1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port 26 * for PPC64 27 */ 28 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/preempt.h> 32 #include <linux/module.h> 33 #include <asm/cacheflush.h> 34 #include <asm/kdebug.h> 35 #include <asm/sstep.h> 36 #include <asm/uaccess.h> 37 38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 40 41 int __kprobes arch_prepare_kprobe(struct kprobe *p) 42 { 43 int ret = 0; 44 kprobe_opcode_t insn = *p->addr; 45 46 if ((unsigned long)p->addr & 0x03) { 47 printk("Attempt to register kprobe at an unaligned address\n"); 48 ret = -EINVAL; 49 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { 50 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); 51 ret = -EINVAL; 52 } 53 54 /* insn must be on a special executable page on ppc64 */ 55 if (!ret) { 56 p->ainsn.insn = get_insn_slot(); 57 if (!p->ainsn.insn) 58 ret = -ENOMEM; 59 } 60 61 if (!ret) { 62 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 63 p->opcode = *p->addr; 64 flush_icache_range((unsigned long)p->ainsn.insn, 65 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); 66 } 67 68 return ret; 69 } 70 71 void __kprobes arch_arm_kprobe(struct kprobe *p) 72 { 73 *p->addr = BREAKPOINT_INSTRUCTION; 74 flush_icache_range((unsigned long) p->addr, 75 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 76 } 77 78 void __kprobes arch_disarm_kprobe(struct kprobe *p) 79 { 80 *p->addr = p->opcode; 81 flush_icache_range((unsigned long) p->addr, 82 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 83 } 84 85 void __kprobes arch_remove_kprobe(struct kprobe *p) 86 { 87 mutex_lock(&kprobe_mutex); 88 free_insn_slot(p->ainsn.insn, 0); 89 mutex_unlock(&kprobe_mutex); 90 } 91 92 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 93 { 94 regs->msr |= MSR_SE; 95 96 /* 97 * On powerpc we should single step on the original 98 * instruction even if the probed insn is a trap 99 * variant as values in regs could play a part in 100 * if the trap is taken or not 101 */ 102 regs->nip = (unsigned long)p->ainsn.insn; 103 } 104 105 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 106 { 107 kcb->prev_kprobe.kp = kprobe_running(); 108 kcb->prev_kprobe.status = kcb->kprobe_status; 109 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; 110 } 111 112 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 113 { 114 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 115 kcb->kprobe_status = kcb->prev_kprobe.status; 116 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; 117 } 118 119 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 120 struct kprobe_ctlblk *kcb) 121 { 122 __get_cpu_var(current_kprobe) = p; 123 kcb->kprobe_saved_msr = regs->msr; 124 } 125 126 /* Called with kretprobe_lock held */ 127 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp, 128 struct pt_regs *regs) 129 { 130 struct kretprobe_instance *ri; 131 132 if ((ri = get_free_rp_inst(rp)) != NULL) { 133 ri->rp = rp; 134 ri->task = current; 135 ri->ret_addr = (kprobe_opcode_t *)regs->link; 136 137 /* Replace the return addr with trampoline addr */ 138 regs->link = (unsigned long)kretprobe_trampoline; 139 add_rp_inst(ri); 140 } else { 141 rp->nmissed++; 142 } 143 } 144 145 static int __kprobes kprobe_handler(struct pt_regs *regs) 146 { 147 struct kprobe *p; 148 int ret = 0; 149 unsigned int *addr = (unsigned int *)regs->nip; 150 struct kprobe_ctlblk *kcb; 151 152 /* 153 * We don't want to be preempted for the entire 154 * duration of kprobe processing 155 */ 156 preempt_disable(); 157 kcb = get_kprobe_ctlblk(); 158 159 /* Check we're not actually recursing */ 160 if (kprobe_running()) { 161 p = get_kprobe(addr); 162 if (p) { 163 kprobe_opcode_t insn = *p->ainsn.insn; 164 if (kcb->kprobe_status == KPROBE_HIT_SS && 165 is_trap(insn)) { 166 regs->msr &= ~MSR_SE; 167 regs->msr |= kcb->kprobe_saved_msr; 168 goto no_kprobe; 169 } 170 /* We have reentered the kprobe_handler(), since 171 * another probe was hit while within the handler. 172 * We here save the original kprobes variables and 173 * just single step on the instruction of the new probe 174 * without calling any user handlers. 175 */ 176 save_previous_kprobe(kcb); 177 set_current_kprobe(p, regs, kcb); 178 kcb->kprobe_saved_msr = regs->msr; 179 kprobes_inc_nmissed_count(p); 180 prepare_singlestep(p, regs); 181 kcb->kprobe_status = KPROBE_REENTER; 182 return 1; 183 } else { 184 if (*addr != BREAKPOINT_INSTRUCTION) { 185 /* If trap variant, then it belongs not to us */ 186 kprobe_opcode_t cur_insn = *addr; 187 if (is_trap(cur_insn)) 188 goto no_kprobe; 189 /* The breakpoint instruction was removed by 190 * another cpu right after we hit, no further 191 * handling of this interrupt is appropriate 192 */ 193 ret = 1; 194 goto no_kprobe; 195 } 196 p = __get_cpu_var(current_kprobe); 197 if (p->break_handler && p->break_handler(p, regs)) { 198 goto ss_probe; 199 } 200 } 201 goto no_kprobe; 202 } 203 204 p = get_kprobe(addr); 205 if (!p) { 206 if (*addr != BREAKPOINT_INSTRUCTION) { 207 /* 208 * PowerPC has multiple variants of the "trap" 209 * instruction. If the current instruction is a 210 * trap variant, it could belong to someone else 211 */ 212 kprobe_opcode_t cur_insn = *addr; 213 if (is_trap(cur_insn)) 214 goto no_kprobe; 215 /* 216 * The breakpoint instruction was removed right 217 * after we hit it. Another cpu has removed 218 * either a probepoint or a debugger breakpoint 219 * at this address. In either case, no further 220 * handling of this interrupt is appropriate. 221 */ 222 ret = 1; 223 } 224 /* Not one of ours: let kernel handle it */ 225 goto no_kprobe; 226 } 227 228 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 229 set_current_kprobe(p, regs, kcb); 230 if (p->pre_handler && p->pre_handler(p, regs)) 231 /* handler has already set things up, so skip ss setup */ 232 return 1; 233 234 ss_probe: 235 prepare_singlestep(p, regs); 236 kcb->kprobe_status = KPROBE_HIT_SS; 237 return 1; 238 239 no_kprobe: 240 preempt_enable_no_resched(); 241 return ret; 242 } 243 244 /* 245 * Function return probe trampoline: 246 * - init_kprobes() establishes a probepoint here 247 * - When the probed function returns, this probe 248 * causes the handlers to fire 249 */ 250 void kretprobe_trampoline_holder(void) 251 { 252 asm volatile(".global kretprobe_trampoline\n" 253 "kretprobe_trampoline:\n" 254 "nop\n"); 255 } 256 257 /* 258 * Called when the probe at kretprobe trampoline is hit 259 */ 260 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs) 261 { 262 struct kretprobe_instance *ri = NULL; 263 struct hlist_head *head, empty_rp; 264 struct hlist_node *node, *tmp; 265 unsigned long flags, orig_ret_address = 0; 266 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; 267 268 INIT_HLIST_HEAD(&empty_rp); 269 spin_lock_irqsave(&kretprobe_lock, flags); 270 head = kretprobe_inst_table_head(current); 271 272 /* 273 * It is possible to have multiple instances associated with a given 274 * task either because an multiple functions in the call path 275 * have a return probe installed on them, and/or more then one return 276 * return probe was registered for a target function. 277 * 278 * We can handle this because: 279 * - instances are always inserted at the head of the list 280 * - when multiple return probes are registered for the same 281 * function, the first instance's ret_addr will point to the 282 * real return address, and all the rest will point to 283 * kretprobe_trampoline 284 */ 285 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 286 if (ri->task != current) 287 /* another task is sharing our hash bucket */ 288 continue; 289 290 if (ri->rp && ri->rp->handler) 291 ri->rp->handler(ri, regs); 292 293 orig_ret_address = (unsigned long)ri->ret_addr; 294 recycle_rp_inst(ri, &empty_rp); 295 296 if (orig_ret_address != trampoline_address) 297 /* 298 * This is the real return address. Any other 299 * instances associated with this task are for 300 * other calls deeper on the call stack 301 */ 302 break; 303 } 304 305 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address)); 306 regs->nip = orig_ret_address; 307 308 reset_current_kprobe(); 309 spin_unlock_irqrestore(&kretprobe_lock, flags); 310 preempt_enable_no_resched(); 311 312 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 313 hlist_del(&ri->hlist); 314 kfree(ri); 315 } 316 /* 317 * By returning a non-zero value, we are telling 318 * kprobe_handler() that we don't want the post_handler 319 * to run (and have re-enabled preemption) 320 */ 321 return 1; 322 } 323 324 /* 325 * Called after single-stepping. p->addr is the address of the 326 * instruction whose first byte has been replaced by the "breakpoint" 327 * instruction. To avoid the SMP problems that can occur when we 328 * temporarily put back the original opcode to single-step, we 329 * single-stepped a copy of the instruction. The address of this 330 * copy is p->ainsn.insn. 331 */ 332 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 333 { 334 int ret; 335 unsigned int insn = *p->ainsn.insn; 336 337 regs->nip = (unsigned long)p->addr; 338 ret = emulate_step(regs, insn); 339 if (ret == 0) 340 regs->nip = (unsigned long)p->addr + 4; 341 } 342 343 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 344 { 345 struct kprobe *cur = kprobe_running(); 346 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 347 348 if (!cur) 349 return 0; 350 351 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 352 kcb->kprobe_status = KPROBE_HIT_SSDONE; 353 cur->post_handler(cur, regs, 0); 354 } 355 356 resume_execution(cur, regs); 357 regs->msr |= kcb->kprobe_saved_msr; 358 359 /*Restore back the original saved kprobes variables and continue. */ 360 if (kcb->kprobe_status == KPROBE_REENTER) { 361 restore_previous_kprobe(kcb); 362 goto out; 363 } 364 reset_current_kprobe(); 365 out: 366 preempt_enable_no_resched(); 367 368 /* 369 * if somebody else is singlestepping across a probe point, msr 370 * will have SE set, in which case, continue the remaining processing 371 * of do_debug, as if this is not a probe hit. 372 */ 373 if (regs->msr & MSR_SE) 374 return 0; 375 376 return 1; 377 } 378 379 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 380 { 381 struct kprobe *cur = kprobe_running(); 382 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 383 const struct exception_table_entry *entry; 384 385 switch(kcb->kprobe_status) { 386 case KPROBE_HIT_SS: 387 case KPROBE_REENTER: 388 /* 389 * We are here because the instruction being single 390 * stepped caused a page fault. We reset the current 391 * kprobe and the nip points back to the probe address 392 * and allow the page fault handler to continue as a 393 * normal page fault. 394 */ 395 regs->nip = (unsigned long)cur->addr; 396 regs->msr &= ~MSR_SE; 397 regs->msr |= kcb->kprobe_saved_msr; 398 if (kcb->kprobe_status == KPROBE_REENTER) 399 restore_previous_kprobe(kcb); 400 else 401 reset_current_kprobe(); 402 preempt_enable_no_resched(); 403 break; 404 case KPROBE_HIT_ACTIVE: 405 case KPROBE_HIT_SSDONE: 406 /* 407 * We increment the nmissed count for accounting, 408 * we can also use npre/npostfault count for accouting 409 * these specific fault cases. 410 */ 411 kprobes_inc_nmissed_count(cur); 412 413 /* 414 * We come here because instructions in the pre/post 415 * handler caused the page_fault, this could happen 416 * if handler tries to access user space by 417 * copy_from_user(), get_user() etc. Let the 418 * user-specified handler try to fix it first. 419 */ 420 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 421 return 1; 422 423 /* 424 * In case the user-specified fault handler returned 425 * zero, try to fix up. 426 */ 427 if ((entry = search_exception_tables(regs->nip)) != NULL) { 428 regs->nip = entry->fixup; 429 return 1; 430 } 431 432 /* 433 * fixup_exception() could not handle it, 434 * Let do_page_fault() fix it. 435 */ 436 break; 437 default: 438 break; 439 } 440 return 0; 441 } 442 443 /* 444 * Wrapper routine to for handling exceptions. 445 */ 446 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 447 unsigned long val, void *data) 448 { 449 struct die_args *args = (struct die_args *)data; 450 int ret = NOTIFY_DONE; 451 452 if (args->regs && user_mode(args->regs)) 453 return ret; 454 455 switch (val) { 456 case DIE_BPT: 457 if (kprobe_handler(args->regs)) 458 ret = NOTIFY_STOP; 459 break; 460 case DIE_SSTEP: 461 if (post_kprobe_handler(args->regs)) 462 ret = NOTIFY_STOP; 463 break; 464 case DIE_PAGE_FAULT: 465 /* kprobe_running() needs smp_processor_id() */ 466 preempt_disable(); 467 if (kprobe_running() && 468 kprobe_fault_handler(args->regs, args->trapnr)) 469 ret = NOTIFY_STOP; 470 preempt_enable(); 471 break; 472 default: 473 break; 474 } 475 return ret; 476 } 477 478 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 479 { 480 struct jprobe *jp = container_of(p, struct jprobe, kp); 481 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 482 483 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 484 485 /* setup return addr to the jprobe handler routine */ 486 #ifdef CONFIG_PPC64 487 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry); 488 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); 489 #else 490 regs->nip = (unsigned long)jp->entry; 491 #endif 492 493 return 1; 494 } 495 496 void __kprobes jprobe_return(void) 497 { 498 asm volatile("trap" ::: "memory"); 499 } 500 501 void __kprobes jprobe_return_end(void) 502 { 503 }; 504 505 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 506 { 507 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 508 509 /* 510 * FIXME - we should ideally be validating that we got here 'cos 511 * of the "trap" in jprobe_return() above, before restoring the 512 * saved regs... 513 */ 514 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 515 preempt_enable_no_resched(); 516 return 1; 517 } 518 519 static struct kprobe trampoline_p = { 520 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 521 .pre_handler = trampoline_probe_handler 522 }; 523 524 int __init arch_init_kprobes(void) 525 { 526 return register_kprobe(&trampoline_p); 527 } 528