xref: /linux/arch/powerpc/kernel/kprobes.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *
5  * Copyright (C) IBM Corporation, 2002, 2004
6  *
7  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
8  *		Probes initial implementation ( includes contributions from
9  *		Rusty Russell).
10  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
11  *		interface to access function arguments.
12  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
13  *		for PPC64
14  */
15 
16 #include <linux/kprobes.h>
17 #include <linux/ptrace.h>
18 #include <linux/preempt.h>
19 #include <linux/extable.h>
20 #include <linux/kdebug.h>
21 #include <linux/slab.h>
22 #include <linux/moduleloader.h>
23 #include <linux/set_memory.h>
24 #include <asm/code-patching.h>
25 #include <asm/cacheflush.h>
26 #include <asm/sstep.h>
27 #include <asm/sections.h>
28 #include <asm/inst.h>
29 #include <linux/uaccess.h>
30 
31 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
32 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
33 
34 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
35 
36 bool arch_within_kprobe_blacklist(unsigned long addr)
37 {
38 	return  (addr >= (unsigned long)__kprobes_text_start &&
39 		 addr < (unsigned long)__kprobes_text_end) ||
40 		(addr >= (unsigned long)_stext &&
41 		 addr < (unsigned long)__head_end);
42 }
43 
44 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
45 {
46 	kprobe_opcode_t *addr = NULL;
47 
48 #ifdef CONFIG_PPC64_ELF_ABI_V2
49 	/* PPC64 ABIv2 needs local entry point */
50 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
51 	if (addr && !offset) {
52 #ifdef CONFIG_KPROBES_ON_FTRACE
53 		unsigned long faddr;
54 		/*
55 		 * Per livepatch.h, ftrace location is always within the first
56 		 * 16 bytes of a function on powerpc with -mprofile-kernel.
57 		 */
58 		faddr = ftrace_location_range((unsigned long)addr,
59 					      (unsigned long)addr + 16);
60 		if (faddr)
61 			addr = (kprobe_opcode_t *)faddr;
62 		else
63 #endif
64 			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
65 	}
66 #elif defined(CONFIG_PPC64_ELF_ABI_V1)
67 	/*
68 	 * 64bit powerpc ABIv1 uses function descriptors:
69 	 * - Check for the dot variant of the symbol first.
70 	 * - If that fails, try looking up the symbol provided.
71 	 *
72 	 * This ensures we always get to the actual symbol and not
73 	 * the descriptor.
74 	 *
75 	 * Also handle <module:symbol> format.
76 	 */
77 	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
78 	bool dot_appended = false;
79 	const char *c;
80 	ssize_t ret = 0;
81 	int len = 0;
82 
83 	if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
84 		c++;
85 		len = c - name;
86 		memcpy(dot_name, name, len);
87 	} else
88 		c = name;
89 
90 	if (*c != '\0' && *c != '.') {
91 		dot_name[len++] = '.';
92 		dot_appended = true;
93 	}
94 	ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
95 	if (ret > 0)
96 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
97 
98 	/* Fallback to the original non-dot symbol lookup */
99 	if (!addr && dot_appended)
100 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
101 #else
102 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
103 #endif
104 
105 	return addr;
106 }
107 
108 static bool arch_kprobe_on_func_entry(unsigned long offset)
109 {
110 #ifdef CONFIG_PPC64_ELF_ABI_V2
111 #ifdef CONFIG_KPROBES_ON_FTRACE
112 	return offset <= 16;
113 #else
114 	return offset <= 8;
115 #endif
116 #else
117 	return !offset;
118 #endif
119 }
120 
121 /* XXX try and fold the magic of kprobe_lookup_name() in this */
122 kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
123 					 bool *on_func_entry)
124 {
125 	*on_func_entry = arch_kprobe_on_func_entry(offset);
126 	return (kprobe_opcode_t *)(addr + offset);
127 }
128 
129 void *alloc_insn_page(void)
130 {
131 	void *page;
132 
133 	page = module_alloc(PAGE_SIZE);
134 	if (!page)
135 		return NULL;
136 
137 	if (strict_module_rwx_enabled()) {
138 		int err = set_memory_rox((unsigned long)page, 1);
139 
140 		if (err)
141 			goto error;
142 	}
143 	return page;
144 error:
145 	module_memfree(page);
146 	return NULL;
147 }
148 
149 int arch_prepare_kprobe(struct kprobe *p)
150 {
151 	int ret = 0;
152 	struct kprobe *prev;
153 	ppc_inst_t insn = ppc_inst_read(p->addr);
154 
155 	if ((unsigned long)p->addr & 0x03) {
156 		printk("Attempt to register kprobe at an unaligned address\n");
157 		ret = -EINVAL;
158 	} else if (!can_single_step(ppc_inst_val(insn))) {
159 		printk("Cannot register a kprobe on instructions that can't be single stepped\n");
160 		ret = -EINVAL;
161 	} else if ((unsigned long)p->addr & ~PAGE_MASK &&
162 		   ppc_inst_prefixed(ppc_inst_read(p->addr - 1))) {
163 		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
164 		ret = -EINVAL;
165 	}
166 	prev = get_kprobe(p->addr - 1);
167 
168 	/*
169 	 * When prev is a ftrace-based kprobe, we don't have an insn, and it
170 	 * doesn't probe for prefixed instruction.
171 	 */
172 	if (prev && !kprobe_ftrace(prev) &&
173 	    ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
174 		printk("Cannot register a kprobe on the second word of prefixed instruction\n");
175 		ret = -EINVAL;
176 	}
177 
178 	/* insn must be on a special executable page on ppc64.  This is
179 	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
180 	if (!ret) {
181 		p->ainsn.insn = get_insn_slot();
182 		if (!p->ainsn.insn)
183 			ret = -ENOMEM;
184 	}
185 
186 	if (!ret) {
187 		patch_instruction(p->ainsn.insn, insn);
188 		p->opcode = ppc_inst_val(insn);
189 	}
190 
191 	p->ainsn.boostable = 0;
192 	return ret;
193 }
194 NOKPROBE_SYMBOL(arch_prepare_kprobe);
195 
196 void arch_arm_kprobe(struct kprobe *p)
197 {
198 	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(BREAKPOINT_INSTRUCTION)));
199 }
200 NOKPROBE_SYMBOL(arch_arm_kprobe);
201 
202 void arch_disarm_kprobe(struct kprobe *p)
203 {
204 	WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(p->opcode)));
205 }
206 NOKPROBE_SYMBOL(arch_disarm_kprobe);
207 
208 void arch_remove_kprobe(struct kprobe *p)
209 {
210 	if (p->ainsn.insn) {
211 		free_insn_slot(p->ainsn.insn, 0);
212 		p->ainsn.insn = NULL;
213 	}
214 }
215 NOKPROBE_SYMBOL(arch_remove_kprobe);
216 
217 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
218 {
219 	enable_single_step(regs);
220 
221 	/*
222 	 * On powerpc we should single step on the original
223 	 * instruction even if the probed insn is a trap
224 	 * variant as values in regs could play a part in
225 	 * if the trap is taken or not
226 	 */
227 	regs_set_return_ip(regs, (unsigned long)p->ainsn.insn);
228 }
229 
230 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
231 {
232 	kcb->prev_kprobe.kp = kprobe_running();
233 	kcb->prev_kprobe.status = kcb->kprobe_status;
234 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
235 }
236 
237 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
238 {
239 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
240 	kcb->kprobe_status = kcb->prev_kprobe.status;
241 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
242 }
243 
244 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
245 				struct kprobe_ctlblk *kcb)
246 {
247 	__this_cpu_write(current_kprobe, p);
248 	kcb->kprobe_saved_msr = regs->msr;
249 }
250 
251 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
252 {
253 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
254 	ri->fp = NULL;
255 
256 	/* Replace the return addr with trampoline addr */
257 	regs->link = (unsigned long)__kretprobe_trampoline;
258 }
259 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
260 
261 static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
262 {
263 	int ret;
264 	ppc_inst_t insn = ppc_inst_read(p->ainsn.insn);
265 
266 	/* regs->nip is also adjusted if emulate_step returns 1 */
267 	ret = emulate_step(regs, insn);
268 	if (ret > 0) {
269 		/*
270 		 * Once this instruction has been boosted
271 		 * successfully, set the boostable flag
272 		 */
273 		if (unlikely(p->ainsn.boostable == 0))
274 			p->ainsn.boostable = 1;
275 	} else if (ret < 0) {
276 		/*
277 		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
278 		 * So, we should never get here... but, its still
279 		 * good to catch them, just in case...
280 		 */
281 		printk("Can't step on instruction %08lx\n", ppc_inst_as_ulong(insn));
282 		BUG();
283 	} else {
284 		/*
285 		 * If we haven't previously emulated this instruction, then it
286 		 * can't be boosted. Note it down so we don't try to do so again.
287 		 *
288 		 * If, however, we had emulated this instruction in the past,
289 		 * then this is just an error with the current run (for
290 		 * instance, exceptions due to a load/store). We return 0 so
291 		 * that this is now single-stepped, but continue to try
292 		 * emulating it in subsequent probe hits.
293 		 */
294 		if (unlikely(p->ainsn.boostable != 1))
295 			p->ainsn.boostable = -1;
296 	}
297 
298 	return ret;
299 }
300 NOKPROBE_SYMBOL(try_to_emulate);
301 
302 int kprobe_handler(struct pt_regs *regs)
303 {
304 	struct kprobe *p;
305 	int ret = 0;
306 	unsigned int *addr = (unsigned int *)regs->nip;
307 	struct kprobe_ctlblk *kcb;
308 
309 	if (user_mode(regs))
310 		return 0;
311 
312 	if (!IS_ENABLED(CONFIG_BOOKE) &&
313 	    (!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)))
314 		return 0;
315 
316 	/*
317 	 * We don't want to be preempted for the entire
318 	 * duration of kprobe processing
319 	 */
320 	preempt_disable();
321 	kcb = get_kprobe_ctlblk();
322 
323 	p = get_kprobe(addr);
324 	if (!p) {
325 		unsigned int instr;
326 
327 		if (get_kernel_nofault(instr, addr))
328 			goto no_kprobe;
329 
330 		if (instr != BREAKPOINT_INSTRUCTION) {
331 			/*
332 			 * PowerPC has multiple variants of the "trap"
333 			 * instruction. If the current instruction is a
334 			 * trap variant, it could belong to someone else
335 			 */
336 			if (is_trap(instr))
337 				goto no_kprobe;
338 			/*
339 			 * The breakpoint instruction was removed right
340 			 * after we hit it.  Another cpu has removed
341 			 * either a probepoint or a debugger breakpoint
342 			 * at this address.  In either case, no further
343 			 * handling of this interrupt is appropriate.
344 			 */
345 			ret = 1;
346 		}
347 		/* Not one of ours: let kernel handle it */
348 		goto no_kprobe;
349 	}
350 
351 	/* Check we're not actually recursing */
352 	if (kprobe_running()) {
353 		kprobe_opcode_t insn = *p->ainsn.insn;
354 		if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
355 			/* Turn off 'trace' bits */
356 			regs_set_return_msr(regs,
357 				(regs->msr & ~MSR_SINGLESTEP) |
358 				kcb->kprobe_saved_msr);
359 			goto no_kprobe;
360 		}
361 
362 		/*
363 		 * We have reentered the kprobe_handler(), since another probe
364 		 * was hit while within the handler. We here save the original
365 		 * kprobes variables and just single step on the instruction of
366 		 * the new probe without calling any user handlers.
367 		 */
368 		save_previous_kprobe(kcb);
369 		set_current_kprobe(p, regs, kcb);
370 		kprobes_inc_nmissed_count(p);
371 		kcb->kprobe_status = KPROBE_REENTER;
372 		if (p->ainsn.boostable >= 0) {
373 			ret = try_to_emulate(p, regs);
374 
375 			if (ret > 0) {
376 				restore_previous_kprobe(kcb);
377 				preempt_enable();
378 				return 1;
379 			}
380 		}
381 		prepare_singlestep(p, regs);
382 		return 1;
383 	}
384 
385 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
386 	set_current_kprobe(p, regs, kcb);
387 	if (p->pre_handler && p->pre_handler(p, regs)) {
388 		/* handler changed execution path, so skip ss setup */
389 		reset_current_kprobe();
390 		preempt_enable();
391 		return 1;
392 	}
393 
394 	if (p->ainsn.boostable >= 0) {
395 		ret = try_to_emulate(p, regs);
396 
397 		if (ret > 0) {
398 			if (p->post_handler)
399 				p->post_handler(p, regs, 0);
400 
401 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
402 			reset_current_kprobe();
403 			preempt_enable();
404 			return 1;
405 		}
406 	}
407 	prepare_singlestep(p, regs);
408 	kcb->kprobe_status = KPROBE_HIT_SS;
409 	return 1;
410 
411 no_kprobe:
412 	preempt_enable();
413 	return ret;
414 }
415 NOKPROBE_SYMBOL(kprobe_handler);
416 
417 /*
418  * Function return probe trampoline:
419  * 	- init_kprobes() establishes a probepoint here
420  * 	- When the probed function returns, this probe
421  * 		causes the handlers to fire
422  */
423 asm(".global __kretprobe_trampoline\n"
424 	".type __kretprobe_trampoline, @function\n"
425 	"__kretprobe_trampoline:\n"
426 	"nop\n"
427 	"blr\n"
428 	".size __kretprobe_trampoline, .-__kretprobe_trampoline\n");
429 
430 /*
431  * Called when the probe at kretprobe trampoline is hit
432  */
433 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
434 {
435 	unsigned long orig_ret_address;
436 
437 	orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
438 	/*
439 	 * We get here through one of two paths:
440 	 * 1. by taking a trap -> kprobe_handler() -> here
441 	 * 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
442 	 *
443 	 * When going back through (1), we need regs->nip to be setup properly
444 	 * as it is used to determine the return address from the trap.
445 	 * For (2), since nip is not honoured with optprobes, we instead setup
446 	 * the link register properly so that the subsequent 'blr' in
447 	 * __kretprobe_trampoline jumps back to the right instruction.
448 	 *
449 	 * For nip, we should set the address to the previous instruction since
450 	 * we end up emulating it in kprobe_handler(), which increments the nip
451 	 * again.
452 	 */
453 	regs_set_return_ip(regs, orig_ret_address - 4);
454 	regs->link = orig_ret_address;
455 
456 	return 0;
457 }
458 NOKPROBE_SYMBOL(trampoline_probe_handler);
459 
460 /*
461  * Called after single-stepping.  p->addr is the address of the
462  * instruction whose first byte has been replaced by the "breakpoint"
463  * instruction.  To avoid the SMP problems that can occur when we
464  * temporarily put back the original opcode to single-step, we
465  * single-stepped a copy of the instruction.  The address of this
466  * copy is p->ainsn.insn.
467  */
468 int kprobe_post_handler(struct pt_regs *regs)
469 {
470 	int len;
471 	struct kprobe *cur = kprobe_running();
472 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
473 
474 	if (!cur || user_mode(regs))
475 		return 0;
476 
477 	len = ppc_inst_len(ppc_inst_read(cur->ainsn.insn));
478 	/* make sure we got here for instruction we have a kprobe on */
479 	if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
480 		return 0;
481 
482 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
483 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
484 		cur->post_handler(cur, regs, 0);
485 	}
486 
487 	/* Adjust nip to after the single-stepped instruction */
488 	regs_set_return_ip(regs, (unsigned long)cur->addr + len);
489 	regs_set_return_msr(regs, regs->msr | kcb->kprobe_saved_msr);
490 
491 	/*Restore back the original saved kprobes variables and continue. */
492 	if (kcb->kprobe_status == KPROBE_REENTER) {
493 		restore_previous_kprobe(kcb);
494 		goto out;
495 	}
496 	reset_current_kprobe();
497 out:
498 	preempt_enable();
499 
500 	/*
501 	 * if somebody else is singlestepping across a probe point, msr
502 	 * will have DE/SE set, in which case, continue the remaining processing
503 	 * of do_debug, as if this is not a probe hit.
504 	 */
505 	if (regs->msr & MSR_SINGLESTEP)
506 		return 0;
507 
508 	return 1;
509 }
510 NOKPROBE_SYMBOL(kprobe_post_handler);
511 
512 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
513 {
514 	struct kprobe *cur = kprobe_running();
515 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
516 	const struct exception_table_entry *entry;
517 
518 	switch(kcb->kprobe_status) {
519 	case KPROBE_HIT_SS:
520 	case KPROBE_REENTER:
521 		/*
522 		 * We are here because the instruction being single
523 		 * stepped caused a page fault. We reset the current
524 		 * kprobe and the nip points back to the probe address
525 		 * and allow the page fault handler to continue as a
526 		 * normal page fault.
527 		 */
528 		regs_set_return_ip(regs, (unsigned long)cur->addr);
529 		/* Turn off 'trace' bits */
530 		regs_set_return_msr(regs,
531 			(regs->msr & ~MSR_SINGLESTEP) |
532 			kcb->kprobe_saved_msr);
533 		if (kcb->kprobe_status == KPROBE_REENTER)
534 			restore_previous_kprobe(kcb);
535 		else
536 			reset_current_kprobe();
537 		preempt_enable();
538 		break;
539 	case KPROBE_HIT_ACTIVE:
540 	case KPROBE_HIT_SSDONE:
541 		/*
542 		 * In case the user-specified fault handler returned
543 		 * zero, try to fix up.
544 		 */
545 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
546 			regs_set_return_ip(regs, extable_fixup(entry));
547 			return 1;
548 		}
549 
550 		/*
551 		 * fixup_exception() could not handle it,
552 		 * Let do_page_fault() fix it.
553 		 */
554 		break;
555 	default:
556 		break;
557 	}
558 	return 0;
559 }
560 NOKPROBE_SYMBOL(kprobe_fault_handler);
561 
562 static struct kprobe trampoline_p = {
563 	.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
564 	.pre_handler = trampoline_probe_handler
565 };
566 
567 int __init arch_init_kprobes(void)
568 {
569 	return register_kprobe(&trampoline_p);
570 }
571 
572 int arch_trampoline_kprobe(struct kprobe *p)
573 {
574 	if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
575 		return 1;
576 
577 	return 0;
578 }
579 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
580