1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port 26 * for PPC64 27 */ 28 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/preempt.h> 32 #include <linux/module.h> 33 #include <asm/cacheflush.h> 34 #include <asm/kdebug.h> 35 #include <asm/sstep.h> 36 #include <asm/uaccess.h> 37 38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 40 41 int __kprobes arch_prepare_kprobe(struct kprobe *p) 42 { 43 int ret = 0; 44 kprobe_opcode_t insn = *p->addr; 45 46 if ((unsigned long)p->addr & 0x03) { 47 printk("Attempt to register kprobe at an unaligned address\n"); 48 ret = -EINVAL; 49 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { 50 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); 51 ret = -EINVAL; 52 } 53 54 /* insn must be on a special executable page on ppc64 */ 55 if (!ret) { 56 p->ainsn.insn = get_insn_slot(); 57 if (!p->ainsn.insn) 58 ret = -ENOMEM; 59 } 60 61 if (!ret) { 62 memcpy(p->ainsn.insn, p->addr, 63 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 64 p->opcode = *p->addr; 65 flush_icache_range((unsigned long)p->ainsn.insn, 66 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); 67 } 68 69 p->ainsn.boostable = 0; 70 return ret; 71 } 72 73 void __kprobes arch_arm_kprobe(struct kprobe *p) 74 { 75 *p->addr = BREAKPOINT_INSTRUCTION; 76 flush_icache_range((unsigned long) p->addr, 77 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 78 } 79 80 void __kprobes arch_disarm_kprobe(struct kprobe *p) 81 { 82 *p->addr = p->opcode; 83 flush_icache_range((unsigned long) p->addr, 84 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 85 } 86 87 void __kprobes arch_remove_kprobe(struct kprobe *p) 88 { 89 mutex_lock(&kprobe_mutex); 90 free_insn_slot(p->ainsn.insn, 0); 91 mutex_unlock(&kprobe_mutex); 92 } 93 94 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 95 { 96 regs->msr |= MSR_SE; 97 98 /* 99 * On powerpc we should single step on the original 100 * instruction even if the probed insn is a trap 101 * variant as values in regs could play a part in 102 * if the trap is taken or not 103 */ 104 regs->nip = (unsigned long)p->ainsn.insn; 105 } 106 107 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 108 { 109 kcb->prev_kprobe.kp = kprobe_running(); 110 kcb->prev_kprobe.status = kcb->kprobe_status; 111 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; 112 } 113 114 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 115 { 116 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 117 kcb->kprobe_status = kcb->prev_kprobe.status; 118 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; 119 } 120 121 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 122 struct kprobe_ctlblk *kcb) 123 { 124 __get_cpu_var(current_kprobe) = p; 125 kcb->kprobe_saved_msr = regs->msr; 126 } 127 128 /* Called with kretprobe_lock held */ 129 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp, 130 struct pt_regs *regs) 131 { 132 struct kretprobe_instance *ri; 133 134 if ((ri = get_free_rp_inst(rp)) != NULL) { 135 ri->rp = rp; 136 ri->task = current; 137 ri->ret_addr = (kprobe_opcode_t *)regs->link; 138 139 /* Replace the return addr with trampoline addr */ 140 regs->link = (unsigned long)kretprobe_trampoline; 141 add_rp_inst(ri); 142 } else { 143 rp->nmissed++; 144 } 145 } 146 147 static int __kprobes kprobe_handler(struct pt_regs *regs) 148 { 149 struct kprobe *p; 150 int ret = 0; 151 unsigned int *addr = (unsigned int *)regs->nip; 152 struct kprobe_ctlblk *kcb; 153 154 /* 155 * We don't want to be preempted for the entire 156 * duration of kprobe processing 157 */ 158 preempt_disable(); 159 kcb = get_kprobe_ctlblk(); 160 161 /* Check we're not actually recursing */ 162 if (kprobe_running()) { 163 p = get_kprobe(addr); 164 if (p) { 165 kprobe_opcode_t insn = *p->ainsn.insn; 166 if (kcb->kprobe_status == KPROBE_HIT_SS && 167 is_trap(insn)) { 168 regs->msr &= ~MSR_SE; 169 regs->msr |= kcb->kprobe_saved_msr; 170 goto no_kprobe; 171 } 172 /* We have reentered the kprobe_handler(), since 173 * another probe was hit while within the handler. 174 * We here save the original kprobes variables and 175 * just single step on the instruction of the new probe 176 * without calling any user handlers. 177 */ 178 save_previous_kprobe(kcb); 179 set_current_kprobe(p, regs, kcb); 180 kcb->kprobe_saved_msr = regs->msr; 181 kprobes_inc_nmissed_count(p); 182 prepare_singlestep(p, regs); 183 kcb->kprobe_status = KPROBE_REENTER; 184 return 1; 185 } else { 186 if (*addr != BREAKPOINT_INSTRUCTION) { 187 /* If trap variant, then it belongs not to us */ 188 kprobe_opcode_t cur_insn = *addr; 189 if (is_trap(cur_insn)) 190 goto no_kprobe; 191 /* The breakpoint instruction was removed by 192 * another cpu right after we hit, no further 193 * handling of this interrupt is appropriate 194 */ 195 ret = 1; 196 goto no_kprobe; 197 } 198 p = __get_cpu_var(current_kprobe); 199 if (p->break_handler && p->break_handler(p, regs)) { 200 goto ss_probe; 201 } 202 } 203 goto no_kprobe; 204 } 205 206 p = get_kprobe(addr); 207 if (!p) { 208 if (*addr != BREAKPOINT_INSTRUCTION) { 209 /* 210 * PowerPC has multiple variants of the "trap" 211 * instruction. If the current instruction is a 212 * trap variant, it could belong to someone else 213 */ 214 kprobe_opcode_t cur_insn = *addr; 215 if (is_trap(cur_insn)) 216 goto no_kprobe; 217 /* 218 * The breakpoint instruction was removed right 219 * after we hit it. Another cpu has removed 220 * either a probepoint or a debugger breakpoint 221 * at this address. In either case, no further 222 * handling of this interrupt is appropriate. 223 */ 224 ret = 1; 225 } 226 /* Not one of ours: let kernel handle it */ 227 goto no_kprobe; 228 } 229 230 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 231 set_current_kprobe(p, regs, kcb); 232 if (p->pre_handler && p->pre_handler(p, regs)) 233 /* handler has already set things up, so skip ss setup */ 234 return 1; 235 236 ss_probe: 237 if (p->ainsn.boostable >= 0) { 238 unsigned int insn = *p->ainsn.insn; 239 240 /* regs->nip is also adjusted if emulate_step returns 1 */ 241 ret = emulate_step(regs, insn); 242 if (ret > 0) { 243 /* 244 * Once this instruction has been boosted 245 * successfully, set the boostable flag 246 */ 247 if (unlikely(p->ainsn.boostable == 0)) 248 p->ainsn.boostable = 1; 249 250 if (p->post_handler) 251 p->post_handler(p, regs, 0); 252 253 kcb->kprobe_status = KPROBE_HIT_SSDONE; 254 reset_current_kprobe(); 255 preempt_enable_no_resched(); 256 return 1; 257 } else if (ret < 0) { 258 /* 259 * We don't allow kprobes on mtmsr(d)/rfi(d), etc. 260 * So, we should never get here... but, its still 261 * good to catch them, just in case... 262 */ 263 printk("Can't step on instruction %x\n", insn); 264 BUG(); 265 } else if (ret == 0) 266 /* This instruction can't be boosted */ 267 p->ainsn.boostable = -1; 268 } 269 prepare_singlestep(p, regs); 270 kcb->kprobe_status = KPROBE_HIT_SS; 271 return 1; 272 273 no_kprobe: 274 preempt_enable_no_resched(); 275 return ret; 276 } 277 278 /* 279 * Function return probe trampoline: 280 * - init_kprobes() establishes a probepoint here 281 * - When the probed function returns, this probe 282 * causes the handlers to fire 283 */ 284 void kretprobe_trampoline_holder(void) 285 { 286 asm volatile(".global kretprobe_trampoline\n" 287 "kretprobe_trampoline:\n" 288 "nop\n"); 289 } 290 291 /* 292 * Called when the probe at kretprobe trampoline is hit 293 */ 294 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 295 { 296 struct kretprobe_instance *ri = NULL; 297 struct hlist_head *head, empty_rp; 298 struct hlist_node *node, *tmp; 299 unsigned long flags, orig_ret_address = 0; 300 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; 301 302 INIT_HLIST_HEAD(&empty_rp); 303 spin_lock_irqsave(&kretprobe_lock, flags); 304 head = kretprobe_inst_table_head(current); 305 306 /* 307 * It is possible to have multiple instances associated with a given 308 * task either because an multiple functions in the call path 309 * have a return probe installed on them, and/or more then one return 310 * return probe was registered for a target function. 311 * 312 * We can handle this because: 313 * - instances are always inserted at the head of the list 314 * - when multiple return probes are registered for the same 315 * function, the first instance's ret_addr will point to the 316 * real return address, and all the rest will point to 317 * kretprobe_trampoline 318 */ 319 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 320 if (ri->task != current) 321 /* another task is sharing our hash bucket */ 322 continue; 323 324 if (ri->rp && ri->rp->handler) 325 ri->rp->handler(ri, regs); 326 327 orig_ret_address = (unsigned long)ri->ret_addr; 328 recycle_rp_inst(ri, &empty_rp); 329 330 if (orig_ret_address != trampoline_address) 331 /* 332 * This is the real return address. Any other 333 * instances associated with this task are for 334 * other calls deeper on the call stack 335 */ 336 break; 337 } 338 339 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address)); 340 regs->nip = orig_ret_address; 341 342 reset_current_kprobe(); 343 spin_unlock_irqrestore(&kretprobe_lock, flags); 344 preempt_enable_no_resched(); 345 346 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 347 hlist_del(&ri->hlist); 348 kfree(ri); 349 } 350 /* 351 * By returning a non-zero value, we are telling 352 * kprobe_handler() that we don't want the post_handler 353 * to run (and have re-enabled preemption) 354 */ 355 return 1; 356 } 357 358 /* 359 * Called after single-stepping. p->addr is the address of the 360 * instruction whose first byte has been replaced by the "breakpoint" 361 * instruction. To avoid the SMP problems that can occur when we 362 * temporarily put back the original opcode to single-step, we 363 * single-stepped a copy of the instruction. The address of this 364 * copy is p->ainsn.insn. 365 */ 366 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 367 { 368 int ret; 369 unsigned int insn = *p->ainsn.insn; 370 371 regs->nip = (unsigned long)p->addr; 372 ret = emulate_step(regs, insn); 373 if (ret == 0) 374 regs->nip = (unsigned long)p->addr + 4; 375 } 376 377 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 378 { 379 struct kprobe *cur = kprobe_running(); 380 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 381 382 if (!cur) 383 return 0; 384 385 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 386 kcb->kprobe_status = KPROBE_HIT_SSDONE; 387 cur->post_handler(cur, regs, 0); 388 } 389 390 resume_execution(cur, regs); 391 regs->msr |= kcb->kprobe_saved_msr; 392 393 /*Restore back the original saved kprobes variables and continue. */ 394 if (kcb->kprobe_status == KPROBE_REENTER) { 395 restore_previous_kprobe(kcb); 396 goto out; 397 } 398 reset_current_kprobe(); 399 out: 400 preempt_enable_no_resched(); 401 402 /* 403 * if somebody else is singlestepping across a probe point, msr 404 * will have SE set, in which case, continue the remaining processing 405 * of do_debug, as if this is not a probe hit. 406 */ 407 if (regs->msr & MSR_SE) 408 return 0; 409 410 return 1; 411 } 412 413 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 414 { 415 struct kprobe *cur = kprobe_running(); 416 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 417 const struct exception_table_entry *entry; 418 419 switch(kcb->kprobe_status) { 420 case KPROBE_HIT_SS: 421 case KPROBE_REENTER: 422 /* 423 * We are here because the instruction being single 424 * stepped caused a page fault. We reset the current 425 * kprobe and the nip points back to the probe address 426 * and allow the page fault handler to continue as a 427 * normal page fault. 428 */ 429 regs->nip = (unsigned long)cur->addr; 430 regs->msr &= ~MSR_SE; 431 regs->msr |= kcb->kprobe_saved_msr; 432 if (kcb->kprobe_status == KPROBE_REENTER) 433 restore_previous_kprobe(kcb); 434 else 435 reset_current_kprobe(); 436 preempt_enable_no_resched(); 437 break; 438 case KPROBE_HIT_ACTIVE: 439 case KPROBE_HIT_SSDONE: 440 /* 441 * We increment the nmissed count for accounting, 442 * we can also use npre/npostfault count for accouting 443 * these specific fault cases. 444 */ 445 kprobes_inc_nmissed_count(cur); 446 447 /* 448 * We come here because instructions in the pre/post 449 * handler caused the page_fault, this could happen 450 * if handler tries to access user space by 451 * copy_from_user(), get_user() etc. Let the 452 * user-specified handler try to fix it first. 453 */ 454 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 455 return 1; 456 457 /* 458 * In case the user-specified fault handler returned 459 * zero, try to fix up. 460 */ 461 if ((entry = search_exception_tables(regs->nip)) != NULL) { 462 regs->nip = entry->fixup; 463 return 1; 464 } 465 466 /* 467 * fixup_exception() could not handle it, 468 * Let do_page_fault() fix it. 469 */ 470 break; 471 default: 472 break; 473 } 474 return 0; 475 } 476 477 /* 478 * Wrapper routine to for handling exceptions. 479 */ 480 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 481 unsigned long val, void *data) 482 { 483 struct die_args *args = (struct die_args *)data; 484 int ret = NOTIFY_DONE; 485 486 if (args->regs && user_mode(args->regs)) 487 return ret; 488 489 switch (val) { 490 case DIE_BPT: 491 if (kprobe_handler(args->regs)) 492 ret = NOTIFY_STOP; 493 break; 494 case DIE_SSTEP: 495 if (post_kprobe_handler(args->regs)) 496 ret = NOTIFY_STOP; 497 break; 498 case DIE_PAGE_FAULT: 499 /* kprobe_running() needs smp_processor_id() */ 500 preempt_disable(); 501 if (kprobe_running() && 502 kprobe_fault_handler(args->regs, args->trapnr)) 503 ret = NOTIFY_STOP; 504 preempt_enable(); 505 break; 506 default: 507 break; 508 } 509 return ret; 510 } 511 512 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 513 { 514 struct jprobe *jp = container_of(p, struct jprobe, kp); 515 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 516 517 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 518 519 /* setup return addr to the jprobe handler routine */ 520 #ifdef CONFIG_PPC64 521 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry); 522 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); 523 #else 524 regs->nip = (unsigned long)jp->entry; 525 #endif 526 527 return 1; 528 } 529 530 void __kprobes jprobe_return(void) 531 { 532 asm volatile("trap" ::: "memory"); 533 } 534 535 void __kprobes jprobe_return_end(void) 536 { 537 }; 538 539 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 540 { 541 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 542 543 /* 544 * FIXME - we should ideally be validating that we got here 'cos 545 * of the "trap" in jprobe_return() above, before restoring the 546 * saved regs... 547 */ 548 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 549 preempt_enable_no_resched(); 550 return 1; 551 } 552 553 static struct kprobe trampoline_p = { 554 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 555 .pre_handler = trampoline_probe_handler 556 }; 557 558 int __init arch_init_kprobes(void) 559 { 560 return register_kprobe(&trampoline_p); 561 } 562