1 /* 2 * c 2001 PPC 64 Team, IBM Corp 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * /dev/nvram driver for PPC64 10 * 11 * This perhaps should live in drivers/char 12 * 13 * TODO: Split the /dev/nvram part (that one can use 14 * drivers/char/generic_nvram.c) from the arch & partition 15 * parsing code. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/errno.h> 20 #include <linux/fs.h> 21 #include <linux/miscdevice.h> 22 #include <linux/fcntl.h> 23 #include <linux/nvram.h> 24 #include <linux/init.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 #include <linux/kmsg_dump.h> 28 #include <linux/pagemap.h> 29 #include <linux/pstore.h> 30 #include <linux/zlib.h> 31 #include <linux/uaccess.h> 32 #include <asm/nvram.h> 33 #include <asm/rtas.h> 34 #include <asm/prom.h> 35 #include <asm/machdep.h> 36 37 #undef DEBUG_NVRAM 38 39 #define NVRAM_HEADER_LEN sizeof(struct nvram_header) 40 #define NVRAM_BLOCK_LEN NVRAM_HEADER_LEN 41 42 /* If change this size, then change the size of NVNAME_LEN */ 43 struct nvram_header { 44 unsigned char signature; 45 unsigned char checksum; 46 unsigned short length; 47 /* Terminating null required only for names < 12 chars. */ 48 char name[12]; 49 }; 50 51 struct nvram_partition { 52 struct list_head partition; 53 struct nvram_header header; 54 unsigned int index; 55 }; 56 57 static LIST_HEAD(nvram_partitions); 58 59 #ifdef CONFIG_PPC_PSERIES 60 struct nvram_os_partition rtas_log_partition = { 61 .name = "ibm,rtas-log", 62 .req_size = 2079, 63 .min_size = 1055, 64 .index = -1, 65 .os_partition = true 66 }; 67 #endif 68 69 struct nvram_os_partition oops_log_partition = { 70 .name = "lnx,oops-log", 71 .req_size = 4000, 72 .min_size = 2000, 73 .index = -1, 74 .os_partition = true 75 }; 76 77 static const char *nvram_os_partitions[] = { 78 #ifdef CONFIG_PPC_PSERIES 79 "ibm,rtas-log", 80 #endif 81 "lnx,oops-log", 82 NULL 83 }; 84 85 static void oops_to_nvram(struct kmsg_dumper *dumper, 86 enum kmsg_dump_reason reason); 87 88 static struct kmsg_dumper nvram_kmsg_dumper = { 89 .dump = oops_to_nvram 90 }; 91 92 /* 93 * For capturing and compressing an oops or panic report... 94 95 * big_oops_buf[] holds the uncompressed text we're capturing. 96 * 97 * oops_buf[] holds the compressed text, preceded by a oops header. 98 * oops header has u16 holding the version of oops header (to differentiate 99 * between old and new format header) followed by u16 holding the length of 100 * the compressed* text (*Or uncompressed, if compression fails.) and u64 101 * holding the timestamp. oops_buf[] gets written to NVRAM. 102 * 103 * oops_log_info points to the header. oops_data points to the compressed text. 104 * 105 * +- oops_buf 106 * | +- oops_data 107 * v v 108 * +-----------+-----------+-----------+------------------------+ 109 * | version | length | timestamp | text | 110 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) | 111 * +-----------+-----------+-----------+------------------------+ 112 * ^ 113 * +- oops_log_info 114 * 115 * We preallocate these buffers during init to avoid kmalloc during oops/panic. 116 */ 117 static size_t big_oops_buf_sz; 118 static char *big_oops_buf, *oops_buf; 119 static char *oops_data; 120 static size_t oops_data_sz; 121 122 /* Compression parameters */ 123 #define COMPR_LEVEL 6 124 #define WINDOW_BITS 12 125 #define MEM_LEVEL 4 126 static struct z_stream_s stream; 127 128 #ifdef CONFIG_PSTORE 129 #ifdef CONFIG_PPC_POWERNV 130 static struct nvram_os_partition skiboot_partition = { 131 .name = "ibm,skiboot", 132 .index = -1, 133 .os_partition = false 134 }; 135 #endif 136 137 #ifdef CONFIG_PPC_PSERIES 138 static struct nvram_os_partition of_config_partition = { 139 .name = "of-config", 140 .index = -1, 141 .os_partition = false 142 }; 143 #endif 144 145 static struct nvram_os_partition common_partition = { 146 .name = "common", 147 .index = -1, 148 .os_partition = false 149 }; 150 151 static enum pstore_type_id nvram_type_ids[] = { 152 PSTORE_TYPE_DMESG, 153 PSTORE_TYPE_PPC_COMMON, 154 -1, 155 -1, 156 -1 157 }; 158 static int read_type; 159 #endif 160 161 /* nvram_write_os_partition 162 * 163 * We need to buffer the error logs into nvram to ensure that we have 164 * the failure information to decode. If we have a severe error there 165 * is no way to guarantee that the OS or the machine is in a state to 166 * get back to user land and write the error to disk. For example if 167 * the SCSI device driver causes a Machine Check by writing to a bad 168 * IO address, there is no way of guaranteeing that the device driver 169 * is in any state that is would also be able to write the error data 170 * captured to disk, thus we buffer it in NVRAM for analysis on the 171 * next boot. 172 * 173 * In NVRAM the partition containing the error log buffer will looks like: 174 * Header (in bytes): 175 * +-----------+----------+--------+------------+------------------+ 176 * | signature | checksum | length | name | data | 177 * |0 |1 |2 3|4 15|16 length-1| 178 * +-----------+----------+--------+------------+------------------+ 179 * 180 * The 'data' section would look like (in bytes): 181 * +--------------+------------+-----------------------------------+ 182 * | event_logged | sequence # | error log | 183 * |0 3|4 7|8 error_log_size-1| 184 * +--------------+------------+-----------------------------------+ 185 * 186 * event_logged: 0 if event has not been logged to syslog, 1 if it has 187 * sequence #: The unique sequence # for each event. (until it wraps) 188 * error log: The error log from event_scan 189 */ 190 int nvram_write_os_partition(struct nvram_os_partition *part, 191 char *buff, int length, 192 unsigned int err_type, 193 unsigned int error_log_cnt) 194 { 195 int rc; 196 loff_t tmp_index; 197 struct err_log_info info; 198 199 if (part->index == -1) 200 return -ESPIPE; 201 202 if (length > part->size) 203 length = part->size; 204 205 info.error_type = cpu_to_be32(err_type); 206 info.seq_num = cpu_to_be32(error_log_cnt); 207 208 tmp_index = part->index; 209 210 rc = ppc_md.nvram_write((char *)&info, sizeof(info), &tmp_index); 211 if (rc <= 0) { 212 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc); 213 return rc; 214 } 215 216 rc = ppc_md.nvram_write(buff, length, &tmp_index); 217 if (rc <= 0) { 218 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc); 219 return rc; 220 } 221 222 return 0; 223 } 224 225 /* nvram_read_partition 226 * 227 * Reads nvram partition for at most 'length' 228 */ 229 int nvram_read_partition(struct nvram_os_partition *part, char *buff, 230 int length, unsigned int *err_type, 231 unsigned int *error_log_cnt) 232 { 233 int rc; 234 loff_t tmp_index; 235 struct err_log_info info; 236 237 if (part->index == -1) 238 return -1; 239 240 if (length > part->size) 241 length = part->size; 242 243 tmp_index = part->index; 244 245 if (part->os_partition) { 246 rc = ppc_md.nvram_read((char *)&info, sizeof(info), &tmp_index); 247 if (rc <= 0) { 248 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc); 249 return rc; 250 } 251 } 252 253 rc = ppc_md.nvram_read(buff, length, &tmp_index); 254 if (rc <= 0) { 255 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc); 256 return rc; 257 } 258 259 if (part->os_partition) { 260 *error_log_cnt = be32_to_cpu(info.seq_num); 261 *err_type = be32_to_cpu(info.error_type); 262 } 263 264 return 0; 265 } 266 267 /* nvram_init_os_partition 268 * 269 * This sets up a partition with an "OS" signature. 270 * 271 * The general strategy is the following: 272 * 1.) If a partition with the indicated name already exists... 273 * - If it's large enough, use it. 274 * - Otherwise, recycle it and keep going. 275 * 2.) Search for a free partition that is large enough. 276 * 3.) If there's not a free partition large enough, recycle any obsolete 277 * OS partitions and try again. 278 * 4.) Will first try getting a chunk that will satisfy the requested size. 279 * 5.) If a chunk of the requested size cannot be allocated, then try finding 280 * a chunk that will satisfy the minum needed. 281 * 282 * Returns 0 on success, else -1. 283 */ 284 int __init nvram_init_os_partition(struct nvram_os_partition *part) 285 { 286 loff_t p; 287 int size; 288 289 /* Look for ours */ 290 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size); 291 292 /* Found one but too small, remove it */ 293 if (p && size < part->min_size) { 294 pr_info("nvram: Found too small %s partition," 295 " removing it...\n", part->name); 296 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL); 297 p = 0; 298 } 299 300 /* Create one if we didn't find */ 301 if (!p) { 302 p = nvram_create_partition(part->name, NVRAM_SIG_OS, 303 part->req_size, part->min_size); 304 if (p == -ENOSPC) { 305 pr_info("nvram: No room to create %s partition, " 306 "deleting any obsolete OS partitions...\n", 307 part->name); 308 nvram_remove_partition(NULL, NVRAM_SIG_OS, 309 nvram_os_partitions); 310 p = nvram_create_partition(part->name, NVRAM_SIG_OS, 311 part->req_size, part->min_size); 312 } 313 } 314 315 if (p <= 0) { 316 pr_err("nvram: Failed to find or create %s" 317 " partition, err %d\n", part->name, (int)p); 318 return -1; 319 } 320 321 part->index = p; 322 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info); 323 324 return 0; 325 } 326 327 /* Derived from logfs_compress() */ 328 static int nvram_compress(const void *in, void *out, size_t inlen, 329 size_t outlen) 330 { 331 int err, ret; 332 333 ret = -EIO; 334 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS, 335 MEM_LEVEL, Z_DEFAULT_STRATEGY); 336 if (err != Z_OK) 337 goto error; 338 339 stream.next_in = in; 340 stream.avail_in = inlen; 341 stream.total_in = 0; 342 stream.next_out = out; 343 stream.avail_out = outlen; 344 stream.total_out = 0; 345 346 err = zlib_deflate(&stream, Z_FINISH); 347 if (err != Z_STREAM_END) 348 goto error; 349 350 err = zlib_deflateEnd(&stream); 351 if (err != Z_OK) 352 goto error; 353 354 if (stream.total_out >= stream.total_in) 355 goto error; 356 357 ret = stream.total_out; 358 error: 359 return ret; 360 } 361 362 /* Compress the text from big_oops_buf into oops_buf. */ 363 static int zip_oops(size_t text_len) 364 { 365 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; 366 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len, 367 oops_data_sz); 368 if (zipped_len < 0) { 369 pr_err("nvram: compression failed; returned %d\n", zipped_len); 370 pr_err("nvram: logging uncompressed oops/panic report\n"); 371 return -1; 372 } 373 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 374 oops_hdr->report_length = cpu_to_be16(zipped_len); 375 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); 376 return 0; 377 } 378 379 #ifdef CONFIG_PSTORE 380 static int nvram_pstore_open(struct pstore_info *psi) 381 { 382 /* Reset the iterator to start reading partitions again */ 383 read_type = -1; 384 return 0; 385 } 386 387 /** 388 * nvram_pstore_write - pstore write callback for nvram 389 * @record: pstore record to write, with @id to be set 390 * 391 * Called by pstore_dump() when an oops or panic report is logged in the 392 * printk buffer. 393 * Returns 0 on successful write. 394 */ 395 static int nvram_pstore_write(struct pstore_record *record) 396 { 397 int rc; 398 unsigned int err_type = ERR_TYPE_KERNEL_PANIC; 399 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf; 400 401 /* part 1 has the recent messages from printk buffer */ 402 if (record->part > 1 || (record->type != PSTORE_TYPE_DMESG)) 403 return -1; 404 405 if (clobbering_unread_rtas_event()) 406 return -1; 407 408 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 409 oops_hdr->report_length = cpu_to_be16(record->size); 410 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); 411 412 if (record->compressed) 413 err_type = ERR_TYPE_KERNEL_PANIC_GZ; 414 415 rc = nvram_write_os_partition(&oops_log_partition, oops_buf, 416 (int) (sizeof(*oops_hdr) + record->size), err_type, 417 record->count); 418 419 if (rc != 0) 420 return rc; 421 422 record->id = record->part; 423 return 0; 424 } 425 426 /* 427 * Reads the oops/panic report, rtas, of-config and common partition. 428 * Returns the length of the data we read from each partition. 429 * Returns 0 if we've been called before. 430 */ 431 static ssize_t nvram_pstore_read(struct pstore_record *record) 432 { 433 struct oops_log_info *oops_hdr; 434 unsigned int err_type, id_no, size = 0; 435 struct nvram_os_partition *part = NULL; 436 char *buff = NULL; 437 int sig = 0; 438 loff_t p; 439 440 read_type++; 441 442 switch (nvram_type_ids[read_type]) { 443 case PSTORE_TYPE_DMESG: 444 part = &oops_log_partition; 445 record->type = PSTORE_TYPE_DMESG; 446 break; 447 case PSTORE_TYPE_PPC_COMMON: 448 sig = NVRAM_SIG_SYS; 449 part = &common_partition; 450 record->type = PSTORE_TYPE_PPC_COMMON; 451 record->id = PSTORE_TYPE_PPC_COMMON; 452 record->time.tv_sec = 0; 453 record->time.tv_nsec = 0; 454 break; 455 #ifdef CONFIG_PPC_PSERIES 456 case PSTORE_TYPE_PPC_RTAS: 457 part = &rtas_log_partition; 458 record->type = PSTORE_TYPE_PPC_RTAS; 459 record->time.tv_sec = last_rtas_event; 460 record->time.tv_nsec = 0; 461 break; 462 case PSTORE_TYPE_PPC_OF: 463 sig = NVRAM_SIG_OF; 464 part = &of_config_partition; 465 record->type = PSTORE_TYPE_PPC_OF; 466 record->id = PSTORE_TYPE_PPC_OF; 467 record->time.tv_sec = 0; 468 record->time.tv_nsec = 0; 469 break; 470 #endif 471 #ifdef CONFIG_PPC_POWERNV 472 case PSTORE_TYPE_PPC_OPAL: 473 sig = NVRAM_SIG_FW; 474 part = &skiboot_partition; 475 record->type = PSTORE_TYPE_PPC_OPAL; 476 record->id = PSTORE_TYPE_PPC_OPAL; 477 record->time.tv_sec = 0; 478 record->time.tv_nsec = 0; 479 break; 480 #endif 481 default: 482 return 0; 483 } 484 485 if (!part->os_partition) { 486 p = nvram_find_partition(part->name, sig, &size); 487 if (p <= 0) { 488 pr_err("nvram: Failed to find partition %s, " 489 "err %d\n", part->name, (int)p); 490 return 0; 491 } 492 part->index = p; 493 part->size = size; 494 } 495 496 buff = kmalloc(part->size, GFP_KERNEL); 497 498 if (!buff) 499 return -ENOMEM; 500 501 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) { 502 kfree(buff); 503 return 0; 504 } 505 506 record->count = 0; 507 508 if (part->os_partition) 509 record->id = id_no; 510 511 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) { 512 size_t length, hdr_size; 513 514 oops_hdr = (struct oops_log_info *)buff; 515 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) { 516 /* Old format oops header had 2-byte record size */ 517 hdr_size = sizeof(u16); 518 length = be16_to_cpu(oops_hdr->version); 519 record->time.tv_sec = 0; 520 record->time.tv_nsec = 0; 521 } else { 522 hdr_size = sizeof(*oops_hdr); 523 length = be16_to_cpu(oops_hdr->report_length); 524 record->time.tv_sec = be64_to_cpu(oops_hdr->timestamp); 525 record->time.tv_nsec = 0; 526 } 527 record->buf = kmemdup(buff + hdr_size, length, GFP_KERNEL); 528 kfree(buff); 529 if (record->buf == NULL) 530 return -ENOMEM; 531 532 record->ecc_notice_size = 0; 533 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ) 534 record->compressed = true; 535 else 536 record->compressed = false; 537 return length; 538 } 539 540 record->buf = buff; 541 return part->size; 542 } 543 544 static struct pstore_info nvram_pstore_info = { 545 .owner = THIS_MODULE, 546 .name = "nvram", 547 .flags = PSTORE_FLAGS_DMESG, 548 .open = nvram_pstore_open, 549 .read = nvram_pstore_read, 550 .write = nvram_pstore_write, 551 }; 552 553 static int nvram_pstore_init(void) 554 { 555 int rc = 0; 556 557 if (machine_is(pseries)) { 558 nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS; 559 nvram_type_ids[3] = PSTORE_TYPE_PPC_OF; 560 } else 561 nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL; 562 563 nvram_pstore_info.buf = oops_data; 564 nvram_pstore_info.bufsize = oops_data_sz; 565 566 rc = pstore_register(&nvram_pstore_info); 567 if (rc && (rc != -EPERM)) 568 /* Print error only when pstore.backend == nvram */ 569 pr_err("nvram: pstore_register() failed, returned %d. " 570 "Defaults to kmsg_dump\n", rc); 571 572 return rc; 573 } 574 #else 575 static int nvram_pstore_init(void) 576 { 577 return -1; 578 } 579 #endif 580 581 void __init nvram_init_oops_partition(int rtas_partition_exists) 582 { 583 int rc; 584 585 rc = nvram_init_os_partition(&oops_log_partition); 586 if (rc != 0) { 587 #ifdef CONFIG_PPC_PSERIES 588 if (!rtas_partition_exists) { 589 pr_err("nvram: Failed to initialize oops partition!"); 590 return; 591 } 592 pr_notice("nvram: Using %s partition to log both" 593 " RTAS errors and oops/panic reports\n", 594 rtas_log_partition.name); 595 memcpy(&oops_log_partition, &rtas_log_partition, 596 sizeof(rtas_log_partition)); 597 #else 598 pr_err("nvram: Failed to initialize oops partition!"); 599 return; 600 #endif 601 } 602 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL); 603 if (!oops_buf) { 604 pr_err("nvram: No memory for %s partition\n", 605 oops_log_partition.name); 606 return; 607 } 608 oops_data = oops_buf + sizeof(struct oops_log_info); 609 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info); 610 611 rc = nvram_pstore_init(); 612 613 if (!rc) 614 return; 615 616 /* 617 * Figure compression (preceded by elimination of each line's <n> 618 * severity prefix) will reduce the oops/panic report to at most 619 * 45% of its original size. 620 */ 621 big_oops_buf_sz = (oops_data_sz * 100) / 45; 622 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL); 623 if (big_oops_buf) { 624 stream.workspace = kmalloc(zlib_deflate_workspacesize( 625 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL); 626 if (!stream.workspace) { 627 pr_err("nvram: No memory for compression workspace; " 628 "skipping compression of %s partition data\n", 629 oops_log_partition.name); 630 kfree(big_oops_buf); 631 big_oops_buf = NULL; 632 } 633 } else { 634 pr_err("No memory for uncompressed %s data; " 635 "skipping compression\n", oops_log_partition.name); 636 stream.workspace = NULL; 637 } 638 639 rc = kmsg_dump_register(&nvram_kmsg_dumper); 640 if (rc != 0) { 641 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc); 642 kfree(oops_buf); 643 kfree(big_oops_buf); 644 kfree(stream.workspace); 645 } 646 } 647 648 /* 649 * This is our kmsg_dump callback, called after an oops or panic report 650 * has been written to the printk buffer. We want to capture as much 651 * of the printk buffer as possible. First, capture as much as we can 652 * that we think will compress sufficiently to fit in the lnx,oops-log 653 * partition. If that's too much, go back and capture uncompressed text. 654 */ 655 static void oops_to_nvram(struct kmsg_dumper *dumper, 656 enum kmsg_dump_reason reason) 657 { 658 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf; 659 static unsigned int oops_count = 0; 660 static bool panicking = false; 661 static DEFINE_SPINLOCK(lock); 662 unsigned long flags; 663 size_t text_len; 664 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ; 665 int rc = -1; 666 667 switch (reason) { 668 case KMSG_DUMP_RESTART: 669 case KMSG_DUMP_HALT: 670 case KMSG_DUMP_POWEROFF: 671 /* These are almost always orderly shutdowns. */ 672 return; 673 case KMSG_DUMP_OOPS: 674 break; 675 case KMSG_DUMP_PANIC: 676 panicking = true; 677 break; 678 case KMSG_DUMP_EMERG: 679 if (panicking) 680 /* Panic report already captured. */ 681 return; 682 break; 683 default: 684 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n", 685 __func__, (int) reason); 686 return; 687 } 688 689 if (clobbering_unread_rtas_event()) 690 return; 691 692 if (!spin_trylock_irqsave(&lock, flags)) 693 return; 694 695 if (big_oops_buf) { 696 kmsg_dump_get_buffer(dumper, false, 697 big_oops_buf, big_oops_buf_sz, &text_len); 698 rc = zip_oops(text_len); 699 } 700 if (rc != 0) { 701 kmsg_dump_rewind(dumper); 702 kmsg_dump_get_buffer(dumper, false, 703 oops_data, oops_data_sz, &text_len); 704 err_type = ERR_TYPE_KERNEL_PANIC; 705 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION); 706 oops_hdr->report_length = cpu_to_be16(text_len); 707 oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds()); 708 } 709 710 (void) nvram_write_os_partition(&oops_log_partition, oops_buf, 711 (int) (sizeof(*oops_hdr) + text_len), err_type, 712 ++oops_count); 713 714 spin_unlock_irqrestore(&lock, flags); 715 } 716 717 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin) 718 { 719 if (ppc_md.nvram_size == NULL) 720 return -ENODEV; 721 return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE, 722 ppc_md.nvram_size()); 723 } 724 725 726 static ssize_t dev_nvram_read(struct file *file, char __user *buf, 727 size_t count, loff_t *ppos) 728 { 729 ssize_t ret; 730 char *tmp = NULL; 731 ssize_t size; 732 733 if (!ppc_md.nvram_size) { 734 ret = -ENODEV; 735 goto out; 736 } 737 738 size = ppc_md.nvram_size(); 739 if (size < 0) { 740 ret = size; 741 goto out; 742 } 743 744 if (*ppos >= size) { 745 ret = 0; 746 goto out; 747 } 748 749 count = min_t(size_t, count, size - *ppos); 750 count = min(count, PAGE_SIZE); 751 752 tmp = kmalloc(count, GFP_KERNEL); 753 if (!tmp) { 754 ret = -ENOMEM; 755 goto out; 756 } 757 758 ret = ppc_md.nvram_read(tmp, count, ppos); 759 if (ret <= 0) 760 goto out; 761 762 if (copy_to_user(buf, tmp, ret)) 763 ret = -EFAULT; 764 765 out: 766 kfree(tmp); 767 return ret; 768 769 } 770 771 static ssize_t dev_nvram_write(struct file *file, const char __user *buf, 772 size_t count, loff_t *ppos) 773 { 774 ssize_t ret; 775 char *tmp = NULL; 776 ssize_t size; 777 778 ret = -ENODEV; 779 if (!ppc_md.nvram_size) 780 goto out; 781 782 ret = 0; 783 size = ppc_md.nvram_size(); 784 if (*ppos >= size || size < 0) 785 goto out; 786 787 count = min_t(size_t, count, size - *ppos); 788 count = min(count, PAGE_SIZE); 789 790 tmp = memdup_user(buf, count); 791 if (IS_ERR(tmp)) { 792 ret = PTR_ERR(tmp); 793 goto out; 794 } 795 796 ret = ppc_md.nvram_write(tmp, count, ppos); 797 798 kfree(tmp); 799 out: 800 return ret; 801 } 802 803 static long dev_nvram_ioctl(struct file *file, unsigned int cmd, 804 unsigned long arg) 805 { 806 switch(cmd) { 807 #ifdef CONFIG_PPC_PMAC 808 case OBSOLETE_PMAC_NVRAM_GET_OFFSET: 809 printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n"); 810 /* fall through */ 811 case IOC_NVRAM_GET_OFFSET: { 812 int part, offset; 813 814 if (!machine_is(powermac)) 815 return -EINVAL; 816 if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0) 817 return -EFAULT; 818 if (part < pmac_nvram_OF || part > pmac_nvram_NR) 819 return -EINVAL; 820 offset = pmac_get_partition(part); 821 if (offset < 0) 822 return offset; 823 if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0) 824 return -EFAULT; 825 return 0; 826 } 827 #endif /* CONFIG_PPC_PMAC */ 828 default: 829 return -EINVAL; 830 } 831 } 832 833 static const struct file_operations nvram_fops = { 834 .owner = THIS_MODULE, 835 .llseek = dev_nvram_llseek, 836 .read = dev_nvram_read, 837 .write = dev_nvram_write, 838 .unlocked_ioctl = dev_nvram_ioctl, 839 }; 840 841 static struct miscdevice nvram_dev = { 842 NVRAM_MINOR, 843 "nvram", 844 &nvram_fops 845 }; 846 847 848 #ifdef DEBUG_NVRAM 849 static void __init nvram_print_partitions(char * label) 850 { 851 struct nvram_partition * tmp_part; 852 853 printk(KERN_WARNING "--------%s---------\n", label); 854 printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n"); 855 list_for_each_entry(tmp_part, &nvram_partitions, partition) { 856 printk(KERN_WARNING "%4d \t%02x\t%02x\t%d\t%12.12s\n", 857 tmp_part->index, tmp_part->header.signature, 858 tmp_part->header.checksum, tmp_part->header.length, 859 tmp_part->header.name); 860 } 861 } 862 #endif 863 864 865 static int __init nvram_write_header(struct nvram_partition * part) 866 { 867 loff_t tmp_index; 868 int rc; 869 struct nvram_header phead; 870 871 memcpy(&phead, &part->header, NVRAM_HEADER_LEN); 872 phead.length = cpu_to_be16(phead.length); 873 874 tmp_index = part->index; 875 rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index); 876 877 return rc; 878 } 879 880 881 static unsigned char __init nvram_checksum(struct nvram_header *p) 882 { 883 unsigned int c_sum, c_sum2; 884 unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */ 885 c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5]; 886 887 /* The sum may have spilled into the 3rd byte. Fold it back. */ 888 c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff; 889 /* The sum cannot exceed 2 bytes. Fold it into a checksum */ 890 c_sum2 = (c_sum >> 8) + (c_sum << 8); 891 c_sum = ((c_sum + c_sum2) >> 8) & 0xff; 892 return c_sum; 893 } 894 895 /* 896 * Per the criteria passed via nvram_remove_partition(), should this 897 * partition be removed? 1=remove, 0=keep 898 */ 899 static int nvram_can_remove_partition(struct nvram_partition *part, 900 const char *name, int sig, const char *exceptions[]) 901 { 902 if (part->header.signature != sig) 903 return 0; 904 if (name) { 905 if (strncmp(name, part->header.name, 12)) 906 return 0; 907 } else if (exceptions) { 908 const char **except; 909 for (except = exceptions; *except; except++) { 910 if (!strncmp(*except, part->header.name, 12)) 911 return 0; 912 } 913 } 914 return 1; 915 } 916 917 /** 918 * nvram_remove_partition - Remove one or more partitions in nvram 919 * @name: name of the partition to remove, or NULL for a 920 * signature only match 921 * @sig: signature of the partition(s) to remove 922 * @exceptions: When removing all partitions with a matching signature, 923 * leave these alone. 924 */ 925 926 int __init nvram_remove_partition(const char *name, int sig, 927 const char *exceptions[]) 928 { 929 struct nvram_partition *part, *prev, *tmp; 930 int rc; 931 932 list_for_each_entry(part, &nvram_partitions, partition) { 933 if (!nvram_can_remove_partition(part, name, sig, exceptions)) 934 continue; 935 936 /* Make partition a free partition */ 937 part->header.signature = NVRAM_SIG_FREE; 938 memset(part->header.name, 'w', 12); 939 part->header.checksum = nvram_checksum(&part->header); 940 rc = nvram_write_header(part); 941 if (rc <= 0) { 942 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc); 943 return rc; 944 } 945 } 946 947 /* Merge contiguous ones */ 948 prev = NULL; 949 list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) { 950 if (part->header.signature != NVRAM_SIG_FREE) { 951 prev = NULL; 952 continue; 953 } 954 if (prev) { 955 prev->header.length += part->header.length; 956 prev->header.checksum = nvram_checksum(&prev->header); 957 rc = nvram_write_header(prev); 958 if (rc <= 0) { 959 printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc); 960 return rc; 961 } 962 list_del(&part->partition); 963 kfree(part); 964 } else 965 prev = part; 966 } 967 968 return 0; 969 } 970 971 /** 972 * nvram_create_partition - Create a partition in nvram 973 * @name: name of the partition to create 974 * @sig: signature of the partition to create 975 * @req_size: size of data to allocate in bytes 976 * @min_size: minimum acceptable size (0 means req_size) 977 * 978 * Returns a negative error code or a positive nvram index 979 * of the beginning of the data area of the newly created 980 * partition. If you provided a min_size smaller than req_size 981 * you need to query for the actual size yourself after the 982 * call using nvram_partition_get_size(). 983 */ 984 loff_t __init nvram_create_partition(const char *name, int sig, 985 int req_size, int min_size) 986 { 987 struct nvram_partition *part; 988 struct nvram_partition *new_part; 989 struct nvram_partition *free_part = NULL; 990 static char nv_init_vals[16]; 991 loff_t tmp_index; 992 long size = 0; 993 int rc; 994 995 /* Convert sizes from bytes to blocks */ 996 req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN; 997 min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN; 998 999 /* If no minimum size specified, make it the same as the 1000 * requested size 1001 */ 1002 if (min_size == 0) 1003 min_size = req_size; 1004 if (min_size > req_size) 1005 return -EINVAL; 1006 1007 /* Now add one block to each for the header */ 1008 req_size += 1; 1009 min_size += 1; 1010 1011 /* Find a free partition that will give us the maximum needed size 1012 If can't find one that will give us the minimum size needed */ 1013 list_for_each_entry(part, &nvram_partitions, partition) { 1014 if (part->header.signature != NVRAM_SIG_FREE) 1015 continue; 1016 1017 if (part->header.length >= req_size) { 1018 size = req_size; 1019 free_part = part; 1020 break; 1021 } 1022 if (part->header.length > size && 1023 part->header.length >= min_size) { 1024 size = part->header.length; 1025 free_part = part; 1026 } 1027 } 1028 if (!size) 1029 return -ENOSPC; 1030 1031 /* Create our OS partition */ 1032 new_part = kzalloc(sizeof(*new_part), GFP_KERNEL); 1033 if (!new_part) { 1034 pr_err("%s: kmalloc failed\n", __func__); 1035 return -ENOMEM; 1036 } 1037 1038 new_part->index = free_part->index; 1039 new_part->header.signature = sig; 1040 new_part->header.length = size; 1041 memcpy(new_part->header.name, name, strnlen(name, sizeof(new_part->header.name))); 1042 new_part->header.checksum = nvram_checksum(&new_part->header); 1043 1044 rc = nvram_write_header(new_part); 1045 if (rc <= 0) { 1046 pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc); 1047 kfree(new_part); 1048 return rc; 1049 } 1050 list_add_tail(&new_part->partition, &free_part->partition); 1051 1052 /* Adjust or remove the partition we stole the space from */ 1053 if (free_part->header.length > size) { 1054 free_part->index += size * NVRAM_BLOCK_LEN; 1055 free_part->header.length -= size; 1056 free_part->header.checksum = nvram_checksum(&free_part->header); 1057 rc = nvram_write_header(free_part); 1058 if (rc <= 0) { 1059 pr_err("%s: nvram_write_header failed (%d)\n", 1060 __func__, rc); 1061 return rc; 1062 } 1063 } else { 1064 list_del(&free_part->partition); 1065 kfree(free_part); 1066 } 1067 1068 /* Clear the new partition */ 1069 for (tmp_index = new_part->index + NVRAM_HEADER_LEN; 1070 tmp_index < ((size - 1) * NVRAM_BLOCK_LEN); 1071 tmp_index += NVRAM_BLOCK_LEN) { 1072 rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index); 1073 if (rc <= 0) { 1074 pr_err("%s: nvram_write failed (%d)\n", 1075 __func__, rc); 1076 return rc; 1077 } 1078 } 1079 1080 return new_part->index + NVRAM_HEADER_LEN; 1081 } 1082 1083 /** 1084 * nvram_get_partition_size - Get the data size of an nvram partition 1085 * @data_index: This is the offset of the start of the data of 1086 * the partition. The same value that is returned by 1087 * nvram_create_partition(). 1088 */ 1089 int nvram_get_partition_size(loff_t data_index) 1090 { 1091 struct nvram_partition *part; 1092 1093 list_for_each_entry(part, &nvram_partitions, partition) { 1094 if (part->index + NVRAM_HEADER_LEN == data_index) 1095 return (part->header.length - 1) * NVRAM_BLOCK_LEN; 1096 } 1097 return -1; 1098 } 1099 1100 1101 /** 1102 * nvram_find_partition - Find an nvram partition by signature and name 1103 * @name: Name of the partition or NULL for any name 1104 * @sig: Signature to test against 1105 * @out_size: if non-NULL, returns the size of the data part of the partition 1106 */ 1107 loff_t nvram_find_partition(const char *name, int sig, int *out_size) 1108 { 1109 struct nvram_partition *p; 1110 1111 list_for_each_entry(p, &nvram_partitions, partition) { 1112 if (p->header.signature == sig && 1113 (!name || !strncmp(p->header.name, name, 12))) { 1114 if (out_size) 1115 *out_size = (p->header.length - 1) * 1116 NVRAM_BLOCK_LEN; 1117 return p->index + NVRAM_HEADER_LEN; 1118 } 1119 } 1120 return 0; 1121 } 1122 1123 int __init nvram_scan_partitions(void) 1124 { 1125 loff_t cur_index = 0; 1126 struct nvram_header phead; 1127 struct nvram_partition * tmp_part; 1128 unsigned char c_sum; 1129 char * header; 1130 int total_size; 1131 int err; 1132 1133 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0) 1134 return -ENODEV; 1135 total_size = ppc_md.nvram_size(); 1136 1137 header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL); 1138 if (!header) { 1139 printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n"); 1140 return -ENOMEM; 1141 } 1142 1143 while (cur_index < total_size) { 1144 1145 err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index); 1146 if (err != NVRAM_HEADER_LEN) { 1147 printk(KERN_ERR "nvram_scan_partitions: Error parsing " 1148 "nvram partitions\n"); 1149 goto out; 1150 } 1151 1152 cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */ 1153 1154 memcpy(&phead, header, NVRAM_HEADER_LEN); 1155 1156 phead.length = be16_to_cpu(phead.length); 1157 1158 err = 0; 1159 c_sum = nvram_checksum(&phead); 1160 if (c_sum != phead.checksum) { 1161 printk(KERN_WARNING "WARNING: nvram partition checksum" 1162 " was %02x, should be %02x!\n", 1163 phead.checksum, c_sum); 1164 printk(KERN_WARNING "Terminating nvram partition scan\n"); 1165 goto out; 1166 } 1167 if (!phead.length) { 1168 printk(KERN_WARNING "WARNING: nvram corruption " 1169 "detected: 0-length partition\n"); 1170 goto out; 1171 } 1172 tmp_part = kmalloc(sizeof(*tmp_part), GFP_KERNEL); 1173 err = -ENOMEM; 1174 if (!tmp_part) { 1175 printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n"); 1176 goto out; 1177 } 1178 1179 memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN); 1180 tmp_part->index = cur_index; 1181 list_add_tail(&tmp_part->partition, &nvram_partitions); 1182 1183 cur_index += phead.length * NVRAM_BLOCK_LEN; 1184 } 1185 err = 0; 1186 1187 #ifdef DEBUG_NVRAM 1188 nvram_print_partitions("NVRAM Partitions"); 1189 #endif 1190 1191 out: 1192 kfree(header); 1193 return err; 1194 } 1195 1196 static int __init nvram_init(void) 1197 { 1198 int rc; 1199 1200 BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16); 1201 1202 if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0) 1203 return -ENODEV; 1204 1205 rc = misc_register(&nvram_dev); 1206 if (rc != 0) { 1207 printk(KERN_ERR "nvram_init: failed to register device\n"); 1208 return rc; 1209 } 1210 1211 return rc; 1212 } 1213 device_initcall(nvram_init); 1214