xref: /linux/arch/powerpc/kernel/nvram_64.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  c 2001 PPC 64 Team, IBM Corp
3  *
4  *      This program is free software; you can redistribute it and/or
5  *      modify it under the terms of the GNU General Public License
6  *      as published by the Free Software Foundation; either version
7  *      2 of the License, or (at your option) any later version.
8  *
9  * /dev/nvram driver for PPC64
10  *
11  * This perhaps should live in drivers/char
12  *
13  * TODO: Split the /dev/nvram part (that one can use
14  *       drivers/char/generic_nvram.c) from the arch & partition
15  *       parsing code.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/errno.h>
20 #include <linux/fs.h>
21 #include <linux/miscdevice.h>
22 #include <linux/fcntl.h>
23 #include <linux/nvram.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/kmsg_dump.h>
28 #include <linux/pagemap.h>
29 #include <linux/pstore.h>
30 #include <linux/zlib.h>
31 #include <asm/uaccess.h>
32 #include <asm/nvram.h>
33 #include <asm/rtas.h>
34 #include <asm/prom.h>
35 #include <asm/machdep.h>
36 
37 #undef DEBUG_NVRAM
38 
39 #define NVRAM_HEADER_LEN	sizeof(struct nvram_header)
40 #define NVRAM_BLOCK_LEN		NVRAM_HEADER_LEN
41 
42 /* If change this size, then change the size of NVNAME_LEN */
43 struct nvram_header {
44 	unsigned char signature;
45 	unsigned char checksum;
46 	unsigned short length;
47 	/* Terminating null required only for names < 12 chars. */
48 	char name[12];
49 };
50 
51 struct nvram_partition {
52 	struct list_head partition;
53 	struct nvram_header header;
54 	unsigned int index;
55 };
56 
57 static LIST_HEAD(nvram_partitions);
58 
59 #ifdef CONFIG_PPC_PSERIES
60 struct nvram_os_partition rtas_log_partition = {
61 	.name = "ibm,rtas-log",
62 	.req_size = 2079,
63 	.min_size = 1055,
64 	.index = -1,
65 	.os_partition = true
66 };
67 #endif
68 
69 struct nvram_os_partition oops_log_partition = {
70 	.name = "lnx,oops-log",
71 	.req_size = 4000,
72 	.min_size = 2000,
73 	.index = -1,
74 	.os_partition = true
75 };
76 
77 static const char *nvram_os_partitions[] = {
78 #ifdef CONFIG_PPC_PSERIES
79 	"ibm,rtas-log",
80 #endif
81 	"lnx,oops-log",
82 	NULL
83 };
84 
85 static void oops_to_nvram(struct kmsg_dumper *dumper,
86 			  enum kmsg_dump_reason reason);
87 
88 static struct kmsg_dumper nvram_kmsg_dumper = {
89 	.dump = oops_to_nvram
90 };
91 
92 /*
93  * For capturing and compressing an oops or panic report...
94 
95  * big_oops_buf[] holds the uncompressed text we're capturing.
96  *
97  * oops_buf[] holds the compressed text, preceded by a oops header.
98  * oops header has u16 holding the version of oops header (to differentiate
99  * between old and new format header) followed by u16 holding the length of
100  * the compressed* text (*Or uncompressed, if compression fails.) and u64
101  * holding the timestamp. oops_buf[] gets written to NVRAM.
102  *
103  * oops_log_info points to the header. oops_data points to the compressed text.
104  *
105  * +- oops_buf
106  * |                                   +- oops_data
107  * v                                   v
108  * +-----------+-----------+-----------+------------------------+
109  * | version   | length    | timestamp | text                   |
110  * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes)   |
111  * +-----------+-----------+-----------+------------------------+
112  * ^
113  * +- oops_log_info
114  *
115  * We preallocate these buffers during init to avoid kmalloc during oops/panic.
116  */
117 static size_t big_oops_buf_sz;
118 static char *big_oops_buf, *oops_buf;
119 static char *oops_data;
120 static size_t oops_data_sz;
121 
122 /* Compression parameters */
123 #define COMPR_LEVEL 6
124 #define WINDOW_BITS 12
125 #define MEM_LEVEL 4
126 static struct z_stream_s stream;
127 
128 #ifdef CONFIG_PSTORE
129 #ifdef CONFIG_PPC_POWERNV
130 static struct nvram_os_partition skiboot_partition = {
131 	.name = "ibm,skiboot",
132 	.index = -1,
133 	.os_partition = false
134 };
135 #endif
136 
137 #ifdef CONFIG_PPC_PSERIES
138 static struct nvram_os_partition of_config_partition = {
139 	.name = "of-config",
140 	.index = -1,
141 	.os_partition = false
142 };
143 #endif
144 
145 static struct nvram_os_partition common_partition = {
146 	.name = "common",
147 	.index = -1,
148 	.os_partition = false
149 };
150 
151 static enum pstore_type_id nvram_type_ids[] = {
152 	PSTORE_TYPE_DMESG,
153 	PSTORE_TYPE_PPC_COMMON,
154 	-1,
155 	-1,
156 	-1
157 };
158 static int read_type;
159 #endif
160 
161 /* nvram_write_os_partition
162  *
163  * We need to buffer the error logs into nvram to ensure that we have
164  * the failure information to decode.  If we have a severe error there
165  * is no way to guarantee that the OS or the machine is in a state to
166  * get back to user land and write the error to disk.  For example if
167  * the SCSI device driver causes a Machine Check by writing to a bad
168  * IO address, there is no way of guaranteeing that the device driver
169  * is in any state that is would also be able to write the error data
170  * captured to disk, thus we buffer it in NVRAM for analysis on the
171  * next boot.
172  *
173  * In NVRAM the partition containing the error log buffer will looks like:
174  * Header (in bytes):
175  * +-----------+----------+--------+------------+------------------+
176  * | signature | checksum | length | name       | data             |
177  * |0          |1         |2      3|4         15|16        length-1|
178  * +-----------+----------+--------+------------+------------------+
179  *
180  * The 'data' section would look like (in bytes):
181  * +--------------+------------+-----------------------------------+
182  * | event_logged | sequence # | error log                         |
183  * |0            3|4          7|8                  error_log_size-1|
184  * +--------------+------------+-----------------------------------+
185  *
186  * event_logged: 0 if event has not been logged to syslog, 1 if it has
187  * sequence #: The unique sequence # for each event. (until it wraps)
188  * error log: The error log from event_scan
189  */
190 int nvram_write_os_partition(struct nvram_os_partition *part,
191 			     char *buff, int length,
192 			     unsigned int err_type,
193 			     unsigned int error_log_cnt)
194 {
195 	int rc;
196 	loff_t tmp_index;
197 	struct err_log_info info;
198 
199 	if (part->index == -1)
200 		return -ESPIPE;
201 
202 	if (length > part->size)
203 		length = part->size;
204 
205 	info.error_type = cpu_to_be32(err_type);
206 	info.seq_num = cpu_to_be32(error_log_cnt);
207 
208 	tmp_index = part->index;
209 
210 	rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info),
211 				&tmp_index);
212 	if (rc <= 0) {
213 		pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
214 		return rc;
215 	}
216 
217 	rc = ppc_md.nvram_write(buff, length, &tmp_index);
218 	if (rc <= 0) {
219 		pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
220 		return rc;
221 	}
222 
223 	return 0;
224 }
225 
226 /* nvram_read_partition
227  *
228  * Reads nvram partition for at most 'length'
229  */
230 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
231 			 int length, unsigned int *err_type,
232 			 unsigned int *error_log_cnt)
233 {
234 	int rc;
235 	loff_t tmp_index;
236 	struct err_log_info info;
237 
238 	if (part->index == -1)
239 		return -1;
240 
241 	if (length > part->size)
242 		length = part->size;
243 
244 	tmp_index = part->index;
245 
246 	if (part->os_partition) {
247 		rc = ppc_md.nvram_read((char *)&info,
248 					sizeof(struct err_log_info),
249 					&tmp_index);
250 		if (rc <= 0) {
251 			pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
252 			return rc;
253 		}
254 	}
255 
256 	rc = ppc_md.nvram_read(buff, length, &tmp_index);
257 	if (rc <= 0) {
258 		pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
259 		return rc;
260 	}
261 
262 	if (part->os_partition) {
263 		*error_log_cnt = be32_to_cpu(info.seq_num);
264 		*err_type = be32_to_cpu(info.error_type);
265 	}
266 
267 	return 0;
268 }
269 
270 /* nvram_init_os_partition
271  *
272  * This sets up a partition with an "OS" signature.
273  *
274  * The general strategy is the following:
275  * 1.) If a partition with the indicated name already exists...
276  *	- If it's large enough, use it.
277  *	- Otherwise, recycle it and keep going.
278  * 2.) Search for a free partition that is large enough.
279  * 3.) If there's not a free partition large enough, recycle any obsolete
280  * OS partitions and try again.
281  * 4.) Will first try getting a chunk that will satisfy the requested size.
282  * 5.) If a chunk of the requested size cannot be allocated, then try finding
283  * a chunk that will satisfy the minum needed.
284  *
285  * Returns 0 on success, else -1.
286  */
287 int __init nvram_init_os_partition(struct nvram_os_partition *part)
288 {
289 	loff_t p;
290 	int size;
291 
292 	/* Look for ours */
293 	p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
294 
295 	/* Found one but too small, remove it */
296 	if (p && size < part->min_size) {
297 		pr_info("nvram: Found too small %s partition,"
298 					" removing it...\n", part->name);
299 		nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
300 		p = 0;
301 	}
302 
303 	/* Create one if we didn't find */
304 	if (!p) {
305 		p = nvram_create_partition(part->name, NVRAM_SIG_OS,
306 					part->req_size, part->min_size);
307 		if (p == -ENOSPC) {
308 			pr_info("nvram: No room to create %s partition, "
309 				"deleting any obsolete OS partitions...\n",
310 				part->name);
311 			nvram_remove_partition(NULL, NVRAM_SIG_OS,
312 					nvram_os_partitions);
313 			p = nvram_create_partition(part->name, NVRAM_SIG_OS,
314 					part->req_size, part->min_size);
315 		}
316 	}
317 
318 	if (p <= 0) {
319 		pr_err("nvram: Failed to find or create %s"
320 		       " partition, err %d\n", part->name, (int)p);
321 		return -1;
322 	}
323 
324 	part->index = p;
325 	part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
326 
327 	return 0;
328 }
329 
330 /* Derived from logfs_compress() */
331 static int nvram_compress(const void *in, void *out, size_t inlen,
332 							size_t outlen)
333 {
334 	int err, ret;
335 
336 	ret = -EIO;
337 	err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
338 						MEM_LEVEL, Z_DEFAULT_STRATEGY);
339 	if (err != Z_OK)
340 		goto error;
341 
342 	stream.next_in = in;
343 	stream.avail_in = inlen;
344 	stream.total_in = 0;
345 	stream.next_out = out;
346 	stream.avail_out = outlen;
347 	stream.total_out = 0;
348 
349 	err = zlib_deflate(&stream, Z_FINISH);
350 	if (err != Z_STREAM_END)
351 		goto error;
352 
353 	err = zlib_deflateEnd(&stream);
354 	if (err != Z_OK)
355 		goto error;
356 
357 	if (stream.total_out >= stream.total_in)
358 		goto error;
359 
360 	ret = stream.total_out;
361 error:
362 	return ret;
363 }
364 
365 /* Compress the text from big_oops_buf into oops_buf. */
366 static int zip_oops(size_t text_len)
367 {
368 	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
369 	int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
370 								oops_data_sz);
371 	if (zipped_len < 0) {
372 		pr_err("nvram: compression failed; returned %d\n", zipped_len);
373 		pr_err("nvram: logging uncompressed oops/panic report\n");
374 		return -1;
375 	}
376 	oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
377 	oops_hdr->report_length = cpu_to_be16(zipped_len);
378 	oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
379 	return 0;
380 }
381 
382 #ifdef CONFIG_PSTORE
383 static int nvram_pstore_open(struct pstore_info *psi)
384 {
385 	/* Reset the iterator to start reading partitions again */
386 	read_type = -1;
387 	return 0;
388 }
389 
390 /**
391  * nvram_pstore_write - pstore write callback for nvram
392  * @type:               Type of message logged
393  * @reason:             reason behind dump (oops/panic)
394  * @id:                 identifier to indicate the write performed
395  * @part:               pstore writes data to registered buffer in parts,
396  *                      part number will indicate the same.
397  * @count:              Indicates oops count
398  * @compressed:         Flag to indicate the log is compressed
399  * @size:               number of bytes written to the registered buffer
400  * @psi:                registered pstore_info structure
401  *
402  * Called by pstore_dump() when an oops or panic report is logged in the
403  * printk buffer.
404  * Returns 0 on successful write.
405  */
406 static int nvram_pstore_write(enum pstore_type_id type,
407 				enum kmsg_dump_reason reason,
408 				u64 *id, unsigned int part, int count,
409 				bool compressed, size_t size,
410 				struct pstore_info *psi)
411 {
412 	int rc;
413 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
414 	struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
415 
416 	/* part 1 has the recent messages from printk buffer */
417 	if (part > 1 || (type != PSTORE_TYPE_DMESG))
418 		return -1;
419 
420 	if (clobbering_unread_rtas_event())
421 		return -1;
422 
423 	oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
424 	oops_hdr->report_length = cpu_to_be16(size);
425 	oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
426 
427 	if (compressed)
428 		err_type = ERR_TYPE_KERNEL_PANIC_GZ;
429 
430 	rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
431 		(int) (sizeof(*oops_hdr) + size), err_type, count);
432 
433 	if (rc != 0)
434 		return rc;
435 
436 	*id = part;
437 	return 0;
438 }
439 
440 /*
441  * Reads the oops/panic report, rtas, of-config and common partition.
442  * Returns the length of the data we read from each partition.
443  * Returns 0 if we've been called before.
444  */
445 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
446 				int *count, struct timespec *time, char **buf,
447 				bool *compressed, struct pstore_info *psi)
448 {
449 	struct oops_log_info *oops_hdr;
450 	unsigned int err_type, id_no, size = 0;
451 	struct nvram_os_partition *part = NULL;
452 	char *buff = NULL;
453 	int sig = 0;
454 	loff_t p;
455 
456 	read_type++;
457 
458 	switch (nvram_type_ids[read_type]) {
459 	case PSTORE_TYPE_DMESG:
460 		part = &oops_log_partition;
461 		*type = PSTORE_TYPE_DMESG;
462 		break;
463 	case PSTORE_TYPE_PPC_COMMON:
464 		sig = NVRAM_SIG_SYS;
465 		part = &common_partition;
466 		*type = PSTORE_TYPE_PPC_COMMON;
467 		*id = PSTORE_TYPE_PPC_COMMON;
468 		time->tv_sec = 0;
469 		time->tv_nsec = 0;
470 		break;
471 #ifdef CONFIG_PPC_PSERIES
472 	case PSTORE_TYPE_PPC_RTAS:
473 		part = &rtas_log_partition;
474 		*type = PSTORE_TYPE_PPC_RTAS;
475 		time->tv_sec = last_rtas_event;
476 		time->tv_nsec = 0;
477 		break;
478 	case PSTORE_TYPE_PPC_OF:
479 		sig = NVRAM_SIG_OF;
480 		part = &of_config_partition;
481 		*type = PSTORE_TYPE_PPC_OF;
482 		*id = PSTORE_TYPE_PPC_OF;
483 		time->tv_sec = 0;
484 		time->tv_nsec = 0;
485 		break;
486 #endif
487 #ifdef CONFIG_PPC_POWERNV
488 	case PSTORE_TYPE_PPC_OPAL:
489 		sig = NVRAM_SIG_FW;
490 		part = &skiboot_partition;
491 		*type = PSTORE_TYPE_PPC_OPAL;
492 		*id = PSTORE_TYPE_PPC_OPAL;
493 		time->tv_sec = 0;
494 		time->tv_nsec = 0;
495 		break;
496 #endif
497 	default:
498 		return 0;
499 	}
500 
501 	if (!part->os_partition) {
502 		p = nvram_find_partition(part->name, sig, &size);
503 		if (p <= 0) {
504 			pr_err("nvram: Failed to find partition %s, "
505 				"err %d\n", part->name, (int)p);
506 			return 0;
507 		}
508 		part->index = p;
509 		part->size = size;
510 	}
511 
512 	buff = kmalloc(part->size, GFP_KERNEL);
513 
514 	if (!buff)
515 		return -ENOMEM;
516 
517 	if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
518 		kfree(buff);
519 		return 0;
520 	}
521 
522 	*count = 0;
523 
524 	if (part->os_partition)
525 		*id = id_no;
526 
527 	if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
528 		size_t length, hdr_size;
529 
530 		oops_hdr = (struct oops_log_info *)buff;
531 		if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
532 			/* Old format oops header had 2-byte record size */
533 			hdr_size = sizeof(u16);
534 			length = be16_to_cpu(oops_hdr->version);
535 			time->tv_sec = 0;
536 			time->tv_nsec = 0;
537 		} else {
538 			hdr_size = sizeof(*oops_hdr);
539 			length = be16_to_cpu(oops_hdr->report_length);
540 			time->tv_sec = be64_to_cpu(oops_hdr->timestamp);
541 			time->tv_nsec = 0;
542 		}
543 		*buf = kmemdup(buff + hdr_size, length, GFP_KERNEL);
544 		if (*buf == NULL)
545 			return -ENOMEM;
546 		kfree(buff);
547 
548 		if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
549 			*compressed = true;
550 		else
551 			*compressed = false;
552 		return length;
553 	}
554 
555 	*buf = buff;
556 	return part->size;
557 }
558 
559 static struct pstore_info nvram_pstore_info = {
560 	.owner = THIS_MODULE,
561 	.name = "nvram",
562 	.open = nvram_pstore_open,
563 	.read = nvram_pstore_read,
564 	.write = nvram_pstore_write,
565 };
566 
567 static int nvram_pstore_init(void)
568 {
569 	int rc = 0;
570 
571 	if (machine_is(pseries)) {
572 		nvram_type_ids[2] = PSTORE_TYPE_PPC_RTAS;
573 		nvram_type_ids[3] = PSTORE_TYPE_PPC_OF;
574 	} else
575 		nvram_type_ids[2] = PSTORE_TYPE_PPC_OPAL;
576 
577 	nvram_pstore_info.buf = oops_data;
578 	nvram_pstore_info.bufsize = oops_data_sz;
579 
580 	spin_lock_init(&nvram_pstore_info.buf_lock);
581 
582 	rc = pstore_register(&nvram_pstore_info);
583 	if (rc && (rc != -EPERM))
584 		/* Print error only when pstore.backend == nvram */
585 		pr_err("nvram: pstore_register() failed, returned %d. "
586 				"Defaults to kmsg_dump\n", rc);
587 
588 	return rc;
589 }
590 #else
591 static int nvram_pstore_init(void)
592 {
593 	return -1;
594 }
595 #endif
596 
597 void __init nvram_init_oops_partition(int rtas_partition_exists)
598 {
599 	int rc;
600 
601 	rc = nvram_init_os_partition(&oops_log_partition);
602 	if (rc != 0) {
603 #ifdef CONFIG_PPC_PSERIES
604 		if (!rtas_partition_exists) {
605 			pr_err("nvram: Failed to initialize oops partition!");
606 			return;
607 		}
608 		pr_notice("nvram: Using %s partition to log both"
609 			" RTAS errors and oops/panic reports\n",
610 			rtas_log_partition.name);
611 		memcpy(&oops_log_partition, &rtas_log_partition,
612 						sizeof(rtas_log_partition));
613 #else
614 		pr_err("nvram: Failed to initialize oops partition!");
615 		return;
616 #endif
617 	}
618 	oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
619 	if (!oops_buf) {
620 		pr_err("nvram: No memory for %s partition\n",
621 						oops_log_partition.name);
622 		return;
623 	}
624 	oops_data = oops_buf + sizeof(struct oops_log_info);
625 	oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
626 
627 	rc = nvram_pstore_init();
628 
629 	if (!rc)
630 		return;
631 
632 	/*
633 	 * Figure compression (preceded by elimination of each line's <n>
634 	 * severity prefix) will reduce the oops/panic report to at most
635 	 * 45% of its original size.
636 	 */
637 	big_oops_buf_sz = (oops_data_sz * 100) / 45;
638 	big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
639 	if (big_oops_buf) {
640 		stream.workspace =  kmalloc(zlib_deflate_workspacesize(
641 					WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
642 		if (!stream.workspace) {
643 			pr_err("nvram: No memory for compression workspace; "
644 				"skipping compression of %s partition data\n",
645 				oops_log_partition.name);
646 			kfree(big_oops_buf);
647 			big_oops_buf = NULL;
648 		}
649 	} else {
650 		pr_err("No memory for uncompressed %s data; "
651 			"skipping compression\n", oops_log_partition.name);
652 		stream.workspace = NULL;
653 	}
654 
655 	rc = kmsg_dump_register(&nvram_kmsg_dumper);
656 	if (rc != 0) {
657 		pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
658 		kfree(oops_buf);
659 		kfree(big_oops_buf);
660 		kfree(stream.workspace);
661 	}
662 }
663 
664 /*
665  * This is our kmsg_dump callback, called after an oops or panic report
666  * has been written to the printk buffer.  We want to capture as much
667  * of the printk buffer as possible.  First, capture as much as we can
668  * that we think will compress sufficiently to fit in the lnx,oops-log
669  * partition.  If that's too much, go back and capture uncompressed text.
670  */
671 static void oops_to_nvram(struct kmsg_dumper *dumper,
672 			  enum kmsg_dump_reason reason)
673 {
674 	struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
675 	static unsigned int oops_count = 0;
676 	static bool panicking = false;
677 	static DEFINE_SPINLOCK(lock);
678 	unsigned long flags;
679 	size_t text_len;
680 	unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
681 	int rc = -1;
682 
683 	switch (reason) {
684 	case KMSG_DUMP_RESTART:
685 	case KMSG_DUMP_HALT:
686 	case KMSG_DUMP_POWEROFF:
687 		/* These are almost always orderly shutdowns. */
688 		return;
689 	case KMSG_DUMP_OOPS:
690 		break;
691 	case KMSG_DUMP_PANIC:
692 		panicking = true;
693 		break;
694 	case KMSG_DUMP_EMERG:
695 		if (panicking)
696 			/* Panic report already captured. */
697 			return;
698 		break;
699 	default:
700 		pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
701 		       __func__, (int) reason);
702 		return;
703 	}
704 
705 	if (clobbering_unread_rtas_event())
706 		return;
707 
708 	if (!spin_trylock_irqsave(&lock, flags))
709 		return;
710 
711 	if (big_oops_buf) {
712 		kmsg_dump_get_buffer(dumper, false,
713 				     big_oops_buf, big_oops_buf_sz, &text_len);
714 		rc = zip_oops(text_len);
715 	}
716 	if (rc != 0) {
717 		kmsg_dump_rewind(dumper);
718 		kmsg_dump_get_buffer(dumper, false,
719 				     oops_data, oops_data_sz, &text_len);
720 		err_type = ERR_TYPE_KERNEL_PANIC;
721 		oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
722 		oops_hdr->report_length = cpu_to_be16(text_len);
723 		oops_hdr->timestamp = cpu_to_be64(ktime_get_real_seconds());
724 	}
725 
726 	(void) nvram_write_os_partition(&oops_log_partition, oops_buf,
727 		(int) (sizeof(*oops_hdr) + text_len), err_type,
728 		++oops_count);
729 
730 	spin_unlock_irqrestore(&lock, flags);
731 }
732 
733 static loff_t dev_nvram_llseek(struct file *file, loff_t offset, int origin)
734 {
735 	if (ppc_md.nvram_size == NULL)
736 		return -ENODEV;
737 	return generic_file_llseek_size(file, offset, origin, MAX_LFS_FILESIZE,
738 					ppc_md.nvram_size());
739 }
740 
741 
742 static ssize_t dev_nvram_read(struct file *file, char __user *buf,
743 			  size_t count, loff_t *ppos)
744 {
745 	ssize_t ret;
746 	char *tmp = NULL;
747 	ssize_t size;
748 
749 	if (!ppc_md.nvram_size) {
750 		ret = -ENODEV;
751 		goto out;
752 	}
753 
754 	size = ppc_md.nvram_size();
755 	if (size < 0) {
756 		ret = size;
757 		goto out;
758 	}
759 
760 	if (*ppos >= size) {
761 		ret = 0;
762 		goto out;
763 	}
764 
765 	count = min_t(size_t, count, size - *ppos);
766 	count = min(count, PAGE_SIZE);
767 
768 	tmp = kmalloc(count, GFP_KERNEL);
769 	if (!tmp) {
770 		ret = -ENOMEM;
771 		goto out;
772 	}
773 
774 	ret = ppc_md.nvram_read(tmp, count, ppos);
775 	if (ret <= 0)
776 		goto out;
777 
778 	if (copy_to_user(buf, tmp, ret))
779 		ret = -EFAULT;
780 
781 out:
782 	kfree(tmp);
783 	return ret;
784 
785 }
786 
787 static ssize_t dev_nvram_write(struct file *file, const char __user *buf,
788 			  size_t count, loff_t *ppos)
789 {
790 	ssize_t ret;
791 	char *tmp = NULL;
792 	ssize_t size;
793 
794 	ret = -ENODEV;
795 	if (!ppc_md.nvram_size)
796 		goto out;
797 
798 	ret = 0;
799 	size = ppc_md.nvram_size();
800 	if (*ppos >= size || size < 0)
801 		goto out;
802 
803 	count = min_t(size_t, count, size - *ppos);
804 	count = min(count, PAGE_SIZE);
805 
806 	ret = -ENOMEM;
807 	tmp = kmalloc(count, GFP_KERNEL);
808 	if (!tmp)
809 		goto out;
810 
811 	ret = -EFAULT;
812 	if (copy_from_user(tmp, buf, count))
813 		goto out;
814 
815 	ret = ppc_md.nvram_write(tmp, count, ppos);
816 
817 out:
818 	kfree(tmp);
819 	return ret;
820 
821 }
822 
823 static long dev_nvram_ioctl(struct file *file, unsigned int cmd,
824 			    unsigned long arg)
825 {
826 	switch(cmd) {
827 #ifdef CONFIG_PPC_PMAC
828 	case OBSOLETE_PMAC_NVRAM_GET_OFFSET:
829 		printk(KERN_WARNING "nvram: Using obsolete PMAC_NVRAM_GET_OFFSET ioctl\n");
830 	case IOC_NVRAM_GET_OFFSET: {
831 		int part, offset;
832 
833 		if (!machine_is(powermac))
834 			return -EINVAL;
835 		if (copy_from_user(&part, (void __user*)arg, sizeof(part)) != 0)
836 			return -EFAULT;
837 		if (part < pmac_nvram_OF || part > pmac_nvram_NR)
838 			return -EINVAL;
839 		offset = pmac_get_partition(part);
840 		if (offset < 0)
841 			return offset;
842 		if (copy_to_user((void __user*)arg, &offset, sizeof(offset)) != 0)
843 			return -EFAULT;
844 		return 0;
845 	}
846 #endif /* CONFIG_PPC_PMAC */
847 	default:
848 		return -EINVAL;
849 	}
850 }
851 
852 const struct file_operations nvram_fops = {
853 	.owner		= THIS_MODULE,
854 	.llseek		= dev_nvram_llseek,
855 	.read		= dev_nvram_read,
856 	.write		= dev_nvram_write,
857 	.unlocked_ioctl	= dev_nvram_ioctl,
858 };
859 
860 static struct miscdevice nvram_dev = {
861 	NVRAM_MINOR,
862 	"nvram",
863 	&nvram_fops
864 };
865 
866 
867 #ifdef DEBUG_NVRAM
868 static void __init nvram_print_partitions(char * label)
869 {
870 	struct nvram_partition * tmp_part;
871 
872 	printk(KERN_WARNING "--------%s---------\n", label);
873 	printk(KERN_WARNING "indx\t\tsig\tchks\tlen\tname\n");
874 	list_for_each_entry(tmp_part, &nvram_partitions, partition) {
875 		printk(KERN_WARNING "%4d    \t%02x\t%02x\t%d\t%12.12s\n",
876 		       tmp_part->index, tmp_part->header.signature,
877 		       tmp_part->header.checksum, tmp_part->header.length,
878 		       tmp_part->header.name);
879 	}
880 }
881 #endif
882 
883 
884 static int __init nvram_write_header(struct nvram_partition * part)
885 {
886 	loff_t tmp_index;
887 	int rc;
888 	struct nvram_header phead;
889 
890 	memcpy(&phead, &part->header, NVRAM_HEADER_LEN);
891 	phead.length = cpu_to_be16(phead.length);
892 
893 	tmp_index = part->index;
894 	rc = ppc_md.nvram_write((char *)&phead, NVRAM_HEADER_LEN, &tmp_index);
895 
896 	return rc;
897 }
898 
899 
900 static unsigned char __init nvram_checksum(struct nvram_header *p)
901 {
902 	unsigned int c_sum, c_sum2;
903 	unsigned short *sp = (unsigned short *)p->name; /* assume 6 shorts */
904 	c_sum = p->signature + p->length + sp[0] + sp[1] + sp[2] + sp[3] + sp[4] + sp[5];
905 
906 	/* The sum may have spilled into the 3rd byte.  Fold it back. */
907 	c_sum = ((c_sum & 0xffff) + (c_sum >> 16)) & 0xffff;
908 	/* The sum cannot exceed 2 bytes.  Fold it into a checksum */
909 	c_sum2 = (c_sum >> 8) + (c_sum << 8);
910 	c_sum = ((c_sum + c_sum2) >> 8) & 0xff;
911 	return c_sum;
912 }
913 
914 /*
915  * Per the criteria passed via nvram_remove_partition(), should this
916  * partition be removed?  1=remove, 0=keep
917  */
918 static int nvram_can_remove_partition(struct nvram_partition *part,
919 		const char *name, int sig, const char *exceptions[])
920 {
921 	if (part->header.signature != sig)
922 		return 0;
923 	if (name) {
924 		if (strncmp(name, part->header.name, 12))
925 			return 0;
926 	} else if (exceptions) {
927 		const char **except;
928 		for (except = exceptions; *except; except++) {
929 			if (!strncmp(*except, part->header.name, 12))
930 				return 0;
931 		}
932 	}
933 	return 1;
934 }
935 
936 /**
937  * nvram_remove_partition - Remove one or more partitions in nvram
938  * @name: name of the partition to remove, or NULL for a
939  *        signature only match
940  * @sig: signature of the partition(s) to remove
941  * @exceptions: When removing all partitions with a matching signature,
942  *        leave these alone.
943  */
944 
945 int __init nvram_remove_partition(const char *name, int sig,
946 						const char *exceptions[])
947 {
948 	struct nvram_partition *part, *prev, *tmp;
949 	int rc;
950 
951 	list_for_each_entry(part, &nvram_partitions, partition) {
952 		if (!nvram_can_remove_partition(part, name, sig, exceptions))
953 			continue;
954 
955 		/* Make partition a free partition */
956 		part->header.signature = NVRAM_SIG_FREE;
957 		strncpy(part->header.name, "wwwwwwwwwwww", 12);
958 		part->header.checksum = nvram_checksum(&part->header);
959 		rc = nvram_write_header(part);
960 		if (rc <= 0) {
961 			printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
962 			return rc;
963 		}
964 	}
965 
966 	/* Merge contiguous ones */
967 	prev = NULL;
968 	list_for_each_entry_safe(part, tmp, &nvram_partitions, partition) {
969 		if (part->header.signature != NVRAM_SIG_FREE) {
970 			prev = NULL;
971 			continue;
972 		}
973 		if (prev) {
974 			prev->header.length += part->header.length;
975 			prev->header.checksum = nvram_checksum(&part->header);
976 			rc = nvram_write_header(part);
977 			if (rc <= 0) {
978 				printk(KERN_ERR "nvram_remove_partition: nvram_write failed (%d)\n", rc);
979 				return rc;
980 			}
981 			list_del(&part->partition);
982 			kfree(part);
983 		} else
984 			prev = part;
985 	}
986 
987 	return 0;
988 }
989 
990 /**
991  * nvram_create_partition - Create a partition in nvram
992  * @name: name of the partition to create
993  * @sig: signature of the partition to create
994  * @req_size: size of data to allocate in bytes
995  * @min_size: minimum acceptable size (0 means req_size)
996  *
997  * Returns a negative error code or a positive nvram index
998  * of the beginning of the data area of the newly created
999  * partition. If you provided a min_size smaller than req_size
1000  * you need to query for the actual size yourself after the
1001  * call using nvram_partition_get_size().
1002  */
1003 loff_t __init nvram_create_partition(const char *name, int sig,
1004 				     int req_size, int min_size)
1005 {
1006 	struct nvram_partition *part;
1007 	struct nvram_partition *new_part;
1008 	struct nvram_partition *free_part = NULL;
1009 	static char nv_init_vals[16];
1010 	loff_t tmp_index;
1011 	long size = 0;
1012 	int rc;
1013 
1014 	/* Convert sizes from bytes to blocks */
1015 	req_size = _ALIGN_UP(req_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1016 	min_size = _ALIGN_UP(min_size, NVRAM_BLOCK_LEN) / NVRAM_BLOCK_LEN;
1017 
1018 	/* If no minimum size specified, make it the same as the
1019 	 * requested size
1020 	 */
1021 	if (min_size == 0)
1022 		min_size = req_size;
1023 	if (min_size > req_size)
1024 		return -EINVAL;
1025 
1026 	/* Now add one block to each for the header */
1027 	req_size += 1;
1028 	min_size += 1;
1029 
1030 	/* Find a free partition that will give us the maximum needed size
1031 	   If can't find one that will give us the minimum size needed */
1032 	list_for_each_entry(part, &nvram_partitions, partition) {
1033 		if (part->header.signature != NVRAM_SIG_FREE)
1034 			continue;
1035 
1036 		if (part->header.length >= req_size) {
1037 			size = req_size;
1038 			free_part = part;
1039 			break;
1040 		}
1041 		if (part->header.length > size &&
1042 		    part->header.length >= min_size) {
1043 			size = part->header.length;
1044 			free_part = part;
1045 		}
1046 	}
1047 	if (!size)
1048 		return -ENOSPC;
1049 
1050 	/* Create our OS partition */
1051 	new_part = kmalloc(sizeof(*new_part), GFP_KERNEL);
1052 	if (!new_part) {
1053 		pr_err("%s: kmalloc failed\n", __func__);
1054 		return -ENOMEM;
1055 	}
1056 
1057 	new_part->index = free_part->index;
1058 	new_part->header.signature = sig;
1059 	new_part->header.length = size;
1060 	strncpy(new_part->header.name, name, 12);
1061 	new_part->header.checksum = nvram_checksum(&new_part->header);
1062 
1063 	rc = nvram_write_header(new_part);
1064 	if (rc <= 0) {
1065 		pr_err("%s: nvram_write_header failed (%d)\n", __func__, rc);
1066 		kfree(new_part);
1067 		return rc;
1068 	}
1069 	list_add_tail(&new_part->partition, &free_part->partition);
1070 
1071 	/* Adjust or remove the partition we stole the space from */
1072 	if (free_part->header.length > size) {
1073 		free_part->index += size * NVRAM_BLOCK_LEN;
1074 		free_part->header.length -= size;
1075 		free_part->header.checksum = nvram_checksum(&free_part->header);
1076 		rc = nvram_write_header(free_part);
1077 		if (rc <= 0) {
1078 			pr_err("%s: nvram_write_header failed (%d)\n",
1079 			       __func__, rc);
1080 			return rc;
1081 		}
1082 	} else {
1083 		list_del(&free_part->partition);
1084 		kfree(free_part);
1085 	}
1086 
1087 	/* Clear the new partition */
1088 	for (tmp_index = new_part->index + NVRAM_HEADER_LEN;
1089 	     tmp_index <  ((size - 1) * NVRAM_BLOCK_LEN);
1090 	     tmp_index += NVRAM_BLOCK_LEN) {
1091 		rc = ppc_md.nvram_write(nv_init_vals, NVRAM_BLOCK_LEN, &tmp_index);
1092 		if (rc <= 0) {
1093 			pr_err("%s: nvram_write failed (%d)\n",
1094 			       __func__, rc);
1095 			return rc;
1096 		}
1097 	}
1098 
1099 	return new_part->index + NVRAM_HEADER_LEN;
1100 }
1101 
1102 /**
1103  * nvram_get_partition_size - Get the data size of an nvram partition
1104  * @data_index: This is the offset of the start of the data of
1105  *              the partition. The same value that is returned by
1106  *              nvram_create_partition().
1107  */
1108 int nvram_get_partition_size(loff_t data_index)
1109 {
1110 	struct nvram_partition *part;
1111 
1112 	list_for_each_entry(part, &nvram_partitions, partition) {
1113 		if (part->index + NVRAM_HEADER_LEN == data_index)
1114 			return (part->header.length - 1) * NVRAM_BLOCK_LEN;
1115 	}
1116 	return -1;
1117 }
1118 
1119 
1120 /**
1121  * nvram_find_partition - Find an nvram partition by signature and name
1122  * @name: Name of the partition or NULL for any name
1123  * @sig: Signature to test against
1124  * @out_size: if non-NULL, returns the size of the data part of the partition
1125  */
1126 loff_t nvram_find_partition(const char *name, int sig, int *out_size)
1127 {
1128 	struct nvram_partition *p;
1129 
1130 	list_for_each_entry(p, &nvram_partitions, partition) {
1131 		if (p->header.signature == sig &&
1132 		    (!name || !strncmp(p->header.name, name, 12))) {
1133 			if (out_size)
1134 				*out_size = (p->header.length - 1) *
1135 					NVRAM_BLOCK_LEN;
1136 			return p->index + NVRAM_HEADER_LEN;
1137 		}
1138 	}
1139 	return 0;
1140 }
1141 
1142 int __init nvram_scan_partitions(void)
1143 {
1144 	loff_t cur_index = 0;
1145 	struct nvram_header phead;
1146 	struct nvram_partition * tmp_part;
1147 	unsigned char c_sum;
1148 	char * header;
1149 	int total_size;
1150 	int err;
1151 
1152 	if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1153 		return -ENODEV;
1154 	total_size = ppc_md.nvram_size();
1155 
1156 	header = kmalloc(NVRAM_HEADER_LEN, GFP_KERNEL);
1157 	if (!header) {
1158 		printk(KERN_ERR "nvram_scan_partitions: Failed kmalloc\n");
1159 		return -ENOMEM;
1160 	}
1161 
1162 	while (cur_index < total_size) {
1163 
1164 		err = ppc_md.nvram_read(header, NVRAM_HEADER_LEN, &cur_index);
1165 		if (err != NVRAM_HEADER_LEN) {
1166 			printk(KERN_ERR "nvram_scan_partitions: Error parsing "
1167 			       "nvram partitions\n");
1168 			goto out;
1169 		}
1170 
1171 		cur_index -= NVRAM_HEADER_LEN; /* nvram_read will advance us */
1172 
1173 		memcpy(&phead, header, NVRAM_HEADER_LEN);
1174 
1175 		phead.length = be16_to_cpu(phead.length);
1176 
1177 		err = 0;
1178 		c_sum = nvram_checksum(&phead);
1179 		if (c_sum != phead.checksum) {
1180 			printk(KERN_WARNING "WARNING: nvram partition checksum"
1181 			       " was %02x, should be %02x!\n",
1182 			       phead.checksum, c_sum);
1183 			printk(KERN_WARNING "Terminating nvram partition scan\n");
1184 			goto out;
1185 		}
1186 		if (!phead.length) {
1187 			printk(KERN_WARNING "WARNING: nvram corruption "
1188 			       "detected: 0-length partition\n");
1189 			goto out;
1190 		}
1191 		tmp_part = kmalloc(sizeof(struct nvram_partition), GFP_KERNEL);
1192 		err = -ENOMEM;
1193 		if (!tmp_part) {
1194 			printk(KERN_ERR "nvram_scan_partitions: kmalloc failed\n");
1195 			goto out;
1196 		}
1197 
1198 		memcpy(&tmp_part->header, &phead, NVRAM_HEADER_LEN);
1199 		tmp_part->index = cur_index;
1200 		list_add_tail(&tmp_part->partition, &nvram_partitions);
1201 
1202 		cur_index += phead.length * NVRAM_BLOCK_LEN;
1203 	}
1204 	err = 0;
1205 
1206 #ifdef DEBUG_NVRAM
1207 	nvram_print_partitions("NVRAM Partitions");
1208 #endif
1209 
1210  out:
1211 	kfree(header);
1212 	return err;
1213 }
1214 
1215 static int __init nvram_init(void)
1216 {
1217 	int rc;
1218 
1219 	BUILD_BUG_ON(NVRAM_BLOCK_LEN != 16);
1220 
1221 	if (ppc_md.nvram_size == NULL || ppc_md.nvram_size() <= 0)
1222 		return  -ENODEV;
1223 
1224   	rc = misc_register(&nvram_dev);
1225 	if (rc != 0) {
1226 		printk(KERN_ERR "nvram_init: failed to register device\n");
1227 		return rc;
1228 	}
1229 
1230   	return rc;
1231 }
1232 device_initcall(nvram_init);
1233