1 /* 2 * Kernel Probes (KProbes) 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 * 18 * Copyright (C) IBM Corporation, 2002, 2004 19 * 20 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel 21 * Probes initial implementation ( includes contributions from 22 * Rusty Russell). 23 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes 24 * interface to access function arguments. 25 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port 26 * for PPC64 27 */ 28 29 #include <linux/kprobes.h> 30 #include <linux/ptrace.h> 31 #include <linux/preempt.h> 32 #include <linux/module.h> 33 #include <linux/kdebug.h> 34 #include <asm/cacheflush.h> 35 #include <asm/sstep.h> 36 #include <asm/uaccess.h> 37 #include <asm/system.h> 38 39 #ifdef CONFIG_BOOKE 40 #define MSR_SINGLESTEP (MSR_DE) 41 #else 42 #define MSR_SINGLESTEP (MSR_SE) 43 #endif 44 45 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 46 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 47 48 struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}}; 49 50 int __kprobes arch_prepare_kprobe(struct kprobe *p) 51 { 52 int ret = 0; 53 kprobe_opcode_t insn = *p->addr; 54 55 if ((unsigned long)p->addr & 0x03) { 56 printk("Attempt to register kprobe at an unaligned address\n"); 57 ret = -EINVAL; 58 } else if (IS_MTMSRD(insn) || IS_RFID(insn) || IS_RFI(insn)) { 59 printk("Cannot register a kprobe on rfi/rfid or mtmsr[d]\n"); 60 ret = -EINVAL; 61 } 62 63 /* insn must be on a special executable page on ppc64. This is 64 * not explicitly required on ppc32 (right now), but it doesn't hurt */ 65 if (!ret) { 66 p->ainsn.insn = get_insn_slot(); 67 if (!p->ainsn.insn) 68 ret = -ENOMEM; 69 } 70 71 if (!ret) { 72 memcpy(p->ainsn.insn, p->addr, 73 MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); 74 p->opcode = *p->addr; 75 flush_icache_range((unsigned long)p->ainsn.insn, 76 (unsigned long)p->ainsn.insn + sizeof(kprobe_opcode_t)); 77 } 78 79 p->ainsn.boostable = 0; 80 return ret; 81 } 82 83 void __kprobes arch_arm_kprobe(struct kprobe *p) 84 { 85 *p->addr = BREAKPOINT_INSTRUCTION; 86 flush_icache_range((unsigned long) p->addr, 87 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 88 } 89 90 void __kprobes arch_disarm_kprobe(struct kprobe *p) 91 { 92 *p->addr = p->opcode; 93 flush_icache_range((unsigned long) p->addr, 94 (unsigned long) p->addr + sizeof(kprobe_opcode_t)); 95 } 96 97 void __kprobes arch_remove_kprobe(struct kprobe *p) 98 { 99 mutex_lock(&kprobe_mutex); 100 free_insn_slot(p->ainsn.insn, 0); 101 mutex_unlock(&kprobe_mutex); 102 } 103 104 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) 105 { 106 /* We turn off async exceptions to ensure that the single step will 107 * be for the instruction we have the kprobe on, if we dont its 108 * possible we'd get the single step reported for an exception handler 109 * like Decrementer or External Interrupt */ 110 regs->msr &= ~MSR_EE; 111 regs->msr |= MSR_SINGLESTEP; 112 #ifdef CONFIG_BOOKE 113 regs->msr &= ~MSR_CE; 114 mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) | DBCR0_IC | DBCR0_IDM); 115 #endif 116 117 /* 118 * On powerpc we should single step on the original 119 * instruction even if the probed insn is a trap 120 * variant as values in regs could play a part in 121 * if the trap is taken or not 122 */ 123 regs->nip = (unsigned long)p->ainsn.insn; 124 } 125 126 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 127 { 128 kcb->prev_kprobe.kp = kprobe_running(); 129 kcb->prev_kprobe.status = kcb->kprobe_status; 130 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr; 131 } 132 133 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 134 { 135 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; 136 kcb->kprobe_status = kcb->prev_kprobe.status; 137 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr; 138 } 139 140 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, 141 struct kprobe_ctlblk *kcb) 142 { 143 __get_cpu_var(current_kprobe) = p; 144 kcb->kprobe_saved_msr = regs->msr; 145 } 146 147 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 148 struct pt_regs *regs) 149 { 150 ri->ret_addr = (kprobe_opcode_t *)regs->link; 151 152 /* Replace the return addr with trampoline addr */ 153 regs->link = (unsigned long)kretprobe_trampoline; 154 } 155 156 static int __kprobes kprobe_handler(struct pt_regs *regs) 157 { 158 struct kprobe *p; 159 int ret = 0; 160 unsigned int *addr = (unsigned int *)regs->nip; 161 struct kprobe_ctlblk *kcb; 162 163 /* 164 * We don't want to be preempted for the entire 165 * duration of kprobe processing 166 */ 167 preempt_disable(); 168 kcb = get_kprobe_ctlblk(); 169 170 /* Check we're not actually recursing */ 171 if (kprobe_running()) { 172 p = get_kprobe(addr); 173 if (p) { 174 kprobe_opcode_t insn = *p->ainsn.insn; 175 if (kcb->kprobe_status == KPROBE_HIT_SS && 176 is_trap(insn)) { 177 /* Turn off 'trace' bits */ 178 regs->msr &= ~MSR_SINGLESTEP; 179 regs->msr |= kcb->kprobe_saved_msr; 180 goto no_kprobe; 181 } 182 /* We have reentered the kprobe_handler(), since 183 * another probe was hit while within the handler. 184 * We here save the original kprobes variables and 185 * just single step on the instruction of the new probe 186 * without calling any user handlers. 187 */ 188 save_previous_kprobe(kcb); 189 set_current_kprobe(p, regs, kcb); 190 kcb->kprobe_saved_msr = regs->msr; 191 kprobes_inc_nmissed_count(p); 192 prepare_singlestep(p, regs); 193 kcb->kprobe_status = KPROBE_REENTER; 194 return 1; 195 } else { 196 if (*addr != BREAKPOINT_INSTRUCTION) { 197 /* If trap variant, then it belongs not to us */ 198 kprobe_opcode_t cur_insn = *addr; 199 if (is_trap(cur_insn)) 200 goto no_kprobe; 201 /* The breakpoint instruction was removed by 202 * another cpu right after we hit, no further 203 * handling of this interrupt is appropriate 204 */ 205 ret = 1; 206 goto no_kprobe; 207 } 208 p = __get_cpu_var(current_kprobe); 209 if (p->break_handler && p->break_handler(p, regs)) { 210 goto ss_probe; 211 } 212 } 213 goto no_kprobe; 214 } 215 216 p = get_kprobe(addr); 217 if (!p) { 218 if (*addr != BREAKPOINT_INSTRUCTION) { 219 /* 220 * PowerPC has multiple variants of the "trap" 221 * instruction. If the current instruction is a 222 * trap variant, it could belong to someone else 223 */ 224 kprobe_opcode_t cur_insn = *addr; 225 if (is_trap(cur_insn)) 226 goto no_kprobe; 227 /* 228 * The breakpoint instruction was removed right 229 * after we hit it. Another cpu has removed 230 * either a probepoint or a debugger breakpoint 231 * at this address. In either case, no further 232 * handling of this interrupt is appropriate. 233 */ 234 ret = 1; 235 } 236 /* Not one of ours: let kernel handle it */ 237 goto no_kprobe; 238 } 239 240 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 241 set_current_kprobe(p, regs, kcb); 242 if (p->pre_handler && p->pre_handler(p, regs)) 243 /* handler has already set things up, so skip ss setup */ 244 return 1; 245 246 ss_probe: 247 if (p->ainsn.boostable >= 0) { 248 unsigned int insn = *p->ainsn.insn; 249 250 /* regs->nip is also adjusted if emulate_step returns 1 */ 251 ret = emulate_step(regs, insn); 252 if (ret > 0) { 253 /* 254 * Once this instruction has been boosted 255 * successfully, set the boostable flag 256 */ 257 if (unlikely(p->ainsn.boostable == 0)) 258 p->ainsn.boostable = 1; 259 260 if (p->post_handler) 261 p->post_handler(p, regs, 0); 262 263 kcb->kprobe_status = KPROBE_HIT_SSDONE; 264 reset_current_kprobe(); 265 preempt_enable_no_resched(); 266 return 1; 267 } else if (ret < 0) { 268 /* 269 * We don't allow kprobes on mtmsr(d)/rfi(d), etc. 270 * So, we should never get here... but, its still 271 * good to catch them, just in case... 272 */ 273 printk("Can't step on instruction %x\n", insn); 274 BUG(); 275 } else if (ret == 0) 276 /* This instruction can't be boosted */ 277 p->ainsn.boostable = -1; 278 } 279 prepare_singlestep(p, regs); 280 kcb->kprobe_status = KPROBE_HIT_SS; 281 return 1; 282 283 no_kprobe: 284 preempt_enable_no_resched(); 285 return ret; 286 } 287 288 /* 289 * Function return probe trampoline: 290 * - init_kprobes() establishes a probepoint here 291 * - When the probed function returns, this probe 292 * causes the handlers to fire 293 */ 294 static void __used kretprobe_trampoline_holder(void) 295 { 296 asm volatile(".global kretprobe_trampoline\n" 297 "kretprobe_trampoline:\n" 298 "nop\n"); 299 } 300 301 /* 302 * Called when the probe at kretprobe trampoline is hit 303 */ 304 static int __kprobes trampoline_probe_handler(struct kprobe *p, 305 struct pt_regs *regs) 306 { 307 struct kretprobe_instance *ri = NULL; 308 struct hlist_head *head, empty_rp; 309 struct hlist_node *node, *tmp; 310 unsigned long flags, orig_ret_address = 0; 311 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; 312 313 INIT_HLIST_HEAD(&empty_rp); 314 kretprobe_hash_lock(current, &head, &flags); 315 316 /* 317 * It is possible to have multiple instances associated with a given 318 * task either because an multiple functions in the call path 319 * have a return probe installed on them, and/or more then one return 320 * return probe was registered for a target function. 321 * 322 * We can handle this because: 323 * - instances are always inserted at the head of the list 324 * - when multiple return probes are registered for the same 325 * function, the first instance's ret_addr will point to the 326 * real return address, and all the rest will point to 327 * kretprobe_trampoline 328 */ 329 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { 330 if (ri->task != current) 331 /* another task is sharing our hash bucket */ 332 continue; 333 334 if (ri->rp && ri->rp->handler) 335 ri->rp->handler(ri, regs); 336 337 orig_ret_address = (unsigned long)ri->ret_addr; 338 recycle_rp_inst(ri, &empty_rp); 339 340 if (orig_ret_address != trampoline_address) 341 /* 342 * This is the real return address. Any other 343 * instances associated with this task are for 344 * other calls deeper on the call stack 345 */ 346 break; 347 } 348 349 kretprobe_assert(ri, orig_ret_address, trampoline_address); 350 regs->nip = orig_ret_address; 351 352 reset_current_kprobe(); 353 kretprobe_hash_unlock(current, &flags); 354 preempt_enable_no_resched(); 355 356 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { 357 hlist_del(&ri->hlist); 358 kfree(ri); 359 } 360 /* 361 * By returning a non-zero value, we are telling 362 * kprobe_handler() that we don't want the post_handler 363 * to run (and have re-enabled preemption) 364 */ 365 return 1; 366 } 367 368 /* 369 * Called after single-stepping. p->addr is the address of the 370 * instruction whose first byte has been replaced by the "breakpoint" 371 * instruction. To avoid the SMP problems that can occur when we 372 * temporarily put back the original opcode to single-step, we 373 * single-stepped a copy of the instruction. The address of this 374 * copy is p->ainsn.insn. 375 */ 376 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs) 377 { 378 int ret; 379 unsigned int insn = *p->ainsn.insn; 380 381 regs->nip = (unsigned long)p->addr; 382 ret = emulate_step(regs, insn); 383 if (ret == 0) 384 regs->nip = (unsigned long)p->addr + 4; 385 } 386 387 static int __kprobes post_kprobe_handler(struct pt_regs *regs) 388 { 389 struct kprobe *cur = kprobe_running(); 390 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 391 392 if (!cur) 393 return 0; 394 395 /* make sure we got here for instruction we have a kprobe on */ 396 if (((unsigned long)cur->ainsn.insn + 4) != regs->nip) 397 return 0; 398 399 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { 400 kcb->kprobe_status = KPROBE_HIT_SSDONE; 401 cur->post_handler(cur, regs, 0); 402 } 403 404 resume_execution(cur, regs); 405 regs->msr |= kcb->kprobe_saved_msr; 406 407 /*Restore back the original saved kprobes variables and continue. */ 408 if (kcb->kprobe_status == KPROBE_REENTER) { 409 restore_previous_kprobe(kcb); 410 goto out; 411 } 412 reset_current_kprobe(); 413 out: 414 preempt_enable_no_resched(); 415 416 /* 417 * if somebody else is singlestepping across a probe point, msr 418 * will have DE/SE set, in which case, continue the remaining processing 419 * of do_debug, as if this is not a probe hit. 420 */ 421 if (regs->msr & MSR_SINGLESTEP) 422 return 0; 423 424 return 1; 425 } 426 427 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) 428 { 429 struct kprobe *cur = kprobe_running(); 430 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 431 const struct exception_table_entry *entry; 432 433 switch(kcb->kprobe_status) { 434 case KPROBE_HIT_SS: 435 case KPROBE_REENTER: 436 /* 437 * We are here because the instruction being single 438 * stepped caused a page fault. We reset the current 439 * kprobe and the nip points back to the probe address 440 * and allow the page fault handler to continue as a 441 * normal page fault. 442 */ 443 regs->nip = (unsigned long)cur->addr; 444 regs->msr &= ~MSR_SINGLESTEP; /* Turn off 'trace' bits */ 445 regs->msr |= kcb->kprobe_saved_msr; 446 if (kcb->kprobe_status == KPROBE_REENTER) 447 restore_previous_kprobe(kcb); 448 else 449 reset_current_kprobe(); 450 preempt_enable_no_resched(); 451 break; 452 case KPROBE_HIT_ACTIVE: 453 case KPROBE_HIT_SSDONE: 454 /* 455 * We increment the nmissed count for accounting, 456 * we can also use npre/npostfault count for accouting 457 * these specific fault cases. 458 */ 459 kprobes_inc_nmissed_count(cur); 460 461 /* 462 * We come here because instructions in the pre/post 463 * handler caused the page_fault, this could happen 464 * if handler tries to access user space by 465 * copy_from_user(), get_user() etc. Let the 466 * user-specified handler try to fix it first. 467 */ 468 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) 469 return 1; 470 471 /* 472 * In case the user-specified fault handler returned 473 * zero, try to fix up. 474 */ 475 if ((entry = search_exception_tables(regs->nip)) != NULL) { 476 regs->nip = entry->fixup; 477 return 1; 478 } 479 480 /* 481 * fixup_exception() could not handle it, 482 * Let do_page_fault() fix it. 483 */ 484 break; 485 default: 486 break; 487 } 488 return 0; 489 } 490 491 /* 492 * Wrapper routine to for handling exceptions. 493 */ 494 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 495 unsigned long val, void *data) 496 { 497 struct die_args *args = (struct die_args *)data; 498 int ret = NOTIFY_DONE; 499 500 if (args->regs && user_mode(args->regs)) 501 return ret; 502 503 switch (val) { 504 case DIE_BPT: 505 if (kprobe_handler(args->regs)) 506 ret = NOTIFY_STOP; 507 break; 508 case DIE_SSTEP: 509 if (post_kprobe_handler(args->regs)) 510 ret = NOTIFY_STOP; 511 break; 512 default: 513 break; 514 } 515 return ret; 516 } 517 518 #ifdef CONFIG_PPC64 519 unsigned long arch_deref_entry_point(void *entry) 520 { 521 return ((func_descr_t *)entry)->entry; 522 } 523 #endif 524 525 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 526 { 527 struct jprobe *jp = container_of(p, struct jprobe, kp); 528 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 529 530 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs)); 531 532 /* setup return addr to the jprobe handler routine */ 533 regs->nip = arch_deref_entry_point(jp->entry); 534 #ifdef CONFIG_PPC64 535 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc); 536 #endif 537 538 return 1; 539 } 540 541 void __used __kprobes jprobe_return(void) 542 { 543 asm volatile("trap" ::: "memory"); 544 } 545 546 static void __used __kprobes jprobe_return_end(void) 547 { 548 }; 549 550 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 551 { 552 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 553 554 /* 555 * FIXME - we should ideally be validating that we got here 'cos 556 * of the "trap" in jprobe_return() above, before restoring the 557 * saved regs... 558 */ 559 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs)); 560 preempt_enable_no_resched(); 561 return 1; 562 } 563 564 static struct kprobe trampoline_p = { 565 .addr = (kprobe_opcode_t *) &kretprobe_trampoline, 566 .pre_handler = trampoline_probe_handler 567 }; 568 569 int __init arch_init_kprobes(void) 570 { 571 return register_kprobe(&trampoline_p); 572 } 573 574 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 575 { 576 if (p->addr == (kprobe_opcode_t *)&kretprobe_trampoline) 577 return 1; 578 579 return 0; 580 } 581