xref: /linux/arch/powerpc/kernel/mce_power.c (revision 6f62a8223e65c0571e48225d5d7e56de95225bae)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Machine check exception handling CPU-side for power7 and power8
4  *
5  * Copyright 2013 IBM Corporation
6  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
7  */
8 
9 #undef DEBUG
10 #define pr_fmt(fmt) "mce_power: " fmt
11 
12 #include <linux/types.h>
13 #include <linux/ptrace.h>
14 #include <linux/extable.h>
15 #include <asm/mmu.h>
16 #include <asm/mce.h>
17 #include <asm/machdep.h>
18 #include <asm/pgtable.h>
19 #include <asm/pte-walk.h>
20 #include <asm/sstep.h>
21 #include <asm/exception-64s.h>
22 #include <asm/extable.h>
23 
24 /*
25  * Convert an address related to an mm to a PFN. NOTE: we are in real
26  * mode, we could potentially race with page table updates.
27  */
28 unsigned long addr_to_pfn(struct pt_regs *regs, unsigned long addr)
29 {
30 	pte_t *ptep;
31 	unsigned int shift;
32 	unsigned long flags;
33 	struct mm_struct *mm;
34 
35 	if (user_mode(regs))
36 		mm = current->mm;
37 	else
38 		mm = &init_mm;
39 
40 	local_irq_save(flags);
41 	ptep = __find_linux_pte(mm->pgd, addr, NULL, &shift);
42 	local_irq_restore(flags);
43 
44 	if (!ptep || pte_special(*ptep))
45 		return ULONG_MAX;
46 
47 	if (shift > PAGE_SHIFT) {
48 		unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
49 
50 		return pte_pfn(__pte(pte_val(*ptep) | (addr & rpnmask)));
51 	}
52 
53 	return pte_pfn(*ptep);
54 }
55 
56 /* flush SLBs and reload */
57 #ifdef CONFIG_PPC_BOOK3S_64
58 void flush_and_reload_slb(void)
59 {
60 	/* Invalidate all SLBs */
61 	slb_flush_all_realmode();
62 
63 #ifdef CONFIG_KVM_BOOK3S_HANDLER
64 	/*
65 	 * If machine check is hit when in guest or in transition, we will
66 	 * only flush the SLBs and continue.
67 	 */
68 	if (get_paca()->kvm_hstate.in_guest)
69 		return;
70 #endif
71 	if (early_radix_enabled())
72 		return;
73 
74 	/*
75 	 * This probably shouldn't happen, but it may be possible it's
76 	 * called in early boot before SLB shadows are allocated.
77 	 */
78 	if (!get_slb_shadow())
79 		return;
80 
81 	slb_restore_bolted_realmode();
82 }
83 #endif
84 
85 static void flush_erat(void)
86 {
87 #ifdef CONFIG_PPC_BOOK3S_64
88 	if (!early_cpu_has_feature(CPU_FTR_ARCH_300)) {
89 		flush_and_reload_slb();
90 		return;
91 	}
92 #endif
93 	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory");
94 }
95 
96 #define MCE_FLUSH_SLB 1
97 #define MCE_FLUSH_TLB 2
98 #define MCE_FLUSH_ERAT 3
99 
100 static int mce_flush(int what)
101 {
102 #ifdef CONFIG_PPC_BOOK3S_64
103 	if (what == MCE_FLUSH_SLB) {
104 		flush_and_reload_slb();
105 		return 1;
106 	}
107 #endif
108 	if (what == MCE_FLUSH_ERAT) {
109 		flush_erat();
110 		return 1;
111 	}
112 	if (what == MCE_FLUSH_TLB) {
113 		tlbiel_all();
114 		return 1;
115 	}
116 
117 	return 0;
118 }
119 
120 #define SRR1_MC_LOADSTORE(srr1)	((srr1) & PPC_BIT(42))
121 
122 struct mce_ierror_table {
123 	unsigned long srr1_mask;
124 	unsigned long srr1_value;
125 	bool nip_valid; /* nip is a valid indicator of faulting address */
126 	unsigned int error_type;
127 	unsigned int error_subtype;
128 	unsigned int error_class;
129 	unsigned int initiator;
130 	unsigned int severity;
131 	bool sync_error;
132 };
133 
134 static const struct mce_ierror_table mce_p7_ierror_table[] = {
135 { 0x00000000001c0000, 0x0000000000040000, true,
136   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
137   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
138 { 0x00000000001c0000, 0x0000000000080000, true,
139   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
140   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
141 { 0x00000000001c0000, 0x00000000000c0000, true,
142   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
143   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
144 { 0x00000000001c0000, 0x0000000000100000, true,
145   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
146   MCE_ECLASS_SOFT_INDETERMINATE,
147   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
148 { 0x00000000001c0000, 0x0000000000140000, true,
149   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
150   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
151 { 0x00000000001c0000, 0x0000000000180000, true,
152   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_HARDWARE,
153   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
154 { 0x00000000001c0000, 0x00000000001c0000, true,
155   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
156   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
157 { 0, 0, 0, 0, 0, 0, 0 } };
158 
159 static const struct mce_ierror_table mce_p8_ierror_table[] = {
160 { 0x00000000081c0000, 0x0000000000040000, true,
161   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
162   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
163 { 0x00000000081c0000, 0x0000000000080000, true,
164   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
165   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
166 { 0x00000000081c0000, 0x00000000000c0000, true,
167   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
168   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
169 { 0x00000000081c0000, 0x0000000000100000, true,
170   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
171   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
172 { 0x00000000081c0000, 0x0000000000140000, true,
173   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
174   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
175 { 0x00000000081c0000, 0x0000000000180000, true,
176   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH,
177   MCE_ECLASS_HARDWARE,
178   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
179 { 0x00000000081c0000, 0x00000000001c0000, true,
180   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
181   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
182 { 0x00000000081c0000, 0x0000000008000000, true,
183   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_IFETCH_TIMEOUT, MCE_ECLASS_HARDWARE,
184   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
185 { 0x00000000081c0000, 0x0000000008040000, true,
186   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
187   MCE_ECLASS_HARDWARE,
188   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
189 { 0, 0, 0, 0, 0, 0, 0 } };
190 
191 static const struct mce_ierror_table mce_p9_ierror_table[] = {
192 { 0x00000000081c0000, 0x0000000000040000, true,
193   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_IFETCH, MCE_ECLASS_HARDWARE,
194   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
195 { 0x00000000081c0000, 0x0000000000080000, true,
196   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
197   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
198 { 0x00000000081c0000, 0x00000000000c0000, true,
199   MCE_ERROR_TYPE_SLB, MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
200   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
201 { 0x00000000081c0000, 0x0000000000100000, true,
202   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
203   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
204 { 0x00000000081c0000, 0x0000000000140000, true,
205   MCE_ERROR_TYPE_TLB, MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
206   MCE_INITIATOR_CPU,  MCE_SEV_WARNING, true },
207 { 0x00000000081c0000, 0x0000000000180000, true,
208   MCE_ERROR_TYPE_UE,  MCE_UE_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_HARDWARE,
209   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
210 { 0x00000000081c0000, 0x00000000001c0000, true,
211   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH_FOREIGN, MCE_ECLASS_SOFTWARE,
212   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
213 { 0x00000000081c0000, 0x0000000008000000, true,
214   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_IFETCH_TIMEOUT, MCE_ECLASS_HARDWARE,
215   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
216 { 0x00000000081c0000, 0x0000000008040000, true,
217   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_PAGE_TABLE_WALK_IFETCH_TIMEOUT,
218   MCE_ECLASS_HARDWARE,
219   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
220 { 0x00000000081c0000, 0x00000000080c0000, true,
221   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_IFETCH, MCE_ECLASS_SOFTWARE,
222   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
223 { 0x00000000081c0000, 0x0000000008100000, true,
224   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH, MCE_ECLASS_SOFTWARE,
225   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
226 { 0x00000000081c0000, 0x0000000008140000, false,
227   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_STORE, MCE_ECLASS_HARDWARE,
228   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, false }, /* ASYNC is fatal */
229 { 0x00000000081c0000, 0x0000000008180000, false,
230   MCE_ERROR_TYPE_LINK,MCE_LINK_ERROR_STORE_TIMEOUT,
231   MCE_INITIATOR_CPU,  MCE_SEV_FATAL, false }, /* ASYNC is fatal */
232 { 0x00000000081c0000, 0x00000000081c0000, true, MCE_ECLASS_HARDWARE,
233   MCE_ERROR_TYPE_RA,  MCE_RA_ERROR_PAGE_TABLE_WALK_IFETCH_FOREIGN,
234   MCE_INITIATOR_CPU,  MCE_SEV_SEVERE, true },
235 { 0, 0, 0, 0, 0, 0, 0 } };
236 
237 struct mce_derror_table {
238 	unsigned long dsisr_value;
239 	bool dar_valid; /* dar is a valid indicator of faulting address */
240 	unsigned int error_type;
241 	unsigned int error_subtype;
242 	unsigned int error_class;
243 	unsigned int initiator;
244 	unsigned int severity;
245 	bool sync_error;
246 };
247 
248 static const struct mce_derror_table mce_p7_derror_table[] = {
249 { 0x00008000, false,
250   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
251   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
252 { 0x00004000, true,
253   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
254   MCE_ECLASS_HARDWARE,
255   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
256 { 0x00000800, true,
257   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
258   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
259 { 0x00000400, true,
260   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
261   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
262 { 0x00000080, true,
263   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
264   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
265 { 0x00000100, true,
266   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
267   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
268 { 0x00000040, true,
269   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_INDETERMINATE, /* BOTH */
270   MCE_ECLASS_HARD_INDETERMINATE,
271   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
272 { 0, false, 0, 0, 0, 0, 0 } };
273 
274 static const struct mce_derror_table mce_p8_derror_table[] = {
275 { 0x00008000, false,
276   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
277   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
278 { 0x00004000, true,
279   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
280   MCE_ECLASS_HARDWARE,
281   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
282 { 0x00002000, true,
283   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT, MCE_ECLASS_HARDWARE,
284   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
285 { 0x00001000, true,
286   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
287   MCE_ECLASS_HARDWARE,
288   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
289 { 0x00000800, true,
290   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
291   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
292 { 0x00000400, true,
293   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
294   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
295 { 0x00000200, true,
296   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, /* SECONDARY ERAT */
297   MCE_ECLASS_SOFT_INDETERMINATE,
298   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
299 { 0x00000080, true,
300   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
301   MCE_ECLASS_SOFT_INDETERMINATE,
302   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
303 { 0x00000100, true,
304   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
305   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
306 { 0, false, 0, 0, 0, 0, 0 } };
307 
308 static const struct mce_derror_table mce_p9_derror_table[] = {
309 { 0x00008000, false,
310   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_LOAD_STORE, MCE_ECLASS_HARDWARE,
311   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
312 { 0x00004000, true,
313   MCE_ERROR_TYPE_UE,   MCE_UE_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
314   MCE_ECLASS_HARDWARE,
315   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
316 { 0x00002000, true,
317   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_LOAD_TIMEOUT, MCE_ECLASS_HARDWARE,
318   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
319 { 0x00001000, true,
320   MCE_ERROR_TYPE_LINK, MCE_LINK_ERROR_PAGE_TABLE_WALK_LOAD_STORE_TIMEOUT,
321   MCE_ECLASS_HARDWARE,
322   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
323 { 0x00000800, true,
324   MCE_ERROR_TYPE_ERAT, MCE_ERAT_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
325   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
326 { 0x00000400, true,
327   MCE_ERROR_TYPE_TLB,  MCE_TLB_ERROR_MULTIHIT, MCE_ECLASS_SOFT_INDETERMINATE,
328   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
329 { 0x00000200, false,
330   MCE_ERROR_TYPE_USER, MCE_USER_ERROR_TLBIE, MCE_ECLASS_SOFTWARE,
331   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
332 { 0x00000080, true,
333   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_MULTIHIT,	/* Before PARITY */
334   MCE_ECLASS_SOFT_INDETERMINATE,
335   MCE_INITIATOR_CPU,   MCE_SEV_WARNING, true },
336 { 0x00000100, true,
337   MCE_ERROR_TYPE_SLB,  MCE_SLB_ERROR_PARITY, MCE_ECLASS_HARD_INDETERMINATE,
338   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
339 { 0x00000040, true,
340   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD, MCE_ECLASS_HARDWARE,
341   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
342 { 0x00000020, false,
343   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE,
344   MCE_ECLASS_HARDWARE,
345   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
346 { 0x00000010, false,
347   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_PAGE_TABLE_WALK_LOAD_STORE_FOREIGN,
348   MCE_ECLASS_HARDWARE,
349   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
350 { 0x00000008, false,
351   MCE_ERROR_TYPE_RA,   MCE_RA_ERROR_LOAD_STORE_FOREIGN, MCE_ECLASS_HARDWARE,
352   MCE_INITIATOR_CPU,   MCE_SEV_SEVERE, true },
353 { 0, false, 0, 0, 0, 0, 0 } };
354 
355 static int mce_find_instr_ea_and_phys(struct pt_regs *regs, uint64_t *addr,
356 					uint64_t *phys_addr)
357 {
358 	/*
359 	 * Carefully look at the NIP to determine
360 	 * the instruction to analyse. Reading the NIP
361 	 * in real-mode is tricky and can lead to recursive
362 	 * faults
363 	 */
364 	int instr;
365 	unsigned long pfn, instr_addr;
366 	struct instruction_op op;
367 	struct pt_regs tmp = *regs;
368 
369 	pfn = addr_to_pfn(regs, regs->nip);
370 	if (pfn != ULONG_MAX) {
371 		instr_addr = (pfn << PAGE_SHIFT) + (regs->nip & ~PAGE_MASK);
372 		instr = *(unsigned int *)(instr_addr);
373 		if (!analyse_instr(&op, &tmp, instr)) {
374 			pfn = addr_to_pfn(regs, op.ea);
375 			*addr = op.ea;
376 			*phys_addr = (pfn << PAGE_SHIFT);
377 			return 0;
378 		}
379 		/*
380 		 * analyse_instr() might fail if the instruction
381 		 * is not a load/store, although this is unexpected
382 		 * for load/store errors or if we got the NIP
383 		 * wrong
384 		 */
385 	}
386 	*addr = 0;
387 	return -1;
388 }
389 
390 static int mce_handle_ierror(struct pt_regs *regs,
391 		const struct mce_ierror_table table[],
392 		struct mce_error_info *mce_err, uint64_t *addr,
393 		uint64_t *phys_addr)
394 {
395 	uint64_t srr1 = regs->msr;
396 	int handled = 0;
397 	int i;
398 
399 	*addr = 0;
400 
401 	for (i = 0; table[i].srr1_mask; i++) {
402 		if ((srr1 & table[i].srr1_mask) != table[i].srr1_value)
403 			continue;
404 
405 		/* attempt to correct the error */
406 		switch (table[i].error_type) {
407 		case MCE_ERROR_TYPE_SLB:
408 			if (local_paca->in_mce == 1)
409 				slb_save_contents(local_paca->mce_faulty_slbs);
410 			handled = mce_flush(MCE_FLUSH_SLB);
411 			break;
412 		case MCE_ERROR_TYPE_ERAT:
413 			handled = mce_flush(MCE_FLUSH_ERAT);
414 			break;
415 		case MCE_ERROR_TYPE_TLB:
416 			handled = mce_flush(MCE_FLUSH_TLB);
417 			break;
418 		}
419 
420 		/* now fill in mce_error_info */
421 		mce_err->error_type = table[i].error_type;
422 		mce_err->error_class = table[i].error_class;
423 		switch (table[i].error_type) {
424 		case MCE_ERROR_TYPE_UE:
425 			mce_err->u.ue_error_type = table[i].error_subtype;
426 			break;
427 		case MCE_ERROR_TYPE_SLB:
428 			mce_err->u.slb_error_type = table[i].error_subtype;
429 			break;
430 		case MCE_ERROR_TYPE_ERAT:
431 			mce_err->u.erat_error_type = table[i].error_subtype;
432 			break;
433 		case MCE_ERROR_TYPE_TLB:
434 			mce_err->u.tlb_error_type = table[i].error_subtype;
435 			break;
436 		case MCE_ERROR_TYPE_USER:
437 			mce_err->u.user_error_type = table[i].error_subtype;
438 			break;
439 		case MCE_ERROR_TYPE_RA:
440 			mce_err->u.ra_error_type = table[i].error_subtype;
441 			break;
442 		case MCE_ERROR_TYPE_LINK:
443 			mce_err->u.link_error_type = table[i].error_subtype;
444 			break;
445 		}
446 		mce_err->sync_error = table[i].sync_error;
447 		mce_err->severity = table[i].severity;
448 		mce_err->initiator = table[i].initiator;
449 		if (table[i].nip_valid) {
450 			*addr = regs->nip;
451 			if (mce_err->sync_error &&
452 				table[i].error_type == MCE_ERROR_TYPE_UE) {
453 				unsigned long pfn;
454 
455 				if (get_paca()->in_mce < MAX_MCE_DEPTH) {
456 					pfn = addr_to_pfn(regs, regs->nip);
457 					if (pfn != ULONG_MAX) {
458 						*phys_addr =
459 							(pfn << PAGE_SHIFT);
460 					}
461 				}
462 			}
463 		}
464 		return handled;
465 	}
466 
467 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
468 	mce_err->error_class = MCE_ECLASS_UNKNOWN;
469 	mce_err->severity = MCE_SEV_SEVERE;
470 	mce_err->initiator = MCE_INITIATOR_CPU;
471 	mce_err->sync_error = true;
472 
473 	return 0;
474 }
475 
476 static int mce_handle_derror(struct pt_regs *regs,
477 		const struct mce_derror_table table[],
478 		struct mce_error_info *mce_err, uint64_t *addr,
479 		uint64_t *phys_addr)
480 {
481 	uint64_t dsisr = regs->dsisr;
482 	int handled = 0;
483 	int found = 0;
484 	int i;
485 
486 	*addr = 0;
487 
488 	for (i = 0; table[i].dsisr_value; i++) {
489 		if (!(dsisr & table[i].dsisr_value))
490 			continue;
491 
492 		/* attempt to correct the error */
493 		switch (table[i].error_type) {
494 		case MCE_ERROR_TYPE_SLB:
495 			if (local_paca->in_mce == 1)
496 				slb_save_contents(local_paca->mce_faulty_slbs);
497 			if (mce_flush(MCE_FLUSH_SLB))
498 				handled = 1;
499 			break;
500 		case MCE_ERROR_TYPE_ERAT:
501 			if (mce_flush(MCE_FLUSH_ERAT))
502 				handled = 1;
503 			break;
504 		case MCE_ERROR_TYPE_TLB:
505 			if (mce_flush(MCE_FLUSH_TLB))
506 				handled = 1;
507 			break;
508 		}
509 
510 		/*
511 		 * Attempt to handle multiple conditions, but only return
512 		 * one. Ensure uncorrectable errors are first in the table
513 		 * to match.
514 		 */
515 		if (found)
516 			continue;
517 
518 		/* now fill in mce_error_info */
519 		mce_err->error_type = table[i].error_type;
520 		mce_err->error_class = table[i].error_class;
521 		switch (table[i].error_type) {
522 		case MCE_ERROR_TYPE_UE:
523 			mce_err->u.ue_error_type = table[i].error_subtype;
524 			break;
525 		case MCE_ERROR_TYPE_SLB:
526 			mce_err->u.slb_error_type = table[i].error_subtype;
527 			break;
528 		case MCE_ERROR_TYPE_ERAT:
529 			mce_err->u.erat_error_type = table[i].error_subtype;
530 			break;
531 		case MCE_ERROR_TYPE_TLB:
532 			mce_err->u.tlb_error_type = table[i].error_subtype;
533 			break;
534 		case MCE_ERROR_TYPE_USER:
535 			mce_err->u.user_error_type = table[i].error_subtype;
536 			break;
537 		case MCE_ERROR_TYPE_RA:
538 			mce_err->u.ra_error_type = table[i].error_subtype;
539 			break;
540 		case MCE_ERROR_TYPE_LINK:
541 			mce_err->u.link_error_type = table[i].error_subtype;
542 			break;
543 		}
544 		mce_err->sync_error = table[i].sync_error;
545 		mce_err->severity = table[i].severity;
546 		mce_err->initiator = table[i].initiator;
547 		if (table[i].dar_valid)
548 			*addr = regs->dar;
549 		else if (mce_err->sync_error &&
550 				table[i].error_type == MCE_ERROR_TYPE_UE) {
551 			/*
552 			 * We do a maximum of 4 nested MCE calls, see
553 			 * kernel/exception-64s.h
554 			 */
555 			if (get_paca()->in_mce < MAX_MCE_DEPTH)
556 				mce_find_instr_ea_and_phys(regs, addr,
557 							   phys_addr);
558 		}
559 		found = 1;
560 	}
561 
562 	if (found)
563 		return handled;
564 
565 	mce_err->error_type = MCE_ERROR_TYPE_UNKNOWN;
566 	mce_err->error_class = MCE_ECLASS_UNKNOWN;
567 	mce_err->severity = MCE_SEV_SEVERE;
568 	mce_err->initiator = MCE_INITIATOR_CPU;
569 	mce_err->sync_error = true;
570 
571 	return 0;
572 }
573 
574 static long mce_handle_ue_error(struct pt_regs *regs,
575 				struct mce_error_info *mce_err)
576 {
577 	long handled = 0;
578 	const struct exception_table_entry *entry;
579 
580 	entry = search_kernel_exception_table(regs->nip);
581 	if (entry) {
582 		mce_err->ignore_event = true;
583 		regs->nip = extable_fixup(entry);
584 		return 1;
585 	}
586 
587 	/*
588 	 * On specific SCOM read via MMIO we may get a machine check
589 	 * exception with SRR0 pointing inside opal. If that is the
590 	 * case OPAL may have recovery address to re-read SCOM data in
591 	 * different way and hence we can recover from this MC.
592 	 */
593 
594 	if (ppc_md.mce_check_early_recovery) {
595 		if (ppc_md.mce_check_early_recovery(regs))
596 			handled = 1;
597 	}
598 	return handled;
599 }
600 
601 static long mce_handle_error(struct pt_regs *regs,
602 		const struct mce_derror_table dtable[],
603 		const struct mce_ierror_table itable[])
604 {
605 	struct mce_error_info mce_err = { 0 };
606 	uint64_t addr, phys_addr = ULONG_MAX;
607 	uint64_t srr1 = regs->msr;
608 	long handled;
609 
610 	if (SRR1_MC_LOADSTORE(srr1))
611 		handled = mce_handle_derror(regs, dtable, &mce_err, &addr,
612 				&phys_addr);
613 	else
614 		handled = mce_handle_ierror(regs, itable, &mce_err, &addr,
615 				&phys_addr);
616 
617 	if (!handled && mce_err.error_type == MCE_ERROR_TYPE_UE)
618 		handled = mce_handle_ue_error(regs, &mce_err);
619 
620 	save_mce_event(regs, handled, &mce_err, regs->nip, addr, phys_addr);
621 
622 	return handled;
623 }
624 
625 long __machine_check_early_realmode_p7(struct pt_regs *regs)
626 {
627 	/* P7 DD1 leaves top bits of DSISR undefined */
628 	regs->dsisr &= 0x0000ffff;
629 
630 	return mce_handle_error(regs, mce_p7_derror_table, mce_p7_ierror_table);
631 }
632 
633 long __machine_check_early_realmode_p8(struct pt_regs *regs)
634 {
635 	return mce_handle_error(regs, mce_p8_derror_table, mce_p8_ierror_table);
636 }
637 
638 long __machine_check_early_realmode_p9(struct pt_regs *regs)
639 {
640 	/*
641 	 * On POWER9 DD2.1 and below, it's possible to get a machine check
642 	 * caused by a paste instruction where only DSISR bit 25 is set. This
643 	 * will result in the MCE handler seeing an unknown event and the kernel
644 	 * crashing. An MCE that occurs like this is spurious, so we don't need
645 	 * to do anything in terms of servicing it. If there is something that
646 	 * needs to be serviced, the CPU will raise the MCE again with the
647 	 * correct DSISR so that it can be serviced properly. So detect this
648 	 * case and mark it as handled.
649 	 */
650 	if (SRR1_MC_LOADSTORE(regs->msr) && regs->dsisr == 0x02000000)
651 		return 1;
652 
653 	return mce_handle_error(regs, mce_p9_derror_table, mce_p9_ierror_table);
654 }
655