xref: /linux/arch/powerpc/kernel/mce.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * Machine check exception handling.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright 2013 IBM Corporation
19  * Author: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
20  */
21 
22 #undef DEBUG
23 #define pr_fmt(fmt) "mce: " fmt
24 
25 #include <linux/types.h>
26 #include <linux/ptrace.h>
27 #include <linux/percpu.h>
28 #include <linux/export.h>
29 #include <linux/irq_work.h>
30 #include <asm/mce.h>
31 
32 static DEFINE_PER_CPU(int, mce_nest_count);
33 static DEFINE_PER_CPU(struct machine_check_event[MAX_MC_EVT], mce_event);
34 
35 /* Queue for delayed MCE events. */
36 static DEFINE_PER_CPU(int, mce_queue_count);
37 static DEFINE_PER_CPU(struct machine_check_event[MAX_MC_EVT], mce_event_queue);
38 
39 static void machine_check_process_queued_event(struct irq_work *work);
40 static struct irq_work mce_event_process_work = {
41         .func = machine_check_process_queued_event,
42 };
43 
44 static void mce_set_error_info(struct machine_check_event *mce,
45 			       struct mce_error_info *mce_err)
46 {
47 	mce->error_type = mce_err->error_type;
48 	switch (mce_err->error_type) {
49 	case MCE_ERROR_TYPE_UE:
50 		mce->u.ue_error.ue_error_type = mce_err->u.ue_error_type;
51 		break;
52 	case MCE_ERROR_TYPE_SLB:
53 		mce->u.slb_error.slb_error_type = mce_err->u.slb_error_type;
54 		break;
55 	case MCE_ERROR_TYPE_ERAT:
56 		mce->u.erat_error.erat_error_type = mce_err->u.erat_error_type;
57 		break;
58 	case MCE_ERROR_TYPE_TLB:
59 		mce->u.tlb_error.tlb_error_type = mce_err->u.tlb_error_type;
60 		break;
61 	case MCE_ERROR_TYPE_UNKNOWN:
62 	default:
63 		break;
64 	}
65 }
66 
67 /*
68  * Decode and save high level MCE information into per cpu buffer which
69  * is an array of machine_check_event structure.
70  */
71 void save_mce_event(struct pt_regs *regs, long handled,
72 		    struct mce_error_info *mce_err,
73 		    uint64_t nip, uint64_t addr)
74 {
75 	uint64_t srr1;
76 	int index = __this_cpu_inc_return(mce_nest_count) - 1;
77 	struct machine_check_event *mce = this_cpu_ptr(&mce_event[index]);
78 
79 	/*
80 	 * Return if we don't have enough space to log mce event.
81 	 * mce_nest_count may go beyond MAX_MC_EVT but that's ok,
82 	 * the check below will stop buffer overrun.
83 	 */
84 	if (index >= MAX_MC_EVT)
85 		return;
86 
87 	/* Populate generic machine check info */
88 	mce->version = MCE_V1;
89 	mce->srr0 = nip;
90 	mce->srr1 = regs->msr;
91 	mce->gpr3 = regs->gpr[3];
92 	mce->in_use = 1;
93 
94 	mce->initiator = MCE_INITIATOR_CPU;
95 	if (handled)
96 		mce->disposition = MCE_DISPOSITION_RECOVERED;
97 	else
98 		mce->disposition = MCE_DISPOSITION_NOT_RECOVERED;
99 	mce->severity = MCE_SEV_ERROR_SYNC;
100 
101 	srr1 = regs->msr;
102 
103 	/*
104 	 * Populate the mce error_type and type-specific error_type.
105 	 */
106 	mce_set_error_info(mce, mce_err);
107 
108 	if (!addr)
109 		return;
110 
111 	if (mce->error_type == MCE_ERROR_TYPE_TLB) {
112 		mce->u.tlb_error.effective_address_provided = true;
113 		mce->u.tlb_error.effective_address = addr;
114 	} else if (mce->error_type == MCE_ERROR_TYPE_SLB) {
115 		mce->u.slb_error.effective_address_provided = true;
116 		mce->u.slb_error.effective_address = addr;
117 	} else if (mce->error_type == MCE_ERROR_TYPE_ERAT) {
118 		mce->u.erat_error.effective_address_provided = true;
119 		mce->u.erat_error.effective_address = addr;
120 	} else if (mce->error_type == MCE_ERROR_TYPE_UE) {
121 		mce->u.ue_error.effective_address_provided = true;
122 		mce->u.ue_error.effective_address = addr;
123 	}
124 	return;
125 }
126 
127 /*
128  * get_mce_event:
129  *	mce	Pointer to machine_check_event structure to be filled.
130  *	release Flag to indicate whether to free the event slot or not.
131  *		0 <= do not release the mce event. Caller will invoke
132  *		     release_mce_event() once event has been consumed.
133  *		1 <= release the slot.
134  *
135  *	return	1 = success
136  *		0 = failure
137  *
138  * get_mce_event() will be called by platform specific machine check
139  * handle routine and in KVM.
140  * When we call get_mce_event(), we are still in interrupt context and
141  * preemption will not be scheduled until ret_from_expect() routine
142  * is called.
143  */
144 int get_mce_event(struct machine_check_event *mce, bool release)
145 {
146 	int index = __this_cpu_read(mce_nest_count) - 1;
147 	struct machine_check_event *mc_evt;
148 	int ret = 0;
149 
150 	/* Sanity check */
151 	if (index < 0)
152 		return ret;
153 
154 	/* Check if we have MCE info to process. */
155 	if (index < MAX_MC_EVT) {
156 		mc_evt = this_cpu_ptr(&mce_event[index]);
157 		/* Copy the event structure and release the original */
158 		if (mce)
159 			*mce = *mc_evt;
160 		if (release)
161 			mc_evt->in_use = 0;
162 		ret = 1;
163 	}
164 	/* Decrement the count to free the slot. */
165 	if (release)
166 		__this_cpu_dec(mce_nest_count);
167 
168 	return ret;
169 }
170 
171 void release_mce_event(void)
172 {
173 	get_mce_event(NULL, true);
174 }
175 
176 /*
177  * Queue up the MCE event which then can be handled later.
178  */
179 void machine_check_queue_event(void)
180 {
181 	int index;
182 	struct machine_check_event evt;
183 
184 	if (!get_mce_event(&evt, MCE_EVENT_RELEASE))
185 		return;
186 
187 	index = __this_cpu_inc_return(mce_queue_count) - 1;
188 	/* If queue is full, just return for now. */
189 	if (index >= MAX_MC_EVT) {
190 		__this_cpu_dec(mce_queue_count);
191 		return;
192 	}
193 	memcpy(this_cpu_ptr(&mce_event_queue[index]), &evt, sizeof(evt));
194 
195 	/* Queue irq work to process this event later. */
196 	irq_work_queue(&mce_event_process_work);
197 }
198 
199 /*
200  * process pending MCE event from the mce event queue. This function will be
201  * called during syscall exit.
202  */
203 static void machine_check_process_queued_event(struct irq_work *work)
204 {
205 	int index;
206 
207 	/*
208 	 * For now just print it to console.
209 	 * TODO: log this error event to FSP or nvram.
210 	 */
211 	while (__this_cpu_read(mce_queue_count) > 0) {
212 		index = __this_cpu_read(mce_queue_count) - 1;
213 		machine_check_print_event_info(
214 				this_cpu_ptr(&mce_event_queue[index]));
215 		__this_cpu_dec(mce_queue_count);
216 	}
217 }
218 
219 void machine_check_print_event_info(struct machine_check_event *evt)
220 {
221 	const char *level, *sevstr, *subtype;
222 	static const char *mc_ue_types[] = {
223 		"Indeterminate",
224 		"Instruction fetch",
225 		"Page table walk ifetch",
226 		"Load/Store",
227 		"Page table walk Load/Store",
228 	};
229 	static const char *mc_slb_types[] = {
230 		"Indeterminate",
231 		"Parity",
232 		"Multihit",
233 	};
234 	static const char *mc_erat_types[] = {
235 		"Indeterminate",
236 		"Parity",
237 		"Multihit",
238 	};
239 	static const char *mc_tlb_types[] = {
240 		"Indeterminate",
241 		"Parity",
242 		"Multihit",
243 	};
244 
245 	/* Print things out */
246 	if (evt->version != MCE_V1) {
247 		pr_err("Machine Check Exception, Unknown event version %d !\n",
248 		       evt->version);
249 		return;
250 	}
251 	switch (evt->severity) {
252 	case MCE_SEV_NO_ERROR:
253 		level = KERN_INFO;
254 		sevstr = "Harmless";
255 		break;
256 	case MCE_SEV_WARNING:
257 		level = KERN_WARNING;
258 		sevstr = "";
259 		break;
260 	case MCE_SEV_ERROR_SYNC:
261 		level = KERN_ERR;
262 		sevstr = "Severe";
263 		break;
264 	case MCE_SEV_FATAL:
265 	default:
266 		level = KERN_ERR;
267 		sevstr = "Fatal";
268 		break;
269 	}
270 
271 	printk("%s%s Machine check interrupt [%s]\n", level, sevstr,
272 	       evt->disposition == MCE_DISPOSITION_RECOVERED ?
273 	       "Recovered" : "[Not recovered");
274 	printk("%s  Initiator: %s\n", level,
275 	       evt->initiator == MCE_INITIATOR_CPU ? "CPU" : "Unknown");
276 	switch (evt->error_type) {
277 	case MCE_ERROR_TYPE_UE:
278 		subtype = evt->u.ue_error.ue_error_type <
279 			ARRAY_SIZE(mc_ue_types) ?
280 			mc_ue_types[evt->u.ue_error.ue_error_type]
281 			: "Unknown";
282 		printk("%s  Error type: UE [%s]\n", level, subtype);
283 		if (evt->u.ue_error.effective_address_provided)
284 			printk("%s    Effective address: %016llx\n",
285 			       level, evt->u.ue_error.effective_address);
286 		if (evt->u.ue_error.physical_address_provided)
287 			printk("%s      Physical address: %016llx\n",
288 			       level, evt->u.ue_error.physical_address);
289 		break;
290 	case MCE_ERROR_TYPE_SLB:
291 		subtype = evt->u.slb_error.slb_error_type <
292 			ARRAY_SIZE(mc_slb_types) ?
293 			mc_slb_types[evt->u.slb_error.slb_error_type]
294 			: "Unknown";
295 		printk("%s  Error type: SLB [%s]\n", level, subtype);
296 		if (evt->u.slb_error.effective_address_provided)
297 			printk("%s    Effective address: %016llx\n",
298 			       level, evt->u.slb_error.effective_address);
299 		break;
300 	case MCE_ERROR_TYPE_ERAT:
301 		subtype = evt->u.erat_error.erat_error_type <
302 			ARRAY_SIZE(mc_erat_types) ?
303 			mc_erat_types[evt->u.erat_error.erat_error_type]
304 			: "Unknown";
305 		printk("%s  Error type: ERAT [%s]\n", level, subtype);
306 		if (evt->u.erat_error.effective_address_provided)
307 			printk("%s    Effective address: %016llx\n",
308 			       level, evt->u.erat_error.effective_address);
309 		break;
310 	case MCE_ERROR_TYPE_TLB:
311 		subtype = evt->u.tlb_error.tlb_error_type <
312 			ARRAY_SIZE(mc_tlb_types) ?
313 			mc_tlb_types[evt->u.tlb_error.tlb_error_type]
314 			: "Unknown";
315 		printk("%s  Error type: TLB [%s]\n", level, subtype);
316 		if (evt->u.tlb_error.effective_address_provided)
317 			printk("%s    Effective address: %016llx\n",
318 			       level, evt->u.tlb_error.effective_address);
319 		break;
320 	default:
321 	case MCE_ERROR_TYPE_UNKNOWN:
322 		printk("%s  Error type: Unknown\n", level);
323 		break;
324 	}
325 }
326 
327 uint64_t get_mce_fault_addr(struct machine_check_event *evt)
328 {
329 	switch (evt->error_type) {
330 	case MCE_ERROR_TYPE_UE:
331 		if (evt->u.ue_error.effective_address_provided)
332 			return evt->u.ue_error.effective_address;
333 		break;
334 	case MCE_ERROR_TYPE_SLB:
335 		if (evt->u.slb_error.effective_address_provided)
336 			return evt->u.slb_error.effective_address;
337 		break;
338 	case MCE_ERROR_TYPE_ERAT:
339 		if (evt->u.erat_error.effective_address_provided)
340 			return evt->u.erat_error.effective_address;
341 		break;
342 	case MCE_ERROR_TYPE_TLB:
343 		if (evt->u.tlb_error.effective_address_provided)
344 			return evt->u.tlb_error.effective_address;
345 		break;
346 	default:
347 	case MCE_ERROR_TYPE_UNKNOWN:
348 		break;
349 	}
350 	return 0;
351 }
352 EXPORT_SYMBOL(get_mce_fault_addr);
353