xref: /linux/arch/powerpc/kernel/kprobes.c (revision 69fb09f6ccdb2f070557fd1f4c56c4d646694c8e)
1 /*
2  *  Kernel Probes (KProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2002, 2004
19  *
20  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
21  *		Probes initial implementation ( includes contributions from
22  *		Rusty Russell).
23  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
24  *		interface to access function arguments.
25  * 2004-Nov	Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
26  *		for PPC64
27  */
28 
29 #include <linux/kprobes.h>
30 #include <linux/ptrace.h>
31 #include <linux/preempt.h>
32 #include <linux/extable.h>
33 #include <linux/kdebug.h>
34 #include <linux/slab.h>
35 #include <asm/code-patching.h>
36 #include <asm/cacheflush.h>
37 #include <asm/sstep.h>
38 #include <asm/sections.h>
39 #include <linux/uaccess.h>
40 
41 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
42 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
43 
44 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
45 
46 int is_current_kprobe_addr(unsigned long addr)
47 {
48 	struct kprobe *p = kprobe_running();
49 	return (p && (unsigned long)p->addr == addr) ? 1 : 0;
50 }
51 
52 bool arch_within_kprobe_blacklist(unsigned long addr)
53 {
54 	return  (addr >= (unsigned long)__kprobes_text_start &&
55 		 addr < (unsigned long)__kprobes_text_end) ||
56 		(addr >= (unsigned long)_stext &&
57 		 addr < (unsigned long)__head_end);
58 }
59 
60 kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
61 {
62 	kprobe_opcode_t *addr;
63 
64 #ifdef PPC64_ELF_ABI_v2
65 	/* PPC64 ABIv2 needs local entry point */
66 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
67 	if (addr && !offset) {
68 #ifdef CONFIG_KPROBES_ON_FTRACE
69 		unsigned long faddr;
70 		/*
71 		 * Per livepatch.h, ftrace location is always within the first
72 		 * 16 bytes of a function on powerpc with -mprofile-kernel.
73 		 */
74 		faddr = ftrace_location_range((unsigned long)addr,
75 					      (unsigned long)addr + 16);
76 		if (faddr)
77 			addr = (kprobe_opcode_t *)faddr;
78 		else
79 #endif
80 			addr = (kprobe_opcode_t *)ppc_function_entry(addr);
81 	}
82 #elif defined(PPC64_ELF_ABI_v1)
83 	/*
84 	 * 64bit powerpc ABIv1 uses function descriptors:
85 	 * - Check for the dot variant of the symbol first.
86 	 * - If that fails, try looking up the symbol provided.
87 	 *
88 	 * This ensures we always get to the actual symbol and not
89 	 * the descriptor.
90 	 *
91 	 * Also handle <module:symbol> format.
92 	 */
93 	char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
94 	const char *modsym;
95 	bool dot_appended = false;
96 	if ((modsym = strchr(name, ':')) != NULL) {
97 		modsym++;
98 		if (*modsym != '\0' && *modsym != '.') {
99 			/* Convert to <module:.symbol> */
100 			strncpy(dot_name, name, modsym - name);
101 			dot_name[modsym - name] = '.';
102 			dot_name[modsym - name + 1] = '\0';
103 			strncat(dot_name, modsym,
104 				sizeof(dot_name) - (modsym - name) - 2);
105 			dot_appended = true;
106 		} else {
107 			dot_name[0] = '\0';
108 			strncat(dot_name, name, sizeof(dot_name) - 1);
109 		}
110 	} else if (name[0] != '.') {
111 		dot_name[0] = '.';
112 		dot_name[1] = '\0';
113 		strncat(dot_name, name, KSYM_NAME_LEN - 2);
114 		dot_appended = true;
115 	} else {
116 		dot_name[0] = '\0';
117 		strncat(dot_name, name, KSYM_NAME_LEN - 1);
118 	}
119 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
120 	if (!addr && dot_appended) {
121 		/* Let's try the original non-dot symbol lookup	*/
122 		addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
123 	}
124 #else
125 	addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
126 #endif
127 
128 	return addr;
129 }
130 
131 int arch_prepare_kprobe(struct kprobe *p)
132 {
133 	int ret = 0;
134 	kprobe_opcode_t insn = *p->addr;
135 
136 	if ((unsigned long)p->addr & 0x03) {
137 		printk("Attempt to register kprobe at an unaligned address\n");
138 		ret = -EINVAL;
139 	} else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) {
140 		printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n");
141 		ret = -EINVAL;
142 	}
143 
144 	/* insn must be on a special executable page on ppc64.  This is
145 	 * not explicitly required on ppc32 (right now), but it doesn't hurt */
146 	if (!ret) {
147 		p->ainsn.insn = get_insn_slot();
148 		if (!p->ainsn.insn)
149 			ret = -ENOMEM;
150 	}
151 
152 	if (!ret) {
153 		memcpy(p->ainsn.insn, p->addr,
154 				MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
155 		p->opcode = *p->addr;
156 		flush_icache_range((unsigned long)p->ainsn.insn,
157 			(unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t));
158 	}
159 
160 	p->ainsn.boostable = 0;
161 	return ret;
162 }
163 NOKPROBE_SYMBOL(arch_prepare_kprobe);
164 
165 void arch_arm_kprobe(struct kprobe *p)
166 {
167 	*p->addr = BREAKPOINT_INSTRUCTION;
168 	flush_icache_range((unsigned long) p->addr,
169 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
170 }
171 NOKPROBE_SYMBOL(arch_arm_kprobe);
172 
173 void arch_disarm_kprobe(struct kprobe *p)
174 {
175 	*p->addr = p->opcode;
176 	flush_icache_range((unsigned long) p->addr,
177 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
178 }
179 NOKPROBE_SYMBOL(arch_disarm_kprobe);
180 
181 void arch_remove_kprobe(struct kprobe *p)
182 {
183 	if (p->ainsn.insn) {
184 		free_insn_slot(p->ainsn.insn, 0);
185 		p->ainsn.insn = NULL;
186 	}
187 }
188 NOKPROBE_SYMBOL(arch_remove_kprobe);
189 
190 static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
191 {
192 	enable_single_step(regs);
193 
194 	/*
195 	 * On powerpc we should single step on the original
196 	 * instruction even if the probed insn is a trap
197 	 * variant as values in regs could play a part in
198 	 * if the trap is taken or not
199 	 */
200 	regs->nip = (unsigned long)p->ainsn.insn;
201 }
202 
203 static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
204 {
205 	kcb->prev_kprobe.kp = kprobe_running();
206 	kcb->prev_kprobe.status = kcb->kprobe_status;
207 	kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
208 }
209 
210 static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
211 {
212 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
213 	kcb->kprobe_status = kcb->prev_kprobe.status;
214 	kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
215 }
216 
217 static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
218 				struct kprobe_ctlblk *kcb)
219 {
220 	__this_cpu_write(current_kprobe, p);
221 	kcb->kprobe_saved_msr = regs->msr;
222 }
223 
224 bool arch_kprobe_on_func_entry(unsigned long offset)
225 {
226 #ifdef PPC64_ELF_ABI_v2
227 #ifdef CONFIG_KPROBES_ON_FTRACE
228 	return offset <= 16;
229 #else
230 	return offset <= 8;
231 #endif
232 #else
233 	return !offset;
234 #endif
235 }
236 
237 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
238 {
239 	ri->ret_addr = (kprobe_opcode_t *)regs->link;
240 
241 	/* Replace the return addr with trampoline addr */
242 	regs->link = (unsigned long)kretprobe_trampoline;
243 }
244 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
245 
246 int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
247 {
248 	int ret;
249 	unsigned int insn = *p->ainsn.insn;
250 
251 	/* regs->nip is also adjusted if emulate_step returns 1 */
252 	ret = emulate_step(regs, insn);
253 	if (ret > 0) {
254 		/*
255 		 * Once this instruction has been boosted
256 		 * successfully, set the boostable flag
257 		 */
258 		if (unlikely(p->ainsn.boostable == 0))
259 			p->ainsn.boostable = 1;
260 	} else if (ret < 0) {
261 		/*
262 		 * We don't allow kprobes on mtmsr(d)/rfi(d), etc.
263 		 * So, we should never get here... but, its still
264 		 * good to catch them, just in case...
265 		 */
266 		printk("Can't step on instruction %x\n", insn);
267 		BUG();
268 	} else if (ret == 0)
269 		/* This instruction can't be boosted */
270 		p->ainsn.boostable = -1;
271 
272 	return ret;
273 }
274 NOKPROBE_SYMBOL(try_to_emulate);
275 
276 int kprobe_handler(struct pt_regs *regs)
277 {
278 	struct kprobe *p;
279 	int ret = 0;
280 	unsigned int *addr = (unsigned int *)regs->nip;
281 	struct kprobe_ctlblk *kcb;
282 
283 	if (user_mode(regs))
284 		return 0;
285 
286 	/*
287 	 * We don't want to be preempted for the entire
288 	 * duration of kprobe processing
289 	 */
290 	preempt_disable();
291 	kcb = get_kprobe_ctlblk();
292 
293 	/* Check we're not actually recursing */
294 	if (kprobe_running()) {
295 		p = get_kprobe(addr);
296 		if (p) {
297 			kprobe_opcode_t insn = *p->ainsn.insn;
298 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
299 					is_trap(insn)) {
300 				/* Turn off 'trace' bits */
301 				regs->msr &= ~MSR_SINGLESTEP;
302 				regs->msr |= kcb->kprobe_saved_msr;
303 				goto no_kprobe;
304 			}
305 			/* We have reentered the kprobe_handler(), since
306 			 * another probe was hit while within the handler.
307 			 * We here save the original kprobes variables and
308 			 * just single step on the instruction of the new probe
309 			 * without calling any user handlers.
310 			 */
311 			save_previous_kprobe(kcb);
312 			set_current_kprobe(p, regs, kcb);
313 			kprobes_inc_nmissed_count(p);
314 			kcb->kprobe_status = KPROBE_REENTER;
315 			if (p->ainsn.boostable >= 0) {
316 				ret = try_to_emulate(p, regs);
317 
318 				if (ret > 0) {
319 					restore_previous_kprobe(kcb);
320 					preempt_enable_no_resched();
321 					return 1;
322 				}
323 			}
324 			prepare_singlestep(p, regs);
325 			return 1;
326 		} else {
327 			if (*addr != BREAKPOINT_INSTRUCTION) {
328 				/* If trap variant, then it belongs not to us */
329 				kprobe_opcode_t cur_insn = *addr;
330 				if (is_trap(cur_insn))
331 		       			goto no_kprobe;
332 				/* The breakpoint instruction was removed by
333 				 * another cpu right after we hit, no further
334 				 * handling of this interrupt is appropriate
335 				 */
336 				ret = 1;
337 				goto no_kprobe;
338 			}
339 			p = __this_cpu_read(current_kprobe);
340 			if (p->break_handler && p->break_handler(p, regs)) {
341 				if (!skip_singlestep(p, regs, kcb))
342 					goto ss_probe;
343 				ret = 1;
344 			}
345 		}
346 		goto no_kprobe;
347 	}
348 
349 	p = get_kprobe(addr);
350 	if (!p) {
351 		if (*addr != BREAKPOINT_INSTRUCTION) {
352 			/*
353 			 * PowerPC has multiple variants of the "trap"
354 			 * instruction. If the current instruction is a
355 			 * trap variant, it could belong to someone else
356 			 */
357 			kprobe_opcode_t cur_insn = *addr;
358 			if (is_trap(cur_insn))
359 		       		goto no_kprobe;
360 			/*
361 			 * The breakpoint instruction was removed right
362 			 * after we hit it.  Another cpu has removed
363 			 * either a probepoint or a debugger breakpoint
364 			 * at this address.  In either case, no further
365 			 * handling of this interrupt is appropriate.
366 			 */
367 			ret = 1;
368 		}
369 		/* Not one of ours: let kernel handle it */
370 		goto no_kprobe;
371 	}
372 
373 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
374 	set_current_kprobe(p, regs, kcb);
375 	if (p->pre_handler && p->pre_handler(p, regs))
376 		/* handler has already set things up, so skip ss setup */
377 		return 1;
378 
379 ss_probe:
380 	if (p->ainsn.boostable >= 0) {
381 		ret = try_to_emulate(p, regs);
382 
383 		if (ret > 0) {
384 			if (p->post_handler)
385 				p->post_handler(p, regs, 0);
386 
387 			kcb->kprobe_status = KPROBE_HIT_SSDONE;
388 			reset_current_kprobe();
389 			preempt_enable_no_resched();
390 			return 1;
391 		}
392 	}
393 	prepare_singlestep(p, regs);
394 	kcb->kprobe_status = KPROBE_HIT_SS;
395 	return 1;
396 
397 no_kprobe:
398 	preempt_enable_no_resched();
399 	return ret;
400 }
401 NOKPROBE_SYMBOL(kprobe_handler);
402 
403 /*
404  * Function return probe trampoline:
405  * 	- init_kprobes() establishes a probepoint here
406  * 	- When the probed function returns, this probe
407  * 		causes the handlers to fire
408  */
409 asm(".global kretprobe_trampoline\n"
410 	".type kretprobe_trampoline, @function\n"
411 	"kretprobe_trampoline:\n"
412 	"nop\n"
413 	"blr\n"
414 	".size kretprobe_trampoline, .-kretprobe_trampoline\n");
415 
416 /*
417  * Called when the probe at kretprobe trampoline is hit
418  */
419 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
420 {
421 	struct kretprobe_instance *ri = NULL;
422 	struct hlist_head *head, empty_rp;
423 	struct hlist_node *tmp;
424 	unsigned long flags, orig_ret_address = 0;
425 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
426 
427 	INIT_HLIST_HEAD(&empty_rp);
428 	kretprobe_hash_lock(current, &head, &flags);
429 
430 	/*
431 	 * It is possible to have multiple instances associated with a given
432 	 * task either because an multiple functions in the call path
433 	 * have a return probe installed on them, and/or more than one return
434 	 * return probe was registered for a target function.
435 	 *
436 	 * We can handle this because:
437 	 *     - instances are always inserted at the head of the list
438 	 *     - when multiple return probes are registered for the same
439 	 *       function, the first instance's ret_addr will point to the
440 	 *       real return address, and all the rest will point to
441 	 *       kretprobe_trampoline
442 	 */
443 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
444 		if (ri->task != current)
445 			/* another task is sharing our hash bucket */
446 			continue;
447 
448 		if (ri->rp && ri->rp->handler)
449 			ri->rp->handler(ri, regs);
450 
451 		orig_ret_address = (unsigned long)ri->ret_addr;
452 		recycle_rp_inst(ri, &empty_rp);
453 
454 		if (orig_ret_address != trampoline_address)
455 			/*
456 			 * This is the real return address. Any other
457 			 * instances associated with this task are for
458 			 * other calls deeper on the call stack
459 			 */
460 			break;
461 	}
462 
463 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
464 	regs->nip = orig_ret_address;
465 	/*
466 	 * Make LR point to the orig_ret_address.
467 	 * When the 'nop' inside the kretprobe_trampoline
468 	 * is optimized, we can do a 'blr' after executing the
469 	 * detour buffer code.
470 	 */
471 	regs->link = orig_ret_address;
472 
473 	reset_current_kprobe();
474 	kretprobe_hash_unlock(current, &flags);
475 	preempt_enable_no_resched();
476 
477 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
478 		hlist_del(&ri->hlist);
479 		kfree(ri);
480 	}
481 	/*
482 	 * By returning a non-zero value, we are telling
483 	 * kprobe_handler() that we don't want the post_handler
484 	 * to run (and have re-enabled preemption)
485 	 */
486 	return 1;
487 }
488 NOKPROBE_SYMBOL(trampoline_probe_handler);
489 
490 /*
491  * Called after single-stepping.  p->addr is the address of the
492  * instruction whose first byte has been replaced by the "breakpoint"
493  * instruction.  To avoid the SMP problems that can occur when we
494  * temporarily put back the original opcode to single-step, we
495  * single-stepped a copy of the instruction.  The address of this
496  * copy is p->ainsn.insn.
497  */
498 int kprobe_post_handler(struct pt_regs *regs)
499 {
500 	struct kprobe *cur = kprobe_running();
501 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
502 
503 	if (!cur || user_mode(regs))
504 		return 0;
505 
506 	/* make sure we got here for instruction we have a kprobe on */
507 	if (((unsigned long)cur->ainsn.insn + 4) != regs->nip)
508 		return 0;
509 
510 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
511 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
512 		cur->post_handler(cur, regs, 0);
513 	}
514 
515 	/* Adjust nip to after the single-stepped instruction */
516 	regs->nip = (unsigned long)cur->addr + 4;
517 	regs->msr |= kcb->kprobe_saved_msr;
518 
519 	/*Restore back the original saved kprobes variables and continue. */
520 	if (kcb->kprobe_status == KPROBE_REENTER) {
521 		restore_previous_kprobe(kcb);
522 		goto out;
523 	}
524 	reset_current_kprobe();
525 out:
526 	preempt_enable_no_resched();
527 
528 	/*
529 	 * if somebody else is singlestepping across a probe point, msr
530 	 * will have DE/SE set, in which case, continue the remaining processing
531 	 * of do_debug, as if this is not a probe hit.
532 	 */
533 	if (regs->msr & MSR_SINGLESTEP)
534 		return 0;
535 
536 	return 1;
537 }
538 NOKPROBE_SYMBOL(kprobe_post_handler);
539 
540 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
541 {
542 	struct kprobe *cur = kprobe_running();
543 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
544 	const struct exception_table_entry *entry;
545 
546 	switch(kcb->kprobe_status) {
547 	case KPROBE_HIT_SS:
548 	case KPROBE_REENTER:
549 		/*
550 		 * We are here because the instruction being single
551 		 * stepped caused a page fault. We reset the current
552 		 * kprobe and the nip points back to the probe address
553 		 * and allow the page fault handler to continue as a
554 		 * normal page fault.
555 		 */
556 		regs->nip = (unsigned long)cur->addr;
557 		regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */
558 		regs->msr |= kcb->kprobe_saved_msr;
559 		if (kcb->kprobe_status == KPROBE_REENTER)
560 			restore_previous_kprobe(kcb);
561 		else
562 			reset_current_kprobe();
563 		preempt_enable_no_resched();
564 		break;
565 	case KPROBE_HIT_ACTIVE:
566 	case KPROBE_HIT_SSDONE:
567 		/*
568 		 * We increment the nmissed count for accounting,
569 		 * we can also use npre/npostfault count for accounting
570 		 * these specific fault cases.
571 		 */
572 		kprobes_inc_nmissed_count(cur);
573 
574 		/*
575 		 * We come here because instructions in the pre/post
576 		 * handler caused the page_fault, this could happen
577 		 * if handler tries to access user space by
578 		 * copy_from_user(), get_user() etc. Let the
579 		 * user-specified handler try to fix it first.
580 		 */
581 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
582 			return 1;
583 
584 		/*
585 		 * In case the user-specified fault handler returned
586 		 * zero, try to fix up.
587 		 */
588 		if ((entry = search_exception_tables(regs->nip)) != NULL) {
589 			regs->nip = extable_fixup(entry);
590 			return 1;
591 		}
592 
593 		/*
594 		 * fixup_exception() could not handle it,
595 		 * Let do_page_fault() fix it.
596 		 */
597 		break;
598 	default:
599 		break;
600 	}
601 	return 0;
602 }
603 NOKPROBE_SYMBOL(kprobe_fault_handler);
604 
605 unsigned long arch_deref_entry_point(void *entry)
606 {
607 	return ppc_global_function_entry(entry);
608 }
609 NOKPROBE_SYMBOL(arch_deref_entry_point);
610 
611 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
612 {
613 	struct jprobe *jp = container_of(p, struct jprobe, kp);
614 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
615 
616 	memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
617 
618 	/* setup return addr to the jprobe handler routine */
619 	regs->nip = arch_deref_entry_point(jp->entry);
620 #ifdef PPC64_ELF_ABI_v2
621 	regs->gpr[12] = (unsigned long)jp->entry;
622 #elif defined(PPC64_ELF_ABI_v1)
623 	regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
624 #endif
625 
626 	/*
627 	 * jprobes use jprobe_return() which skips the normal return
628 	 * path of the function, and this messes up the accounting of the
629 	 * function graph tracer.
630 	 *
631 	 * Pause function graph tracing while performing the jprobe function.
632 	 */
633 	pause_graph_tracing();
634 
635 	return 1;
636 }
637 NOKPROBE_SYMBOL(setjmp_pre_handler);
638 
639 void __used jprobe_return(void)
640 {
641 	asm volatile("trap" ::: "memory");
642 }
643 NOKPROBE_SYMBOL(jprobe_return);
644 
645 static void __used jprobe_return_end(void)
646 {
647 }
648 NOKPROBE_SYMBOL(jprobe_return_end);
649 
650 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
651 {
652 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
653 
654 	/*
655 	 * FIXME - we should ideally be validating that we got here 'cos
656 	 * of the "trap" in jprobe_return() above, before restoring the
657 	 * saved regs...
658 	 */
659 	memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
660 	/* It's OK to start function graph tracing again */
661 	unpause_graph_tracing();
662 	preempt_enable_no_resched();
663 	return 1;
664 }
665 NOKPROBE_SYMBOL(longjmp_break_handler);
666 
667 static struct kprobe trampoline_p = {
668 	.addr = (kprobe_opcode_t *) &kretprobe_trampoline,
669 	.pre_handler = trampoline_probe_handler
670 };
671 
672 int __init arch_init_kprobes(void)
673 {
674 	return register_kprobe(&trampoline_p);
675 }
676 
677 int arch_trampoline_kprobe(struct kprobe *p)
678 {
679 	if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline)
680 		return 1;
681 
682 	return 0;
683 }
684 NOKPROBE_SYMBOL(arch_trampoline_kprobe);
685