xref: /linux/arch/powerpc/kernel/kprobes.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <asm/cacheflush.h>
34 #include <asm/kdebug.h>
35 #include <asm/sstep.h>
36 #include <asm/uaccess.h>
37 
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40 
41 int __kprobes arch_prepare_kprobe(struct kprobe *p)
42 {
43 	int ret = 0;
44 	kprobe_opcode_t insn = *p->addr;
45 
46 	if ((unsigned long)p->addr & 0x03) {
47 		printk("Attempt to register kprobe at an unaligned address\n");
48 		ret = -EINVAL;
49 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
50 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
51 		ret = -EINVAL;
52 	}
53 
54 	/* insn must be on a special executable page on ppc64 */
55 	if (!ret) {
56 		p->ainsn.insn = get_insn_slot();
57 		if (!p->ainsn.insn)
58 			ret = -ENOMEM;
59 	}
60 
61 	if (!ret) {
62 		memcpy(p->ainsn.insn, p->addr,
63 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
64 		p->opcode = *p->addr;
65 		flush_icache_range((unsigned long)p->ainsn.insn,
66 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
67 	}
68 
69 	p->ainsn.boostable = 0;
70 	return ret;
71 }
72 
73 void __kprobes arch_arm_kprobe(struct kprobe *p)
74 {
75 	*p->addr = BREAKPOINT_INSTRUCTION;
76 	flush_icache_range((unsigned long) p->addr,
77 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
78 }
79 
80 void __kprobes arch_disarm_kprobe(struct kprobe *p)
81 {
82 	*p->addr = p->opcode;
83 	flush_icache_range((unsigned long) p->addr,
84 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
85 }
86 
87 void __kprobes arch_remove_kprobe(struct kprobe *p)
88 {
89 	mutex_lock(&kprobe_mutex);
90 	free_insn_slot(p->ainsn.insn, 0);
91 	mutex_unlock(&kprobe_mutex);
92 }
93 
94 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
95 {
96 	regs->msr |= MSR_SE;
97 
98 	/*
99 	 * On powerpc we should single step on the original
100 	 * instruction even if the probed insn is a trap
101 	 * variant as values in regs could play a part in
102 	 * if the trap is taken or not
103 	 */
104 	regs->nip = (unsigned long)p->ainsn.insn;
105 }
106 
107 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
108 {
109 	kcb->prev_kprobe.kp = kprobe_running();
110 	kcb->prev_kprobe.status = kcb->kprobe_status;
111 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
112 }
113 
114 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
115 {
116 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
117 	kcb->kprobe_status = kcb->prev_kprobe.status;
118 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
119 }
120 
121 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
122 				struct kprobe_ctlblk *kcb)
123 {
124 	__get_cpu_var(current_kprobe) = p;
125 	kcb->kprobe_saved_msr = regs->msr;
126 }
127 
128 /* Called with kretprobe_lock held */
129 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
130 				      struct pt_regs *regs)
131 {
132 	struct kretprobe_instance *ri;
133 
134 	if ((ri = get_free_rp_inst(rp)) != NULL) {
135 		ri->rp = rp;
136 		ri->task = current;
137 		ri->ret_addr = (kprobe_opcode_t *)regs->link;
138 
139 		/* Replace the return addr with trampoline addr */
140 		regs->link = (unsigned long)kretprobe_trampoline;
141 		add_rp_inst(ri);
142 	} else {
143 		rp->nmissed++;
144 	}
145 }
146 
147 static int __kprobes kprobe_handler(struct pt_regs *regs)
148 {
149 	struct kprobe *p;
150 	int ret = 0;
151 	unsigned int *addr = (unsigned int *)regs->nip;
152 	struct kprobe_ctlblk *kcb;
153 
154 	/*
155 	 * We don't want to be preempted for the entire
156 	 * duration of kprobe processing
157 	 */
158 	preempt_disable();
159 	kcb = get_kprobe_ctlblk();
160 
161 	/* Check we're not actually recursing */
162 	if (kprobe_running()) {
163 		p = get_kprobe(addr);
164 		if (p) {
165 			kprobe_opcode_t insn = *p->ainsn.insn;
166 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
167 					is_trap(insn)) {
168 				regs->msr &= ~MSR_SE;
169 				regs->msr |= kcb->kprobe_saved_msr;
170 				goto no_kprobe;
171 			}
172 			/* We have reentered the kprobe_handler(), since
173 			 * another probe was hit while within the handler.
174 			 * We here save the original kprobes variables and
175 			 * just single step on the instruction of the new probe
176 			 * without calling any user handlers.
177 			 */
178 			save_previous_kprobe(kcb);
179 			set_current_kprobe(p, regs, kcb);
180 			kcb->kprobe_saved_msr = regs->msr;
181 			kprobes_inc_nmissed_count(p);
182 			prepare_singlestep(p, regs);
183 			kcb->kprobe_status = KPROBE_REENTER;
184 			return 1;
185 		} else {
186 			if (*addr != BREAKPOINT_INSTRUCTION) {
187 				/* If trap variant, then it belongs not to us */
188 				kprobe_opcode_t cur_insn = *addr;
189 				if (is_trap(cur_insn))
190 		       			goto no_kprobe;
191 				/* The breakpoint instruction was removed by
192 				 * another cpu right after we hit, no further
193 				 * handling of this interrupt is appropriate
194 				 */
195 				ret = 1;
196 				goto no_kprobe;
197 			}
198 			p = __get_cpu_var(current_kprobe);
199 			if (p->break_handler && p->break_handler(p, regs)) {
200 				goto ss_probe;
201 			}
202 		}
203 		goto no_kprobe;
204 	}
205 
206 	p = get_kprobe(addr);
207 	if (!p) {
208 		if (*addr != BREAKPOINT_INSTRUCTION) {
209 			/*
210 			 * PowerPC has multiple variants of the "trap"
211 			 * instruction. If the current instruction is a
212 			 * trap variant, it could belong to someone else
213 			 */
214 			kprobe_opcode_t cur_insn = *addr;
215 			if (is_trap(cur_insn))
216 		       		goto no_kprobe;
217 			/*
218 			 * The breakpoint instruction was removed right
219 			 * after we hit it.  Another cpu has removed
220 			 * either a probepoint or a debugger breakpoint
221 			 * at this address.  In either case, no further
222 			 * handling of this interrupt is appropriate.
223 			 */
224 			ret = 1;
225 		}
226 		/* Not one of ours: let kernel handle it */
227 		goto no_kprobe;
228 	}
229 
230 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
231 	set_current_kprobe(p, regs, kcb);
232 	if (p->pre_handler && p->pre_handler(p, regs))
233 		/* handler has already set things up, so skip ss setup */
234 		return 1;
235 
236 ss_probe:
237 	if (p->ainsn.boostable >= 0) {
238 		unsigned int insn = *p->ainsn.insn;
239 
240 		/* regs->nip is also adjusted if emulate_step returns 1 */
241 		ret = emulate_step(regs, insn);
242 		if (ret > 0) {
243 			/*
244 			 * Once this instruction has been boosted
245 			 * successfully, set the boostable flag
246 			 */
247 			if (unlikely(p->ainsn.boostable == 0))
248 				p->ainsn.boostable = 1;
249 
250 			if (p->post_handler)
251 				p->post_handler(p, regs, 0);
252 
253 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
254 			reset_current_kprobe();
255 			preempt_enable_no_resched();
256 			return 1;
257 		} else if (ret < 0) {
258 			/*
259 			 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
260 			 * So, we should never get here... but, its still
261 			 * good to catch them, just in case...
262 			 */
263 			printk("Can't step on instruction %x\n", insn);
264 			BUG();
265 		} else if (ret == 0)
266 			/* This instruction can't be boosted */
267 			p->ainsn.boostable = -1;
268 	}
269 	prepare_singlestep(p, regs);
270 	kcb->kprobe_status = KPROBE_HIT_SS;
271 	return 1;
272 
273 no_kprobe:
274 	preempt_enable_no_resched();
275 	return ret;
276 }
277 
278 /*
279  * Function return probe trampoline:
280  * 	- init_kprobes() establishes a probepoint here
281  * 	- When the probed function returns, this probe
282  * 		causes the handlers to fire
283  */
284 void kretprobe_trampoline_holder(void)
285 {
286 	asm volatile(".global kretprobe_trampoline\n"
287 			"kretprobe_trampoline:\n"
288 			"nop\n");
289 }
290 
291 /*
292  * Called when the probe at kretprobe trampoline is hit
293  */
294 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
295 {
296 	struct kretprobe_instance *ri = NULL;
297 	struct hlist_head *head, empty_rp;
298 	struct hlist_node *node, *tmp;
299 	unsigned long flags, orig_ret_address = 0;
300 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
301 
302 	INIT_HLIST_HEAD(&empty_rp);
303 	spin_lock_irqsave(&kretprobe_lock, flags);
304 	head = kretprobe_inst_table_head(current);
305 
306 	/*
307 	 * It is possible to have multiple instances associated with a given
308 	 * task either because an multiple functions in the call path
309 	 * have a return probe installed on them, and/or more then one return
310 	 * return probe was registered for a target function.
311 	 *
312 	 * We can handle this because:
313 	 *     - instances are always inserted at the head of the list
314 	 *     - when multiple return probes are registered for the same
315 	 *       function, the first instance's ret_addr will point to the
316 	 *       real return address, and all the rest will point to
317 	 *       kretprobe_trampoline
318 	 */
319 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
320 		if (ri->task != current)
321 			/* another task is sharing our hash bucket */
322 			continue;
323 
324 		if (ri->rp && ri->rp->handler)
325 			ri->rp->handler(ri, regs);
326 
327 		orig_ret_address = (unsigned long)ri->ret_addr;
328 		recycle_rp_inst(ri, &empty_rp);
329 
330 		if (orig_ret_address != trampoline_address)
331 			/*
332 			 * This is the real return address. Any other
333 			 * instances associated with this task are for
334 			 * other calls deeper on the call stack
335 			 */
336 			break;
337 	}
338 
339 	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
340 	regs->nip = orig_ret_address;
341 
342 	reset_current_kprobe();
343 	spin_unlock_irqrestore(&kretprobe_lock, flags);
344 	preempt_enable_no_resched();
345 
346 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
347 		hlist_del(&ri->hlist);
348 		kfree(ri);
349 	}
350 	/*
351 	 * By returning a non-zero value, we are telling
352 	 * kprobe_handler() that we don't want the post_handler
353 	 * to run (and have re-enabled preemption)
354 	 */
355 	return 1;
356 }
357 
358 /*
359  * Called after single-stepping.  p->addr is the address of the
360  * instruction whose first byte has been replaced by the "breakpoint"
361  * instruction.  To avoid the SMP problems that can occur when we
362  * temporarily put back the original opcode to single-step, we
363  * single-stepped a copy of the instruction.  The address of this
364  * copy is p->ainsn.insn.
365  */
366 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
367 {
368 	int ret;
369 	unsigned int insn = *p->ainsn.insn;
370 
371 	regs->nip = (unsigned long)p->addr;
372 	ret = emulate_step(regs, insn);
373 	if (ret == 0)
374 		regs->nip = (unsigned long)p->addr + 4;
375 }
376 
377 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
378 {
379 	struct kprobe *cur = kprobe_running();
380 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
381 
382 	if (!cur)
383 		return 0;
384 
385 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
386 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
387 		cur->post_handler(cur, regs, 0);
388 	}
389 
390 	resume_execution(cur, regs);
391 	regs->msr |= kcb->kprobe_saved_msr;
392 
393 	/*Restore back the original saved kprobes variables and continue. */
394 	if (kcb->kprobe_status == KPROBE_REENTER) {
395 		restore_previous_kprobe(kcb);
396 		goto out;
397 	}
398 	reset_current_kprobe();
399 out:
400 	preempt_enable_no_resched();
401 
402 	/*
403 	 * if somebody else is singlestepping across a probe point, msr
404 	 * will have SE set, in which case, continue the remaining processing
405 	 * of do_debug, as if this is not a probe hit.
406 	 */
407 	if (regs->msr & MSR_SE)
408 		return 0;
409 
410 	return 1;
411 }
412 
413 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
414 {
415 	struct kprobe *cur = kprobe_running();
416 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
417 	const struct exception_table_entry *entry;
418 
419 	switch(kcb->kprobe_status) {
420 	case KPROBE_HIT_SS:
421 	case KPROBE_REENTER:
422 		/*
423 		 * We are here because the instruction being single
424 		 * stepped caused a page fault. We reset the current
425 		 * kprobe and the nip points back to the probe address
426 		 * and allow the page fault handler to continue as a
427 		 * normal page fault.
428 		 */
429 		regs->nip = (unsigned long)cur->addr;
430 		regs->msr &= ~MSR_SE;
431 		regs->msr |= kcb->kprobe_saved_msr;
432 		if (kcb->kprobe_status == KPROBE_REENTER)
433 			restore_previous_kprobe(kcb);
434 		else
435 			reset_current_kprobe();
436 		preempt_enable_no_resched();
437 		break;
438 	case KPROBE_HIT_ACTIVE:
439 	case KPROBE_HIT_SSDONE:
440 		/*
441 		 * We increment the nmissed count for accounting,
442 		 * we can also use npre/npostfault count for accouting
443 		 * these specific fault cases.
444 		 */
445 		kprobes_inc_nmissed_count(cur);
446 
447 		/*
448 		 * We come here because instructions in the pre/post
449 		 * handler caused the page_fault, this could happen
450 		 * if handler tries to access user space by
451 		 * copy_from_user(), get_user() etc. Let the
452 		 * user-specified handler try to fix it first.
453 		 */
454 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
455 			return 1;
456 
457 		/*
458 		 * In case the user-specified fault handler returned
459 		 * zero, try to fix up.
460 		 */
461 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
462 			regs->nip = entry->fixup;
463 			return 1;
464 		}
465 
466 		/*
467 		 * fixup_exception() could not handle it,
468 		 * Let do_page_fault() fix it.
469 		 */
470 		break;
471 	default:
472 		break;
473 	}
474 	return 0;
475 }
476 
477 /*
478  * Wrapper routine to for handling exceptions.
479  */
480 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
481 				       unsigned long val, void *data)
482 {
483 	struct die_args *args = (struct die_args *)data;
484 	int ret = NOTIFY_DONE;
485 
486 	if (args->regs && user_mode(args->regs))
487 		return ret;
488 
489 	switch (val) {
490 	case DIE_BPT:
491 		if (kprobe_handler(args->regs))
492 			ret = NOTIFY_STOP;
493 		break;
494 	case DIE_SSTEP:
495 		if (post_kprobe_handler(args->regs))
496 			ret = NOTIFY_STOP;
497 		break;
498 	case DIE_PAGE_FAULT:
499 		/* kprobe_running() needs smp_processor_id() */
500 		preempt_disable();
501 		if (kprobe_running() &&
502 		    kprobe_fault_handler(args->regs, args->trapnr))
503 			ret = NOTIFY_STOP;
504 		preempt_enable();
505 		break;
506 	default:
507 		break;
508 	}
509 	return ret;
510 }
511 
512 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
513 {
514 	struct jprobe *jp = container_of(p, struct jprobe, kp);
515 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
516 
517 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
518 
519 	/* setup return addr to the jprobe handler routine */
520 #ifdef CONFIG_PPC64
521 	regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
522 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
523 #else
524 	regs->nip = (unsigned long)jp->entry;
525 #endif
526 
527 	return 1;
528 }
529 
530 void __kprobes jprobe_return(void)
531 {
532 	asm volatile("trap" ::: "memory");
533 }
534 
535 void __kprobes jprobe_return_end(void)
536 {
537 };
538 
539 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
540 {
541 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
542 
543 	/*
544 	 * FIXME - we should ideally be validating that we got here 'cos
545 	 * of the "trap" in jprobe_return() above, before restoring the
546 	 * saved regs...
547 	 */
548 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
549 	preempt_enable_no_resched();
550 	return 1;
551 }
552 
553 static struct kprobe trampoline_p = {
554 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
555 	.pre_handler = trampoline_probe_handler
556 };
557 
558 int __init arch_init_kprobes(void)
559 {
560 	return register_kprobe(&trampoline_p);
561 }
562