xref: /linux/arch/powerpc/kernel/nvram_64.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  *
13  * TODO: Split the /dev/nvram part (that one can use
14  *       drivers/char/generic_nvram.c) from the arch & partition
15  *       parsing code.
16  */
17 
18 #include <linux/module.h>
19 
20 #include <linux/types.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/miscdevice.h>
24 #include <linux/fcntl.h>
25 #include <linux/nvram.h>
26 #include <linux/init.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <asm/uaccess.h>
30 #include <asm/nvram.h>
31 #include <asm/rtas.h>
32 #include <asm/prom.h>
33 #include <asm/machdep.h>
34 
35 #undef DEBUG_NVRAM
36 
37 static int nvram_scan_partitions(void);
38 static int nvram_setup_partition(void);
39 static int nvram_create_os_partition(void);
40 static int nvram_remove_os_partition(void);
41 
42 static struct nvram_partition * nvram_part;
43 static long nvram_error_log_index = -1;
44 static long nvram_error_log_size = 0;
45 
46 int no_logging = 1; 	/* Until we initialize everything,
47 			 * make sure we don't try logging
48 			 * anything */
49 
50 extern volatile int error_log_cnt;
51 
52 struct err_log_info {
53 	int error_type;
54 	unsigned int seq_num;
55 };
56 
57 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
58 {
59 	int size;
60 
61 	if (ppc_md.nvram_size == NULL)
62 		return -ENODEV;
63 	size = ppc_md.nvram_size();
64 
65 	switch (origin) {
66 	case 1:
67 		offset += file->f_pos;
68 		break;
69 	case 2:
70 		offset += size;
71 		break;
72 	}
73 	if (offset < 0)
74 		return -EINVAL;
75 	file->f_pos = offset;
76 	return file->f_pos;
77 }
78 
79 
80 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
81 			  size_t count, loff_t *ppos)
82 {
83 	ssize_t len;
84 	char *tmp_buffer;
85 	int size;
86 
87 	if (ppc_md.nvram_size == NULL)
88 		return -ENODEV;
89 	size = ppc_md.nvram_size();
90 
91 	if (!access_ok(VERIFY_WRITE, buf, count))
92 		return -EFAULT;
93 	if (*ppos >= size)
94 		return 0;
95 	if (count > size)
96 		count = size;
97 
98 	tmp_buffer = (char *) kmalloc(count, GFP_KERNEL);
99 	if (!tmp_buffer) {
100 		printk(KERN_ERR "dev_read_nvram: kmalloc failed\n");
101 		return -ENOMEM;
102 	}
103 
104 	len = ppc_md.nvram_read(tmp_buffer, count, ppos);
105 	if ((long)len <= 0) {
106 		kfree(tmp_buffer);
107 		return len;
108 	}
109 
110 	if (copy_to_user(buf, tmp_buffer, len)) {
111 		kfree(tmp_buffer);
112 		return -EFAULT;
113 	}
114 
115 	kfree(tmp_buffer);
116 	return len;
117 
118 }
119 
120 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
121 			   size_t count, loff_t *ppos)
122 {
123 	ssize_t len;
124 	char * tmp_buffer;
125 	int size;
126 
127 	if (ppc_md.nvram_size == NULL)
128 		return -ENODEV;
129 	size = ppc_md.nvram_size();
130 
131 	if (!access_ok(VERIFY_READ, buf, count))
132 		return -EFAULT;
133 	if (*ppos >= size)
134 		return 0;
135 	if (count > size)
136 		count = size;
137 
138 	tmp_buffer = (char *) kmalloc(count, GFP_KERNEL);
139 	if (!tmp_buffer) {
140 		printk(KERN_ERR "dev_nvram_write: kmalloc failed\n");
141 		return -ENOMEM;
142 	}
143 
144 	if (copy_from_user(tmp_buffer, buf, count)) {
145 		kfree(tmp_buffer);
146 		return -EFAULT;
147 	}
148 
149 	len = ppc_md.nvram_write(tmp_buffer, count, ppos);
150 	if ((long)len <= 0) {
151 		kfree(tmp_buffer);
152 		return len;
153 	}
154 
155 	kfree(tmp_buffer);
156 	return len;
157 }
158 
159 static int dev_nvram_ioctl(struct inode *inode, struct file *file,
160 	unsigned int cmd, unsigned long arg)
161 {
162 	switch(cmd) {
163 #ifdef CONFIG_PPC_PMAC
164 	case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
165 		printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
166 	case IOC_NVRAM_GET_OFFSET: {
167 		int part, offset;
168 
169 		if (_machine != PLATFORM_POWERMAC)
170 			return -EINVAL;
171 		if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
172 			return -EFAULT;
173 		if (part < pmac_nvram_OF || part > pmac_nvram_NR)
174 			return -EINVAL;
175 		offset = pmac_get_partition(part);
176 		if (offset < 0)
177 			return offset;
178 		if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
179 			return -EFAULT;
180 		return 0;
181 	}
182 #endif /* CONFIG_PPC_PMAC */
183 	}
184 	return -EINVAL;
185 }
186 
187 struct file_operations nvram_fops = {
188 	.owner =	THIS_MODULE,
189 	.llseek =	dev_nvram_llseek,
190 	.read =		dev_nvram_read,
191 	.write =	dev_nvram_write,
192 	.ioctl =	dev_nvram_ioctl,
193 };
194 
195 static struct miscdevice nvram_dev = {
196 	NVRAM_MINOR,
197 	"nvram",
198 	&nvram_fops
199 };
200 
201 
202 #ifdef DEBUG_NVRAM
203 static void nvram_print_partitions(char * label)
204 {
205 	struct list_head * p;
206 	struct nvram_partition * tmp_part;
207 
208 	printk(KERN_WARNING "--------%s---------\n", label);
209 	printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
210 	list_for_each(p, &nvram_part->partition) {
211 		tmp_part = list_entry(p, struct nvram_partition, partition);
212 		printk(KERN_WARNING "%d    \t%02x\t%02x\t%d\t%s\n",
213 		       tmp_part->index, tmp_part->header.signature,
214 		       tmp_part->header.checksum, tmp_part->header.length,
215 		       tmp_part->header.name);
216 	}
217 }
218 #endif
219 
220 
221 static int nvram_write_header(struct nvram_partition * part)
222 {
223 	loff_t tmp_index;
224 	int rc;
225 
226 	tmp_index = part->index;
227 	rc = ppc_md.nvram_write((char *)&part->header, NVRAM_HEADER_LEN, &tmp_index);
228 
229 	return rc;
230 }
231 
232 
233 static unsigned char nvram_checksum(struct nvram_header *p)
234 {
235 	unsigned int c_sum, c_sum2;
236 	unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
237 	c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
238 
239 	/* The sum may have spilled into the 3rd byte.  Fold it back. */
240 	c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
241 	/* The sum cannot exceed 2 bytes.  Fold it into a checksum */
242 	c_sum2 = (c_sum >> 8) + (c_sum << 8);
243 	c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
244 	return c_sum;
245 }
246 
247 
248 /*
249  * Find an nvram partition, sig can be 0 for any
250  * partition or name can be NULL for any name, else
251  * tries to match both
252  */
253 struct nvram_partition *nvram_find_partition(int sig, const char *name)
254 {
255 	struct nvram_partition * part;
256 	struct list_head * p;
257 
258 	list_for_each(p, &nvram_part->partition) {
259 		part = list_entry(p, struct nvram_partition, partition);
260 
261 		if (sig && part->header.signature != sig)
262 			continue;
263 		if (name && 0 != strncmp(name, part->header.name, 12))
264 			continue;
265 		return part;
266 	}
267 	return NULL;
268 }
269 EXPORT_SYMBOL(nvram_find_partition);
270 
271 
272 static int nvram_remove_os_partition(void)
273 {
274 	struct list_head *i;
275 	struct list_head *j;
276 	struct nvram_partition * part;
277 	struct nvram_partition * cur_part;
278 	int rc;
279 
280 	list_for_each(i, &nvram_part->partition) {
281 		part = list_entry(i, struct nvram_partition, partition);
282 		if (part->header.signature != NVRAM_SIG_OS)
283 			continue;
284 
285 		/* Make os partition a free partition */
286 		part->header.signature = NVRAM_SIG_FREE;
287 		sprintf(part->header.name, "wwwwwwwwwwww");
288 		part->header.checksum = nvram_checksum(&part->header);
289 
290 		/* Merge contiguous free partitions backwards */
291 		list_for_each_prev(j, &part->partition) {
292 			cur_part = list_entry(j, struct nvram_partition, partition);
293 			if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
294 				break;
295 			}
296 
297 			part->header.length += cur_part->header.length;
298 			part->header.checksum = nvram_checksum(&part->header);
299 			part->index = cur_part->index;
300 
301 			list_del(&cur_part->partition);
302 			kfree(cur_part);
303 			j = &part->partition; /* fixup our loop */
304 		}
305 
306 		/* Merge contiguous free partitions forwards */
307 		list_for_each(j, &part->partition) {
308 			cur_part = list_entry(j, struct nvram_partition, partition);
309 			if (cur_part == nvram_part || cur_part->header.signature != NVRAM_SIG_FREE) {
310 				break;
311 			}
312 
313 			part->header.length += cur_part->header.length;
314 			part->header.checksum = nvram_checksum(&part->header);
315 
316 			list_del(&cur_part->partition);
317 			kfree(cur_part);
318 			j = &part->partition; /* fixup our loop */
319 		}
320 
321 		rc = nvram_write_header(part);
322 		if (rc <= 0) {
323 			printk(KERN_ERR "nvram_remove_os_partition: nvram_write failed (%d)\n", rc);
324 			return rc;
325 		}
326 
327 	}
328 
329 	return 0;
330 }
331 
332 /* nvram_create_os_partition
333  *
334  * Create a OS linux partition to buffer error logs.
335  * Will create a partition starting at the first free
336  * space found if space has enough room.
337  */
338 static int nvram_create_os_partition(void)
339 {
340 	struct nvram_partition *part;
341 	struct nvram_partition *new_part;
342 	struct nvram_partition *free_part = NULL;
343 	int seq_init[2] = { 0, 0 };
344 	loff_t tmp_index;
345 	long size = 0;
346 	int rc;
347 
348 	/* Find a free partition that will give us the maximum needed size
349 	   If can't find one that will give us the minimum size needed */
350 	list_for_each_entry(part, &nvram_part->partition, partition) {
351 		if (part->header.signature != NVRAM_SIG_FREE)
352 			continue;
353 
354 		if (part->header.length >= NVRAM_MAX_REQ) {
355 			size = NVRAM_MAX_REQ;
356 			free_part = part;
357 			break;
358 		}
359 		if (!size && part->header.length >= NVRAM_MIN_REQ) {
360 			size = NVRAM_MIN_REQ;
361 			free_part = part;
362 		}
363 	}
364 	if (!size)
365 		return -ENOSPC;
366 
367 	/* Create our OS partition */
368 	new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
369 	if (!new_part) {
370 		printk(KERN_ERR "nvram_create_os_partition: kmalloc failed\n");
371 		return -ENOMEM;
372 	}
373 
374 	new_part->index = free_part->index;
375 	new_part->header.signature = NVRAM_SIG_OS;
376 	new_part->header.length = size;
377 	strcpy(new_part->header.name, "ppc64,linux");
378 	new_part->header.checksum = nvram_checksum(&new_part->header);
379 
380 	rc = nvram_write_header(new_part);
381 	if (rc <= 0) {
382 		printk(KERN_ERR "nvram_create_os_partition: nvram_write_header \
383 				failed (%d)\n", rc);
384 		return rc;
385 	}
386 
387 	/* make sure and initialize to zero the sequence number and the error
388 	   type logged */
389 	tmp_index = new_part->index + NVRAM_HEADER_LEN;
390 	rc = ppc_md.nvram_write((char *)&seq_init, sizeof(seq_init), &tmp_index);
391 	if (rc <= 0) {
392 		printk(KERN_ERR "nvram_create_os_partition: nvram_write "
393 				"failed (%d)\n", rc);
394 		return rc;
395 	}
396 
397 	nvram_error_log_index = new_part->index + NVRAM_HEADER_LEN;
398 	nvram_error_log_size = ((part->header.length - 1) *
399 				NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
400 
401 	list_add_tail(&new_part->partition, &free_part->partition);
402 
403 	if (free_part->header.length <= size) {
404 		list_del(&free_part->partition);
405 		kfree(free_part);
406 		return 0;
407 	}
408 
409 	/* Adjust the partition we stole the space from */
410 	free_part->index += size * NVRAM_BLOCK_LEN;
411 	free_part->header.length -= size;
412 	free_part->header.checksum = nvram_checksum(&free_part->header);
413 
414 	rc = nvram_write_header(free_part);
415 	if (rc <= 0) {
416 		printk(KERN_ERR "nvram_create_os_partition: nvram_write_header "
417 		       "failed (%d)\n", rc);
418 		return rc;
419 	}
420 
421 	return 0;
422 }
423 
424 
425 /* nvram_setup_partition
426  *
427  * This will setup the partition we need for buffering the
428  * error logs and cleanup partitions if needed.
429  *
430  * The general strategy is the following:
431  * 1.) If there is ppc64,linux partition large enough then use it.
432  * 2.) If there is not a ppc64,linux partition large enough, search
433  * for a free partition that is large enough.
434  * 3.) If there is not a free partition large enough remove
435  * _all_ OS partitions and consolidate the space.
436  * 4.) Will first try getting a chunk that will satisfy the maximum
437  * error log size (NVRAM_MAX_REQ).
438  * 5.) If the max chunk cannot be allocated then try finding a chunk
439  * that will satisfy the minum needed (NVRAM_MIN_REQ).
440  */
441 static int nvram_setup_partition(void)
442 {
443 	struct list_head * p;
444 	struct nvram_partition * part;
445 	int rc;
446 
447 	/* For now, we don't do any of this on pmac, until I
448 	 * have figured out if it's worth killing some unused stuffs
449 	 * in our nvram, as Apple defined partitions use pretty much
450 	 * all of the space
451 	 */
452 	if (_machine == PLATFORM_POWERMAC)
453 		return -ENOSPC;
454 
455 	/* see if we have an OS partition that meets our needs.
456 	   will try getting the max we need.  If not we'll delete
457 	   partitions and try again. */
458 	list_for_each(p, &nvram_part->partition) {
459 		part = list_entry(p, struct nvram_partition, partition);
460 		if (part->header.signature != NVRAM_SIG_OS)
461 			continue;
462 
463 		if (strcmp(part->header.name, "ppc64,linux"))
464 			continue;
465 
466 		if (part->header.length >= NVRAM_MIN_REQ) {
467 			/* found our partition */
468 			nvram_error_log_index = part->index + NVRAM_HEADER_LEN;
469 			nvram_error_log_size = ((part->header.length - 1) *
470 						NVRAM_BLOCK_LEN) - sizeof(struct err_log_info);
471 			return 0;
472 		}
473 	}
474 
475 	/* try creating a partition with the free space we have */
476 	rc = nvram_create_os_partition();
477 	if (!rc) {
478 		return 0;
479 	}
480 
481 	/* need to free up some space */
482 	rc = nvram_remove_os_partition();
483 	if (rc) {
484 		return rc;
485 	}
486 
487 	/* create a partition in this new space */
488 	rc = nvram_create_os_partition();
489 	if (rc) {
490 		printk(KERN_ERR "nvram_create_os_partition: Could not find a "
491 		       "NVRAM partition large enough\n");
492 		return rc;
493 	}
494 
495 	return 0;
496 }
497 
498 
499 static int nvram_scan_partitions(void)
500 {
501 	loff_t cur_index = 0;
502 	struct nvram_header phead;
503 	struct nvram_partition * tmp_part;
504 	unsigned char c_sum;
505 	char * header;
506 	int total_size;
507 	int err;
508 
509 	if (ppc_md.nvram_size == NULL)
510 		return -ENODEV;
511 	total_size = ppc_md.nvram_size();
512 
513 	header = (char *) kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
514 	if (!header) {
515 		printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
516 		return -ENOMEM;
517 	}
518 
519 	while (cur_index < total_size) {
520 
521 		err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
522 		if (err != NVRAM_HEADER_LEN) {
523 			printk(KERN_ERR "nvram_scan_partitions: Error parsing "
524 			       "nvram partitions\n");
525 			goto out;
526 		}
527 
528 		cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
529 
530 		memcpy(&phead, header, NVRAM_HEADER_LEN);
531 
532 		err = 0;
533 		c_sum = nvram_checksum(&phead);
534 		if (c_sum != phead.checksum) {
535 			printk(KERN_WARNING "WARNING: nvram partition checksum"
536 			       " was %02x, should be %02x!\n",
537 			       phead.checksum, c_sum);
538 			printk(KERN_WARNING "Terminating nvram partition scan\n");
539 			goto out;
540 		}
541 		if (!phead.length) {
542 			printk(KERN_WARNING "WARNING: nvram corruption "
543 			       "detected: 0-length partition\n");
544 			goto out;
545 		}
546 		tmp_part = (struct nvram_partition *)
547 			kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
548 		err = -ENOMEM;
549 		if (!tmp_part) {
550 			printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
551 			goto out;
552 		}
553 
554 		memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
555 		tmp_part->index = cur_index;
556 		list_add_tail(&tmp_part->partition, &nvram_part->partition);
557 
558 		cur_index += phead.length * NVRAM_BLOCK_LEN;
559 	}
560 	err = 0;
561 
562  out:
563 	kfree(header);
564 	return err;
565 }
566 
567 static int __init nvram_init(void)
568 {
569 	int error;
570 	int rc;
571 
572 	if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
573 		return  -ENODEV;
574 
575   	rc = misc_register(&nvram_dev);
576 	if (rc != 0) {
577 		printk(KERN_ERR "nvram_init: failed to register device\n");
578 		return rc;
579 	}
580 
581   	/* initialize our anchor for the nvram partition list */
582   	nvram_part = (struct nvram_partition *) kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
583   	if (!nvram_part) {
584   		printk(KERN_ERR "nvram_init: Failed kmalloc\n");
585   		return -ENOMEM;
586   	}
587   	INIT_LIST_HEAD(&nvram_part->partition);
588 
589   	/* Get all the NVRAM partitions */
590   	error = nvram_scan_partitions();
591   	if (error) {
592   		printk(KERN_ERR "nvram_init: Failed nvram_scan_partitions\n");
593   		return error;
594   	}
595 
596   	if(nvram_setup_partition())
597   		printk(KERN_WARNING "nvram_init: Could not find nvram partition"
598   		       " for nvram buffered error logging.\n");
599 
600 #ifdef DEBUG_NVRAM
601 	nvram_print_partitions("NVRAM Partitions");
602 #endif
603 
604   	return rc;
605 }
606 
607 void __exit nvram_cleanup(void)
608 {
609         misc_deregister( &nvram_dev );
610 }
611 
612 
613 #ifdef CONFIG_PPC_PSERIES
614 
615 /* nvram_write_error_log
616  *
617  * We need to buffer the error logs into nvram to ensure that we have
618  * the failure information to decode.  If we have a severe error there
619  * is no way to guarantee that the OS or the machine is in a state to
620  * get back to user land and write the error to disk.  For example if
621  * the SCSI device driver causes a Machine Check by writing to a bad
622  * IO address, there is no way of guaranteeing that the device driver
623  * is in any state that is would also be able to write the error data
624  * captured to disk, thus we buffer it in NVRAM for analysis on the
625  * next boot.
626  *
627  * In NVRAM the partition containing the error log buffer will looks like:
628  * Header (in bytes):
629  * +-----------+----------+--------+------------+------------------+
630  * | signature | checksum | length | name       | data             |
631  * |0          |1         |2      3|4         15|16        length-1|
632  * +-----------+----------+--------+------------+------------------+
633  *
634  * The 'data' section would look like (in bytes):
635  * +--------------+------------+-----------------------------------+
636  * | event_logged | sequence # | error log                         |
637  * |0            3|4          7|8            nvram_error_log_size-1|
638  * +--------------+------------+-----------------------------------+
639  *
640  * event_logged: 0 if event has not been logged to syslog, 1 if it has
641  * sequence #: The unique sequence # for each event. (until it wraps)
642  * error log: The error log from event_scan
643  */
644 int nvram_write_error_log(char * buff, int length, unsigned int err_type)
645 {
646 	int rc;
647 	loff_t tmp_index;
648 	struct err_log_info info;
649 
650 	if (no_logging) {
651 		return -EPERM;
652 	}
653 
654 	if (nvram_error_log_index == -1) {
655 		return -ESPIPE;
656 	}
657 
658 	if (length > nvram_error_log_size) {
659 		length = nvram_error_log_size;
660 	}
661 
662 	info.error_type = err_type;
663 	info.seq_num = error_log_cnt;
664 
665 	tmp_index = nvram_error_log_index;
666 
667 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
668 	if (rc <= 0) {
669 		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
670 		return rc;
671 	}
672 
673 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
674 	if (rc <= 0) {
675 		printk(KERN_ERR "nvram_write_error_log: Failed nvram_write (%d)\n", rc);
676 		return rc;
677 	}
678 
679 	return 0;
680 }
681 
682 /* nvram_read_error_log
683  *
684  * Reads nvram for error log for at most 'length'
685  */
686 int nvram_read_error_log(char * buff, int length, unsigned int * err_type)
687 {
688 	int rc;
689 	loff_t tmp_index;
690 	struct err_log_info info;
691 
692 	if (nvram_error_log_index == -1)
693 		return -1;
694 
695 	if (length > nvram_error_log_size)
696 		length = nvram_error_log_size;
697 
698 	tmp_index = nvram_error_log_index;
699 
700 	rc = ppc_md.nvram_read((char *)&info, sizeof(struct err_log_info), &tmp_index);
701 	if (rc <= 0) {
702 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
703 		return rc;
704 	}
705 
706 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
707 	if (rc <= 0) {
708 		printk(KERN_ERR "nvram_read_error_log: Failed nvram_read (%d)\n", rc);
709 		return rc;
710 	}
711 
712 	error_log_cnt = info.seq_num;
713 	*err_type = info.error_type;
714 
715 	return 0;
716 }
717 
718 /* This doesn't actually zero anything, but it sets the event_logged
719  * word to tell that this event is safely in syslog.
720  */
721 int nvram_clear_error_log(void)
722 {
723 	loff_t tmp_index;
724 	int clear_word = ERR_FLAG_ALREADY_LOGGED;
725 	int rc;
726 
727 	tmp_index = nvram_error_log_index;
728 
729 	rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
730 	if (rc <= 0) {
731 		printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
732 		return rc;
733 	}
734 
735 	return 0;
736 }
737 
738 #endif /* CONFIG_PPC_PSERIES */
739 
740 module_init(nvram_init);
741 module_exit(nvram_cleanup);
742 MODULE_LICENSE("GPL");
743