xref: /linux/arch/powerpc/kernel/kprobes.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/module.h>
33 #include <asm/cacheflush.h>
34 #include <asm/kdebug.h>
35 #include <asm/sstep.h>
36 #include <asm/uaccess.h>
37 
38 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
39 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
40 
41 int __kprobes arch_prepare_kprobe(struct kprobe *p)
42 {
43 	int ret = 0;
44 	kprobe_opcode_t insn = *p->addr;
45 
46 	if ((unsigned long)p->addr & 0x03) {
47 		printk("Attempt to register kprobe at an unaligned address\n");
48 		ret = -EINVAL;
49 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
50 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
51 		ret = -EINVAL;
52 	}
53 
54 	/* insn must be on a special executable page on ppc64 */
55 	if (!ret) {
56 		p->ainsn.insn = get_insn_slot();
57 		if (!p->ainsn.insn)
58 			ret = -ENOMEM;
59 	}
60 
61 	if (!ret) {
62 		memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
63 		p->opcode = *p->addr;
64 		flush_icache_range((unsigned long)p->ainsn.insn,
65 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
66 	}
67 
68 	return ret;
69 }
70 
71 void __kprobes arch_arm_kprobe(struct kprobe *p)
72 {
73 	*p->addr = BREAKPOINT_INSTRUCTION;
74 	flush_icache_range((unsigned long) p->addr,
75 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
76 }
77 
78 void __kprobes arch_disarm_kprobe(struct kprobe *p)
79 {
80 	*p->addr = p->opcode;
81 	flush_icache_range((unsigned long) p->addr,
82 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
83 }
84 
85 void __kprobes arch_remove_kprobe(struct kprobe *p)
86 {
87 	mutex_lock(&kprobe_mutex);
88 	free_insn_slot(p->ainsn.insn, 0);
89 	mutex_unlock(&kprobe_mutex);
90 }
91 
92 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
93 {
94 	regs->msr |= MSR_SE;
95 
96 	/*
97 	 * On powerpc we should single step on the original
98 	 * instruction even if the probed insn is a trap
99 	 * variant as values in regs could play a part in
100 	 * if the trap is taken or not
101 	 */
102 	regs->nip = (unsigned long)p->ainsn.insn;
103 }
104 
105 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
106 {
107 	kcb->prev_kprobe.kp = kprobe_running();
108 	kcb->prev_kprobe.status = kcb->kprobe_status;
109 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
110 }
111 
112 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
113 {
114 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
115 	kcb->kprobe_status = kcb->prev_kprobe.status;
116 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
117 }
118 
119 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
120 				struct kprobe_ctlblk *kcb)
121 {
122 	__get_cpu_var(current_kprobe) = p;
123 	kcb->kprobe_saved_msr = regs->msr;
124 }
125 
126 /* Called with kretprobe_lock held */
127 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
128 				      struct pt_regs *regs)
129 {
130 	struct kretprobe_instance *ri;
131 
132 	if ((ri = get_free_rp_inst(rp)) != NULL) {
133 		ri->rp = rp;
134 		ri->task = current;
135 		ri->ret_addr = (kprobe_opcode_t *)regs->link;
136 
137 		/* Replace the return addr with trampoline addr */
138 		regs->link = (unsigned long)kretprobe_trampoline;
139 		add_rp_inst(ri);
140 	} else {
141 		rp->nmissed++;
142 	}
143 }
144 
145 static int __kprobes kprobe_handler(struct pt_regs *regs)
146 {
147 	struct kprobe *p;
148 	int ret = 0;
149 	unsigned int *addr = (unsigned int *)regs->nip;
150 	struct kprobe_ctlblk *kcb;
151 
152 	/*
153 	 * We don't want to be preempted for the entire
154 	 * duration of kprobe processing
155 	 */
156 	preempt_disable();
157 	kcb = get_kprobe_ctlblk();
158 
159 	/* Check we're not actually recursing */
160 	if (kprobe_running()) {
161 		p = get_kprobe(addr);
162 		if (p) {
163 			kprobe_opcode_t insn = *p->ainsn.insn;
164 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
165 					is_trap(insn)) {
166 				regs->msr &= ~MSR_SE;
167 				regs->msr |= kcb->kprobe_saved_msr;
168 				goto no_kprobe;
169 			}
170 			/* We have reentered the kprobe_handler(), since
171 			 * another probe was hit while within the handler.
172 			 * We here save the original kprobes variables and
173 			 * just single step on the instruction of the new probe
174 			 * without calling any user handlers.
175 			 */
176 			save_previous_kprobe(kcb);
177 			set_current_kprobe(p, regs, kcb);
178 			kcb->kprobe_saved_msr = regs->msr;
179 			kprobes_inc_nmissed_count(p);
180 			prepare_singlestep(p, regs);
181 			kcb->kprobe_status = KPROBE_REENTER;
182 			return 1;
183 		} else {
184 			if (*addr != BREAKPOINT_INSTRUCTION) {
185 				/* If trap variant, then it belongs not to us */
186 				kprobe_opcode_t cur_insn = *addr;
187 				if (is_trap(cur_insn))
188 		       			goto no_kprobe;
189 				/* The breakpoint instruction was removed by
190 				 * another cpu right after we hit, no further
191 				 * handling of this interrupt is appropriate
192 				 */
193 				ret = 1;
194 				goto no_kprobe;
195 			}
196 			p = __get_cpu_var(current_kprobe);
197 			if (p->break_handler && p->break_handler(p, regs)) {
198 				goto ss_probe;
199 			}
200 		}
201 		goto no_kprobe;
202 	}
203 
204 	p = get_kprobe(addr);
205 	if (!p) {
206 		if (*addr != BREAKPOINT_INSTRUCTION) {
207 			/*
208 			 * PowerPC has multiple variants of the "trap"
209 			 * instruction. If the current instruction is a
210 			 * trap variant, it could belong to someone else
211 			 */
212 			kprobe_opcode_t cur_insn = *addr;
213 			if (is_trap(cur_insn))
214 		       		goto no_kprobe;
215 			/*
216 			 * The breakpoint instruction was removed right
217 			 * after we hit it.  Another cpu has removed
218 			 * either a probepoint or a debugger breakpoint
219 			 * at this address.  In either case, no further
220 			 * handling of this interrupt is appropriate.
221 			 */
222 			ret = 1;
223 		}
224 		/* Not one of ours: let kernel handle it */
225 		goto no_kprobe;
226 	}
227 
228 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
229 	set_current_kprobe(p, regs, kcb);
230 	if (p->pre_handler && p->pre_handler(p, regs))
231 		/* handler has already set things up, so skip ss setup */
232 		return 1;
233 
234 ss_probe:
235 	prepare_singlestep(p, regs);
236 	kcb->kprobe_status = KPROBE_HIT_SS;
237 	return 1;
238 
239 no_kprobe:
240 	preempt_enable_no_resched();
241 	return ret;
242 }
243 
244 /*
245  * Function return probe trampoline:
246  * 	- init_kprobes() establishes a probepoint here
247  * 	- When the probed function returns, this probe
248  * 		causes the handlers to fire
249  */
250 void kretprobe_trampoline_holder(void)
251 {
252 	asm volatile(".global kretprobe_trampoline\n"
253 			"kretprobe_trampoline:\n"
254 			"nop\n");
255 }
256 
257 /*
258  * Called when the probe at kretprobe trampoline is hit
259  */
260 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
261 {
262 	struct kretprobe_instance *ri = NULL;
263 	struct hlist_head *head, empty_rp;
264 	struct hlist_node *node, *tmp;
265 	unsigned long flags, orig_ret_address = 0;
266 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
267 
268 	INIT_HLIST_HEAD(&empty_rp);
269 	spin_lock_irqsave(&kretprobe_lock, flags);
270 	head = kretprobe_inst_table_head(current);
271 
272 	/*
273 	 * It is possible to have multiple instances associated with a given
274 	 * task either because an multiple functions in the call path
275 	 * have a return probe installed on them, and/or more then one return
276 	 * return probe was registered for a target function.
277 	 *
278 	 * We can handle this because:
279 	 *     - instances are always inserted at the head of the list
280 	 *     - when multiple return probes are registered for the same
281 	 *       function, the first instance's ret_addr will point to the
282 	 *       real return address, and all the rest will point to
283 	 *       kretprobe_trampoline
284 	 */
285 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
286 		if (ri->task != current)
287 			/* another task is sharing our hash bucket */
288 			continue;
289 
290 		if (ri->rp && ri->rp->handler)
291 			ri->rp->handler(ri, regs);
292 
293 		orig_ret_address = (unsigned long)ri->ret_addr;
294 		recycle_rp_inst(ri, &empty_rp);
295 
296 		if (orig_ret_address != trampoline_address)
297 			/*
298 			 * This is the real return address. Any other
299 			 * instances associated with this task are for
300 			 * other calls deeper on the call stack
301 			 */
302 			break;
303 	}
304 
305 	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
306 	regs->nip = orig_ret_address;
307 
308 	reset_current_kprobe();
309 	spin_unlock_irqrestore(&kretprobe_lock, flags);
310 	preempt_enable_no_resched();
311 
312 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
313 		hlist_del(&ri->hlist);
314 		kfree(ri);
315 	}
316 	/*
317 	 * By returning a non-zero value, we are telling
318 	 * kprobe_handler() that we don't want the post_handler
319 	 * to run (and have re-enabled preemption)
320 	 */
321 	return 1;
322 }
323 
324 /*
325  * Called after single-stepping.  p->addr is the address of the
326  * instruction whose first byte has been replaced by the "breakpoint"
327  * instruction.  To avoid the SMP problems that can occur when we
328  * temporarily put back the original opcode to single-step, we
329  * single-stepped a copy of the instruction.  The address of this
330  * copy is p->ainsn.insn.
331  */
332 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
333 {
334 	int ret;
335 	unsigned int insn = *p->ainsn.insn;
336 
337 	regs->nip = (unsigned long)p->addr;
338 	ret = emulate_step(regs, insn);
339 	if (ret == 0)
340 		regs->nip = (unsigned long)p->addr + 4;
341 }
342 
343 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
344 {
345 	struct kprobe *cur = kprobe_running();
346 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
347 
348 	if (!cur)
349 		return 0;
350 
351 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
352 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
353 		cur->post_handler(cur, regs, 0);
354 	}
355 
356 	resume_execution(cur, regs);
357 	regs->msr |= kcb->kprobe_saved_msr;
358 
359 	/*Restore back the original saved kprobes variables and continue. */
360 	if (kcb->kprobe_status == KPROBE_REENTER) {
361 		restore_previous_kprobe(kcb);
362 		goto out;
363 	}
364 	reset_current_kprobe();
365 out:
366 	preempt_enable_no_resched();
367 
368 	/*
369 	 * if somebody else is singlestepping across a probe point, msr
370 	 * will have SE set, in which case, continue the remaining processing
371 	 * of do_debug, as if this is not a probe hit.
372 	 */
373 	if (regs->msr & MSR_SE)
374 		return 0;
375 
376 	return 1;
377 }
378 
379 static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
380 {
381 	struct kprobe *cur = kprobe_running();
382 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
383 	const struct exception_table_entry *entry;
384 
385 	switch(kcb->kprobe_status) {
386 	case KPROBE_HIT_SS:
387 	case KPROBE_REENTER:
388 		/*
389 		 * We are here because the instruction being single
390 		 * stepped caused a page fault. We reset the current
391 		 * kprobe and the nip points back to the probe address
392 		 * and allow the page fault handler to continue as a
393 		 * normal page fault.
394 		 */
395 		regs->nip = (unsigned long)cur->addr;
396 		regs->msr &= ~MSR_SE;
397 		regs->msr |= kcb->kprobe_saved_msr;
398 		if (kcb->kprobe_status == KPROBE_REENTER)
399 			restore_previous_kprobe(kcb);
400 		else
401 			reset_current_kprobe();
402 		preempt_enable_no_resched();
403 		break;
404 	case KPROBE_HIT_ACTIVE:
405 	case KPROBE_HIT_SSDONE:
406 		/*
407 		 * We increment the nmissed count for accounting,
408 		 * we can also use npre/npostfault count for accouting
409 		 * these specific fault cases.
410 		 */
411 		kprobes_inc_nmissed_count(cur);
412 
413 		/*
414 		 * We come here because instructions in the pre/post
415 		 * handler caused the page_fault, this could happen
416 		 * if handler tries to access user space by
417 		 * copy_from_user(), get_user() etc. Let the
418 		 * user-specified handler try to fix it first.
419 		 */
420 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
421 			return 1;
422 
423 		/*
424 		 * In case the user-specified fault handler returned
425 		 * zero, try to fix up.
426 		 */
427 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
428 			regs->nip = entry->fixup;
429 			return 1;
430 		}
431 
432 		/*
433 		 * fixup_exception() could not handle it,
434 		 * Let do_page_fault() fix it.
435 		 */
436 		break;
437 	default:
438 		break;
439 	}
440 	return 0;
441 }
442 
443 /*
444  * Wrapper routine to for handling exceptions.
445  */
446 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
447 				       unsigned long val, void *data)
448 {
449 	struct die_args *args = (struct die_args *)data;
450 	int ret = NOTIFY_DONE;
451 
452 	if (args->regs && user_mode(args->regs))
453 		return ret;
454 
455 	switch (val) {
456 	case DIE_BPT:
457 		if (kprobe_handler(args->regs))
458 			ret = NOTIFY_STOP;
459 		break;
460 	case DIE_SSTEP:
461 		if (post_kprobe_handler(args->regs))
462 			ret = NOTIFY_STOP;
463 		break;
464 	case DIE_PAGE_FAULT:
465 		/* kprobe_running() needs smp_processor_id() */
466 		preempt_disable();
467 		if (kprobe_running() &&
468 		    kprobe_fault_handler(args->regs, args->trapnr))
469 			ret = NOTIFY_STOP;
470 		preempt_enable();
471 		break;
472 	default:
473 		break;
474 	}
475 	return ret;
476 }
477 
478 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
479 {
480 	struct jprobe *jp = container_of(p, struct jprobe, kp);
481 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
482 
483 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
484 
485 	/* setup return addr to the jprobe handler routine */
486 #ifdef CONFIG_PPC64
487 	regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
488 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
489 #else
490 	regs->nip = (unsigned long)jp->entry;
491 #endif
492 
493 	return 1;
494 }
495 
496 void __kprobes jprobe_return(void)
497 {
498 	asm volatile("trap" ::: "memory");
499 }
500 
501 void __kprobes jprobe_return_end(void)
502 {
503 };
504 
505 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
506 {
507 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
508 
509 	/*
510 	 * FIXME - we should ideally be validating that we got here 'cos
511 	 * of the "trap" in jprobe_return() above, before restoring the
512 	 * saved regs...
513 	 */
514 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
515 	preempt_enable_no_resched();
516 	return 1;
517 }
518 
519 static struct kprobe trampoline_p = {
520 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
521 	.pre_handler = trampoline_probe_handler
522 };
523 
524 int __init arch_init_kprobes(void)
525 {
526 	return register_kprobe(&trampoline_p);
527 }
528