xref: /linux/arch/powerpc/kernel/pci-common.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Contains common pci routines for ALL ppc platform
3  * (based on pci_32.c and pci_64.c)
4  *
5  * Port for PPC64 David Engebretsen, IBM Corp.
6  * Contains common pci routines for ppc64 platform, pSeries and iSeries brands.
7  *
8  * Copyright (C) 2003 Anton Blanchard <anton@au.ibm.com>, IBM
9  *   Rework, based on alpha PCI code.
10  *
11  * Common pmac/prep/chrp pci routines. -- Cort
12  *
13  * This program is free software; you can redistribute it and/or
14  * modify it under the terms of the GNU General Public License
15  * as published by the Free Software Foundation; either version
16  * 2 of the License, or (at your option) any later version.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/pci.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/delay.h>
24 #include <linux/export.h>
25 #include <linux/of_address.h>
26 #include <linux/of_pci.h>
27 #include <linux/mm.h>
28 #include <linux/list.h>
29 #include <linux/syscalls.h>
30 #include <linux/irq.h>
31 #include <linux/vmalloc.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 
35 #include <asm/processor.h>
36 #include <asm/io.h>
37 #include <asm/prom.h>
38 #include <asm/pci-bridge.h>
39 #include <asm/byteorder.h>
40 #include <asm/machdep.h>
41 #include <asm/ppc-pci.h>
42 #include <asm/eeh.h>
43 
44 /* hose_spinlock protects accesses to the the phb_bitmap. */
45 static DEFINE_SPINLOCK(hose_spinlock);
46 LIST_HEAD(hose_list);
47 
48 /* For dynamic PHB numbering on get_phb_number(): max number of PHBs. */
49 #define MAX_PHBS 0x10000
50 
51 /*
52  * For dynamic PHB numbering: used/free PHBs tracking bitmap.
53  * Accesses to this bitmap should be protected by hose_spinlock.
54  */
55 static DECLARE_BITMAP(phb_bitmap, MAX_PHBS);
56 
57 /* ISA Memory physical address */
58 resource_size_t isa_mem_base;
59 
60 
61 static struct dma_map_ops *pci_dma_ops = &dma_direct_ops;
62 
63 void set_pci_dma_ops(struct dma_map_ops *dma_ops)
64 {
65 	pci_dma_ops = dma_ops;
66 }
67 
68 struct dma_map_ops *get_pci_dma_ops(void)
69 {
70 	return pci_dma_ops;
71 }
72 EXPORT_SYMBOL(get_pci_dma_ops);
73 
74 /*
75  * This function should run under locking protection, specifically
76  * hose_spinlock.
77  */
78 static int get_phb_number(struct device_node *dn)
79 {
80 	int ret, phb_id = -1;
81 	u64 prop;
82 
83 	/*
84 	 * Try fixed PHB numbering first, by checking archs and reading
85 	 * the respective device-tree properties. Firstly, try powernv by
86 	 * reading "ibm,opal-phbid", only present in OPAL environment.
87 	 */
88 	ret = of_property_read_u64(dn, "ibm,opal-phbid", &prop);
89 	if (ret)
90 		ret = of_property_read_u32_index(dn, "reg", 1, (u32 *)&prop);
91 
92 	if (!ret)
93 		phb_id = (int)(prop & (MAX_PHBS - 1));
94 
95 	/* We need to be sure to not use the same PHB number twice. */
96 	if ((phb_id >= 0) && !test_and_set_bit(phb_id, phb_bitmap))
97 		return phb_id;
98 
99 	/*
100 	 * If not pseries nor powernv, or if fixed PHB numbering tried to add
101 	 * the same PHB number twice, then fallback to dynamic PHB numbering.
102 	 */
103 	phb_id = find_first_zero_bit(phb_bitmap, MAX_PHBS);
104 	BUG_ON(phb_id >= MAX_PHBS);
105 	set_bit(phb_id, phb_bitmap);
106 
107 	return phb_id;
108 }
109 
110 struct pci_controller *pcibios_alloc_controller(struct device_node *dev)
111 {
112 	struct pci_controller *phb;
113 
114 	phb = zalloc_maybe_bootmem(sizeof(struct pci_controller), GFP_KERNEL);
115 	if (phb == NULL)
116 		return NULL;
117 	spin_lock(&hose_spinlock);
118 	phb->global_number = get_phb_number(dev);
119 	list_add_tail(&phb->list_node, &hose_list);
120 	spin_unlock(&hose_spinlock);
121 	phb->dn = dev;
122 	phb->is_dynamic = slab_is_available();
123 #ifdef CONFIG_PPC64
124 	if (dev) {
125 		int nid = of_node_to_nid(dev);
126 
127 		if (nid < 0 || !node_online(nid))
128 			nid = -1;
129 
130 		PHB_SET_NODE(phb, nid);
131 	}
132 #endif
133 	return phb;
134 }
135 EXPORT_SYMBOL_GPL(pcibios_alloc_controller);
136 
137 void pcibios_free_controller(struct pci_controller *phb)
138 {
139 	spin_lock(&hose_spinlock);
140 
141 	/* Clear bit of phb_bitmap to allow reuse of this PHB number. */
142 	if (phb->global_number < MAX_PHBS)
143 		clear_bit(phb->global_number, phb_bitmap);
144 
145 	list_del(&phb->list_node);
146 	spin_unlock(&hose_spinlock);
147 
148 	if (phb->is_dynamic)
149 		kfree(phb);
150 }
151 EXPORT_SYMBOL_GPL(pcibios_free_controller);
152 
153 /*
154  * The function is used to return the minimal alignment
155  * for memory or I/O windows of the associated P2P bridge.
156  * By default, 4KiB alignment for I/O windows and 1MiB for
157  * memory windows.
158  */
159 resource_size_t pcibios_window_alignment(struct pci_bus *bus,
160 					 unsigned long type)
161 {
162 	struct pci_controller *phb = pci_bus_to_host(bus);
163 
164 	if (phb->controller_ops.window_alignment)
165 		return phb->controller_ops.window_alignment(bus, type);
166 
167 	/*
168 	 * PCI core will figure out the default
169 	 * alignment: 4KiB for I/O and 1MiB for
170 	 * memory window.
171 	 */
172 	return 1;
173 }
174 
175 void pcibios_setup_bridge(struct pci_bus *bus, unsigned long type)
176 {
177 	struct pci_controller *hose = pci_bus_to_host(bus);
178 
179 	if (hose->controller_ops.setup_bridge)
180 		hose->controller_ops.setup_bridge(bus, type);
181 }
182 
183 void pcibios_reset_secondary_bus(struct pci_dev *dev)
184 {
185 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
186 
187 	if (phb->controller_ops.reset_secondary_bus) {
188 		phb->controller_ops.reset_secondary_bus(dev);
189 		return;
190 	}
191 
192 	pci_reset_secondary_bus(dev);
193 }
194 
195 #ifdef CONFIG_PCI_IOV
196 resource_size_t pcibios_iov_resource_alignment(struct pci_dev *pdev, int resno)
197 {
198 	if (ppc_md.pcibios_iov_resource_alignment)
199 		return ppc_md.pcibios_iov_resource_alignment(pdev, resno);
200 
201 	return pci_iov_resource_size(pdev, resno);
202 }
203 #endif /* CONFIG_PCI_IOV */
204 
205 static resource_size_t pcibios_io_size(const struct pci_controller *hose)
206 {
207 #ifdef CONFIG_PPC64
208 	return hose->pci_io_size;
209 #else
210 	return resource_size(&hose->io_resource);
211 #endif
212 }
213 
214 int pcibios_vaddr_is_ioport(void __iomem *address)
215 {
216 	int ret = 0;
217 	struct pci_controller *hose;
218 	resource_size_t size;
219 
220 	spin_lock(&hose_spinlock);
221 	list_for_each_entry(hose, &hose_list, list_node) {
222 		size = pcibios_io_size(hose);
223 		if (address >= hose->io_base_virt &&
224 		    address < (hose->io_base_virt + size)) {
225 			ret = 1;
226 			break;
227 		}
228 	}
229 	spin_unlock(&hose_spinlock);
230 	return ret;
231 }
232 
233 unsigned long pci_address_to_pio(phys_addr_t address)
234 {
235 	struct pci_controller *hose;
236 	resource_size_t size;
237 	unsigned long ret = ~0;
238 
239 	spin_lock(&hose_spinlock);
240 	list_for_each_entry(hose, &hose_list, list_node) {
241 		size = pcibios_io_size(hose);
242 		if (address >= hose->io_base_phys &&
243 		    address < (hose->io_base_phys + size)) {
244 			unsigned long base =
245 				(unsigned long)hose->io_base_virt - _IO_BASE;
246 			ret = base + (address - hose->io_base_phys);
247 			break;
248 		}
249 	}
250 	spin_unlock(&hose_spinlock);
251 
252 	return ret;
253 }
254 EXPORT_SYMBOL_GPL(pci_address_to_pio);
255 
256 /*
257  * Return the domain number for this bus.
258  */
259 int pci_domain_nr(struct pci_bus *bus)
260 {
261 	struct pci_controller *hose = pci_bus_to_host(bus);
262 
263 	return hose->global_number;
264 }
265 EXPORT_SYMBOL(pci_domain_nr);
266 
267 /* This routine is meant to be used early during boot, when the
268  * PCI bus numbers have not yet been assigned, and you need to
269  * issue PCI config cycles to an OF device.
270  * It could also be used to "fix" RTAS config cycles if you want
271  * to set pci_assign_all_buses to 1 and still use RTAS for PCI
272  * config cycles.
273  */
274 struct pci_controller* pci_find_hose_for_OF_device(struct device_node* node)
275 {
276 	while(node) {
277 		struct pci_controller *hose, *tmp;
278 		list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
279 			if (hose->dn == node)
280 				return hose;
281 		node = node->parent;
282 	}
283 	return NULL;
284 }
285 
286 /*
287  * Reads the interrupt pin to determine if interrupt is use by card.
288  * If the interrupt is used, then gets the interrupt line from the
289  * openfirmware and sets it in the pci_dev and pci_config line.
290  */
291 static int pci_read_irq_line(struct pci_dev *pci_dev)
292 {
293 	struct of_phandle_args oirq;
294 	unsigned int virq;
295 
296 	pr_debug("PCI: Try to map irq for %s...\n", pci_name(pci_dev));
297 
298 #ifdef DEBUG
299 	memset(&oirq, 0xff, sizeof(oirq));
300 #endif
301 	/* Try to get a mapping from the device-tree */
302 	if (of_irq_parse_pci(pci_dev, &oirq)) {
303 		u8 line, pin;
304 
305 		/* If that fails, lets fallback to what is in the config
306 		 * space and map that through the default controller. We
307 		 * also set the type to level low since that's what PCI
308 		 * interrupts are. If your platform does differently, then
309 		 * either provide a proper interrupt tree or don't use this
310 		 * function.
311 		 */
312 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_PIN, &pin))
313 			return -1;
314 		if (pin == 0)
315 			return -1;
316 		if (pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &line) ||
317 		    line == 0xff || line == 0) {
318 			return -1;
319 		}
320 		pr_debug(" No map ! Using line %d (pin %d) from PCI config\n",
321 			 line, pin);
322 
323 		virq = irq_create_mapping(NULL, line);
324 		if (virq != NO_IRQ)
325 			irq_set_irq_type(virq, IRQ_TYPE_LEVEL_LOW);
326 	} else {
327 		pr_debug(" Got one, spec %d cells (0x%08x 0x%08x...) on %s\n",
328 			 oirq.args_count, oirq.args[0], oirq.args[1],
329 			 of_node_full_name(oirq.np));
330 
331 		virq = irq_create_of_mapping(&oirq);
332 	}
333 	if(virq == NO_IRQ) {
334 		pr_debug(" Failed to map !\n");
335 		return -1;
336 	}
337 
338 	pr_debug(" Mapped to linux irq %d\n", virq);
339 
340 	pci_dev->irq = virq;
341 
342 	return 0;
343 }
344 
345 /*
346  * Platform support for /proc/bus/pci/X/Y mmap()s,
347  * modelled on the sparc64 implementation by Dave Miller.
348  *  -- paulus.
349  */
350 
351 /*
352  * Adjust vm_pgoff of VMA such that it is the physical page offset
353  * corresponding to the 32-bit pci bus offset for DEV requested by the user.
354  *
355  * Basically, the user finds the base address for his device which he wishes
356  * to mmap.  They read the 32-bit value from the config space base register,
357  * add whatever PAGE_SIZE multiple offset they wish, and feed this into the
358  * offset parameter of mmap on /proc/bus/pci/XXX for that device.
359  *
360  * Returns negative error code on failure, zero on success.
361  */
362 static struct resource *__pci_mmap_make_offset(struct pci_dev *dev,
363 					       resource_size_t *offset,
364 					       enum pci_mmap_state mmap_state)
365 {
366 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
367 	unsigned long io_offset = 0;
368 	int i, res_bit;
369 
370 	if (hose == NULL)
371 		return NULL;		/* should never happen */
372 
373 	/* If memory, add on the PCI bridge address offset */
374 	if (mmap_state == pci_mmap_mem) {
375 #if 0 /* See comment in pci_resource_to_user() for why this is disabled */
376 		*offset += hose->pci_mem_offset;
377 #endif
378 		res_bit = IORESOURCE_MEM;
379 	} else {
380 		io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
381 		*offset += io_offset;
382 		res_bit = IORESOURCE_IO;
383 	}
384 
385 	/*
386 	 * Check that the offset requested corresponds to one of the
387 	 * resources of the device.
388 	 */
389 	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
390 		struct resource *rp = &dev->resource[i];
391 		int flags = rp->flags;
392 
393 		/* treat ROM as memory (should be already) */
394 		if (i == PCI_ROM_RESOURCE)
395 			flags |= IORESOURCE_MEM;
396 
397 		/* Active and same type? */
398 		if ((flags & res_bit) == 0)
399 			continue;
400 
401 		/* In the range of this resource? */
402 		if (*offset < (rp->start & PAGE_MASK) || *offset > rp->end)
403 			continue;
404 
405 		/* found it! construct the final physical address */
406 		if (mmap_state == pci_mmap_io)
407 			*offset += hose->io_base_phys - io_offset;
408 		return rp;
409 	}
410 
411 	return NULL;
412 }
413 
414 /*
415  * Set vm_page_prot of VMA, as appropriate for this architecture, for a pci
416  * device mapping.
417  */
418 static pgprot_t __pci_mmap_set_pgprot(struct pci_dev *dev, struct resource *rp,
419 				      pgprot_t protection,
420 				      enum pci_mmap_state mmap_state,
421 				      int write_combine)
422 {
423 
424 	/* Write combine is always 0 on non-memory space mappings. On
425 	 * memory space, if the user didn't pass 1, we check for a
426 	 * "prefetchable" resource. This is a bit hackish, but we use
427 	 * this to workaround the inability of /sysfs to provide a write
428 	 * combine bit
429 	 */
430 	if (mmap_state != pci_mmap_mem)
431 		write_combine = 0;
432 	else if (write_combine == 0) {
433 		if (rp->flags & IORESOURCE_PREFETCH)
434 			write_combine = 1;
435 	}
436 
437 	/* XXX would be nice to have a way to ask for write-through */
438 	if (write_combine)
439 		return pgprot_noncached_wc(protection);
440 	else
441 		return pgprot_noncached(protection);
442 }
443 
444 /*
445  * This one is used by /dev/mem and fbdev who have no clue about the
446  * PCI device, it tries to find the PCI device first and calls the
447  * above routine
448  */
449 pgprot_t pci_phys_mem_access_prot(struct file *file,
450 				  unsigned long pfn,
451 				  unsigned long size,
452 				  pgprot_t prot)
453 {
454 	struct pci_dev *pdev = NULL;
455 	struct resource *found = NULL;
456 	resource_size_t offset = ((resource_size_t)pfn) << PAGE_SHIFT;
457 	int i;
458 
459 	if (page_is_ram(pfn))
460 		return prot;
461 
462 	prot = pgprot_noncached(prot);
463 	for_each_pci_dev(pdev) {
464 		for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
465 			struct resource *rp = &pdev->resource[i];
466 			int flags = rp->flags;
467 
468 			/* Active and same type? */
469 			if ((flags & IORESOURCE_MEM) == 0)
470 				continue;
471 			/* In the range of this resource? */
472 			if (offset < (rp->start & PAGE_MASK) ||
473 			    offset > rp->end)
474 				continue;
475 			found = rp;
476 			break;
477 		}
478 		if (found)
479 			break;
480 	}
481 	if (found) {
482 		if (found->flags & IORESOURCE_PREFETCH)
483 			prot = pgprot_noncached_wc(prot);
484 		pci_dev_put(pdev);
485 	}
486 
487 	pr_debug("PCI: Non-PCI map for %llx, prot: %lx\n",
488 		 (unsigned long long)offset, pgprot_val(prot));
489 
490 	return prot;
491 }
492 
493 
494 /*
495  * Perform the actual remap of the pages for a PCI device mapping, as
496  * appropriate for this architecture.  The region in the process to map
497  * is described by vm_start and vm_end members of VMA, the base physical
498  * address is found in vm_pgoff.
499  * The pci device structure is provided so that architectures may make mapping
500  * decisions on a per-device or per-bus basis.
501  *
502  * Returns a negative error code on failure, zero on success.
503  */
504 int pci_mmap_page_range(struct pci_dev *dev, struct vm_area_struct *vma,
505 			enum pci_mmap_state mmap_state, int write_combine)
506 {
507 	resource_size_t offset =
508 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
509 	struct resource *rp;
510 	int ret;
511 
512 	rp = __pci_mmap_make_offset(dev, &offset, mmap_state);
513 	if (rp == NULL)
514 		return -EINVAL;
515 
516 	vma->vm_pgoff = offset >> PAGE_SHIFT;
517 	vma->vm_page_prot = __pci_mmap_set_pgprot(dev, rp,
518 						  vma->vm_page_prot,
519 						  mmap_state, write_combine);
520 
521 	ret = remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
522 			       vma->vm_end - vma->vm_start, vma->vm_page_prot);
523 
524 	return ret;
525 }
526 
527 /* This provides legacy IO read access on a bus */
528 int pci_legacy_read(struct pci_bus *bus, loff_t port, u32 *val, size_t size)
529 {
530 	unsigned long offset;
531 	struct pci_controller *hose = pci_bus_to_host(bus);
532 	struct resource *rp = &hose->io_resource;
533 	void __iomem *addr;
534 
535 	/* Check if port can be supported by that bus. We only check
536 	 * the ranges of the PHB though, not the bus itself as the rules
537 	 * for forwarding legacy cycles down bridges are not our problem
538 	 * here. So if the host bridge supports it, we do it.
539 	 */
540 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
541 	offset += port;
542 
543 	if (!(rp->flags & IORESOURCE_IO))
544 		return -ENXIO;
545 	if (offset < rp->start || (offset + size) > rp->end)
546 		return -ENXIO;
547 	addr = hose->io_base_virt + port;
548 
549 	switch(size) {
550 	case 1:
551 		*((u8 *)val) = in_8(addr);
552 		return 1;
553 	case 2:
554 		if (port & 1)
555 			return -EINVAL;
556 		*((u16 *)val) = in_le16(addr);
557 		return 2;
558 	case 4:
559 		if (port & 3)
560 			return -EINVAL;
561 		*((u32 *)val) = in_le32(addr);
562 		return 4;
563 	}
564 	return -EINVAL;
565 }
566 
567 /* This provides legacy IO write access on a bus */
568 int pci_legacy_write(struct pci_bus *bus, loff_t port, u32 val, size_t size)
569 {
570 	unsigned long offset;
571 	struct pci_controller *hose = pci_bus_to_host(bus);
572 	struct resource *rp = &hose->io_resource;
573 	void __iomem *addr;
574 
575 	/* Check if port can be supported by that bus. We only check
576 	 * the ranges of the PHB though, not the bus itself as the rules
577 	 * for forwarding legacy cycles down bridges are not our problem
578 	 * here. So if the host bridge supports it, we do it.
579 	 */
580 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
581 	offset += port;
582 
583 	if (!(rp->flags & IORESOURCE_IO))
584 		return -ENXIO;
585 	if (offset < rp->start || (offset + size) > rp->end)
586 		return -ENXIO;
587 	addr = hose->io_base_virt + port;
588 
589 	/* WARNING: The generic code is idiotic. It gets passed a pointer
590 	 * to what can be a 1, 2 or 4 byte quantity and always reads that
591 	 * as a u32, which means that we have to correct the location of
592 	 * the data read within those 32 bits for size 1 and 2
593 	 */
594 	switch(size) {
595 	case 1:
596 		out_8(addr, val >> 24);
597 		return 1;
598 	case 2:
599 		if (port & 1)
600 			return -EINVAL;
601 		out_le16(addr, val >> 16);
602 		return 2;
603 	case 4:
604 		if (port & 3)
605 			return -EINVAL;
606 		out_le32(addr, val);
607 		return 4;
608 	}
609 	return -EINVAL;
610 }
611 
612 /* This provides legacy IO or memory mmap access on a bus */
613 int pci_mmap_legacy_page_range(struct pci_bus *bus,
614 			       struct vm_area_struct *vma,
615 			       enum pci_mmap_state mmap_state)
616 {
617 	struct pci_controller *hose = pci_bus_to_host(bus);
618 	resource_size_t offset =
619 		((resource_size_t)vma->vm_pgoff) << PAGE_SHIFT;
620 	resource_size_t size = vma->vm_end - vma->vm_start;
621 	struct resource *rp;
622 
623 	pr_debug("pci_mmap_legacy_page_range(%04x:%02x, %s @%llx..%llx)\n",
624 		 pci_domain_nr(bus), bus->number,
625 		 mmap_state == pci_mmap_mem ? "MEM" : "IO",
626 		 (unsigned long long)offset,
627 		 (unsigned long long)(offset + size - 1));
628 
629 	if (mmap_state == pci_mmap_mem) {
630 		/* Hack alert !
631 		 *
632 		 * Because X is lame and can fail starting if it gets an error trying
633 		 * to mmap legacy_mem (instead of just moving on without legacy memory
634 		 * access) we fake it here by giving it anonymous memory, effectively
635 		 * behaving just like /dev/zero
636 		 */
637 		if ((offset + size) > hose->isa_mem_size) {
638 			printk(KERN_DEBUG
639 			       "Process %s (pid:%d) mapped non-existing PCI legacy memory for 0%04x:%02x\n",
640 			       current->comm, current->pid, pci_domain_nr(bus), bus->number);
641 			if (vma->vm_flags & VM_SHARED)
642 				return shmem_zero_setup(vma);
643 			return 0;
644 		}
645 		offset += hose->isa_mem_phys;
646 	} else {
647 		unsigned long io_offset = (unsigned long)hose->io_base_virt - _IO_BASE;
648 		unsigned long roffset = offset + io_offset;
649 		rp = &hose->io_resource;
650 		if (!(rp->flags & IORESOURCE_IO))
651 			return -ENXIO;
652 		if (roffset < rp->start || (roffset + size) > rp->end)
653 			return -ENXIO;
654 		offset += hose->io_base_phys;
655 	}
656 	pr_debug(" -> mapping phys %llx\n", (unsigned long long)offset);
657 
658 	vma->vm_pgoff = offset >> PAGE_SHIFT;
659 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
660 	return remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
661 			       vma->vm_end - vma->vm_start,
662 			       vma->vm_page_prot);
663 }
664 
665 void pci_resource_to_user(const struct pci_dev *dev, int bar,
666 			  const struct resource *rsrc,
667 			  resource_size_t *start, resource_size_t *end)
668 {
669 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
670 	resource_size_t offset = 0;
671 
672 	if (hose == NULL)
673 		return;
674 
675 	if (rsrc->flags & IORESOURCE_IO)
676 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
677 
678 	/* We pass a fully fixed up address to userland for MMIO instead of
679 	 * a BAR value because X is lame and expects to be able to use that
680 	 * to pass to /dev/mem !
681 	 *
682 	 * That means that we'll have potentially 64 bits values where some
683 	 * userland apps only expect 32 (like X itself since it thinks only
684 	 * Sparc has 64 bits MMIO) but if we don't do that, we break it on
685 	 * 32 bits CHRPs :-(
686 	 *
687 	 * Hopefully, the sysfs insterface is immune to that gunk. Once X
688 	 * has been fixed (and the fix spread enough), we can re-enable the
689 	 * 2 lines below and pass down a BAR value to userland. In that case
690 	 * we'll also have to re-enable the matching code in
691 	 * __pci_mmap_make_offset().
692 	 *
693 	 * BenH.
694 	 */
695 #if 0
696 	else if (rsrc->flags & IORESOURCE_MEM)
697 		offset = hose->pci_mem_offset;
698 #endif
699 
700 	*start = rsrc->start - offset;
701 	*end = rsrc->end - offset;
702 }
703 
704 /**
705  * pci_process_bridge_OF_ranges - Parse PCI bridge resources from device tree
706  * @hose: newly allocated pci_controller to be setup
707  * @dev: device node of the host bridge
708  * @primary: set if primary bus (32 bits only, soon to be deprecated)
709  *
710  * This function will parse the "ranges" property of a PCI host bridge device
711  * node and setup the resource mapping of a pci controller based on its
712  * content.
713  *
714  * Life would be boring if it wasn't for a few issues that we have to deal
715  * with here:
716  *
717  *   - We can only cope with one IO space range and up to 3 Memory space
718  *     ranges. However, some machines (thanks Apple !) tend to split their
719  *     space into lots of small contiguous ranges. So we have to coalesce.
720  *
721  *   - Some busses have IO space not starting at 0, which causes trouble with
722  *     the way we do our IO resource renumbering. The code somewhat deals with
723  *     it for 64 bits but I would expect problems on 32 bits.
724  *
725  *   - Some 32 bits platforms such as 4xx can have physical space larger than
726  *     32 bits so we need to use 64 bits values for the parsing
727  */
728 void pci_process_bridge_OF_ranges(struct pci_controller *hose,
729 				  struct device_node *dev, int primary)
730 {
731 	int memno = 0;
732 	struct resource *res;
733 	struct of_pci_range range;
734 	struct of_pci_range_parser parser;
735 
736 	printk(KERN_INFO "PCI host bridge %s %s ranges:\n",
737 	       dev->full_name, primary ? "(primary)" : "");
738 
739 	/* Check for ranges property */
740 	if (of_pci_range_parser_init(&parser, dev))
741 		return;
742 
743 	/* Parse it */
744 	for_each_of_pci_range(&parser, &range) {
745 		/* If we failed translation or got a zero-sized region
746 		 * (some FW try to feed us with non sensical zero sized regions
747 		 * such as power3 which look like some kind of attempt at exposing
748 		 * the VGA memory hole)
749 		 */
750 		if (range.cpu_addr == OF_BAD_ADDR || range.size == 0)
751 			continue;
752 
753 		/* Act based on address space type */
754 		res = NULL;
755 		switch (range.flags & IORESOURCE_TYPE_BITS) {
756 		case IORESOURCE_IO:
757 			printk(KERN_INFO
758 			       "  IO 0x%016llx..0x%016llx -> 0x%016llx\n",
759 			       range.cpu_addr, range.cpu_addr + range.size - 1,
760 			       range.pci_addr);
761 
762 			/* We support only one IO range */
763 			if (hose->pci_io_size) {
764 				printk(KERN_INFO
765 				       " \\--> Skipped (too many) !\n");
766 				continue;
767 			}
768 #ifdef CONFIG_PPC32
769 			/* On 32 bits, limit I/O space to 16MB */
770 			if (range.size > 0x01000000)
771 				range.size = 0x01000000;
772 
773 			/* 32 bits needs to map IOs here */
774 			hose->io_base_virt = ioremap(range.cpu_addr,
775 						range.size);
776 
777 			/* Expect trouble if pci_addr is not 0 */
778 			if (primary)
779 				isa_io_base =
780 					(unsigned long)hose->io_base_virt;
781 #endif /* CONFIG_PPC32 */
782 			/* pci_io_size and io_base_phys always represent IO
783 			 * space starting at 0 so we factor in pci_addr
784 			 */
785 			hose->pci_io_size = range.pci_addr + range.size;
786 			hose->io_base_phys = range.cpu_addr - range.pci_addr;
787 
788 			/* Build resource */
789 			res = &hose->io_resource;
790 			range.cpu_addr = range.pci_addr;
791 			break;
792 		case IORESOURCE_MEM:
793 			printk(KERN_INFO
794 			       " MEM 0x%016llx..0x%016llx -> 0x%016llx %s\n",
795 			       range.cpu_addr, range.cpu_addr + range.size - 1,
796 			       range.pci_addr,
797 			       (range.pci_space & 0x40000000) ?
798 			       "Prefetch" : "");
799 
800 			/* We support only 3 memory ranges */
801 			if (memno >= 3) {
802 				printk(KERN_INFO
803 				       " \\--> Skipped (too many) !\n");
804 				continue;
805 			}
806 			/* Handles ISA memory hole space here */
807 			if (range.pci_addr == 0) {
808 				if (primary || isa_mem_base == 0)
809 					isa_mem_base = range.cpu_addr;
810 				hose->isa_mem_phys = range.cpu_addr;
811 				hose->isa_mem_size = range.size;
812 			}
813 
814 			/* Build resource */
815 			hose->mem_offset[memno] = range.cpu_addr -
816 							range.pci_addr;
817 			res = &hose->mem_resources[memno++];
818 			break;
819 		}
820 		if (res != NULL) {
821 			res->name = dev->full_name;
822 			res->flags = range.flags;
823 			res->start = range.cpu_addr;
824 			res->end = range.cpu_addr + range.size - 1;
825 			res->parent = res->child = res->sibling = NULL;
826 		}
827 	}
828 }
829 
830 /* Decide whether to display the domain number in /proc */
831 int pci_proc_domain(struct pci_bus *bus)
832 {
833 	struct pci_controller *hose = pci_bus_to_host(bus);
834 
835 	if (!pci_has_flag(PCI_ENABLE_PROC_DOMAINS))
836 		return 0;
837 	if (pci_has_flag(PCI_COMPAT_DOMAIN_0))
838 		return hose->global_number != 0;
839 	return 1;
840 }
841 
842 int pcibios_root_bridge_prepare(struct pci_host_bridge *bridge)
843 {
844 	if (ppc_md.pcibios_root_bridge_prepare)
845 		return ppc_md.pcibios_root_bridge_prepare(bridge);
846 
847 	return 0;
848 }
849 
850 /* This header fixup will do the resource fixup for all devices as they are
851  * probed, but not for bridge ranges
852  */
853 static void pcibios_fixup_resources(struct pci_dev *dev)
854 {
855 	struct pci_controller *hose = pci_bus_to_host(dev->bus);
856 	int i;
857 
858 	if (!hose) {
859 		printk(KERN_ERR "No host bridge for PCI dev %s !\n",
860 		       pci_name(dev));
861 		return;
862 	}
863 
864 	if (dev->is_virtfn)
865 		return;
866 
867 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
868 		struct resource *res = dev->resource + i;
869 		struct pci_bus_region reg;
870 		if (!res->flags)
871 			continue;
872 
873 		/* If we're going to re-assign everything, we mark all resources
874 		 * as unset (and 0-base them). In addition, we mark BARs starting
875 		 * at 0 as unset as well, except if PCI_PROBE_ONLY is also set
876 		 * since in that case, we don't want to re-assign anything
877 		 */
878 		pcibios_resource_to_bus(dev->bus, &reg, res);
879 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC) ||
880 		    (reg.start == 0 && !pci_has_flag(PCI_PROBE_ONLY))) {
881 			/* Only print message if not re-assigning */
882 			if (!pci_has_flag(PCI_REASSIGN_ALL_RSRC))
883 				pr_debug("PCI:%s Resource %d %pR is unassigned\n",
884 					 pci_name(dev), i, res);
885 			res->end -= res->start;
886 			res->start = 0;
887 			res->flags |= IORESOURCE_UNSET;
888 			continue;
889 		}
890 
891 		pr_debug("PCI:%s Resource %d %pR\n", pci_name(dev), i, res);
892 	}
893 
894 	/* Call machine specific resource fixup */
895 	if (ppc_md.pcibios_fixup_resources)
896 		ppc_md.pcibios_fixup_resources(dev);
897 }
898 DECLARE_PCI_FIXUP_HEADER(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_resources);
899 
900 /* This function tries to figure out if a bridge resource has been initialized
901  * by the firmware or not. It doesn't have to be absolutely bullet proof, but
902  * things go more smoothly when it gets it right. It should covers cases such
903  * as Apple "closed" bridge resources and bare-metal pSeries unassigned bridges
904  */
905 static int pcibios_uninitialized_bridge_resource(struct pci_bus *bus,
906 						 struct resource *res)
907 {
908 	struct pci_controller *hose = pci_bus_to_host(bus);
909 	struct pci_dev *dev = bus->self;
910 	resource_size_t offset;
911 	struct pci_bus_region region;
912 	u16 command;
913 	int i;
914 
915 	/* We don't do anything if PCI_PROBE_ONLY is set */
916 	if (pci_has_flag(PCI_PROBE_ONLY))
917 		return 0;
918 
919 	/* Job is a bit different between memory and IO */
920 	if (res->flags & IORESOURCE_MEM) {
921 		pcibios_resource_to_bus(dev->bus, &region, res);
922 
923 		/* If the BAR is non-0 then it's probably been initialized */
924 		if (region.start != 0)
925 			return 0;
926 
927 		/* The BAR is 0, let's check if memory decoding is enabled on
928 		 * the bridge. If not, we consider it unassigned
929 		 */
930 		pci_read_config_word(dev, PCI_COMMAND, &command);
931 		if ((command & PCI_COMMAND_MEMORY) == 0)
932 			return 1;
933 
934 		/* Memory decoding is enabled and the BAR is 0. If any of the bridge
935 		 * resources covers that starting address (0 then it's good enough for
936 		 * us for memory space)
937 		 */
938 		for (i = 0; i < 3; i++) {
939 			if ((hose->mem_resources[i].flags & IORESOURCE_MEM) &&
940 			    hose->mem_resources[i].start == hose->mem_offset[i])
941 				return 0;
942 		}
943 
944 		/* Well, it starts at 0 and we know it will collide so we may as
945 		 * well consider it as unassigned. That covers the Apple case.
946 		 */
947 		return 1;
948 	} else {
949 		/* If the BAR is non-0, then we consider it assigned */
950 		offset = (unsigned long)hose->io_base_virt - _IO_BASE;
951 		if (((res->start - offset) & 0xfffffffful) != 0)
952 			return 0;
953 
954 		/* Here, we are a bit different than memory as typically IO space
955 		 * starting at low addresses -is- valid. What we do instead if that
956 		 * we consider as unassigned anything that doesn't have IO enabled
957 		 * in the PCI command register, and that's it.
958 		 */
959 		pci_read_config_word(dev, PCI_COMMAND, &command);
960 		if (command & PCI_COMMAND_IO)
961 			return 0;
962 
963 		/* It's starting at 0 and IO is disabled in the bridge, consider
964 		 * it unassigned
965 		 */
966 		return 1;
967 	}
968 }
969 
970 /* Fixup resources of a PCI<->PCI bridge */
971 static void pcibios_fixup_bridge(struct pci_bus *bus)
972 {
973 	struct resource *res;
974 	int i;
975 
976 	struct pci_dev *dev = bus->self;
977 
978 	pci_bus_for_each_resource(bus, res, i) {
979 		if (!res || !res->flags)
980 			continue;
981 		if (i >= 3 && bus->self->transparent)
982 			continue;
983 
984 		/* If we're going to reassign everything, we can
985 		 * shrink the P2P resource to have size as being
986 		 * of 0 in order to save space.
987 		 */
988 		if (pci_has_flag(PCI_REASSIGN_ALL_RSRC)) {
989 			res->flags |= IORESOURCE_UNSET;
990 			res->start = 0;
991 			res->end = -1;
992 			continue;
993 		}
994 
995 		pr_debug("PCI:%s Bus rsrc %d %pR\n", pci_name(dev), i, res);
996 
997 		/* Try to detect uninitialized P2P bridge resources,
998 		 * and clear them out so they get re-assigned later
999 		 */
1000 		if (pcibios_uninitialized_bridge_resource(bus, res)) {
1001 			res->flags = 0;
1002 			pr_debug("PCI:%s            (unassigned)\n", pci_name(dev));
1003 		}
1004 	}
1005 }
1006 
1007 void pcibios_setup_bus_self(struct pci_bus *bus)
1008 {
1009 	struct pci_controller *phb;
1010 
1011 	/* Fix up the bus resources for P2P bridges */
1012 	if (bus->self != NULL)
1013 		pcibios_fixup_bridge(bus);
1014 
1015 	/* Platform specific bus fixups. This is currently only used
1016 	 * by fsl_pci and I'm hoping to get rid of it at some point
1017 	 */
1018 	if (ppc_md.pcibios_fixup_bus)
1019 		ppc_md.pcibios_fixup_bus(bus);
1020 
1021 	/* Setup bus DMA mappings */
1022 	phb = pci_bus_to_host(bus);
1023 	if (phb->controller_ops.dma_bus_setup)
1024 		phb->controller_ops.dma_bus_setup(bus);
1025 }
1026 
1027 static void pcibios_setup_device(struct pci_dev *dev)
1028 {
1029 	struct pci_controller *phb;
1030 	/* Fixup NUMA node as it may not be setup yet by the generic
1031 	 * code and is needed by the DMA init
1032 	 */
1033 	set_dev_node(&dev->dev, pcibus_to_node(dev->bus));
1034 
1035 	/* Hook up default DMA ops */
1036 	set_dma_ops(&dev->dev, pci_dma_ops);
1037 	set_dma_offset(&dev->dev, PCI_DRAM_OFFSET);
1038 
1039 	/* Additional platform DMA/iommu setup */
1040 	phb = pci_bus_to_host(dev->bus);
1041 	if (phb->controller_ops.dma_dev_setup)
1042 		phb->controller_ops.dma_dev_setup(dev);
1043 
1044 	/* Read default IRQs and fixup if necessary */
1045 	pci_read_irq_line(dev);
1046 	if (ppc_md.pci_irq_fixup)
1047 		ppc_md.pci_irq_fixup(dev);
1048 }
1049 
1050 int pcibios_add_device(struct pci_dev *dev)
1051 {
1052 	/*
1053 	 * We can only call pcibios_setup_device() after bus setup is complete,
1054 	 * since some of the platform specific DMA setup code depends on it.
1055 	 */
1056 	if (dev->bus->is_added)
1057 		pcibios_setup_device(dev);
1058 
1059 #ifdef CONFIG_PCI_IOV
1060 	if (ppc_md.pcibios_fixup_sriov)
1061 		ppc_md.pcibios_fixup_sriov(dev);
1062 #endif /* CONFIG_PCI_IOV */
1063 
1064 	return 0;
1065 }
1066 
1067 void pcibios_setup_bus_devices(struct pci_bus *bus)
1068 {
1069 	struct pci_dev *dev;
1070 
1071 	pr_debug("PCI: Fixup bus devices %d (%s)\n",
1072 		 bus->number, bus->self ? pci_name(bus->self) : "PHB");
1073 
1074 	list_for_each_entry(dev, &bus->devices, bus_list) {
1075 		/* Cardbus can call us to add new devices to a bus, so ignore
1076 		 * those who are already fully discovered
1077 		 */
1078 		if (dev->is_added)
1079 			continue;
1080 
1081 		pcibios_setup_device(dev);
1082 	}
1083 }
1084 
1085 void pcibios_set_master(struct pci_dev *dev)
1086 {
1087 	/* No special bus mastering setup handling */
1088 }
1089 
1090 void pcibios_fixup_bus(struct pci_bus *bus)
1091 {
1092 	/* When called from the generic PCI probe, read PCI<->PCI bridge
1093 	 * bases. This is -not- called when generating the PCI tree from
1094 	 * the OF device-tree.
1095 	 */
1096 	pci_read_bridge_bases(bus);
1097 
1098 	/* Now fixup the bus bus */
1099 	pcibios_setup_bus_self(bus);
1100 
1101 	/* Now fixup devices on that bus */
1102 	pcibios_setup_bus_devices(bus);
1103 }
1104 EXPORT_SYMBOL(pcibios_fixup_bus);
1105 
1106 void pci_fixup_cardbus(struct pci_bus *bus)
1107 {
1108 	/* Now fixup devices on that bus */
1109 	pcibios_setup_bus_devices(bus);
1110 }
1111 
1112 
1113 static int skip_isa_ioresource_align(struct pci_dev *dev)
1114 {
1115 	if (pci_has_flag(PCI_CAN_SKIP_ISA_ALIGN) &&
1116 	    !(dev->bus->bridge_ctl & PCI_BRIDGE_CTL_ISA))
1117 		return 1;
1118 	return 0;
1119 }
1120 
1121 /*
1122  * We need to avoid collisions with `mirrored' VGA ports
1123  * and other strange ISA hardware, so we always want the
1124  * addresses to be allocated in the 0x000-0x0ff region
1125  * modulo 0x400.
1126  *
1127  * Why? Because some silly external IO cards only decode
1128  * the low 10 bits of the IO address. The 0x00-0xff region
1129  * is reserved for motherboard devices that decode all 16
1130  * bits, so it's ok to allocate at, say, 0x2800-0x28ff,
1131  * but we want to try to avoid allocating at 0x2900-0x2bff
1132  * which might have be mirrored at 0x0100-0x03ff..
1133  */
1134 resource_size_t pcibios_align_resource(void *data, const struct resource *res,
1135 				resource_size_t size, resource_size_t align)
1136 {
1137 	struct pci_dev *dev = data;
1138 	resource_size_t start = res->start;
1139 
1140 	if (res->flags & IORESOURCE_IO) {
1141 		if (skip_isa_ioresource_align(dev))
1142 			return start;
1143 		if (start & 0x300)
1144 			start = (start + 0x3ff) & ~0x3ff;
1145 	}
1146 
1147 	return start;
1148 }
1149 EXPORT_SYMBOL(pcibios_align_resource);
1150 
1151 /*
1152  * Reparent resource children of pr that conflict with res
1153  * under res, and make res replace those children.
1154  */
1155 static int reparent_resources(struct resource *parent,
1156 				     struct resource *res)
1157 {
1158 	struct resource *p, **pp;
1159 	struct resource **firstpp = NULL;
1160 
1161 	for (pp = &parent->child; (p = *pp) != NULL; pp = &p->sibling) {
1162 		if (p->end < res->start)
1163 			continue;
1164 		if (res->end < p->start)
1165 			break;
1166 		if (p->start < res->start || p->end > res->end)
1167 			return -1;	/* not completely contained */
1168 		if (firstpp == NULL)
1169 			firstpp = pp;
1170 	}
1171 	if (firstpp == NULL)
1172 		return -1;	/* didn't find any conflicting entries? */
1173 	res->parent = parent;
1174 	res->child = *firstpp;
1175 	res->sibling = *pp;
1176 	*firstpp = res;
1177 	*pp = NULL;
1178 	for (p = res->child; p != NULL; p = p->sibling) {
1179 		p->parent = res;
1180 		pr_debug("PCI: Reparented %s %pR under %s\n",
1181 			 p->name, p, res->name);
1182 	}
1183 	return 0;
1184 }
1185 
1186 /*
1187  *  Handle resources of PCI devices.  If the world were perfect, we could
1188  *  just allocate all the resource regions and do nothing more.  It isn't.
1189  *  On the other hand, we cannot just re-allocate all devices, as it would
1190  *  require us to know lots of host bridge internals.  So we attempt to
1191  *  keep as much of the original configuration as possible, but tweak it
1192  *  when it's found to be wrong.
1193  *
1194  *  Known BIOS problems we have to work around:
1195  *	- I/O or memory regions not configured
1196  *	- regions configured, but not enabled in the command register
1197  *	- bogus I/O addresses above 64K used
1198  *	- expansion ROMs left enabled (this may sound harmless, but given
1199  *	  the fact the PCI specs explicitly allow address decoders to be
1200  *	  shared between expansion ROMs and other resource regions, it's
1201  *	  at least dangerous)
1202  *
1203  *  Our solution:
1204  *	(1) Allocate resources for all buses behind PCI-to-PCI bridges.
1205  *	    This gives us fixed barriers on where we can allocate.
1206  *	(2) Allocate resources for all enabled devices.  If there is
1207  *	    a collision, just mark the resource as unallocated. Also
1208  *	    disable expansion ROMs during this step.
1209  *	(3) Try to allocate resources for disabled devices.  If the
1210  *	    resources were assigned correctly, everything goes well,
1211  *	    if they weren't, they won't disturb allocation of other
1212  *	    resources.
1213  *	(4) Assign new addresses to resources which were either
1214  *	    not configured at all or misconfigured.  If explicitly
1215  *	    requested by the user, configure expansion ROM address
1216  *	    as well.
1217  */
1218 
1219 static void pcibios_allocate_bus_resources(struct pci_bus *bus)
1220 {
1221 	struct pci_bus *b;
1222 	int i;
1223 	struct resource *res, *pr;
1224 
1225 	pr_debug("PCI: Allocating bus resources for %04x:%02x...\n",
1226 		 pci_domain_nr(bus), bus->number);
1227 
1228 	pci_bus_for_each_resource(bus, res, i) {
1229 		if (!res || !res->flags || res->start > res->end || res->parent)
1230 			continue;
1231 
1232 		/* If the resource was left unset at this point, we clear it */
1233 		if (res->flags & IORESOURCE_UNSET)
1234 			goto clear_resource;
1235 
1236 		if (bus->parent == NULL)
1237 			pr = (res->flags & IORESOURCE_IO) ?
1238 				&ioport_resource : &iomem_resource;
1239 		else {
1240 			pr = pci_find_parent_resource(bus->self, res);
1241 			if (pr == res) {
1242 				/* this happens when the generic PCI
1243 				 * code (wrongly) decides that this
1244 				 * bridge is transparent  -- paulus
1245 				 */
1246 				continue;
1247 			}
1248 		}
1249 
1250 		pr_debug("PCI: %s (bus %d) bridge rsrc %d: %pR, parent %p (%s)\n",
1251 			 bus->self ? pci_name(bus->self) : "PHB", bus->number,
1252 			 i, res, pr, (pr && pr->name) ? pr->name : "nil");
1253 
1254 		if (pr && !(pr->flags & IORESOURCE_UNSET)) {
1255 			struct pci_dev *dev = bus->self;
1256 
1257 			if (request_resource(pr, res) == 0)
1258 				continue;
1259 			/*
1260 			 * Must be a conflict with an existing entry.
1261 			 * Move that entry (or entries) under the
1262 			 * bridge resource and try again.
1263 			 */
1264 			if (reparent_resources(pr, res) == 0)
1265 				continue;
1266 
1267 			if (dev && i < PCI_BRIDGE_RESOURCE_NUM &&
1268 			    pci_claim_bridge_resource(dev,
1269 						i + PCI_BRIDGE_RESOURCES) == 0)
1270 				continue;
1271 		}
1272 		pr_warning("PCI: Cannot allocate resource region "
1273 			   "%d of PCI bridge %d, will remap\n", i, bus->number);
1274 	clear_resource:
1275 		/* The resource might be figured out when doing
1276 		 * reassignment based on the resources required
1277 		 * by the downstream PCI devices. Here we set
1278 		 * the size of the resource to be 0 in order to
1279 		 * save more space.
1280 		 */
1281 		res->start = 0;
1282 		res->end = -1;
1283 		res->flags = 0;
1284 	}
1285 
1286 	list_for_each_entry(b, &bus->children, node)
1287 		pcibios_allocate_bus_resources(b);
1288 }
1289 
1290 static inline void alloc_resource(struct pci_dev *dev, int idx)
1291 {
1292 	struct resource *pr, *r = &dev->resource[idx];
1293 
1294 	pr_debug("PCI: Allocating %s: Resource %d: %pR\n",
1295 		 pci_name(dev), idx, r);
1296 
1297 	pr = pci_find_parent_resource(dev, r);
1298 	if (!pr || (pr->flags & IORESOURCE_UNSET) ||
1299 	    request_resource(pr, r) < 0) {
1300 		printk(KERN_WARNING "PCI: Cannot allocate resource region %d"
1301 		       " of device %s, will remap\n", idx, pci_name(dev));
1302 		if (pr)
1303 			pr_debug("PCI:  parent is %p: %pR\n", pr, pr);
1304 		/* We'll assign a new address later */
1305 		r->flags |= IORESOURCE_UNSET;
1306 		r->end -= r->start;
1307 		r->start = 0;
1308 	}
1309 }
1310 
1311 static void __init pcibios_allocate_resources(int pass)
1312 {
1313 	struct pci_dev *dev = NULL;
1314 	int idx, disabled;
1315 	u16 command;
1316 	struct resource *r;
1317 
1318 	for_each_pci_dev(dev) {
1319 		pci_read_config_word(dev, PCI_COMMAND, &command);
1320 		for (idx = 0; idx <= PCI_ROM_RESOURCE; idx++) {
1321 			r = &dev->resource[idx];
1322 			if (r->parent)		/* Already allocated */
1323 				continue;
1324 			if (!r->flags || (r->flags & IORESOURCE_UNSET))
1325 				continue;	/* Not assigned at all */
1326 			/* We only allocate ROMs on pass 1 just in case they
1327 			 * have been screwed up by firmware
1328 			 */
1329 			if (idx == PCI_ROM_RESOURCE )
1330 				disabled = 1;
1331 			if (r->flags & IORESOURCE_IO)
1332 				disabled = !(command & PCI_COMMAND_IO);
1333 			else
1334 				disabled = !(command & PCI_COMMAND_MEMORY);
1335 			if (pass == disabled)
1336 				alloc_resource(dev, idx);
1337 		}
1338 		if (pass)
1339 			continue;
1340 		r = &dev->resource[PCI_ROM_RESOURCE];
1341 		if (r->flags) {
1342 			/* Turn the ROM off, leave the resource region,
1343 			 * but keep it unregistered.
1344 			 */
1345 			u32 reg;
1346 			pci_read_config_dword(dev, dev->rom_base_reg, &reg);
1347 			if (reg & PCI_ROM_ADDRESS_ENABLE) {
1348 				pr_debug("PCI: Switching off ROM of %s\n",
1349 					 pci_name(dev));
1350 				r->flags &= ~IORESOURCE_ROM_ENABLE;
1351 				pci_write_config_dword(dev, dev->rom_base_reg,
1352 						       reg & ~PCI_ROM_ADDRESS_ENABLE);
1353 			}
1354 		}
1355 	}
1356 }
1357 
1358 static void __init pcibios_reserve_legacy_regions(struct pci_bus *bus)
1359 {
1360 	struct pci_controller *hose = pci_bus_to_host(bus);
1361 	resource_size_t	offset;
1362 	struct resource *res, *pres;
1363 	int i;
1364 
1365 	pr_debug("Reserving legacy ranges for domain %04x\n", pci_domain_nr(bus));
1366 
1367 	/* Check for IO */
1368 	if (!(hose->io_resource.flags & IORESOURCE_IO))
1369 		goto no_io;
1370 	offset = (unsigned long)hose->io_base_virt - _IO_BASE;
1371 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1372 	BUG_ON(res == NULL);
1373 	res->name = "Legacy IO";
1374 	res->flags = IORESOURCE_IO;
1375 	res->start = offset;
1376 	res->end = (offset + 0xfff) & 0xfffffffful;
1377 	pr_debug("Candidate legacy IO: %pR\n", res);
1378 	if (request_resource(&hose->io_resource, res)) {
1379 		printk(KERN_DEBUG
1380 		       "PCI %04x:%02x Cannot reserve Legacy IO %pR\n",
1381 		       pci_domain_nr(bus), bus->number, res);
1382 		kfree(res);
1383 	}
1384 
1385  no_io:
1386 	/* Check for memory */
1387 	for (i = 0; i < 3; i++) {
1388 		pres = &hose->mem_resources[i];
1389 		offset = hose->mem_offset[i];
1390 		if (!(pres->flags & IORESOURCE_MEM))
1391 			continue;
1392 		pr_debug("hose mem res: %pR\n", pres);
1393 		if ((pres->start - offset) <= 0xa0000 &&
1394 		    (pres->end - offset) >= 0xbffff)
1395 			break;
1396 	}
1397 	if (i >= 3)
1398 		return;
1399 	res = kzalloc(sizeof(struct resource), GFP_KERNEL);
1400 	BUG_ON(res == NULL);
1401 	res->name = "Legacy VGA memory";
1402 	res->flags = IORESOURCE_MEM;
1403 	res->start = 0xa0000 + offset;
1404 	res->end = 0xbffff + offset;
1405 	pr_debug("Candidate VGA memory: %pR\n", res);
1406 	if (request_resource(pres, res)) {
1407 		printk(KERN_DEBUG
1408 		       "PCI %04x:%02x Cannot reserve VGA memory %pR\n",
1409 		       pci_domain_nr(bus), bus->number, res);
1410 		kfree(res);
1411 	}
1412 }
1413 
1414 void __init pcibios_resource_survey(void)
1415 {
1416 	struct pci_bus *b;
1417 
1418 	/* Allocate and assign resources */
1419 	list_for_each_entry(b, &pci_root_buses, node)
1420 		pcibios_allocate_bus_resources(b);
1421 	pcibios_allocate_resources(0);
1422 	pcibios_allocate_resources(1);
1423 
1424 	/* Before we start assigning unassigned resource, we try to reserve
1425 	 * the low IO area and the VGA memory area if they intersect the
1426 	 * bus available resources to avoid allocating things on top of them
1427 	 */
1428 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1429 		list_for_each_entry(b, &pci_root_buses, node)
1430 			pcibios_reserve_legacy_regions(b);
1431 	}
1432 
1433 	/* Now, if the platform didn't decide to blindly trust the firmware,
1434 	 * we proceed to assigning things that were left unassigned
1435 	 */
1436 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1437 		pr_debug("PCI: Assigning unassigned resources...\n");
1438 		pci_assign_unassigned_resources();
1439 	}
1440 
1441 	/* Call machine dependent fixup */
1442 	if (ppc_md.pcibios_fixup)
1443 		ppc_md.pcibios_fixup();
1444 }
1445 
1446 /* This is used by the PCI hotplug driver to allocate resource
1447  * of newly plugged busses. We can try to consolidate with the
1448  * rest of the code later, for now, keep it as-is as our main
1449  * resource allocation function doesn't deal with sub-trees yet.
1450  */
1451 void pcibios_claim_one_bus(struct pci_bus *bus)
1452 {
1453 	struct pci_dev *dev;
1454 	struct pci_bus *child_bus;
1455 
1456 	list_for_each_entry(dev, &bus->devices, bus_list) {
1457 		int i;
1458 
1459 		for (i = 0; i < PCI_NUM_RESOURCES; i++) {
1460 			struct resource *r = &dev->resource[i];
1461 
1462 			if (r->parent || !r->start || !r->flags)
1463 				continue;
1464 
1465 			pr_debug("PCI: Claiming %s: Resource %d: %pR\n",
1466 				 pci_name(dev), i, r);
1467 
1468 			if (pci_claim_resource(dev, i) == 0)
1469 				continue;
1470 
1471 			pci_claim_bridge_resource(dev, i);
1472 		}
1473 	}
1474 
1475 	list_for_each_entry(child_bus, &bus->children, node)
1476 		pcibios_claim_one_bus(child_bus);
1477 }
1478 EXPORT_SYMBOL_GPL(pcibios_claim_one_bus);
1479 
1480 
1481 /* pcibios_finish_adding_to_bus
1482  *
1483  * This is to be called by the hotplug code after devices have been
1484  * added to a bus, this include calling it for a PHB that is just
1485  * being added
1486  */
1487 void pcibios_finish_adding_to_bus(struct pci_bus *bus)
1488 {
1489 	pr_debug("PCI: Finishing adding to hotplug bus %04x:%02x\n",
1490 		 pci_domain_nr(bus), bus->number);
1491 
1492 	/* Allocate bus and devices resources */
1493 	pcibios_allocate_bus_resources(bus);
1494 	pcibios_claim_one_bus(bus);
1495 	if (!pci_has_flag(PCI_PROBE_ONLY)) {
1496 		if (bus->self)
1497 			pci_assign_unassigned_bridge_resources(bus->self);
1498 		else
1499 			pci_assign_unassigned_bus_resources(bus);
1500 	}
1501 
1502 	/* Fixup EEH */
1503 	eeh_add_device_tree_late(bus);
1504 
1505 	/* Add new devices to global lists.  Register in proc, sysfs. */
1506 	pci_bus_add_devices(bus);
1507 
1508 	/* sysfs files should only be added after devices are added */
1509 	eeh_add_sysfs_files(bus);
1510 }
1511 EXPORT_SYMBOL_GPL(pcibios_finish_adding_to_bus);
1512 
1513 int pcibios_enable_device(struct pci_dev *dev, int mask)
1514 {
1515 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1516 
1517 	if (phb->controller_ops.enable_device_hook)
1518 		if (!phb->controller_ops.enable_device_hook(dev))
1519 			return -EINVAL;
1520 
1521 	return pci_enable_resources(dev, mask);
1522 }
1523 
1524 void pcibios_disable_device(struct pci_dev *dev)
1525 {
1526 	struct pci_controller *phb = pci_bus_to_host(dev->bus);
1527 
1528 	if (phb->controller_ops.disable_device)
1529 		phb->controller_ops.disable_device(dev);
1530 }
1531 
1532 resource_size_t pcibios_io_space_offset(struct pci_controller *hose)
1533 {
1534 	return (unsigned long) hose->io_base_virt - _IO_BASE;
1535 }
1536 
1537 static void pcibios_setup_phb_resources(struct pci_controller *hose,
1538 					struct list_head *resources)
1539 {
1540 	struct resource *res;
1541 	resource_size_t offset;
1542 	int i;
1543 
1544 	/* Hookup PHB IO resource */
1545 	res = &hose->io_resource;
1546 
1547 	if (!res->flags) {
1548 		pr_debug("PCI: I/O resource not set for host"
1549 			 " bridge %s (domain %d)\n",
1550 			 hose->dn->full_name, hose->global_number);
1551 	} else {
1552 		offset = pcibios_io_space_offset(hose);
1553 
1554 		pr_debug("PCI: PHB IO resource    = %pR off 0x%08llx\n",
1555 			 res, (unsigned long long)offset);
1556 		pci_add_resource_offset(resources, res, offset);
1557 	}
1558 
1559 	/* Hookup PHB Memory resources */
1560 	for (i = 0; i < 3; ++i) {
1561 		res = &hose->mem_resources[i];
1562 		if (!res->flags) {
1563 			if (i == 0)
1564 				printk(KERN_ERR "PCI: Memory resource 0 not set for "
1565 				       "host bridge %s (domain %d)\n",
1566 				       hose->dn->full_name, hose->global_number);
1567 			continue;
1568 		}
1569 		offset = hose->mem_offset[i];
1570 
1571 
1572 		pr_debug("PCI: PHB MEM resource %d = %pR off 0x%08llx\n", i,
1573 			 res, (unsigned long long)offset);
1574 
1575 		pci_add_resource_offset(resources, res, offset);
1576 	}
1577 }
1578 
1579 /*
1580  * Null PCI config access functions, for the case when we can't
1581  * find a hose.
1582  */
1583 #define NULL_PCI_OP(rw, size, type)					\
1584 static int								\
1585 null_##rw##_config_##size(struct pci_dev *dev, int offset, type val)	\
1586 {									\
1587 	return PCIBIOS_DEVICE_NOT_FOUND;    				\
1588 }
1589 
1590 static int
1591 null_read_config(struct pci_bus *bus, unsigned int devfn, int offset,
1592 		 int len, u32 *val)
1593 {
1594 	return PCIBIOS_DEVICE_NOT_FOUND;
1595 }
1596 
1597 static int
1598 null_write_config(struct pci_bus *bus, unsigned int devfn, int offset,
1599 		  int len, u32 val)
1600 {
1601 	return PCIBIOS_DEVICE_NOT_FOUND;
1602 }
1603 
1604 static struct pci_ops null_pci_ops =
1605 {
1606 	.read = null_read_config,
1607 	.write = null_write_config,
1608 };
1609 
1610 /*
1611  * These functions are used early on before PCI scanning is done
1612  * and all of the pci_dev and pci_bus structures have been created.
1613  */
1614 static struct pci_bus *
1615 fake_pci_bus(struct pci_controller *hose, int busnr)
1616 {
1617 	static struct pci_bus bus;
1618 
1619 	if (hose == NULL) {
1620 		printk(KERN_ERR "Can't find hose for PCI bus %d!\n", busnr);
1621 	}
1622 	bus.number = busnr;
1623 	bus.sysdata = hose;
1624 	bus.ops = hose? hose->ops: &null_pci_ops;
1625 	return &bus;
1626 }
1627 
1628 #define EARLY_PCI_OP(rw, size, type)					\
1629 int early_##rw##_config_##size(struct pci_controller *hose, int bus,	\
1630 			       int devfn, int offset, type value)	\
1631 {									\
1632 	return pci_bus_##rw##_config_##size(fake_pci_bus(hose, bus),	\
1633 					    devfn, offset, value);	\
1634 }
1635 
1636 EARLY_PCI_OP(read, byte, u8 *)
1637 EARLY_PCI_OP(read, word, u16 *)
1638 EARLY_PCI_OP(read, dword, u32 *)
1639 EARLY_PCI_OP(write, byte, u8)
1640 EARLY_PCI_OP(write, word, u16)
1641 EARLY_PCI_OP(write, dword, u32)
1642 
1643 int early_find_capability(struct pci_controller *hose, int bus, int devfn,
1644 			  int cap)
1645 {
1646 	return pci_bus_find_capability(fake_pci_bus(hose, bus), devfn, cap);
1647 }
1648 
1649 struct device_node *pcibios_get_phb_of_node(struct pci_bus *bus)
1650 {
1651 	struct pci_controller *hose = bus->sysdata;
1652 
1653 	return of_node_get(hose->dn);
1654 }
1655 
1656 /**
1657  * pci_scan_phb - Given a pci_controller, setup and scan the PCI bus
1658  * @hose: Pointer to the PCI host controller instance structure
1659  */
1660 void pcibios_scan_phb(struct pci_controller *hose)
1661 {
1662 	LIST_HEAD(resources);
1663 	struct pci_bus *bus;
1664 	struct device_node *node = hose->dn;
1665 	int mode;
1666 
1667 	pr_debug("PCI: Scanning PHB %s\n", of_node_full_name(node));
1668 
1669 	/* Get some IO space for the new PHB */
1670 	pcibios_setup_phb_io_space(hose);
1671 
1672 	/* Wire up PHB bus resources */
1673 	pcibios_setup_phb_resources(hose, &resources);
1674 
1675 	hose->busn.start = hose->first_busno;
1676 	hose->busn.end	 = hose->last_busno;
1677 	hose->busn.flags = IORESOURCE_BUS;
1678 	pci_add_resource(&resources, &hose->busn);
1679 
1680 	/* Create an empty bus for the toplevel */
1681 	bus = pci_create_root_bus(hose->parent, hose->first_busno,
1682 				  hose->ops, hose, &resources);
1683 	if (bus == NULL) {
1684 		pr_err("Failed to create bus for PCI domain %04x\n",
1685 			hose->global_number);
1686 		pci_free_resource_list(&resources);
1687 		return;
1688 	}
1689 	hose->bus = bus;
1690 
1691 	/* Get probe mode and perform scan */
1692 	mode = PCI_PROBE_NORMAL;
1693 	if (node && hose->controller_ops.probe_mode)
1694 		mode = hose->controller_ops.probe_mode(bus);
1695 	pr_debug("    probe mode: %d\n", mode);
1696 	if (mode == PCI_PROBE_DEVTREE)
1697 		of_scan_bus(node, bus);
1698 
1699 	if (mode == PCI_PROBE_NORMAL) {
1700 		pci_bus_update_busn_res_end(bus, 255);
1701 		hose->last_busno = pci_scan_child_bus(bus);
1702 		pci_bus_update_busn_res_end(bus, hose->last_busno);
1703 	}
1704 
1705 	/* Platform gets a chance to do some global fixups before
1706 	 * we proceed to resource allocation
1707 	 */
1708 	if (ppc_md.pcibios_fixup_phb)
1709 		ppc_md.pcibios_fixup_phb(hose);
1710 
1711 	/* Configure PCI Express settings */
1712 	if (bus && !pci_has_flag(PCI_PROBE_ONLY)) {
1713 		struct pci_bus *child;
1714 		list_for_each_entry(child, &bus->children, node)
1715 			pcie_bus_configure_settings(child);
1716 	}
1717 }
1718 EXPORT_SYMBOL_GPL(pcibios_scan_phb);
1719 
1720 static void fixup_hide_host_resource_fsl(struct pci_dev *dev)
1721 {
1722 	int i, class = dev->class >> 8;
1723 	/* When configured as agent, programing interface = 1 */
1724 	int prog_if = dev->class & 0xf;
1725 
1726 	if ((class == PCI_CLASS_PROCESSOR_POWERPC ||
1727 	     class == PCI_CLASS_BRIDGE_OTHER) &&
1728 		(dev->hdr_type == PCI_HEADER_TYPE_NORMAL) &&
1729 		(prog_if == 0) &&
1730 		(dev->bus->parent == NULL)) {
1731 		for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
1732 			dev->resource[i].start = 0;
1733 			dev->resource[i].end = 0;
1734 			dev->resource[i].flags = 0;
1735 		}
1736 	}
1737 }
1738 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_MOTOROLA, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1739 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_FREESCALE, PCI_ANY_ID, fixup_hide_host_resource_fsl);
1740 
1741 static void fixup_vga(struct pci_dev *pdev)
1742 {
1743 	u16 cmd;
1744 
1745 	pci_read_config_word(pdev, PCI_COMMAND, &cmd);
1746 	if ((cmd & (PCI_COMMAND_IO | PCI_COMMAND_MEMORY)) || !vga_default_device())
1747 		vga_set_default_device(pdev);
1748 
1749 }
1750 DECLARE_PCI_FIXUP_CLASS_FINAL(PCI_ANY_ID, PCI_ANY_ID,
1751 			      PCI_CLASS_DISPLAY_VGA, 8, fixup_vga);
1752