus); 202 203 if (phb->controller_ops.window_alignment) 204 return phb->controller_ops.window_alignment(bus, type); 205 206 /* 207 * PCI core will figure out the default 208 * alignment: 4KiB for I/O and 1MiB for 209 * memory window. 210 */ 211 return 1; 212 } 213 214 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type) 215 { 216 struct pci_controller *hose = pci_bus_to_host(bus); 217 218 if (hose->controller_ops.setup_bridge) 219 hose->controller_ops.setup_bridge(bus, type); 220 } 221 222 void pcibios_reset_secondary_bus(struct pci_dev *dev) 223 { 224 struct pci_controller *phb = pci_bus_to_host(dev->bus); 225 226 if (phb->controller_ops.reset_secondary_bus) { 227 phb->controller_ops.reset_secondary_bus(dev); 228 return; 229 } 230 231 pci_reset_secondary_bus(dev); 232 } 233 234 #ifdef CONFIG_PCI_IOV 235 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno) 236 { 237 if (ppc_md.pcibios_iov_resource_alignment) 238 return ppc_md.pcibios_iov_resource_alignment(pdev, resno); 239 240 return pci_iov_resource_size(pdev, resno); 241 } 242 #endif /* CONFIG_PCI_IOV */ 243 244 static resource_size_t pcibios_io_size(const struct pci_controller *hose) 245 { 246 #ifdef CONFIG_PPC64 247 return hose->pci_io_size; 248 #else 249 return resource_size(&hose->io_resource); 250 #endif 251 } 252 253 int pcibios_vaddr_is_ioport(void __iomem *address) 254 { 255 int ret = 0; 256 struct pci_controller *hose; 257 resource_size_t size; 258 259 spin_lock(&hose_spinlock); 260 list_for_each_entry(hose, &hose_list, list_node) { 261 size = pcibios_io_size(hose); 262 if (address >= hose->io_base_virt && 263 address < (hose->io_base_virt + size)) { 264 ret = 1; 265 break; 266 } 267 } 268 spin_unlock(&hose_spinlock); 269 return ret; 270 } 271 272 unsigned long pci_address_to_pio(phys_addr_t address) 273 { 274 struct pci_controller *hose; 275 resource_size_t size; 276 unsigned long ret = ~0; 277 278 spin_lock(&hose_spinlock); 279 list_for_each_entry(hose, &hose_list, list_node) { 280 size = pcibios_io_size(hose); 281 if (address >= hose->io_base_phys && 282 address < (hose->io_base_phys + size)) { 283 unsigned long base = 284 (unsigned long)hose->io_base_virt - _IO_BASE; 285 ret = base + (address - hose->io_base_phys); 286 break; 287 } 288 } 289 spin_unlock(&hose_spinlock); 290 291 return ret; 292 } 293 EXPORT_SYMBOL_GPL(pci_address_to_pio); 294 295 /* 296 * Return the domain number for this bus. 297 */ 298 int pci_domain_nr(struct pci_bus *bus) 299 { 300 struct pci_controller *hose = pci_bus_to_host(bus); 301 302 return hose->global_number; 303 } 304 EXPORT_SYMBOL(pci_domain_nr); 305 306 /* This routine is meant to be used early during boot, when the 307 * PCI bus numbers have not yet been assigned, and you need to 308 * issue PCI config cycles to an OF device. 309 * It could also be used to "fix" RTAS config cycles if you want 310 * to set pci_assign_all_buses to 1 and still use RTAS for PCI 311 * config cycles. 312 */ 313 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node) 314 { 315 while(node) { 316 struct pci_controller *hose, *tmp; 317 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) 318 if (hose->dn == node) 319 return hose; 320 node = node->parent; 321 } 322 return NULL; 323 } 324 325 /* 326 * Reads the interrupt pin to determine if interrupt is use by card. 327 * If the interrupt is used, then gets the interrupt line from the 328 * openfirmware and sets it in the pci_dev and pci_config line. 329 */ 330 static int pci_read_irq_line(struct pci_dev *pci_dev) 331 { 332 struct of_phandle_args oirq; 333 unsigned int virq; 334 335 pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev)); 336 337 #ifdef DEBUG 338 memset(&oirq, 0xff, sizeof(oirq)); 339 #endif 340 /* Try to get a mapping from the device-tree */ 341 if (of_irq_parse_pci(pci_dev, &oirq)) { 342 u8 line, pin; 343 344 /* If that fails, lets fallback to what is in the config 345 * space and map that through the default controller. We 346 * also set the type to level low since that's what PCI 347 * interrupts are. If your platform does differently, then 348 * either provide a proper interrupt tree or don't use this 349 * function. 350 */ 351 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin)) 352 return -1; 353 if (pin == 0) 354 return -1; 355 if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) || 356 line == 0xff || line == 0) { 357 return -1; 358 } 359 pr_debug(" No map ! Using line %d (pin %d) from PCI config\n", 360 line, pin); 361 362 virq = irq_create_mapping(NULL, line); 363 if (virq) 364 irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW); 365 } else { 366 pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n", 367 oirq.args_count, oirq.args[0], oirq.args[1], 368 of_node_full_name(oirq.np)); 369 370 virq = irq_create_of_mapping(&oirq); 371 } 372 373 if (!virq) { 374 pr_debug(" Failed to map !\n"); 375 return -1; 376 } 377 378 pr_debug(" Mapped to linux irq %d\n", virq); 379 380 pci_dev->irq = virq; 381 382 return 0; 383 } 384 385 /* 386 * Platform support for /proc/bus/pci/X/Y mmap()s, 387 * modelled on the sparc64 implementation by Dave Miller. 388 * -- paulus. 389 */ 390 391 /* 392 * Adjust vm_pgoff of VMA such that it is the physical page offset 393 * corresponding to the 32-bit pci bus offset for DEV requested by the user. 394 * 395 * Basically, the user finds the base address for his device which he wishes 396 * to mmap. They read the 32-bit value from the config space base register, 397 * add whatever PAGE_SIZE multiple offset they wish, and feed this into the 398 * offset parameter of mmap on /proc/bus/pci/XXX for that device. 399 * 400 * Returns negative error code on failure, zero on success. 401 */ 402 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev, 403 resource_size_t *offset, 404 enum pci_mmap_state mmap_state) 405 { 406 struct pci_controller *hose = pci_bus_to_host(dev->bus); 407 unsigned long io_offset = 0; 408 int i, res_bit; 409 410 if (hose == NULL) 411 return NULL; /* should never happen */ 412 413 /* If memory, add on the PCI bridge address offset */ 414 if (mmap_state == pci_mmap_mem) { 415 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */ 416 *offset += hose->pci_mem_offset; 417 #endif 418 res_bit = IORESOURCE_MEM; 419 } else { 420 io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 421 *offset += io_offset; 422 res_bit = IORESOURCE_IO; 423 } 424 425 /* 426 * Check that the offset requested corresponds to one of the 427 * resources of the device. 428 */ 429 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 430 struct resource *rp = &dev->resource[i]; 431 int flags = rp->flags; 432 433 /* treat ROM as memory (should be already) */ 434 if (i == PCI_ROM_RESOURCE) 435 flags |= IORESOURCE_MEM; 436 437 /* Active and same type? */ 438 if ((flags & res_bit) == 0) 439 continue; 440 441 /* In the range of this resource? */ 442 if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end) 443 continue; 444 445 /* found it! construct the final physical address */ 446 if (mmap_state == pci_mmap_io) 447 *offset += hose->io_base_phys - io_offset; 448 return rp; 449 } 450 451 return NULL; 452 } 453 454 /* 455 * This one is used by /dev/mem and fbdev who have no clue about the 456 * PCI device, it tries to find the PCI device first and calls the 457 * above routine 458 */ 459 pgprot_t pci_phys_mem_access_prot(struct file *file, 460 unsigned long pfn, 461 unsigned long size, 462 pgprot_t prot) 463 { 464 struct pci_dev *pdev = NULL; 465 struct resource *found = NULL; 466 resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT; 467 int i; 468 469 if (page_is_ram(pfn)) 470 return prot; 471 472 prot = pgprot_noncached(prot); 473 for_each_pci_dev(pdev) { 474 for (i = 0; i <= PCI_ROM_RESOURCE; i++) { 475 struct resource *rp = &pdev->resource[i]; 476 int flags = rp->flags; 477 478 /* Active and same type? */ 479 if ((flags & IORESOURCE_MEM) == 0) 480 continue; 481 /* In the range of this resource? */ 482 if (offset < (rp->start & PAGE_MASK) || 483 offset > rp->end) 484 continue; 485 found = rp; 486 break; 487 } 488 if (found) 489 break; 490 } 491 if (found) { 492 if (found->flags & IORESOURCE_PREFETCH) 493 prot = pgprot_noncached_wc(prot); 494 pci_dev_put(pdev); 495 } 496 497 pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n", 498 (unsigned long long)offset, pgprot_val(prot)); 499 500 return prot; 501 } 502 503 504 /* 505 * Perform the actual remap of the pages for a PCI device mapping, as 506 * appropriate for this architecture. The region in the process to map 507 * is described by vm_start and vm_end members of VMA, the base physical 508 * address is found in vm_pgoff. 509 * The pci device structure is provided so that architectures may make mapping 510 * decisions on a per-device or per-bus basis. 511 * 512 * Returns a negative error code on failure, zero on success. 513 */ 514 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma, 515 enum pci_mmap_state mmap_state, int write_combine) 516 { 517 resource_size_t offset = 518 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 519 struct resource *rp; 520 int ret; 521 522 rp = __pci_mmap_make_offset(dev, &offset, mmap_state); 523 if (rp == NULL) 524 return -EINVAL; 525 526 vma->vm_pgoff = offset >> PAGE_SHIFT; 527 if (write_combine) 528 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot); 529 else 530 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 531 532 ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 533 vma->vm_end - vma->vm_start, vma->vm_page_prot); 534 535 return ret; 536 } 537 538 /* This provides legacy IO read access on a bus */ 539 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size) 540 { 541 unsigned long offset; 542 struct pci_controller *hose = pci_bus_to_host(bus); 543 struct resource *rp = &hose->io_resource; 544 void __iomem *addr; 545 546 /* Check if port can be supported by that bus. We only check 547 * the ranges of the PHB though, not the bus itself as the rules 548 * for forwarding legacy cycles down bridges are not our problem 549 * here. So if the host bridge supports it, we do it. 550 */ 551 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 552 offset += port; 553 554 if (!(rp->flags & IORESOURCE_IO)) 555 return -ENXIO; 556 if (offset < rp->start || (offset + size) > rp->end) 557 return -ENXIO; 558 addr = hose->io_base_virt + port; 559 560 switch(size) { 561 case 1: 562 *((u8 *)val) = in_8(addr); 563 return 1; 564 case 2: 565 if (port & 1) 566 return -EINVAL; 567 *((u16 *)val) = in_le16(addr); 568 return 2; 569 case 4: 570 if (port & 3) 571 return -EINVAL; 572 *((u32 *)val) = in_le32(addr); 573 return 4; 574 } 575 return -EINVAL; 576 } 577 578 /* This provides legacy IO write access on a bus */ 579 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size) 580 { 581 unsigned long offset; 582 struct pci_controller *hose = pci_bus_to_host(bus); 583 struct resource *rp = &hose->io_resource; 584 void __iomem *addr; 585 586 /* Check if port can be supported by that bus. We only check 587 * the ranges of the PHB though, not the bus itself as the rules 588 * for forwarding legacy cycles down bridges are not our problem 589 * here. So if the host bridge supports it, we do it. 590 */ 591 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 592 offset += port; 593 594 if (!(rp->flags & IORESOURCE_IO)) 595 return -ENXIO; 596 if (offset < rp->start || (offset + size) > rp->end) 597 return -ENXIO; 598 addr = hose->io_base_virt + port; 599 600 /* WARNING: The generic code is idiotic. It gets passed a pointer 601 * to what can be a 1, 2 or 4 byte quantity and always reads that 602 * as a u32, which means that we have to correct the location of 603 * the data read within those 32 bits for size 1 and 2 604 */ 605 switch(size) { 606 case 1: 607 out_8(addr, val >> 24); 608 return 1; 609 case 2: 610 if (port & 1) 611 return -EINVAL; 612 out_le16(addr, val >> 16); 613 return 2; 614 case 4: 615 if (port & 3) 616 return -EINVAL; 617 out_le32(addr, val); 618 return 4; 619 } 620 return -EINVAL; 621 } 622 623 /* This provides legacy IO or memory mmap access on a bus */ 624 int pci_mmap_legacy_page_range(struct pci_bus *bus, 625 struct vm_area_struct *vma, 626 enum pci_mmap_state mmap_state) 627 { 628 struct pci_controller *hose = pci_bus_to_host(bus); 629 resource_size_t offset = 630 ((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT; 631 resource_size_t size = vma->vm_end - vma->vm_start; 632 struct resource *rp; 633 634 pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n", 635 pci_domain_nr(bus), bus->number, 636 mmap_state == pci_mmap_mem ? "MEM" : "IO", 637 (unsigned long long)offset, 638 (unsigned long long)(offset + size - 1)); 639 640 if (mmap_state == pci_mmap_mem) { 641 /* Hack alert ! 642 * 643 * Because X is lame and can fail starting if it gets an error trying 644 * to mmap legacy_mem (instead of just moving on without legacy memory 645 * access) we fake it here by giving it anonymous memory, effectively 646 * behaving just like /dev/zero 647 */ 648 if ((offset + size) > hose->isa_mem_size) { 649 printk(KERN_DEBUG 650 "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n", 651 current->comm, current->pid, pci_domain_nr(bus), bus->number); 652 if (vma->vm_flags & VM_SHARED) 653 return shmem_zero_setup(vma); 654 return 0; 655 } 656 offset += hose->isa_mem_phys; 657 } else { 658 unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE; 659 unsigned long roffset = offset + io_offset; 660 rp = &hose->io_resource; 661 if (!(rp->flags & IORESOURCE_IO)) 662 return -ENXIO; 663 if (roffset < rp->start || (roffset + size) > rp->end) 664 return -ENXIO; 665 offset += hose->io_base_phys; 666 } 667 pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset); 668 669 vma->vm_pgoff = offset >> PAGE_SHIFT; 670 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); 671 return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff, 672 vma->vm_end - vma->vm_start, 673 vma->vm_page_prot); 674 } 675 676 void pci_resource_to_user(const struct pci_dev *dev, int bar, 677 const struct resource *rsrc, 678 resource_size_t *start, resource_size_t *end) 679 { 680 struct pci_bus_region region; 681 682 if (rsrc->flags & IORESOURCE_IO) { 683 pcibios_resource_to_bus(dev->bus, ®ion, 684 (struct resource *) rsrc); 685 *start = region.start; 686 *end = region.end; 687 return; 688 } 689 690 /* We pass a CPU physical address to userland for MMIO instead of a 691 * BAR value because X is lame and expects to be able to use that 692 * to pass to /dev/mem! 693 * 694 * That means we may have 64-bit values where some apps only expect 695 * 32 (like X itself since it thinks only Sparc has 64-bit MMIO). 696 */ 697 *start = rsrc->start; 698 *end = rsrc->end; 699 } 700 701 /** 702 * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree 703 * @hose: newly allocated pci_controller to be setup 704 * @dev: device node of the host bridge 705 * @primary: set if primary bus (32 bits only, soon to be deprecated) 706 * 707 * This function will parse the "ranges" property of a PCI host bridge device 708 * node and setup the resource mapping of a pci controller based on its 709 * content. 710 * 711 * Life would be boring if it wasn't for a few issues that we have to deal 712 * with here: 713 * 714 * - We can only cope with one IO space range and up to 3 Memory space 715 * ranges. However, some machines (thanks Apple !) tend to split their 716 * space into lots of small contiguous ranges. So we have to coalesce. 717 * 718 * - Some busses have IO space not starting at 0, which causes trouble with 719 * the way we do our IO resource renumbering. The code somewhat deals with 720 * it for 64 bits but I would expect problems on 32 bits. 721 * 722 * - Some 32 bits platforms such as 4xx can have physical space larger than 723 * 32 bits so we need to use 64 bits values for the parsing 724 */ 725 void pci_process_bridge_OF_ranges(struct pci_controller *hose, 726 struct device_node *dev, int primary) 727 { 728 int memno = 0; 729 struct resource *res; 730 struct of_pci_range range; 731 struct of_pci_range_parser parser; 732 733 printk(KERN_INFO "PCI host bridge %s %s ranges:\n", 734 dev->full_name, primary ? "(primary)" : ""); 735 736 /* Check for ranges property */ 737 if (of_pci_range_parser_init(&parser, dev)) 738 return; 739 740 /* Parse it */ 741 for_each_of_pci_range(&parser, &range) { 742 /* If we failed translation or got a zero-sized region 743 * (some FW try to feed us with non sensical zero sized regions 744 * such as power3 which look like some kind of attempt at exposing 745 * the VGA memory hole) 746 */ 747 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) 748 continue; 749 750 /* Act based on address space type */ 751 res = NULL; 752 switch (range.flags & IORESOURCE_TYPE_BITS) { 753 case IORESOURCE_IO: 754 printk(KERN_INFO 755 " IO 0x%016llx..0x%016llx -> 0x%016llx\n", 756 range.cpu_addr, range.cpu_addr + range.size - 1, 757 range.pci_addr); 758 759 /* We support only one IO range */ 760 if (hose->pci_io_size) { 761 printk(KERN_INFO 762 " \\--> Skipped (too many) !\n"); 763 continue; 764 } 765 #ifdef CONFIG_PPC32 766 /* On 32 bits, limit I/O space to 16MB */ 767 if (range.size > 0x01000000) 768 range.size = 0x01000000; 769 770 /* 32 bits needs to map IOs here */ 771 hose->io_base_virt = ioremap(range.cpu_addr, 772 range.size); 773 774 /* Expect trouble if pci_addr is not 0 */ 775 if (primary) 776 isa_io_base = 777 (unsigned long)hose->io_base_virt; 778 #endif /* CONFIG_PPC32 */ 779 /* pci_io_size and io_base_phys always represent IO 780 * space starting at 0 so we factor in pci_addr 781 */ 782 hose->pci_io_size = range.pci_addr + range.size; 783 hose->io_base_phys = range.cpu_addr - range.pci_addr; 784 785 /* Build resource */ 786 res = &hose->io_resource; 787 range.cpu_addr = range.pci_addr; 788 break; 789 case IORESOURCE_MEM: 790 printk(KERN_INFO 791 " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n", 792 range.cpu_addr, range.cpu_addr + range.size - 1, 793 range.pci_addr, 794 (range.pci_space & 0x40000000) ? 795 "Prefetch" : ""); 796 797 /* We support only 3 memory ranges */ 798 if (memno >= 3) { 799 printk(KERN_INFO 800 " \\--> Skipped (too many) !\n"); 801 continue; 802 } 803 /* Handles ISA memory hole space here */ 804 if (range.pci_addr == 0) { 805 if (primary || isa_mem_base == 0) 806 isa_mem_base = range.cpu_addr; 807 hose->isa_mem_phys = range.cpu_addr; 808 hose->isa_mem_size = range.size; 809 } 810 811 /* Build resource */ 812 hose->mem_offset[memno] = range.cpu_addr - 813 range.pci_addr; 814 res = &hose->mem_resources[memno++]; 815 break; 816 } 817 if (res != NULL) { 818 res->name = dev->full_name; 819 res->flags = range.flags; 820 res->start = range.cpu_addr; 821 res->end = range.cpu_addr + range.size - 1; 822 res->parent = res->child = res->sibling = NULL; 823 } 824 } 825 } 826 827 /* Decide whether to display the domain number in /proc */ 828 int pci_proc_domain(struct pci_bus *bus) 829 { 830 struct pci_controller *hose = pci_bus_to_host(bus); 831 832 if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS)) 833 return 0; 834 if (pci_has_flag(PCI_COMPAT_DOMAIN_0)) 835 return hose->global_number != 0; 836 return 1; 837 } 838 839 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge) 840 { 841 if (ppc_md.pcibios_root_bridge_prepare) 842 return ppc_md.pcibios_root_bridge_prepare(bridge); 843 844 return 0; 845 } 846 847 /* This header fixup will do the resource fixup for all devices as they are 848 * probed, but not for bridge ranges 849 */ 850 static void pcibios_fixup_resources(struct pci_dev *dev) 851 { 852 struct pci_controller *hose = pci_bus_to_host(dev->bus); 853 int i; 854 855 if (!hose) { 856 printk(KERN_ERR "No host bridge for PCI dev %s !\n", 857 pci_name(dev)); 858 return; 859 } 860 861 if (dev->is_virtfn) 862 return; 863 864 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 865 struct resource *res = dev->resource + i; 866 struct pci_bus_region reg; 867 if (!res->flags) 868 continue; 869 870 /* If we're going to re-assign everything, we mark all resources 871 * as unset (and 0-base them). In addition, we mark BARs starting 872 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set 873 * since in that case, we don't want to re-assign anything 874 */ 875 pcibios_resource_to_bus(dev->bus, ®, res); 876 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) || 877 (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) { 878 /* Only print message if not re-assigning */ 879 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) 880 pr_debug("PCI:%s Resource %d %pR is unassigned\n", 881 pci_name(dev), i, res); 882 res->end -= res->start; 883 res->start = 0; 884 res->flags |= IORESOURCE_UNSET; 885 continue; 886 } 887 888 pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res); 889 } 890 891 /* Call machine specific resource fixup */ 892 if (ppc_md.pcibios_fixup_resources) 893 ppc_md.pcibios_fixup_resources(dev); 894 } 895 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources); 896 897 /* This function tries to figure out if a bridge resource has been initialized 898 * by the firmware or not. It doesn't have to be absolutely bullet proof, but 899 * things go more smoothly when it gets it right. It should covers cases such 900 * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges 901 */ 902 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus, 903 struct resource *res) 904 { 905 struct pci_controller *hose = pci_bus_to_host(bus); 906 struct pci_dev *dev = bus->self; 907 resource_size_t offset; 908 struct pci_bus_region region; 909 u16 command; 910 int i; 911 912 /* We don't do anything if PCI_PROBE_ONLY is set */ 913 if (pci_has_flag(PCI_PROBE_ONLY)) 914 return 0; 915 916 /* Job is a bit different between memory and IO */ 917 if (res->flags & IORESOURCE_MEM) { 918 pcibios_resource_to_bus(dev->bus, ®ion, res); 919 920 /* If the BAR is non-0 then it's probably been initialized */ 921 if (region.start != 0) 922 return 0; 923 924 /* The BAR is 0, let's check if memory decoding is enabled on 925 * the bridge. If not, we consider it unassigned 926 */ 927 pci_read_config_word(dev, PCI_COMMAND, &command); 928 if ((command & PCI_COMMAND_MEMORY) == 0) 929 return 1; 930 931 /* Memory decoding is enabled and the BAR is 0. If any of the bridge 932 * resources covers that starting address (0 then it's good enough for 933 * us for memory space) 934 */ 935 for (i = 0; i < 3; i++) { 936 if ((hose->mem_resources[i].flags & IORESOURCE_MEM) && 937 hose->mem_resources[i].start == hose->mem_offset[i]) 938 return 0; 939 } 940 941 /* Well, it starts at 0 and we know it will collide so we may as 942 * well consider it as unassigned. That covers the Apple case. 943 */ 944 return 1; 945 } else { 946 /* If the BAR is non-0, then we consider it assigned */ 947 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 948 if (((res->start - offset) & 0xfffffffful) != 0) 949 return 0; 950 951 /* Here, we are a bit different than memory as typically IO space 952 * starting at low addresses -is- valid. What we do instead if that 953 * we consider as unassigned anything that doesn't have IO enabled 954 * in the PCI command register, and that's it. 955 */ 956 pci_read_config_word(dev, PCI_COMMAND, &command); 957 if (command & PCI_COMMAND_IO) 958 return 0; 959 960 /* It's starting at 0 and IO is disabled in the bridge, consider 961 * it unassigned 962 */ 963 return 1; 964 } 965 } 966 967 /* Fixup resources of a PCI<->PCI bridge */ 968 static void pcibios_fixup_bridge(struct pci_bus *bus) 969 { 970 struct resource *res; 971 int i; 972 973 struct pci_dev *dev = bus->self; 974 975 pci_bus_for_each_resource(bus, res, i) { 976 if (!res || !res->flags) 977 continue; 978 if (i >= 3 && bus->self->transparent) 979 continue; 980 981 /* If we're going to reassign everything, we can 982 * shrink the P2P resource to have size as being 983 * of 0 in order to save space. 984 */ 985 if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 986 res->flags |= IORESOURCE_UNSET; 987 res->start = 0; 988 res->end = -1; 989 continue; 990 } 991 992 pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res); 993 994 /* Try to detect uninitialized P2P bridge resources, 995 * and clear them out so they get re-assigned later 996 */ 997 if (pcibios_uninitialized_bridge_resource(bus, res)) { 998 res->flags = 0; 999 pr_debug("PCI:%s (unassigned)\n", pci_name(dev)); 1000 } 1001 } 1002 } 1003 1004 void pcibios_setup_bus_self(struct pci_bus *bus) 1005 { 1006 struct pci_controller *phb; 1007 1008 /* Fix up the bus resources for P2P bridges */ 1009 if (bus->self != NULL) 1010 pcibios_fixup_bridge(bus); 1011 1012 /* Platform specific bus fixups. This is currently only used 1013 * by fsl_pci and I'm hoping to get rid of it at some point 1014 */ 1015 if (ppc_md.pcibios_fixup_bus) 1016 ppc_md.pcibios_fixup_bus(bus); 1017 1018 /* Setup bus DMA mappings */ 1019 phb = pci_bus_to_host(bus); 1020 if (phb->controller_ops.dma_bus_setup) 1021 phb->controller_ops.dma_bus_setup(bus); 1022 } 1023 1024 static void pcibios_setup_device(struct pci_dev *dev) 1025 { 1026 struct pci_controller *phb; 1027 /* Fixup NUMA node as it may not be setup yet by the generic 1028 * code and is needed by the DMA init 1029 */ 1030 set_dev_node(&dev->dev, pcibus_to_node(dev->bus)); 1031 1032 /* Hook up default DMA ops */ 1033 set_dma_ops(&dev->dev, pci_dma_ops); 1034 set_dma_offset(&dev->dev, PCI_DRAM_OFFSET); 1035 1036 /* Additional platform DMA/iommu setup */ 1037 phb = pci_bus_to_host(dev->bus); 1038 if (phb->controller_ops.dma_dev_setup) 1039 phb->controller_ops.dma_dev_setup(dev); 1040 1041 /* Read default IRQs and fixup if necessary */ 1042 pci_read_irq_line(dev); 1043 if (ppc_md.pci_irq_fixup) 1044 ppc_md.pci_irq_fixup(dev); 1045 } 1046 1047 int pcibios_add_device(struct pci_dev *dev) 1048 { 1049 /* 1050 * We can only call pcibios_setup_device() after bus setup is complete, 1051 * since some of the platform specific DMA setup code depends on it. 1052 */ 1053 if (dev->bus->is_added) 1054 pcibios_setup_device(dev); 1055 1056 #ifdef CONFIG_PCI_IOV 1057 if (ppc_md.pcibios_fixup_sriov) 1058 ppc_md.pcibios_fixup_sriov(dev); 1059 #endif /* CONFIG_PCI_IOV */ 1060 1061 return 0; 1062 } 1063 1064 void pcibios_setup_bus_devices(struct pci_bus *bus) 1065 { 1066 struct pci_dev *dev; 1067 1068 pr_debug("PCI: Fixup bus devices %d (%s)\n", 1069 bus->number, bus->self ? pci_name(bus->self) : "PHB"); 1070 1071 list_for_each_entry(dev, &bus->devices, bus_list) { 1072 /* Cardbus can call us to add new devices to a bus, so ignore 1073 * those who are already fully discovered 1074 */ 1075 if (dev->is_added) 1076 continue; 1077 1078 pcibios_setup_device(dev); 1079 } 1080 } 1081 1082 void pcibios_set_master(struct pci_dev *dev) 1083 { 1084 /* No special bus mastering setup handling */ 1085 } 1086 1087 void pcibios_fixup_bus(struct pci_bus *bus) 1088 { 1089 /* When called from the generic PCI probe, read PCI<->PCI bridge 1090 * bases. This is -not- called when generating the PCI tree from 1091 * the OF device-tree. 1092 */ 1093 pci_read_bridge_bases(bus); 1094 1095 /* Now fixup the bus bus */ 1096 pcibios_setup_bus_self(bus); 1097 1098 /* Now fixup devices on that bus */ 1099 pcibios_setup_bus_devices(bus); 1100 } 1101 EXPORT_SYMBOL(pcibios_fixup_bus); 1102 1103 void pci_fixup_cardbus(struct pci_bus *bus) 1104 { 1105 /* Now fixup devices on that bus */ 1106 pcibios_setup_bus_devices(bus); 1107 } 1108 1109 1110 static int skip_isa_ioresource_align(struct pci_dev *dev) 1111 { 1112 if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) && 1113 !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA)) 1114 return 1; 1115 return 0; 1116 } 1117 1118 /* 1119 * We need to avoid collisions with `mirrored' VGA ports 1120 * and other strange ISA hardware, so we always want the 1121 * addresses to be allocated in the 0x000-0x0ff region 1122 * modulo 0x400. 1123 * 1124 * Why? Because some silly external IO cards only decode 1125 * the low 10 bits of the IO address. The 0x00-0xff region 1126 * is reserved for motherboard devices that decode all 16 1127 * bits, so it's ok to allocate at, say, 0x2800-0x28ff, 1128 * but we want to try to avoid allocating at 0x2900-0x2bff 1129 * which might have be mirrored at 0x0100-0x03ff.. 1130 */ 1131 resource_size_t pcibios_align_resource(void *data, const struct resource *res, 1132 resource_size_t size, resource_size_t align) 1133 { 1134 struct pci_dev *dev = data; 1135 resource_size_t start = res->start; 1136 1137 if (res->flags & IORESOURCE_IO) { 1138 if (skip_isa_ioresource_align(dev)) 1139 return start; 1140 if (start & 0x300) 1141 start = (start + 0x3ff) & ~0x3ff; 1142 } 1143 1144 return start; 1145 } 1146 EXPORT_SYMBOL(pcibios_align_resource); 1147 1148 /* 1149 * Reparent resource children of pr that conflict with res 1150 * under res, and make res replace those children. 1151 */ 1152 static int reparent_resources(struct resource *parent, 1153 struct resource *res) 1154 { 1155 struct resource *p, **pp; 1156 struct resource **firstpp = NULL; 1157 1158 for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) { 1159 if (p->end < res->start) 1160 continue; 1161 if (res->end < p->start) 1162 break; 1163 if (p->start < res->start || p->end > res->end) 1164 return -1; /* not completely contained */ 1165 if (firstpp == NULL) 1166 firstpp = pp; 1167 } 1168 if (firstpp == NULL) 1169 return -1; /* didn't find any conflicting entries? */ 1170 res->parent = parent; 1171 res->child = *firstpp; 1172 res->sibling = *pp; 1173 *firstpp = res; 1174 *pp = NULL; 1175 for (p = res->child; p != NULL; p = p->sibling) { 1176 p->parent = res; 1177 pr_debug("PCI: Reparented %s %pR under %s\n", 1178 p->name, p, res->name); 1179 } 1180 return 0; 1181 } 1182 1183 /* 1184 * Handle resources of PCI devices. If the world were perfect, we could 1185 * just allocate all the resource regions and do nothing more. It isn't. 1186 * On the other hand, we cannot just re-allocate all devices, as it would 1187 * require us to know lots of host bridge internals. So we attempt to 1188 * keep as much of the original configuration as possible, but tweak it 1189 * when it's found to be wrong. 1190 * 1191 * Known BIOS problems we have to work around: 1192 * - I/O or memory regions not configured 1193 * - regions configured, but not enabled in the command register 1194 * - bogus I/O addresses above 64K used 1195 * - expansion ROMs left enabled (this may sound harmless, but given 1196 * the fact the PCI specs explicitly allow address decoders to be 1197 * shared between expansion ROMs and other resource regions, it's 1198 * at least dangerous) 1199 * 1200 * Our solution: 1201 * (1) Allocate resources for all buses behind PCI-to-PCI bridges. 1202 * This gives us fixed barriers on where we can allocate. 1203 * (2) Allocate resources for all enabled devices. If there is 1204 * a collision, just mark the resource as unallocated. Also 1205 * disable expansion ROMs during this step. 1206 * (3) Try to allocate resources for disabled devices. If the 1207 * resources were assigned correctly, everything goes well, 1208 * if they weren't, they won't disturb allocation of other 1209 * resources. 1210 * (4) Assign new addresses to resources which were either 1211 * not configured at all or misconfigured. If explicitly 1212 * requested by the user, configure expansion ROM address 1213 * as well. 1214 */ 1215 1216 static void pcibios_allocate_bus_resources(struct pci_bus *bus) 1217 { 1218 struct pci_bus *b; 1219 int i; 1220 struct resource *res, *pr; 1221 1222 pr_debug("PCI: Allocating bus resources for %04x:%02x...\n", 1223 pci_domain_nr(bus), bus->number); 1224 1225 pci_bus_for_each_resource(bus, res, i) { 1226 if (!res || !res->flags || res->start > res->end || res->parent) 1227 continue; 1228 1229 /* If the resource was left unset at this point, we clear it */ 1230 if (res->flags & IORESOURCE_UNSET) 1231 goto clear_resource; 1232 1233 if (bus->parent == NULL) 1234 pr = (res->flags & IORESOURCE_IO) ? 1235 &ioport_resource : &iomem_resource; 1236 else { 1237 pr = pci_find_parent_resource(bus->self, res); 1238 if (pr == res) { 1239 /* this happens when the generic PCI 1240 * code (wrongly) decides that this 1241 * bridge is transparent -- paulus 1242 */ 1243 continue; 1244 } 1245 } 1246 1247 pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n", 1248 bus->self ? pci_name(bus->self) : "PHB", bus->number, 1249 i, res, pr, (pr && pr->name) ? pr->name : "nil"); 1250 1251 if (pr && !(pr->flags & IORESOURCE_UNSET)) { 1252 struct pci_dev *dev = bus->self; 1253 1254 if (request_resource(pr, res) == 0) 1255 continue; 1256 /* 1257 * Must be a conflict with an existing entry. 1258 * Move that entry (or entries) under the 1259 * bridge resource and try again. 1260 */ 1261 if (reparent_resources(pr, res) == 0) 1262 continue; 1263 1264 if (dev && i < PCI_BRIDGE_RESOURCE_NUM && 1265 pci_claim_bridge_resource(dev, 1266 i + PCI_BRIDGE_RESOURCES) == 0) 1267 continue; 1268 } 1269 pr_warning("PCI: Cannot allocate resource region " 1270 "%d of PCI bridge %d, will remap\n", i, bus->number); 1271 clear_resource: 1272 /* The resource might be figured out when doing 1273 * reassignment based on the resources required 1274 * by the downstream PCI devices. Here we set 1275 * the size of the resource to be 0 in order to 1276 * save more space. 1277 */ 1278 res->start = 0; 1279 res->end = -1; 1280 res->flags = 0; 1281 } 1282 1283 list_for_each_entry(b, &bus->children, node) 1284 pcibios_allocate_bus_resources(b); 1285 } 1286 1287 static inline void alloc_resource(struct pci_dev *dev, int idx) 1288 { 1289 struct resource *pr, *r = &dev->resource[idx]; 1290 1291 pr_debug("PCI: Allocating %s: Resource %d: %pR\n", 1292 pci_name(dev), idx, r); 1293 1294 pr = pci_find_parent_resource(dev, r); 1295 if (!pr || (pr->flags & IORESOURCE_UNSET) || 1296 request_resource(pr, r) < 0) { 1297 printk(KERN_WARNING "PCI: Cannot allocate resource region %d" 1298 " of device %s, will remap\n", idx, pci_name(dev)); 1299 if (pr) 1300 pr_debug("PCI: parent is %p: %pR\n", pr, pr); 1301 /* We'll assign a new address later */ 1302 r->flags |= IORESOURCE_UNSET; 1303 r->end -= r->start; 1304 r->start = 0; 1305 } 1306 } 1307 1308 static void __init pcibios_allocate_resources(int pass) 1309 { 1310 struct pci_dev *dev = NULL; 1311 int idx, disabled; 1312 u16 command; 1313 struct resource *r; 1314 1315 for_each_pci_dev(dev) { 1316 pci_read_config_word(dev, PCI_COMMAND, &command); 1317 for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) { 1318 r = &dev->resource[idx]; 1319 if (r->parent) /* Already allocated */ 1320 continue; 1321 if (!r->flags || (r->flags & IORESOURCE_UNSET)) 1322 continue; /* Not assigned at all */ 1323 /* We only allocate ROMs on pass 1 just in case they 1324 * have been screwed up by firmware 1325 */ 1326 if (idx == PCI_ROM_RESOURCE ) 1327 disabled = 1; 1328 if (r->flags & IORESOURCE_IO) 1329 disabled = !(command & PCI_COMMAND_IO); 1330 else 1331 disabled = !(command & PCI_COMMAND_MEMORY); 1332 if (pass == disabled) 1333 alloc_resource(dev, idx); 1334 } 1335 if (pass) 1336 continue; 1337 r = &dev->resource[PCI_ROM_RESOURCE]; 1338 if (r->flags) { 1339 /* Turn the ROM off, leave the resource region, 1340 * but keep it unregistered. 1341 */ 1342 u32 reg; 1343 pci_read_config_dword(dev, dev->rom_base_reg, ®); 1344 if (reg & PCI_ROM_ADDRESS_ENABLE) { 1345 pr_debug("PCI: Switching off ROM of %s\n", 1346 pci_name(dev)); 1347 r->flags &= ~IORESOURCE_ROM_ENABLE; 1348 pci_write_config_dword(dev, dev->rom_base_reg, 1349 reg & ~PCI_ROM_ADDRESS_ENABLE); 1350 } 1351 } 1352 } 1353 } 1354 1355 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus) 1356 { 1357 struct pci_controller *hose = pci_bus_to_host(bus); 1358 resource_size_t offset; 1359 struct resource *res, *pres; 1360 int i; 1361 1362 pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus)); 1363 1364 /* Check for IO */ 1365 if (!(hose->io_resource.flags & IORESOURCE_IO)) 1366 goto no_io; 1367 offset = (unsigned long)hose->io_base_virt - _IO_BASE; 1368 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1369 BUG_ON(res == NULL); 1370 res->name = "Legacy IO"; 1371 res->flags = IORESOURCE_IO; 1372 res->start = offset; 1373 res->end = (offset + 0xfff) & 0xfffffffful; 1374 pr_debug("Candidate legacy IO: %pR\n", res); 1375 if (request_resource(&hose->io_resource, res)) { 1376 printk(KERN_DEBUG 1377 "PCI %04x:%02x Cannot reserve Legacy IO %pR\n", 1378 pci_domain_nr(bus), bus->number, res); 1379 kfree(res); 1380 } 1381 1382 no_io: 1383 /* Check for memory */ 1384 for (i = 0; i < 3; i++) { 1385 pres = &hose->mem_resources[i]; 1386 offset = hose->mem_offset[i]; 1387 if (!(pres->flags & IORESOURCE_MEM)) 1388 continue; 1389 pr_debug("hose mem res: %pR\n", pres); 1390 if ((pres->start - offset) <= 0xa0000 && 1391 (pres->end - offset) >= 0xbffff) 1392 break; 1393 } 1394 if (i >= 3) 1395 return; 1396 res = kzalloc(sizeof(struct resource), GFP_KERNEL); 1397 BUG_ON(res == NULL); 1398 res->name = "Legacy VGA memory"; 1399 res->flags = IORESOURCE_MEM; 1400 res->start = 0xa0000 + offset; 1401 res->end = 0xbffff + offset; 1402 pr_debug("Candidate VGA memory: %pR\n", res); 1403 if (request_resource(pres, res)) { 1404 printk(KERN_DEBUG 1405 "PCI %04x:%02x Cannot reserve VGA memory %pR\n", 1406 pci_domain_nr(bus), bus->number, res); 1407 kfree(res); 1408 } 1409 } 1410 1411 void __init pcibios_resource_survey(void) 1412 { 1413 struct pci_bus *b; 1414 1415 /* Allocate and assign resources */ 1416 list_for_each_entry(b, &pci_root_buses, node) 1417 pcibios_allocate_bus_resources(b); 1418 if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC)) { 1419 pcibios_allocate_resources(0); 1420 pcibios_allocate_resources(1); 1421 } 1422 1423 /* Before we start assigning unassigned resource, we try to reserve 1424 * the low IO area and the VGA memory area if they intersect the 1425 * bus available resources to avoid allocating things on top of them 1426 */ 1427 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1428 list_for_each_entry(b, &pci_root_buses, node) 1429 pcibios_reserve_legacy_regions(b); 1430 } 1431 1432 /* Now, if the platform didn't decide to blindly trust the firmware, 1433 * we proceed to assigning things that were left unassigned 1434 */ 1435 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1436 pr_debug("PCI: Assigning unassigned resources...\n"); 1437 pci_assign_unassigned_resources(); 1438 } 1439 1440 /* Call machine dependent fixup */ 1441 if (ppc_md.pcibios_fixup) 1442 ppc_md.pcibios_fixup(); 1443 } 1444 1445 /* This is used by the PCI hotplug driver to allocate resource 1446 * of newly plugged busses. We can try to consolidate with the 1447 * rest of the code later, for now, keep it as-is as our main 1448 * resource allocation function doesn't deal with sub-trees yet. 1449 */ 1450 void pcibios_claim_one_bus(struct pci_bus *bus) 1451 { 1452 struct pci_dev *dev; 1453 struct pci_bus *child_bus; 1454 1455 list_for_each_entry(dev, &bus->devices, bus_list) { 1456 int i; 1457 1458 for (i = 0; i < PCI_NUM_RESOURCES; i++) { 1459 struct resource *r = &dev->resource[i]; 1460 1461 if (r->parent || !r->start || !r->flags) 1462 continue; 1463 1464 pr_debug("PCI: Claiming %s: Resource %d: %pR\n", 1465 pci_name(dev), i, r); 1466 1467 if (pci_claim_resource(dev, i) == 0) 1468 continue; 1469 1470 pci_claim_bridge_resource(dev, i); 1471 } 1472 } 1473 1474 list_for_each_entry(child_bus, &bus->children, node) 1475 pcibios_claim_one_bus(child_bus); 1476 } 1477 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus); 1478 1479 1480 /* pcibios_finish_adding_to_bus 1481 * 1482 * This is to be called by the hotplug code after devices have been 1483 * added to a bus, this include calling it for a PHB that is just 1484 * being added 1485 */ 1486 void pcibios_finish_adding_to_bus(struct pci_bus *bus) 1487 { 1488 pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n", 1489 pci_domain_nr(bus), bus->number); 1490 1491 /* Allocate bus and devices resources */ 1492 pcibios_allocate_bus_resources(bus); 1493 pcibios_claim_one_bus(bus); 1494 if (!pci_has_flag(PCI_PROBE_ONLY)) { 1495 if (bus->self) 1496 pci_assign_unassigned_bridge_resources(bus->self); 1497 else 1498 pci_assign_unassigned_bus_resources(bus); 1499 } 1500 1501 /* Fixup EEH */ 1502 eeh_add_device_tree_late(bus); 1503 1504 /* Add new devices to global lists. Register in proc, sysfs. */ 1505 pci_bus_add_devices(bus); 1506 1507 /* sysfs files should only be added after devices are added */ 1508 eeh_add_sysfs_files(bus); 1509 } 1510 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus); 1511 1512 int pcibios_enable_device(struct pci_dev *dev, int mask) 1513 { 1514 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1515 1516 if (phb->controller_ops.enable_device_hook) 1517 if (!phb->controller_ops.enable_device_hook(dev)) 1518 return -EINVAL; 1519 1520 return pci_enable_resources(dev, mask); 1521 } 1522 1523 void pcibios_disable_device(struct pci_dev *dev) 1524 { 1525 struct pci_controller *phb = pci_bus_to_host(dev->bus); 1526 1527 if (phb->controller_ops.disable_device) 1528 phb->controller_ops.disable_device(dev); 1529 } 1530 1531 resource_size_t pcibios_io_space_offset(struct pci_controller *hose) 1532 { 1533 return (unsigned long) hose->io_base_virt - _IO_BASE; 1534 } 1535 1536 static void pcibios_setup_phb_resources(struct pci_controller *hose, 1537 struct list_head *resources) 1538 { 1539 struct resource *res; 1540 resource_size_t offset; 1541 int i; 1542 1543 /* Hookup PHB IO resource */ 1544 res = &hose->io_resource; 1545 1546 if (!res->flags) { 1547 pr_debug("PCI: I/O resource not set for host" 1548 " bridge %s (domain %d)\n", 1549 hose->dn->full_name, hose->global_number); 1550 } else { 1551 offset = pcibios_io_space_offset(hose); 1552 1553 pr_debug("PCI: PHB IO resource = %pR off 0x%08llx\n", 1554 res, (unsigned long long)offset); 1555 pci_add_resource_offset(resources, res, offset); 1556 } 1557 1558 /* Hookup PHB Memory resources */ 1559 for (i = 0; i < 3; ++i) { 1560 res = &hose->mem_resources[i]; 1561 if (!res->flags) { 1562 if (i == 0) 1563 printk(KERN_ERR "PCI: Memory resource 0 not set for " 1564 "host bridge %s (domain %d)\n", 1565 hose->dn->full_name, hose->global_number); 1566 continue; 1567 } 1568 offset = hose->mem_offset[i]; 1569 1570 1571 pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i, 1572 res, (unsigned long long)offset); 1573 1574 pci_add_resource_offset(resources, res, offset); 1575 } 1576 } 1577 1578 /* 1579 * Null PCI config access functions, for the case when we can't 1580 * find a hose. 1581 */ 1582 #define NULL_PCI_OP(rw, size, type) \ 1583 static int \ 1584 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val) \ 1585 { \ 1586 return PCIBIOS_DEVICE_NOT_FOUND; \ 1587 } 1588 1589 static int 1590 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset, 1591 int len, u32 *val) 1592 { 1593 return PCIBIOS_DEVICE_NOT_FOUND; 1594 } 1595 1596 static int 1597 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset, 1598 int len, u32 val) 1599 { 1600 return PCIBIOS_DEVICE_NOT_FOUND; 1601 } 1602 1603 static struct pci_ops null_pci_ops = 1604 { 1605 .read = null_read_config, 1606 .write = null_write_config, 1607 }; 1608 1609 /* 1610 * These functions are used early on before PCI scanning is done 1611 * and all of the pci_dev and pci_bus structures have been created. 1612 */ 1613 static struct pci_bus * 1614 fake_pci_bus(struct pci_controller *hose, int busnr) 1615 { 1616 static struct pci_bus bus; 1617 1618 if (hose == NULL) { 1619 printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr); 1620 } 1621 bus.number = busnr; 1622 bus.sysdata = hose; 1623 bus.ops = hose? hose->ops: &null_pci_ops; 1624 return &bus; 1625 } 1626 1627 #define EARLY_PCI_OP(rw, size, type) \ 1628 int early_##rw##_config_##size(struct pci_controller *hose, int bus, \ 1629 int devfn, int offset, type value) \ 1630 { \ 1631 return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus), \ 1632 devfn, offset, value); \ 1633 } 1634 1635 EARLY_PCI_OP(read, byte, u8 *) 1636 EARLY_PCI_OP(read, word, u16 *) 1637 EARLY_PCI_OP(read, dword, u32 *) 1638 EARLY_PCI_OP(write, byte, u8) 1639 EARLY_PCI_OP(write, word, u16) 1640 EARLY_PCI_OP(write, dword, u32) 1641 1642 int early_find_capability(struct pci_controller *hose, int bus, int devfn, 1643 int cap) 1644 { 1645 return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap); 1646 } 1647 1648 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus) 1649 { 1650 struct pci_controller *hose = bus->sysdata; 1651 1652 return of_node_get(hose->dn); 1653 } 1654 1655 /** 1656 * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus 1657 * @hose: Pointer to the PCI host controller instance structure 1658 */ 1659 void pcibios_scan_phb(struct pci_controller *hose) 1660 { 1661 LIST_HEAD(resources); 1662 struct pci_bus *bus; 1663 struct device_node *node = hose->dn; 1664 int mode; 1665 1666 pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node)); 1667 1668 /* Get some IO space for the new PHB */ 1669 pcibios_setup_phb_io_space(hose); 1670 1671 /* Wire up PHB bus resources */ 1672 pcibios_setup_phb_resources(hose, &resources); 1673 1674 hose->busn.start = hose->first_busno; 1675 hose->busn.end = hose->last_busno; 1676 hose->busn.flags = IORESOURCE_BUS; 1677 pci_add_resource(&resources, &hose->busn); 1678 1679 /* Create an empty bus for the toplevel */ 1680 bus = pci_create_root_bus(hose->parent, hose->first_busno, 1681 hose->ops, hose, &resources); 1682 if (bus == NULL) { 1683 pr_err("Failed to create bus for PCI domain %04x\n", 1684 hose->global_number); 1685 pci_free_resource_list(&resources); 1686 return; 1687 } 1688 hose->bus = bus; 1689 1690 /* Get probe mode and perform scan */ 1691 mode = PCI_PROBE_NORMAL; 1692 if (node && hose->controller_ops.probe_mode) 1693 mode = hose->controller_ops.probe_mode(bus); 1694 pr_debug(" probe mode: %d\n", mode); 1695 if (mode == PCI_PROBE_DEVTREE) 1696 of_scan_bus(node, bus); 1697 1698 if (mode == PCI_PROBE_NORMAL) { 1699 pci_bus_update_busn_res_end(bus, 255); 1700 hose->last_busno = pci_scan_child_bus(bus); 1701 pci_bus_update_busn_res_end(bus, hose->last_busno); 1702 } 1703 1704 /* Platform gets a chance to do some global fixups before 1705 * we proceed to resource allocation 1706 */ 1707 if (ppc_md.pcibios_fixup_phb) 1708 ppc_md.pcibios_fixup_phb(hose); 1709 1710 /* Configure PCI Express settings */ 1711 if (bus && !pci_has_flag(PCI_PROBE_ONLY)) { 1712 struct pci_bus *child; 1713 list_for_each_entry(child, &bus->children, node) 1714 pcie_bus_configure_settings(child); 1715 } 1716 } 1717 EXPORT_SYMBOL_GPL(pcibios_scan_phb); 1718 1719 static void fixup_hide_host_resource_fsl(struct pci_dev *dev) 1720 { 1721 int i, class = dev->class >> 8; 1722 /* When configured as agent, programing interface = 1 */ 1723 int prog_if = dev->class & 0xf; 1724 1725 if ((class == PCI_CLASS_PROCESSOR_POWERPC || 1726 class == PCI_CLASS_BRIDGE_OTHER) && 1727 (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) && 1728 (prog_if == 0) && 1729 (dev->bus->parent == NULL)) { 1730 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) { 1731 dev->resource[i].start = 0; 1732 dev->resource[i].end = 0; 1733 dev->resource[i].flags = 0; 1734 } 1735 } 1736 } 1737 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1738 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl); 1739 1740 static void fixup_vga(struct pci_dev *pdev) 1741 { 1742 u16 cmd; 1743 1744 pci_read_config_word(pdev, PCI_COMMAND, &cmd); 1745 if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device()) 1746 vga_set_default_device(pdev); 1747 1748 } 1749 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID, 1750 PCI_CLASS_DISPLAY_VGA, 8, fixup_vga); 1751