xref: /linux/arch/powerpc/kernel/kprobes.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/config.h>
30 #include <linux/kprobes.h>
31 #include <linux/ptrace.h>
32 #include <linux/preempt.h>
33 #include <linux/module.h>
34 #include <asm/cacheflush.h>
35 #include <asm/kdebug.h>
36 #include <asm/sstep.h>
37 #include <asm/uaccess.h>
38 
39 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41 
42 int __kprobes arch_prepare_kprobe(struct kprobe *p)
43 {
44 	int ret = 0;
45 	kprobe_opcode_t insn = *p->addr;
46 
47 	if ((unsigned long)p->addr & 0x03) {
48 		printk("Attempt to register kprobe at an unaligned address\n");
49 		ret = -EINVAL;
50 	} else if (IS_MTMSRD(insn) || IS_RFID(insn)) {
51 		printk("Cannot register a kprobe on rfid or mtmsrd\n");
52 		ret = -EINVAL;
53 	}
54 
55 	/* insn must be on a special executable page on ppc64 */
56 	if (!ret) {
57 		p->ainsn.insn = get_insn_slot();
58 		if (!p->ainsn.insn)
59 			ret = -ENOMEM;
60 	}
61 
62 	if (!ret) {
63 		memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
64 		p->opcode = *p->addr;
65 	}
66 
67 	return ret;
68 }
69 
70 void __kprobes arch_arm_kprobe(struct kprobe *p)
71 {
72 	*p->addr = BREAKPOINT_INSTRUCTION;
73 	flush_icache_range((unsigned long) p->addr,
74 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
75 }
76 
77 void __kprobes arch_disarm_kprobe(struct kprobe *p)
78 {
79 	*p->addr = p->opcode;
80 	flush_icache_range((unsigned long) p->addr,
81 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
82 }
83 
84 void __kprobes arch_remove_kprobe(struct kprobe *p)
85 {
86 	mutex_lock(&kprobe_mutex);
87 	free_insn_slot(p->ainsn.insn);
88 	mutex_unlock(&kprobe_mutex);
89 }
90 
91 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
92 {
93 	kprobe_opcode_t insn = *p->ainsn.insn;
94 
95 	regs->msr |= MSR_SE;
96 
97 	/* single step inline if it is a trap variant */
98 	if (is_trap(insn))
99 		regs->nip = (unsigned long)p->addr;
100 	else
101 		regs->nip = (unsigned long)p->ainsn.insn;
102 }
103 
104 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
105 {
106 	kcb->prev_kprobe.kp = kprobe_running();
107 	kcb->prev_kprobe.status = kcb->kprobe_status;
108 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
109 }
110 
111 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
112 {
113 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
114 	kcb->kprobe_status = kcb->prev_kprobe.status;
115 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
116 }
117 
118 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
119 				struct kprobe_ctlblk *kcb)
120 {
121 	__get_cpu_var(current_kprobe) = p;
122 	kcb->kprobe_saved_msr = regs->msr;
123 }
124 
125 /* Called with kretprobe_lock held */
126 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
127 				      struct pt_regs *regs)
128 {
129 	struct kretprobe_instance *ri;
130 
131 	if ((ri = get_free_rp_inst(rp)) != NULL) {
132 		ri->rp = rp;
133 		ri->task = current;
134 		ri->ret_addr = (kprobe_opcode_t *)regs->link;
135 
136 		/* Replace the return addr with trampoline addr */
137 		regs->link = (unsigned long)kretprobe_trampoline;
138 		add_rp_inst(ri);
139 	} else {
140 		rp->nmissed++;
141 	}
142 }
143 
144 static inline int kprobe_handler(struct pt_regs *regs)
145 {
146 	struct kprobe *p;
147 	int ret = 0;
148 	unsigned int *addr = (unsigned int *)regs->nip;
149 	struct kprobe_ctlblk *kcb;
150 
151 	/*
152 	 * We don't want to be preempted for the entire
153 	 * duration of kprobe processing
154 	 */
155 	preempt_disable();
156 	kcb = get_kprobe_ctlblk();
157 
158 	/* Check we're not actually recursing */
159 	if (kprobe_running()) {
160 		p = get_kprobe(addr);
161 		if (p) {
162 			kprobe_opcode_t insn = *p->ainsn.insn;
163 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
164 					is_trap(insn)) {
165 				regs->msr &= ~MSR_SE;
166 				regs->msr |= kcb->kprobe_saved_msr;
167 				goto no_kprobe;
168 			}
169 			/* We have reentered the kprobe_handler(), since
170 			 * another probe was hit while within the handler.
171 			 * We here save the original kprobes variables and
172 			 * just single step on the instruction of the new probe
173 			 * without calling any user handlers.
174 			 */
175 			save_previous_kprobe(kcb);
176 			set_current_kprobe(p, regs, kcb);
177 			kcb->kprobe_saved_msr = regs->msr;
178 			kprobes_inc_nmissed_count(p);
179 			prepare_singlestep(p, regs);
180 			kcb->kprobe_status = KPROBE_REENTER;
181 			return 1;
182 		} else {
183 			if (*addr != BREAKPOINT_INSTRUCTION) {
184 				/* If trap variant, then it belongs not to us */
185 				kprobe_opcode_t cur_insn = *addr;
186 				if (is_trap(cur_insn))
187 		       			goto no_kprobe;
188 				/* The breakpoint instruction was removed by
189 				 * another cpu right after we hit, no further
190 				 * handling of this interrupt is appropriate
191 				 */
192 				ret = 1;
193 				goto no_kprobe;
194 			}
195 			p = __get_cpu_var(current_kprobe);
196 			if (p->break_handler && p->break_handler(p, regs)) {
197 				goto ss_probe;
198 			}
199 		}
200 		goto no_kprobe;
201 	}
202 
203 	p = get_kprobe(addr);
204 	if (!p) {
205 		if (*addr != BREAKPOINT_INSTRUCTION) {
206 			/*
207 			 * PowerPC has multiple variants of the "trap"
208 			 * instruction. If the current instruction is a
209 			 * trap variant, it could belong to someone else
210 			 */
211 			kprobe_opcode_t cur_insn = *addr;
212 			if (is_trap(cur_insn))
213 		       		goto no_kprobe;
214 			/*
215 			 * The breakpoint instruction was removed right
216 			 * after we hit it.  Another cpu has removed
217 			 * either a probepoint or a debugger breakpoint
218 			 * at this address.  In either case, no further
219 			 * handling of this interrupt is appropriate.
220 			 */
221 			ret = 1;
222 		}
223 		/* Not one of ours: let kernel handle it */
224 		goto no_kprobe;
225 	}
226 
227 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
228 	set_current_kprobe(p, regs, kcb);
229 	if (p->pre_handler && p->pre_handler(p, regs))
230 		/* handler has already set things up, so skip ss setup */
231 		return 1;
232 
233 ss_probe:
234 	prepare_singlestep(p, regs);
235 	kcb->kprobe_status = KPROBE_HIT_SS;
236 	return 1;
237 
238 no_kprobe:
239 	preempt_enable_no_resched();
240 	return ret;
241 }
242 
243 /*
244  * Function return probe trampoline:
245  * 	- init_kprobes() establishes a probepoint here
246  * 	- When the probed function returns, this probe
247  * 		causes the handlers to fire
248  */
249 void kretprobe_trampoline_holder(void)
250 {
251 	asm volatile(".global kretprobe_trampoline\n"
252 			"kretprobe_trampoline:\n"
253 			"nop\n");
254 }
255 
256 /*
257  * Called when the probe at kretprobe trampoline is hit
258  */
259 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
260 {
261         struct kretprobe_instance *ri = NULL;
262         struct hlist_head *head;
263         struct hlist_node *node, *tmp;
264 	unsigned long flags, orig_ret_address = 0;
265 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
266 
267 	spin_lock_irqsave(&kretprobe_lock, flags);
268         head = kretprobe_inst_table_head(current);
269 
270 	/*
271 	 * It is possible to have multiple instances associated with a given
272 	 * task either because an multiple functions in the call path
273 	 * have a return probe installed on them, and/or more then one return
274 	 * return probe was registered for a target function.
275 	 *
276 	 * We can handle this because:
277 	 *     - instances are always inserted at the head of the list
278 	 *     - when multiple return probes are registered for the same
279          *       function, the first instance's ret_addr will point to the
280 	 *       real return address, and all the rest will point to
281 	 *       kretprobe_trampoline
282 	 */
283 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
284                 if (ri->task != current)
285 			/* another task is sharing our hash bucket */
286                         continue;
287 
288 		if (ri->rp && ri->rp->handler)
289 			ri->rp->handler(ri, regs);
290 
291 		orig_ret_address = (unsigned long)ri->ret_addr;
292 		recycle_rp_inst(ri);
293 
294 		if (orig_ret_address != trampoline_address)
295 			/*
296 			 * This is the real return address. Any other
297 			 * instances associated with this task are for
298 			 * other calls deeper on the call stack
299 			 */
300 			break;
301 	}
302 
303 	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
304 	regs->nip = orig_ret_address;
305 
306 	reset_current_kprobe();
307 	spin_unlock_irqrestore(&kretprobe_lock, flags);
308 	preempt_enable_no_resched();
309 
310         /*
311          * By returning a non-zero value, we are telling
312          * kprobe_handler() that we don't want the post_handler
313          * to run (and have re-enabled preemption)
314          */
315         return 1;
316 }
317 
318 /*
319  * Called after single-stepping.  p->addr is the address of the
320  * instruction whose first byte has been replaced by the "breakpoint"
321  * instruction.  To avoid the SMP problems that can occur when we
322  * temporarily put back the original opcode to single-step, we
323  * single-stepped a copy of the instruction.  The address of this
324  * copy is p->ainsn.insn.
325  */
326 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
327 {
328 	int ret;
329 	unsigned int insn = *p->ainsn.insn;
330 
331 	regs->nip = (unsigned long)p->addr;
332 	ret = emulate_step(regs, insn);
333 	if (ret == 0)
334 		regs->nip = (unsigned long)p->addr + 4;
335 }
336 
337 static inline int post_kprobe_handler(struct pt_regs *regs)
338 {
339 	struct kprobe *cur = kprobe_running();
340 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
341 
342 	if (!cur)
343 		return 0;
344 
345 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
346 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
347 		cur->post_handler(cur, regs, 0);
348 	}
349 
350 	resume_execution(cur, regs);
351 	regs->msr |= kcb->kprobe_saved_msr;
352 
353 	/*Restore back the original saved kprobes variables and continue. */
354 	if (kcb->kprobe_status == KPROBE_REENTER) {
355 		restore_previous_kprobe(kcb);
356 		goto out;
357 	}
358 	reset_current_kprobe();
359 out:
360 	preempt_enable_no_resched();
361 
362 	/*
363 	 * if somebody else is singlestepping across a probe point, msr
364 	 * will have SE set, in which case, continue the remaining processing
365 	 * of do_debug, as if this is not a probe hit.
366 	 */
367 	if (regs->msr & MSR_SE)
368 		return 0;
369 
370 	return 1;
371 }
372 
373 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
374 {
375 	struct kprobe *cur = kprobe_running();
376 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
377 	const struct exception_table_entry *entry;
378 
379 	switch(kcb->kprobe_status) {
380 	case KPROBE_HIT_SS:
381 	case KPROBE_REENTER:
382 		/*
383 		 * We are here because the instruction being single
384 		 * stepped caused a page fault. We reset the current
385 		 * kprobe and the nip points back to the probe address
386 		 * and allow the page fault handler to continue as a
387 		 * normal page fault.
388 		 */
389 		regs->nip = (unsigned long)cur->addr;
390 		regs->msr &= ~MSR_SE;
391 		regs->msr |= kcb->kprobe_saved_msr;
392 		if (kcb->kprobe_status == KPROBE_REENTER)
393 			restore_previous_kprobe(kcb);
394 		else
395 			reset_current_kprobe();
396 		preempt_enable_no_resched();
397 		break;
398 	case KPROBE_HIT_ACTIVE:
399 	case KPROBE_HIT_SSDONE:
400 		/*
401 		 * We increment the nmissed count for accounting,
402 		 * we can also use npre/npostfault count for accouting
403 		 * these specific fault cases.
404 		 */
405 		kprobes_inc_nmissed_count(cur);
406 
407 		/*
408 		 * We come here because instructions in the pre/post
409 		 * handler caused the page_fault, this could happen
410 		 * if handler tries to access user space by
411 		 * copy_from_user(), get_user() etc. Let the
412 		 * user-specified handler try to fix it first.
413 		 */
414 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
415 			return 1;
416 
417 		/*
418 		 * In case the user-specified fault handler returned
419 		 * zero, try to fix up.
420 		 */
421 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
422 			regs->nip = entry->fixup;
423 			return 1;
424 		}
425 
426 		/*
427 		 * fixup_exception() could not handle it,
428 		 * Let do_page_fault() fix it.
429 		 */
430 		break;
431 	default:
432 		break;
433 	}
434 	return 0;
435 }
436 
437 /*
438  * Wrapper routine to for handling exceptions.
439  */
440 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
441 				       unsigned long val, void *data)
442 {
443 	struct die_args *args = (struct die_args *)data;
444 	int ret = NOTIFY_DONE;
445 
446 	if (args->regs && user_mode(args->regs))
447 		return ret;
448 
449 	switch (val) {
450 	case DIE_BPT:
451 		if (kprobe_handler(args->regs))
452 			ret = NOTIFY_STOP;
453 		break;
454 	case DIE_SSTEP:
455 		if (post_kprobe_handler(args->regs))
456 			ret = NOTIFY_STOP;
457 		break;
458 	case DIE_PAGE_FAULT:
459 		/* kprobe_running() needs smp_processor_id() */
460 		preempt_disable();
461 		if (kprobe_running() &&
462 		    kprobe_fault_handler(args->regs, args->trapnr))
463 			ret = NOTIFY_STOP;
464 		preempt_enable();
465 		break;
466 	default:
467 		break;
468 	}
469 	return ret;
470 }
471 
472 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
473 {
474 	struct jprobe *jp = container_of(p, struct jprobe, kp);
475 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
476 
477 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
478 
479 	/* setup return addr to the jprobe handler routine */
480 	regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
481 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
482 
483 	return 1;
484 }
485 
486 void __kprobes jprobe_return(void)
487 {
488 	asm volatile("trap" ::: "memory");
489 }
490 
491 void __kprobes jprobe_return_end(void)
492 {
493 };
494 
495 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
496 {
497 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
498 
499 	/*
500 	 * FIXME - we should ideally be validating that we got here 'cos
501 	 * of the "trap" in jprobe_return() above, before restoring the
502 	 * saved regs...
503 	 */
504 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
505 	preempt_enable_no_resched();
506 	return 1;
507 }
508 
509 static struct kprobe trampoline_p = {
510 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
511 	.pre_handler = trampoline_probe_handler
512 };
513 
514 int __init arch_init_kprobes(void)
515 {
516 	return register_kprobe(&trampoline_p);
517 }
518